TLA2024 [TI]

具有基准电压、PGA 和 I2C 的 12 位、4 通道 Δ-Σ ADC;
TLA2024
型号: TLA2024
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有基准电压、PGA 和 I2C 的 12 位、4 通道 Δ-Σ ADC

文件: 总34页 (文件大小:1504K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
TLA202x 成本经优化的超小型、12 位、系统监控 ADC  
1 特性  
3 说明  
1
业界成本最低的 12 Δ-Σ ADC  
TLA2021, TLA2022, and TLA2024 器件 (TLA202x) 均  
为易于使用的低功耗、12 Δ-Σ 模数转换器 (ADC),  
适用于任何类型的系统监控 应用 (比如电源或电池电  
压监控、电流检测或温度测量)。TLA2021 和  
TLA2022 采用超小型无引线 10 引脚 X2QFN 封装,  
为单通道 ADC,而 TLA2024 采用 灵活的输入多路复  
用器 (MUX),具有两个差动输入测量选项或四个单端  
输入测量选项。  
超小型 X2QFN 封装:2mm × 1.5mm  
高集成度:  
4 个单端或 2 个差分输入成就了TLA2024业界  
最高通道密度 ADC(每个通道 0.75mm²)  
PGA(仅限 TLA2022 and TLA2024)  
电压基准  
振荡器  
低电流消耗:150µA  
TLA202x 集成了电压基准和振荡器。此外,TLA2022  
and TLA2024 包括一个可编程增益放大器 (PGA),其  
可选输入范围为 ±256mV ±6.144V,可同时支持大  
小信号测量。  
宽电源电压范围:2V 5.5V  
可编程数据速率:128SPS 3.3kSPS  
I2C™兼容接口:  
支持标准模式和快速模式  
三个引脚可选 I2C 地址  
TLA202x 通过兼容 I2C 的接口进行通信,且既可在连  
续转换模式下工作,也可在单冲转换模式下工作。在单  
冲转换模式下,这些器件会在一次转换后自动断电,从  
而显著降低空闲期间的功耗。  
工作温度范围:-40°C +85°C  
2 应用  
个人电子产品:  
所有这些 特性,加上较宽的工作电源电压范围,使得  
TLA202x 十分适合功率受限和空间受限的系统监控 应  
用中,中对于高效率、高电源密度和稳健性的需求。  
电视、平板电脑、手机  
可穿戴设备  
无人机、玩具  
器件信息(1)  
家用电器和厨房电器  
楼宇自动化:  
器件型号  
TLA2021  
封装  
封装尺寸(标称值)  
HVAC、烟雾探测器  
TLA2022  
TLA2024  
X2QFN (10)  
1.50mm x 2.00mm  
电池电压和电流监控  
温度感应  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
电池供电、便携式仪表  
系统监控应用示例  
3.3 V  
3.3 V  
Power Supply  
Monitoring  
3.3 V  
VDD  
Current  
RSHUNT  
Sense  
Amplifier  
Voltage  
Reference  
AIN0  
AIN1  
AIN2  
AIN3  
SCL  
I2C Bus  
12-Bit  
û¯  
ADC  
I2C  
SDA  
Mux  
PGA  
Analog Output  
Temperature  
Sensor IC  
Interface  
ADDR  
3.3 V  
Oscillator  
TLA2024  
RBIAS  
GND  
Thermistor  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS846  
 
