TLC2652Q-8DG4 [TI]

高精密 1µV 失调电压、斩波稳定型运算放大器 | D | 8;
TLC2652Q-8DG4
型号: TLC2652Q-8DG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高精密 1µV 失调电压、斩波稳定型运算放大器 | D | 8

放大器 运算放大器
文件: 总39页 (文件大小:869K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
 
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
D008, JG, OR P PACKAGE  
(TOP VIEW)  
D
D
D
D
D
D
D
D
Extremely Low Offset Voltage . . . 1 µV Max  
Extremely Low Change on Offset Voltage  
With Temperature . . . 0.003 µV/°C Typ  
Low Input Offset Current  
C
C
V
1
2
3
4
8
7
6
5
XA  
XB  
IN−  
IN+  
DD+  
500 pA Max at T = − 55°C to 125°C  
A
OUT  
A
. . . 135 dB Min  
V
CLAMP  
VD  
DD−  
CMRR . . . 120 dB Min  
. . . 110 dB Min  
D014, J, OR N PACKAGE  
(TOP VIEW)  
k
SVR  
Single-Supply Operation  
Common-Mode Input Voltage Range  
Includes the Negative Rail  
C
C
INT/EXT  
CLK IN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
XB  
XA  
NC  
IN−  
IN+  
NC  
CLK OUT  
D
No Noise Degradation With External  
V
Capacitors Connected to V  
DD+  
DD−  
OUT  
description  
CLAMP  
C RETURN  
V
8
DD−  
The TLC2652 and TLC2652A are high-precision  
chopper-stabilized operational amplifiers using  
Texas Instruments Advanced LinCMOSpro-  
cess. This process, in conjunction with unique  
chopper-stabilization circuitry, produces opera-  
tional amplifiers whose performance matches or  
exceeds that of similar devices available today.  
FK PACKAGE  
(TOP VIEW)  
Chopper-stabilization techniques make possible  
extremely high dc precision by continuously  
nulling input offset voltage even during variations  
in temperature, time, common-mode voltage, and  
power supply voltage. In addition, low-frequency  
noise voltage is significantly reduced. This high  
precision, coupled with the extremely high input  
impedance of the CMOS input stage, makes the  
TLC2652 and TLC2652A an ideal choice for  
low-level signal processing applications such as  
strain gauges, thermocouples, and other  
transducer amplifiers. For applications that  
require extremely low noise and higher usable  
bandwidth, use the TLC2654 or TLC2654A  
device, which has a chopping frequency of  
10 kHz.  
3
4
2
1
20 19  
18  
CLK OUT  
NC  
NC  
IN−  
NC  
IN+  
NC  
V
17  
5
6
7
8
16  
15  
14  
DD+  
NC  
OUT  
9 10 11 12 13  
NC − No internal connection  
The TLC2652 and TLC2652A input common-mode range includes the negative rail, thereby providing superior  
performance in either single-supply or split-supply applications, even at power supply voltage levels as low as  
1.9 V.  
Two external capacitors are required for operation of the device; however, the on-chip chopper-control circuitry  
is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is made accessible  
to allow the user the option of controlling the clock frequency with an external frequency source. In addition, the  
clock threshold level of the TLC2652 and TLC2652A requires no level shifting when used in the single-supply  
configuration with a normal CMOS or TTL clock input.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
Copyright 1988−2005, Texas Instruments Incorporated  