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
目录  
8.6 Register Maps......................................................... 17  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Application .................................................. 23  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 I2C Timing Requirements.......................................... 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagrams ....................................... 8  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 12  
8.5 Programming........................................................... 13  
9
10 Power Supply Recommendations ..................... 24  
10.1 Power-Supply Sequencing.................................... 24  
10.2 Power-Supply Decoupling..................................... 24  
11 Layout................................................................... 25  
11.1 Layout Guidelines ................................................. 25  
11.2 Layout Example .................................................... 26  
12 器件和文档支持 ..................................................... 27  
12.1 器件支持................................................................ 27  
12.2 相关链接................................................................ 27  
12.3 接收文档更新通知 ................................................. 27  
12.4 社区资源................................................................ 27  
12.5 ....................................................................... 27  
12.6 静电放电警告......................................................... 27  
12.7 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
NOTES  
November 2017  
*
第一版.  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
5 Device Comparison Table  
MAXIMUM SAMPLE  
RATE  
INPUT CHANNELS,  
DIFFERENTIAL  
(Single-Ended)  
RESOLUTION  
DEVICE  
(Bits)  
PGA  
INTERFACE  
(SPS)  
TLA2021  
TLA2022  
TLA2024  
12  
12  
12  
3300  
3300  
3300  
1 (1)  
1 (1)  
2 (4)  
No  
Yes  
Yes  
I2C  
I2C  
I2C  
6 Pin Configuration and Functions  
TLA2021 and TLA2022 RUG Package  
10-Pin X2QFN  
TLA2024 RUG Package  
10-Pin X2QFN  
Top View  
Top View  
ADDR  
NC  
1
2
3
4
9
8
7
6
SDA  
VDD  
NC  
ADDR  
NC  
1
2
3
4
9
8
7
6
SDA  
VDD  
AIN3  
AIN2  
GND  
AIN0  
GND  
AIN0  
NC  
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
TLA2021,  
TLA2022  
NAME  
ADDR  
AIN0  
AIN1  
AIN2  
AIN3  
GND  
NC  
TLA2024  
I2C slave address select pin. See the I2C Address Selection section for details.  
Analog input 0(1)  
Analog input 1(1)  
Analog input 2(1)  
1
1
4
Digital input  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
4
5
5
3
6
7
Analog input 3(1)  
3
Ground  
2, 6, 7  
10  
9
2
No connect; always leave floating  
SCL  
10  
9
Digital input  
Digital I/O  
Supply  
Serial clock input. Connect to VDD using a pullup resistor.  
Serial data input and output. Connect to VDD using a pullup resistor.  
Power supply. Connect a 0.1-µF, power-supply decoupling capacitor to GND.  
SDA  
VDD  
8
8
(1) Float unused analog inputs, or tie unused analog inputs to GND.  
版权 © 2017, Texas Instruments Incorporated  
3
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
MAX  
UNIT  
Power-supply voltage  
Analog input voltage  
Digital input voltage  
Input current  
VDD to GND  
7
VDD + 0.3  
7
AIN0, AIN1, AIN2, AIN3  
SDA, SCL, ADDR  
GND – 0.3  
GND – 0.3  
–10  
V
Continuous, any pin except power-supply pins  
Junction, TJ  
10  
mA  
°C  
–40  
125  
Temperature  
Storage, Tstg  
–60  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VDD to GND  
ANALOG INPUTS(1)  
2
5.5  
V
Full-scale input voltage range(2)  
(VIN = VAINP – VAINN  
FSR  
±0.256  
GND  
±6.144  
VDD  
V
V
)
V(AINx)  
Absolute input voltage  
DIGITAL INPUTS  
Digital input voltage  
TEMPERATURE  
TA Operating ambient temperature  
GND  
–40  
5.5  
85  
V
°C  
(1) AINP and AINN denote the selected positive and negative inputs. On the TLA2024, AINx denotes one of the four available analog inputs.  
(2) This parameter expresses the full-scale range of the ADC scaling. No more than VDD + 0.3 V or 5.5 V (whichever is smaller) must be  
applied to this device. See the Full-Scale Range (FSR) and LSB Size section more information.  
7.4 Thermal Information  
TLA202x  
THERMAL METRIC(1)  
RUG (X2QFN)  
10 PINS  
245.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
69.3  
172.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.2  
ψJB  
170.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
7.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +85°C; typical specifications are at TA = 25°C; all  
specifications are at VDD = 3.3 V, data rate = 128 SPS, and FSR = ±2.048 V (unless otherwise noted)  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FSR = ±6.144 V(1)  
FSR = ±4.096 V(1), FSR = ±2.048 V  
FSR = ±1.024 V  
10  
6
Common-mode input impedance  
Differential input impedance  
MΩ  
3
FSR = ±0.512 V, FSR = ±0.256 V  
FSR = ±6.144 V(1)  
FSR = ±4.096 V(1)  
100  
22  
15  
MΩ  
kΩ  
FSR = ±2.048 V  
4.9  
2.4  
710  
FSR = ±1.024 V  
FSR = ±0.512 V, ±0.256 V  
SYSTEM PERFORMANCE  
Resolution (no missing codes)  
Data rate  
12  
Bits  
DR  
INL  
128, 250, 490, 920, 1600, 2400, 3300  
SPS  
Data rate variation  
Integral nonlinearity(2)  
Offset error  
All data rates  
–10%  
10%  
1
±1  
LSB  
LSB  
Offset drift  
Gain error(3)  
Gain drift(3)  
0.01  
0.05%  
10  
LSB/°C  
ppm/°C  
dB  
PSRR  
CMRR  
Power-supply rejection ratio  
Common-mode rejection ratio  
85  
90  
dB  
DIGITAL INPUT/OUTPUT  
VIL  
Logic input level, low  
GND  
0.7 VDD  
GND  
0.3 VDD  
5.5  
V
V
VIH  
VOL  
Logic input level, high  
Logic output level, low  
Input leakage current  
IOL = 3 mA  
0.15  
0.4  
V
GND < VDigital Input < VDD  
–10  
10  
µA  
POWER SUPPLY  
Power-down  
Operating  
0.5  
150  
0.9  
0.5  
0.3  
IVDD Supply current  
µA  
VDD = 5 V  
VDD = 3.3 V  
VDD = 2 V  
PD  
Power dissipation  
mW  
(1) This parameter expresses the full-scale range of the ADC scaling. No more than VDD + 0.3 V or 5.5 V (whichever is smaller) must be  
applied to this device. See the Full-Scale Range (FSR) and LSB Size section for more information.  
(2) Best-fit INL; covers 99% of full-scale.  
(3) Includes all errors from onboard PGA and voltage reference.  
Copyright © 2017, Texas Instruments Incorporated  
5
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
7.6 I2C Timing Requirements  
over operating ambient temperature range and VDD = 2 V to 5.5 V (unless otherwise noted)  
MIN  
MAX  
UNIT  
STANDARD-MODE  
fSCL  
SCL clock frequency  
10  
4.7  
4.0  
100  
kHz  
µs  
tLOW  
tHIGH  
Pulse duration, SCL low  
Pulse duration, SCL high  
µs  
Hold time, (repeated) START condition.  
After this period, the first clock pulse is generated.  
tHD;STA  
4
µs  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Setup time, repeated START condition  
Hold time, data  
4.7  
0
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Setup time, data  
250  
Rise time, SCL, SDA  
1000  
250  
tf  
Fall time, SCL, SDA  
tSU;STO  
tBUF  
Setup time, STOP condition  
Bus free time, between STOP and START condition  
Valid time, data  
4.0  
4.7  
tVD;DAT  
tVD;ACK  
FAST-MODE  
fSCL  
3.45  
3.45  
Valid time, acknowledge  
SCL clock frequency  
10  
1.3  
0.6  
400  
kHz  
µs  
tLOW  
Pulse duration, SCL low  
Pulse duration, SCL high  
tHIGH  
µs  
Hold time, (repeated) START condition.  
After this period, the first clock pulse is generated.  
tHD;STA  
0.6  
µs  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Setup time, repeated START condition  
Hold time, data  
0.6  
0
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Setup time, data  
100  
20  
Rise time, SCL, SDA  
300  
300  
tf  
Fall time, SCL, SDA  
tSU;STO  
tBUF  
tVD;DAT  
tVD;ACK  
Setup time, STOP condition  
Bus free time, between STOP and START condition  
Valid time, data  
0.6  
1.3  
0.9  
0.9  
Valid time, acknowledge  
tSU;DAT  
tf  
tr  
70%  
30%  
. . .  
cont.  
SDA  
SCL  
tHD;DAT  
tVD;DAT  
tf  
tHIGH  
tr  
70%  
30%  
70%  
30%  
. . .  
cont.  
tLOW  
9th clock  
tHD;STA  
S
1 / fSCL  
1st clock cycle  
tBUF  
SDA  
tVD;ACK  
tSU;STA  
tHD;STA  
tSU;STO  
70%  
30%  
SCL  
Sr  
P
S
9th clock  
1. I2C Timing Requirements  
6
版权 © 2017, Texas Instruments Incorporated  
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
7.7 Typical Characteristics  
at FSR = ±2.048 V and DR = 128 SPS (unless otherwise noted)  
3
2.5  
2
250  
200  
150  
100  
VDD = 5 V  
VDD = 3 V  
VDD = 2 V  
1.5  
1
50  
VDD = 5 V  
VDD = 3 V  
0.5  
VDD = 2 V  
0
0
-40  
-20  
0
20  
40  
60  
80 100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
2. Operating Current vs Temperature  
3. Power-Down Current vs Temperature  
6
VDD = 5 V  
VDD = 3 V  
VDD = 2 V  
4
2
0
-2  
-4  
-6  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
4. Data Rate vs Temperature  
版权 © 2017, Texas Instruments Incorporated  
7
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLA202x are a family of very small, low-power, 12-bit, delta-sigma (ΔΣ) analog-to-digital converters (ADCs).  
The TLA202x consist of a ΔΣ ADC core with an internal voltage reference, a clock oscillator, and an I2C  
interface. The TLA2022 and TLA2024 also integrate a programmable gain amplifier (PGA). 5, 6, and 7  
show the functional block diagrams of the TLA2024, TLA2022, and TLA2021, respectively.  
The TLA202x ADC core measures a differential signal, VIN, that is the difference of VAINP and VAINN. The  
converter core consists of a differential, switched-capacitor ΔΣ modulator followed by a digital filter. This  
architecture results in a very strong attenuation of any common-mode signals. Input signals are compared to the  
internal voltage reference. The digital filter receives a high-speed bitstream from the modulator and outputs a  
code proportional to the input voltage.  
The TLA202x have two available conversion modes: single-shot and continuous-conversion. In single-shot  
conversion mode, the ADC performs one conversion of the input signal upon request, stores the conversion  
value to an internal conversion register, and then enters a power-down state. This mode is intended to provide  
significant power savings in systems that only require periodic conversions or when there are long idle periods  
between conversions. In continuous-conversion mode, the ADC automatically begins a conversion of the input  
signal as soon as the previous conversion is complete. The rate of continuous conversion is equal to the  
programmed data rate. Data can be read at any time and always reflect the most recently completed conversion.  
8.2 Functional Block Diagrams  
VDD  
TLA2024  
Voltage  
Reference  
Mux  
AIN0  
ADDR  
I2C  
Interface  
12-Bit  
û¯ ADC  
PGA  
AIN1  
SCL  
SDA  
AIN2  
AIN3  
Oscillator  
GND  
Copyright © 2017, Texas Instruments Incorporated  
5. TLA2024 Block Diagram  
VDD  
VDD  
TLA2022  
TLA2021  
Voltage  
Voltage  
Reference  
Reference  
ADDR  
AIN0  
AIN1  
ADDR  
SCL  
I2C  
Interface  
12-Bit  
û¯ ADC  
AIN0  
SCL  
PGA  
I2C  
Interface  
12-Bit  
û¯ ADC  
SDA  
AIN1  
SDA  
Oscillator  
Oscillator  
GND  
Copyright © 2017, Texas Instruments Incorporated  
GND  
Copyright © 2017, Texas Instruments Incorporated  
6. TLA2022 Block Diagram  
7. TLA2021 Block Diagram  
8
版权 © 2017, Texas Instruments Incorporated  
 
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
8.3 Feature Description  
8.3.1 Multiplexer  
8 shows that the TLA2024 contains an analog input multiplexer (MUX). Four single-ended or two differential  
signals can be measured. Additionally, AIN0 and AIN1 can be measured differentially to AIN3. The multiplexer is  
configured by bits MUX[2:0] in the configuration register. When single-ended signals are measured, the negative  
input of the ADC is internally connected to GND by a switch within the multiplexer.  
TLA2024  
VDD  
AIN0  
VDD  
GND  
VDD  
AIN  
AIN  
P
AIN1  
AIN2  
AIN3  
N
GND  
VDD  
GND  
GND  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8. Input Multiplexer  
The TLA2021 and TLA2022 do not have an input multiplexer and can either measure one differential signal or  
one single-ended signal. For single-ended measurements, connect the AIN1 pin to GND externally. In  
subsequent sections of this data sheet, AINP refers to AIN0 and AINN refers to AIN1 for the TLA2021 and  
TLA2022.  
Electrostatic discharge (ESD) diodes connected to VDD and GND protect the TLA202x analog inputs. Keep the  
absolute voltage on any input within the range shown in 公式 1 to prevent the ESD diodes from turning on.  
GND – 0.3 V < V(AINX) < VDD + 0.3 V  
(1)  
If the voltages on the analog input pins can potentially violate these conditions, use external Schottky diodes and  
series resistors to limit the input current to safe values (see the Absolute Maximum Ratings table).  
版权 © 2017, Texas Instruments Incorporated  
9
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2 Analog Inputs  
The TLA202x use a switched-capacitor input stage where capacitors are continuously charged and then  
discharged to measure the voltage between AINP and AINN. The frequency at which the input signal is sampled  
is referred to as the sampling frequency or the modulator frequency (fMOD). The TLA202x have a 1-MHz internal  
oscillator that is further divided by a factor of 4 to generate fMOD at 250 kHz. The capacitors used in this input  
stage are small, and to external circuitry, the average loading appears resistive. 9 shows this structure. The  
capacitor values set the resistance and switching rate. 10 shows the timing for the switches in 9. During the  
sampling phase, switches S1 are closed. This event charges CA1 to VAINP, CA2 to VAINN, and CB to (VAINP – VAINN).  
During the discharge phase, S1 is first opened and then S2 is closed. CA1 and CA2 then discharge to  
approximately 0.7 V and CB discharges to 0 V. This charging draws a very small transient current from the  
source driving the TLA202x analog inputs. The average value of this current can be used to calculate the  
effective impedance (Zeff), where Zeff = VIN / IAVERAGE  
.
0.7 V  
C
A1  
Z
Z
CM  
Equivalent  
Circuit  
0.7 V  
0.7 V  
AIN  
P
S2  
S2  
AIN  
AIN  
S
P
1
C
B
DIFF  
S
1
N
AIN  
N
Z
CM  
f
= 250 kHz  
MOD  
C
A2  
0.7 V  
9. Simplified Analog Input Circuit  
tSAMPLE  
ON  
S1  
OFF  
ON  
S2  
OFF  
10. S1 and S2 Switch Timing  
The common-mode input impedance is measured by applying a common-mode signal to the shorted AINP and  
AINN inputs and measuring the average current consumed by each pin. The common-mode input impedance  
changes depending on the full-scale range, but is approximately 6 Mfor the default full-scale range. In 9, the  
common-mode input impedance is ZCM  
.
The differential input impedance is measured by applying a differential signal to the AINP and AINN inputs where  
one input is held at 0.7 V. The current that flows through the pin connected to 0.7 V is the differential current and  
scales with the full-scale range. In 9, the differential input impedance is ZDIFF  
.
Consider the typical value of the input impedance. Unless the input source has a low impedance, the TLA202x  
input impedance may affect the measurement accuracy. For sources with high-output impedance, buffering may  
be necessary. Active buffers introduce noise, offset, and gain errors. Consider all of these factors in high-  
accuracy applications.  
The clock oscillator frequency drifts slightly with temperature; therefore, the input impedances also drift. For most  
applications, this input impedance drift is negligible and can be ignored.  
10  
版权 © 2017, Texas Instruments Incorporated  
 
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
Feature Description (接下页)  
8.3.3 Full-Scale Range (FSR) and LSB Size  
A programmable gain amplifier (PGA) is implemented before the ΔΣ ADC of the TLA2022 and TLA2024. The full-  
scale range is configured by bits PGA[2:0] in the configuration register and can be set to ±6.144 V, ±4.096 V,  
±2.048 V, ±1.024 V, ±0.512 V, or ±0.256 V. 1 shows the FSR together with the corresponding LSB size. 公式  
2 shows how to calculate the LSB size from the selected full-scale range.  
LSB = FSR / 212  
(2)  
1. Full-Scale Range and Corresponding LSB Size  
FSR  
LSB SIZE  
3 mV  
±6.144 V(1)  
±4.096 V(1)  
±2.048 V  
±1.024 V  
±0.512 V  
±0.256 V  
2 mV  
1 mV  
0.5 mV  
0.25 mV  
0.125 mV  
(1) This parameter expresses the full-scale range of the ADC scaling. Do not apply more than VDD + 0.3 V to this device.  
The FSR of the TLA2021 is fixed at ±2.048 V.  
Analog input voltages must never exceed the analog input voltage limits given in the Absolute Maximum Ratings  
table. If a VDD supply voltage greater than 4 V is used, the ±6.144-V full-scale range allows input voltages to  
extend up to the supply. Although in this case (or whenever the supply voltage is less than the full-scale range) a  
full-scale ADC output code cannot be obtained. For example, with VDD = 3.3 V and FSR = ±4.096 V, only  
signals up to VIN = ±3.3 V can be measured. The code range that represents voltages |VIN| > 3.3 V is not used in  
this case.  
8.3.4 Voltage Reference  
The TLA202x have an integrated voltage reference. An external reference cannot be used with these devices.  
Errors associated with the initial voltage reference accuracy and the reference drift with temperature are included  
in the gain error and gain drift specifications in the Electrical Characteristics table.  
8.3.5 Oscillator  
The TLA202x have an integrated oscillator running at 1 MHz. No external clock can be applied to operate these  
devices. The internal oscillator drifts over temperature and time. The output data rate scales proportionally with  
the oscillator frequency.  
8.3.6 Output Data Rate and Conversion Time  
The TLA202x offer programmable output data rates. Use the DR[2:0] bits in the configuration register to select  
output data rates of 128 SPS, 250 SPS, 490 SPS, 920 SPS, 1600 SPS, 2400 SPS, or 3300 SPS.  
Conversions in the TLA202x settle within a single cycle, which means the conversion time equals 1 / DR.  
版权 © 2017, Texas Instruments Incorporated  
11  
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Reset and Power-Up  
The TLA202x reset on power-up and set all bits in the configuration register to the respective default settings.  
The TLA202x enter a power-down state after completion of the reset process. The device interface and digital  
blocks are active, but no data conversions are performed. The initial power-down state of the TLA202x relieves  
systems with tight power-supply requirements from encountering a surge during power-up.  
The TLA202x respond to the I2C general-call reset command. When the TLA202x receive a general-call reset  
command (06h), an internal reset is performed as if the device is powered up.  
8.4.2 Operating Modes  
The TLA202x operate in one of two modes: continuous-conversion or single-shot. The MODE bit in the  
configuration register selects the respective operating mode.  
8.4.2.1 Single-Shot Conversion Mode  
When the MODE bit in the configuration register is set to 1, the TLA202x enter a power-down state, and operate  
in single-shot conversion mode. This power-down state is the default state for the TLA202x when power is first  
applied. Although powered down, the devices respond to commands. The TLA202x remain in this power-down  
state until a 1 is written to the operational status (OS) bit in the configuration register. When the OS bit is  
asserted, the device powers up in approximately 25 µs, resets the OS bit to 0, and starts a single conversion.  
When conversion data are ready for retrieval, the OS bit is set to 1 and the device powers down again. Writing a  
1 to the OS bit while a conversion is ongoing has no effect. To switch to continuous-conversion mode, write a 0  
to the MODE bit in the configuration register.  
8.4.2.2 Continuous-Conversion Mode  
In continuous-conversion mode (MODE bit set to 0), the TLA202x perform conversions continuously. When a  
conversion is complete, the TLA202x place the result in the conversion data register and immediately begin  
another conversion. When writing new configuration settings, the currently ongoing conversion completes with  
the previous configuration settings. Thereafter, continuous conversions with the new configuration settings start.  
To switch to single-shot conversion mode, write a 1 to the MODE bit in the configuration register or reset the  
device.  
12  
版权 © 2017, Texas Instruments Incorporated  
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
8.5 Programming  
8.5.1 I2C Interface  
The TLA202x use an I2C-compatible (inter-integrated circuit) interface for serial communication. I2C is a 2-wire,  
open-drain communication interface that allows communication of a master device with multiple slave devices on  
the same bus through the use of device addressing. Each slave device on an I2C bus must have a unique  
address. Communication on the I2C bus always takes place between two devices: one acting as the master and  
the other as the slave. Both the master and slave can receive and transmit data, but the slave can only read or  
write under the direction of the master. The TLA202x always act as I2C slave devices.  
An I2C bus consists of two lines: SDA and SCL. SDA carries data and SCL provides the clock. Devices on the  
I2C bus drive the bus lines low by connecting the lines to ground; the devices never drive the bus lines high.  
Instead, the bus wires are pulled high by pullup resistors; thus, the bus wires are always high when a device is  
not driving the lines low. As a result of this configuration, two devices do not conflict. If two devices drive the bus  
simultaneously, there is no driver contention.  
See the I2C-Bus Specification and User Manual from NXP Semiconductors™ for more details.  
8.5.1.1 I2C Address Selection  
The TLA202x have one address pin (ADDR) that configures the I2C address of the device. The ADDR pin can  
connect to GND, VDD, or SCL (as shown in 2), which allows three different addresses to be selected with one  
pin. At the start of every transaction, that is between the START condition (first falling edge of SDA) and the first  
falling SCL edge of the address byte, the TLA202x decode its address configuration again.  
2. ADDR Pin Connection and Corresponding Slave Address  
ADDR PIN CONNECTION  
SLAVE ADDRESS  
1001 000  
GND  
VDD  
SCL  
1001 001  
1001 011  
8.5.1.2 I2C Interface Speed  
The TLA202x support I2C interface speeds up to 400 kbit/s. Standard-mode (Sm) with bit rates up to 100 kbit/s,  
and fast-mode (Fm) with bit rates up to 400 kbit/s are supported. Fast-mode plus (Fm+) and high-speed mode  
(Hs-mode) are not supported.  
8.5.1.3 Serial Clock (SCL) and Serial Data (SDA)  
The serial clock (SCL) line is used to clock data in and out of the device. The master always drives the clock line.  
The TLA202x cannot act as a master and as a result can never drive SCL.  
The serial data (SDA) line allows for bidirectional communication between the host (the master) and the TLA202x  
(the slave). When the master reads from a TLA202x, the TLA202x drives the data line; when the master writes to  
a TLA202x, the master drives the data line.  
Data on the SDA line must be stable during the high period of the clock. The high or low state of the data line  
can only change when the SCL line is low. One clock pulse is generated for each data bit transferred. When in  
an idle state, the master should hold SCL high.  
版权 © 2017, Texas Instruments Incorporated  
13  
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
8.5.1.4 I2C Data Transfer Protocol  
11 shows the format of the data transfer. The master initiates all transactions with the TLA202x by generating  
a START (S) condition. A high-to-low transition on the SDA line while SCL is high defines a START condition.  
The bus is considered to be busy after the START condition.  
Following the START condition, the master sends the 7-bit slave address corresponding to the address of the  
TLA202x that the master wants to communicate with. The master then sends an eighth bit that is a data direction  
bit (R/W). An R/W bit of 0 indicates a write operation, and an R/W bit of 1 indicates a read operation. After the  
R/W bit, the master generates a ninth SCLK pulse and releases the SDA line to allow the TLA202x to  
acknowledge (ACK) the reception of the slave address by pulling SDA low. In case the device does not  
recognize the slave address, the TLA202x holds SDA high to indicate a not acknowledge (NACK) signal.  
Next follows the data transmission. If the transaction is a read (R/W = 1), the TLA202x outputs data on SDA. If  
the transaction is a write (R/W = 0), the host outputs data on SDA. Data are transferred byte-wise, most  
significant bit (MSB) first. The number of bytes that can be transmitted per transfer is unrestricted. Each byte  
must be acknowledged (via the ACK bit) by the receiver. If the transaction is a read, the master issues the ACK.  
If the transaction is a write, the TLA202x issues the ACK.  
The master terminates all transactions by generating a STOP (P) condition. A low-to-high transition on the SDA  
line while SCL is high defines a STOP condition. The bus is considered free again tBUF (bus-free time) after the  
STOP condition.  
SDA  
SCL  
A6 œ A0  
D7 œ D0  
D7 œ D0  
1 - 7  
8
9
1 - 8  
9
1 - 8  
9
S
P
START  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Condition  
from slave  
from receiver  
from receiver Condition  
11. I2C Data Transfer Format  
8.5.1.5 Timeout  
The TLA202x offer a I2C timeout feature that can be used to recover communication when a serial interface  
transmission is interrupted. If the host initiates contact with the TLA202x but subsequently remains idle for 25 ms  
before completing a command, the TLA202x interface is reset. If the TLA202x interface resets because of a  
timeout condition, the host must abort the transaction and restart the communication again by issuing a new  
START condition.  
8.5.1.6 I2C General-Call (Software Reset)  
The TLA202x respond to the I2C general-call address (0000 000) if the R/W bit is 0. The devices acknowledge  
the general-call address and, if the next byte is 06h, the TLA202x reset the internal registers and enter a power-  
down state.  
14  
版权 © 2017, Texas Instruments Incorporated  
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
8.5.2 Reading and Writing Register Data  
The host can read the conversion data register from the TLA202x, or read and write the configuration register  
from and to the TLA202x, respectively. The value of the register pointer (RP), which is the first data byte after the  
slave address of a write transaction (R/W = 0), determines the register that is addressed. 3 shows the  
mapping between the register pointer value and the register that is addressed.  
Register data are sent with the most significant byte first, followed by the least significant byte. Within each byte,  
data are transmitted most significant bit first.  
3. Register Pointer (RP)  
REGISTER POINTER  
REGISTER  
(Hex)  
00h  
01h  
Conversion data register  
Configuration register  
8.5.2.1 Reading Conversion Data or the Configuration Register  
Read the conversion data register or configuration register as shown in 12 by using two I2C communication  
frames. The first frame is an I2C write operation where the R/W bit at the end of the slave address is 0 to indicate  
a write. In this frame, the host sends the register pointer that points to the register to read from. The second  
frame is an I2C read operation where the R/W bit at the end of the slave address is 1 to indicate a read. The  
TLA202x transmits the contents of the register in this second I2C frame. The master can terminate the  
transmission after any byte by not acknowledging or issuing a START or STOP condition.  
When repeatedly reading the same register, the register pointer does not need to be written every time again  
because the TLA202x store the value of the register pointer until a write operation modifies the value.  
S
S
SLAVE ADDRESS  
W
A
REGISTER POINTER  
A
P
(1)  
A
SLAVE ADDRESS  
R
A
REGISTER DATA (MSB)  
REGISTER DATA (LSB)  
A
P
(1) The master can terminate the transmission after the first byte by not acknowledging.  
12. Reading Register Data  
8.5.2.2 Writing the Configuration Register  
Write the configuration register as shown in 13 using a single I2C communication frame. The R/W bit at the  
end of the salve address is 0 to indicate a write. The host first sends the register pointer that points to the  
configuration register, followed by two bytes that represent the register content to write. The TLA202x  
acknowledge each received byte.  
S
SLAVE ADDRESS  
W
A
REGISTER POINTER  
A
•••  
•••  
REGISTER DATA (MSB)  
A
REGISTER DATA (LSB)  
A
P
13. Writing Register Data  
14 provides a legend for 12 and 13.  
S
P
A
A
= START condition  
From master to slave  
= STOP condition  
= acknowledge (SDA low)  
= not acknowledge (SDA high)  
From slave to master  
14. Legend for the I2C Sequence Diagrams  
版权 © 2017, Texas Instruments Incorporated  
15  
 
 
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
8.5.3 Data Format  
The TLA202x provide 12 bits of data in binary two's-complement format that is left-justified within the 16-bit data  
word. A positive full-scale (+FS) input produces an output code of 7FF0h and a negative full-scale (–FS) input  
produces an output code of 8000h. The output clips at these codes for signals that exceed full-scale. 4  
summarizes the ideal output codes for different input signals. 15 shows code transitions versus input voltage.  
4. Input Signal Versus Ideal Output Code  
INPUT SIGNAL  
VIN = (VAINP – VAINN  
)
IDEAL OUTPUT CODE(1)  
+FS (211 – 1) / 211  
7FF0h  
0010h  
0000h  
FFF0h  
8000h  
+FS / 211  
0
–FS / 211  
–FS  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
7FF0h  
7FE0h  
0010h  
0000h  
FFF0h  
8010h  
8000h  
. . .  
. . .  
-FS  
-FS  
0
+FS  
Input Voltage VIN  
211 - 1  
211  
211 - 1  
+FS  
211  
15. Code Transition Diagram  
Single-ended signal measurements, where VAINN = 0 V and VAINP = 0 V to +FS, only use  
the positive code range from 0000h to 7FF0h. However, because of device offset, the  
TLA202x can still output negative codes in case VAINP is close to 0 V.  
16  
版权 © 2017, Texas Instruments Incorporated  
 
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
8.6 Register Maps  
The TLA202x have two registers that are accessible through the I2C interface using the register pointer (RP). The  
conversion data register contains the result of the last conversion and the configuration register changes the  
TLA202x operating modes and queries the status of the device. 5 lists the access codes for the TLA202x.  
5. TLA202x Access Type Codes  
Access Type  
Code  
R
Description  
R
Read  
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default value  
8.6.1 Conversion Data Register (RP = 00h) [reset = 0000h]  
The 16-bit conversion data register contains the result of the last conversion in binary two's-complement format.  
Following power-up, the conversion data register clears to 0, and remains at 0 until the first conversion is  
complete.  
16. Conversion Data Register  
15  
D11  
R-0h  
7
14  
D10  
R-0h  
6
13  
D9  
12  
D8  
11  
D7  
10  
D6  
9
D5  
R-0h  
1
8
D4  
R-0h  
0
R-0h  
5
R-0h  
4
R-0h  
3
R-0h  
2
D3  
D2  
D1  
D0  
RESERVED  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
6. Conversion Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:4  
3:0  
D[11:0]  
R
000h  
12-bit conversion result  
Always reads back 0h  
Reserved  
R
0h  
8.6.2 Configuration Register (RP = 01h) [reset = 8583h]  
The 16-bit configuration register controls the operating mode, input selection, data rate, and full-scale range.  
17. Configuration Register  
15  
OS  
14  
13  
MUX[2:0]  
R/W-0h  
5
12  
4
11  
3
10  
9
1
8
PGA[2:0]  
R/W-2h  
2
MODE  
R/W-1h  
0
R/W-1h  
7
6
DR[2:0]  
R/W-4h  
RESERVED  
R/W-03h  
版权 © 2017, Texas Instruments Incorporated  
17  
 
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
7. Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
OS  
R/W  
1h  
Operational Status or Single-Shot Conversion Start  
This bit determines the operational status of the device. OS can only be written  
when in a power-down state and has no effect when a conversion is ongoing.  
When writing:  
0 : No effect  
1 : Start a single conversion (when in a power-down state)  
When reading:  
0 : The device is currently performing a conversion  
1 : The device is not currently performing a conversion (default)  
14:12  
MUX[2:0]  
R/W  
0h  
Input Multiplexer Configuration (TLA2024 only)  
These bits configure the input multiplexer.  
These bits serve no function on the TLA2021 and TLA2022 and are always set to  
000.  
000 : AINP = AIN0 and AINN = AIN1 (default)  
001 : AINP = AIN0 and AINN = AIN3  
010 : AINP = AIN1 and AINN = AIN3  
011 : AINP = AIN2 and AINN = AIN3  
100 : AINP = AIN0 and AINN = GND  
101 : AINP = AIN1 and AINN = GND  
110 : AINP = AIN2 and AINN = GND  
111 : AINP = AIN3 and AINN = GND  
11:9  
PGA[2:0]  
R/W  
2h  
Programmable Gain Amplifier Configuration (TLA2022 and TLA2024 Only)  
These bits set the FSR of the programmable gain amplifier.  
These bits serve no function on the TLA2021 and are always set to 010.  
000 : FSR = ±6.144 V(1)  
001 : FSR = ±4.096 V(1)  
010 : FSR = ±2.048 V (default)  
011 : FSR = ±1.024 V  
100 : FSR = ±0.512 V  
101 : FSR = ±0.256 V  
110 : FSR = ±0.256 V  
111 : FSR = ±0.256 V  
8
MODE  
R/W  
R/W  
1h  
4h  
Operating Mode  
This bit controls the operating mode.  
0 : Continuous-conversion mode  
1 : Single-shot conversion mode or power-down state (default)  
7:5  
DR[2:0]  
Data Rate  
These bits control the data rate setting.  
000 : DR = 128 SPS  
001 : DR = 250 SPS  
010 : DR = 490 SPS  
011 : DR = 920 SPS  
100 : DR = 1600 SPS (default)  
101 : DR = 2400 SPS  
110 : DR = 3300 SPS  
111 : DR = 3300 SPS  
Always write 03h  
4:0  
Reserved  
R/W  
03h  
(1) This parameter expresses the full-scale range of the ADC scaling. Do not apply more than VDD + 0.3 V to this device.  
18  
版权 © 2017, Texas Instruments Incorporated  
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The following sections give example circuits and suggestions for using the TLA202x in various applications.  
9.1.1 Basic Interface Connections  
18 shows the principle I2C connections for the TLA202x.  
VDD  
1-kto 10-kꢀ  
Pullup Resistors  
10  
Device  
SCL  
SCL  
SDA  
1
2
3
4
ADDR  
NC  
SDA  
VDD  
AIN3  
AIN2  
9
8
7
6
VDD  
Microcontroller or  
Microprocessor  
With I2C Port  
GND  
AIN0  
0.1 F  
AIN1  
5
Copyright © 2017, Texas Instruments Incorporated  
18. Typical Interface Connections of the TLA202x  
The TLA202x interface directly to standard-mode or fast-mode I2C controllers. Any microcontroller I2C peripheral,  
including master-only and single-master I2C peripherals, operates with the TLA202x. The TLA202x do not  
perform clock-stretching (that is, the devices never pull the clock line low), so this function does not need to be  
provided for unless other clock-stretching devices are present on the same I2C bus.  
Pullup resistors are required on both the SDA and SCL lines because I2C bus drivers are open-drain. The size of  
these resistors depends on the bus operating speed and capacitance of the bus lines. Higher-value resistors  
yield lower power consumption when the bus lines are pulled low, but increase the transition times on the bus,  
which limits the bus speed. Lower-value resistors allow higher interface speeds, but at the expense of higher  
power consumption when the bus lines are pulled low. Long bus lines have higher capacitance and require  
smaller pullup resistors to compensate. Do not use resistors that are too small because the bus drivers may be  
unable to pull the bus lines low.  
See the I2C-Bus Specification and User Manual from NXP Semiconductors for more details on pullup resistor  
sizing.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
Application Information (接下页)  
9.1.2 Connecting Multiple Devices  
Up to three TLA202x devices can be connected to a single I2C bus by using different address pin configurations  
for each device. Use the address pin to set the TLA202x to one of three different I2C addresses. 19 shows an  
example with three TLA202x devices on the same I2C bus. One set of pullup resistors is required per bus line.  
The pullup resistor values may need to decrease to compensate for the additional bus capacitance presented by  
multiple devices and increased line length.  
10  
Device  
SCL  
1
2
3
4
ADDR  
NC  
SDA  
VDD  
AIN3  
AIN2  
9
8
7
6
GND  
AIN0  
VDD  
AIN1  
5
Microcontroller or  
Microprocessor  
With I2C Port  
1-kto 10-kꢀ  
Pullup Resistors  
SCL  
SDA  
10  
VDD  
Device  
SCL  
1
2
3
4
ADDR  
NC  
SDA  
VDD  
AIN3  
AIN2  
9
8
7
6
GND  
AIN0  
AIN1  
5
10  
Device  
SCL  
1
2
3
4
ADDR  
NC  
SDA  
VDD  
AIN3  
AIN2  
9
8
7
6
GND  
AIN0  
AIN1  
5
Copyright © 2017, Texas Instruments Incorporated  
NOTE: The TLA202x power and input connections are omitted for clarity. The ADDR pin selects the I2C address.  
19. Connecting Multiple TLA202x Devices  
20  
版权 © 2017, Texas Instruments Incorporated  
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
Application Information (接下页)  
9.1.3 Single-Ended Signal Measurements  
The TLA2021 and TLA2022 can measure one single-ended signal, and the TLA2024 up to four single-ended  
signals. To measure single-ended signals with the TLA2021 and TLA2022, connect AIN1 to GND externally. The  
TLA2024 measures single-ended signals by properly configuring the MUX[2:0] bits (settings 100 to 111) in the  
configuration register. 20 shows a single-ended connection scheme for the TLA2024 highlighted in red (a  
differential connection scheme is shown in green). The single-ended signal range is from 0 V up to the positive  
supply or +FS (whichever is lower). Negative voltages cannot be applied to these devices because the TLA202x  
can only accept positive voltages with respect to ground. Only the code range from 0000h to 7FF0h (or a subset  
thereof in case +FS > VDD) is used in this case.  
VDD  
TLA2024  
CCM  
Mux  
Voltage  
RFLT  
Reference  
AIN0  
AIN1  
+
VDIF  
CDIF  
ADDR  
œ
RFLT  
I2C  
Interface  
12-Bit  
û¯ ADC  
PGA  
SCL  
SDA  
+
CCM  
VCM  
œ
AIN2  
AIN3  
Oscillator  
RFLT  
+
CSE  
VSE  
œ
GND  
Copyright © 2017, Texas Instruments Incorporated  
20. Filter Implementation for Single-Ended and Differential Signal Measurements  
The TLA2024 also allows AIN3 to serve as a common point for measurements by appropriately setting the  
MUX[2:0] bits. AIN0, AIN1, and AIN2 can all be measured with respect to AIN3. In this configuration, the usable  
voltage and code range, respectively, is increased over the single-ended configuration because negative  
differential voltages are allowed when GND < V(AIN3) < VDD. Assume the following settings for example: VDD =  
5 V, FSR = ±2.048 V, AINP = AIN0, and AINN = AIN3 = 2.5 V. In this case, the voltage at AIN0 can swing from  
V(AIN0) = 2.5 V – 2.048 V to 2.5 V + 2.048 V using the entire full-scale range.  
9.1.4 Analog Input Filtering  
Analog input filtering serves two purposes:  
1. Limits the effect of aliasing during the ADC sampling process  
2. Attenuates unwanted noise components outside the bandwidth of interest  
In most cases, a first-order resistor capacitor (RC) filter is sufficient to completely eliminate aliasing or to reduce  
the effect of aliasing to a level within the noise floor of the sensor. A good starting point for a system design with  
the TLA202x is to use a differential RC filter with a cutoff frequency set somewhere between the selected output  
data rate and 25 kHz. Make the series resistor values as small as possible to reduce voltage drops across the  
resistors caused by the device input currents to a minimum. However, the resistors should be large enough to  
limit the current into the analog inputs to less than 10 mA in the event of an overvoltage. Then choose the  
differential capacitor value to achieve the target filter cutoff frequency. Common-mode filter capacitors to GND  
can be added as well, but should always be at least ten times smaller than the differential filter capacitor.  
20 shows an example of filtering a differential signal (AIN0, AIN1), and a single-ended signal (AIN3). 公式 3  
and 公式 4 show how to calculate the filter cutoff frequencies (fCO) in the differential and single-ended cases,  
respectively.  
fCO DIF = 1 / (2π · 2 · RFLT · CDIF  
)
(3)  
(4)  
fCO SE = 1 / (2π · RFLT · CSE  
)
版权 © 2017, Texas Instruments Incorporated  
21  
 
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
Application Information (接下页)  
9.1.5 Duty Cycling To Reduce Power Consumption  
For applications where power consumption is critical, the TLA202x support duty cycling that yield significant  
power savings by periodically requesting high data rate readings at an effectively lower data rate. For example,  
an TLA202x in power-down state with a data rate set to 3300 SPS can be operated by a microcontroller that  
instructs a single-shot conversion every 7.81 ms (128 SPS). A conversion at 3300 SPS requires approximately  
0.3 ms, so the TLA202x enters power-down state for the remaining 7.51 ms. In this configuration, the TLA202x  
consume approximately 1/25th the power that is otherwise consumed in continuous-conversion mode. The duty  
cycling rate is arbitrary and is defined by the master controller.  
9.1.6 I2C Communication Sequence Example  
This section provides an example of an I2C communication sequence between a microcontroller (the master) and  
a TLA2024 (the slave) configured with a slave address of 1001 000 to start a single-shot conversion and  
subsequently read the conversion result.  
1. Write the configuration register as shown in 21 to configure the device (for example, write MUX[2:0] =  
000, PGA[2:0] = 010, MODE = 1, and DR[2:0] = 110) and start a single-shot conversion (OS = 1):  
S
SLAVE ADDRESS (1001 000)  
W
A
REGISTER POINTER (01h)  
A
P
•••  
•••  
CONFIGURATION DATA (85h)  
A
CONFIGURATION DATA (C0h)  
A
21. Write the Configuration Register  
2. Wait at least t = 1 / DR ± 10% for the conversion to complete.  
Alternatively, poll the OS bit for a 1 as shown in 22 to determine when the conversion result is ready for  
retrieval. This option does not work in continuous-conversion mode because the OS bit always reads 0.  
•••  
S
SLAVE ADDRESS (1001 000)  
R
A
CONFIGURATION DATA (MSB)  
A
CONFIGURATION DATA (LSB)  
A
P
22. Read the Configuration Register to Check for OS = 1  
3. Then, as shown in 23, read the conversion data register:  
S
SLAVE ADDRESS (1001 000)  
W
A
REGISTER POINTER (00h)  
A
P
S
SLAVE ADDRESS (1001 000)  
R
A
CONVERSION DATA (MSB)  
A
CONVERSION DATA (LSB)  
A
P
23. Read the Conversion Data Register  
4. Start a new single-shot conversion by writing a 1 to the OS bit in the configuration register.  
To save time, a new conversion can also be started (step 4) before reading the conversion result (step 3). 图  
24 lists a legend for 21 to 23.  
S
P
A
A
= START condition  
From master to slave  
= STOP condition  
= acknowledge (SDA low)  
= not acknowledge (SDA high)  
From slave to master  
24. Legend for the I2C Sequence Diagrams  
22  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
9.2 Typical Application  
This application example describes how to use the TLA2024 to monitor two different supply voltage rails in a  
system. 25 shows a typical implementation for monitoring two supply voltage rails.  
3.3 V  
0.1 F  
3.3 V  
VDD  
3.3 V  
1-kto 10-kꢁ  
Pullup Resistors  
100 ꢁ  
Voltage  
Reference  
AIN0  
SCL  
0.47 F  
I2C Bus  
AIN1  
AIN2  
12-Bit  
û¯  
ADC  
I2C  
Interface  
SDA  
Mux  
PGA  
1.8 V  
ADDR  
100 ꢁ  
Oscillator  
AIN3  
0.47 F  
TLA2024  
GND  
Copyright © 2017, Texas Instruments Incorporated  
25. Monitoring Two Supply Voltage Rails Using the TLA2024  
9.2.1 Design Requirements  
8 lists the design requirements for this application.  
8. Design Requirements  
DESIGN PARAMETER  
Device supply voltage  
Voltage rails to monitor  
Measurement accuracy  
Update rate  
VALUE  
3.3 V  
1.8 V, 3.3 V  
±0.5%  
1 ms per rail  
9.2.2 Detailed Design Procedure  
The analog inputs, AIN0 and AIN3, connect directly to the supply voltage rails that are monitored through RC  
filter resistors. Small filter resistor values of 100 Ω are chosen to reduce voltage drops, and therefore offset  
errors, caused by the input currents of the TLA2024 to a minimum. Filter capacitors of 0.47 µF are chosen to set  
the filter cutoff frequencies at 3.39 kHz. In order to get one reading from each of the two supplies within 2 ms, a  
data rate of 2400 SPS is selected. The device is set up for single-ended measurements using MUX[2:0] settings  
100 and 101. A FSR = ±4.096 V is selected to measure the 3.3-V rail. The same FSR can also be used to  
measure the 1.8-V rail or the FSR can be set to FSR = ±2.048 V.  
版权 © 2017, Texas Instruments Incorporated  
23  
 
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
9.2.3 Application Curve  
The measurement results in 26 show that the two supplies can be measured with ±0.5% accuracy over the  
complete operating ambient temperature range without any offset or gain calibration.  
0.1  
0.075  
0.05  
0.025  
0
-0.025  
-0.05  
-0.075  
-0.1  
3.3 V rail monitor  
1.8 V rail monitor  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
26. Measurement Error vs Temperature  
10 Power Supply Recommendations  
The device requires a single unipolar supply (VDD) to power the analog and digital circuitry of the device.  
10.1 Power-Supply Sequencing  
Wait approximately 50 µs after VDD is stabilized before communicating with the device to allow the power-up  
reset process to complete.  
10.2 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve optimum performance. As shown in 27, VDD must be  
decoupled with at least a 0.1-µF capacitor to GND. The 0.1-µF bypass capacitor supplies the momentary bursts  
of extra current required from the supply when the device is converting. Place the bypass capacitor as close to  
the power-supply pin of the device as possible using low-impedance connections. Use multilayer ceramic chip  
capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for  
power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments,  
avoid using vias to connect the capacitors to the device pins for better noise immunity. The use of multiple vias in  
parallel lowers the overall inductance and is beneficial for connections to ground planes.  
10  
Device  
SCL  
VDD  
1
2
3
4
ADDR  
NC  
SDA  
VDD  
AIN3  
AIN2  
9
8
7
6
GND  
AIN0  
0.1 F  
AIN1  
5
27. TLA202x Power-Supply Decoupling  
24  
版权 © 2017, Texas Instruments Incorporated  
 
 
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
Employ best design practices when laying out a printed-circuit board (PCB) for both analog and digital  
components. For optimal performance, separate the analog components such as ADCs, amplifiers, references,  
digital-to-analog converters (DACs), and analog MUXs from digital components such as microcontrollers,  
complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), radio frequency (RF)  
transceivers, universal serial bus (USB) transceivers, and switching regulators. 28 shows an example of good  
component placement. Although 28 provides a good example of component placement, the best placement  
for each application is unique to the geometries, components, and PCB fabrication capabilities. That is, there is  
no single layout that is perfect for every design and careful consideration must always be used when designing  
with any analog component.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC Filters  
and  
Interface  
Transceiver  
Device  
Microcontroller  
Connector  
or Antenna  
Amplifiers)  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
28. System Component Placement  
The following points outline some basic recommendations for the layout of the TLA202x to get the best possible  
performance of the ADC. A good design can be ruined with a bad circuit layout.  
Separate the analog and digital signals. To start, partition the board into analog and digital sections where the  
layout permits. Route digital lines away from analog lines to prevent digital noise from coupling back into  
analog signals.  
Fill void areas on signal layers with ground fill.  
Provide good ground return paths. Signal return currents flow on the path of least impedance. If the ground  
plane is cut or has other traces that block the current from flowing right next to the signal trace, the ground  
plane must find another path to return to the source and complete the circuit. If the ground plane is forced into  
a larger path, there is an increased chance of signal radiation. Sensitive signals are more susceptible to EMI  
interference.  
Use bypass capacitors on supplies to minimize high-frequency noise. Do not place vias between bypass  
capacitors and the active device. For best results, place the bypass capacitors on the same layer as close as  
possible to the active device.  
Consider the resistance and inductance of the routing. Input traces often have resistances that react with the  
input bias current and cause an added error voltage. Reduce the loop area enclosed by the source signal and  
the return current to minimize the inductance in the path.  
For best input combinations with differential measurements, use adjacent analog input lines such as AIN0,  
AIN1 and AIN2, AIN3. The differential capacitors must be of high quality. The best ceramic chip capacitors  
are C0G (NPO) capacitors, which have stable properties and low-noise characteristics.  
版权 © 2017, Texas Instruments Incorporated  
25  
 
TLA2021, TLA2022, TLA2024  
ZHCSH32 NOVEMBER 2017  
www.ti.com.cn  
11.2 Layout Example  
VDD  
AIN3  
10  
SCL  
1
2
3
4
9
8
7
6
ADDR  
NC  
SDA  
VDD  
AIN3  
AIN2  
Device  
GND  
AIN0  
AIN1  
5
AIN2  
Vias connect to either bottom layer or  
an internal plane. The bottom layer or  
internal plane are dedicated GND planes  
29. TLA2024 X2QFN Package  
26  
版权 © 2017, Texas Instruments Incorporated  
TLA2021, TLA2022, TLA2024  
www.ti.com.cn  
ZHCSH32 NOVEMBER 2017  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
9. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TLA2021  
TLA2022  
TLA2024  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
I2C, NXP Semiconductors are trademarks of NXP Semiconductors.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLA2021IRUGR  
TLA2021IRUGT  
TLA2022IRUGR  
TLA2022IRUGT  
TLA2024IRUGR  
TLA2024IRUGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
RUG  
RUG  
RUG  
RUG  
RUG  
RUG  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
9AZ  
9AZ  
19J  
19J  
9IJ  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
9IJ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLA2021IRUGR  
TLA2021IRUGT  
TLA2022IRUGR  
TLA2022IRUGT  
TLA2024IRUGR  
TLA2024IRUGT  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
RUG  
RUG  
RUG  
RUG  
RUG  
RUG  
10  
10  
10  
10  
10  
10  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
0.65  
0.65  
0.65  
0.65  
0.65  
0.65  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLA2021IRUGR  
TLA2021IRUGT  
TLA2022IRUGR  
TLA2022IRUGT  
TLA2024IRUGR  
TLA2024IRUGT  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
X2QFN  
RUG  
RUG  
RUG  
RUG  
RUG  
RUG  
10  
10  
10  
10  
10  
10  
3000  
250  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TLA2024IRUGR

具有基准电压、PGA 和 I2C 的 12 位、4 通道 Δ-Σ ADC | RUG | 10 | -40 to 85
TI

TLA2024IRUGT

具有基准电压、PGA 和 I2C 的 12 位、4 通道 Δ-Σ ADC | RUG | 10 | -40 to 85
TI

TLA2276

Audio Hybrid Transformer
FILTRAN

TLA2276

General Purpose Audio Transformer
APITECH

TLA2518

具有 SPI 接口和 GPIO 的小型 8 通道、12 位模数转换器 (ADC)
TI

TLA2518IRTER

具有 SPI 接口和 GPIO 的小型 8 通道、12 位模数转换器 (ADC) | RTE | 16 | -40 to 85
TI

TLA2518IRTET

具有 SPI 接口和 GPIO 的小型 8 通道、12 位模数转换器 (ADC) | RTE | 16 | -40 to 85
TI

TLA2528

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC)
TI

TLA2528IRTER

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85
TI

TLA2528IRTET

具有 I2C 接口和 GPIO 的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85
TI

TLA25GMA

Uplink Far Field Noise Suppression & Downlink SNR Enhancing Microphone Amplifier with Earpiece Driver
TI

TLA290LP

Telecom Filter, 8 Function(s), DIP-16
TDK