ꢑ ꢌ ꢦ ꢡ ꢠꢉ ꢥꢍ ꢣꢤ ꢍꢠ ꢢꢦ ꢨꢏ ꢋꢌ ꢣ ꢣꢠ ꢐꢖ ꢁꢙ ꢓꢔ ꢝ ꢙꢯꢰꢅ ꢯꢅꢆ ꢋꢨꢨ ꢦꢋ ꢡ ꢋ ꢢꢎ ꢣꢎꢡ ꢤ ꢋ ꢡ ꢎ ꢣꢎ ꢤꢣꢎ ꢉ  
ꢣ ꢎ ꢤ ꢣꢏ ꢌꢮ ꢠꢟ ꢋ ꢨꢨ ꢦꢋ ꢡ ꢋ ꢢ ꢎ ꢣ ꢎ ꢡ ꢤ ꢩ  
ꢥ ꢌꢨ ꢎꢤꢤ ꢠ ꢣꢪꢎ ꢡ ꢬꢏ ꢤꢎ ꢌ ꢠꢣꢎ ꢉꢩ ꢑ ꢌ ꢋꢨ ꢨ ꢠ ꢣꢪꢎ ꢡ ꢦꢡ ꢠ ꢉꢥꢍ ꢣꢤ ꢆ ꢦꢡ ꢠ ꢉꢥꢍ ꢣꢏꢠ ꢌ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
description (continued)  
Innovative circuit techniques are used on the TLC2652 and TLC2652A to allow exceptionally fast overload  
recovery time. If desired, an output clamp pin is available to reduce the recovery time even further.  
The device inputs and output are designed to withstand 100-mA surge currents without sustaining latch-up.  
Additionally the TLC2652 and TLC2652A incorporate internal ESD-protection circuits that prevent functional  
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be  
exercised in handling these devices, as exposure to ESD may result in degradation of the device parametric  
performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The Q-suffix devices are characterized for operation from 40°C to125°C.  
The M-suffix devices are characterized for operation over the full military temperature range of 55°C to125°C.  
(1)  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
8 PIN  
14 PIN  
20 PIN  
CHIP  
FORM  
(Y)  
V
max  
IO  
T
A
SMALL  
OUTLINE  
(D008)  
CERAMIC  
DIP  
(JG)  
PLASTIC  
DIP  
SMALL  
OUTLINE  
(D014)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CHIP  
CARRIER  
(FK)  
AT 25°C  
(P)  
(J)  
(N)  
0°C  
to  
70°C  
1 µV  
3 µV  
TLC2652AC-8D  
TLC2652C-8D  
TLC2652ACP TLC2652AC-14D  
TLC2652ACN  
TLC2652CN  
TLC2652Y  
TLC2652CP  
TLC2652C-14D  
40°C  
to  
85°C  
1 µV  
3 µV  
TLC2652AI-8D  
TLC2652A-8D  
TLC2652AIP  
TLC2652IP  
TLC2652AI-14D  
TLC2652I-14D  
TLC2652AIN  
TLC2652IN  
40°C  
to  
125°C  
3.5 µV  
TLC2652Q-8D  
55°C  
to  
125°C  
3 µV  
3.5 µV  
TLC2652AM-8D TLC2652AMJG TLC2652AMP TLC2652AM-14D TLC2652AMJ TLC2652AMN TLC2652AMFK  
TLC2652M-8D TLC2652MJG TLC2652MP TLC2652M-14D TLC2652MJ TLC2652MN TLC2652MFK  
The D008 and D014 packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2652AC-8DR). Chips are tested at 25°C.  
NOTE (1): For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
functional block diagram  
DISTRIBUTION OF TLC2652  
INPUT OFFSET VOLTAGE  
V
DD+  
7
36  
32  
150 Units Tested From 1 Wafer Lot  
5 V  
= 25°C  
5
6
Clamp  
Circuit  
V
=
DD  
CLAMP  
OUT  
T
A
3
2
IN+  
IN−  
28  
24  
N Package  
+
C
IC A  
Main  
B
B
A
20  
16  
12  
8
+
Compensation-  
Biasing  
A
B
Circuit  
Null  
External Components  
C
C
XA  
XB  
4
8
4
0
C RETURN  
V
DD−  
−3  
−2  
V
−1  
0
1
2
3
− Input Offset Voltage − µV  
Pin numbers shown are for the D (14 pin), JG, and N packages.  
IO  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TLC2652Y chip information  
This chip, when properly assembled, displays characteristics similar to the TLC2652C. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(13)  
(14)  
(12)  
(11)  
(10)  
(9)  
(8)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T max = 150°C  
J
80  
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
(1)  
PIN (7) IS INTERNALLY CONNECTED  
TO BACK SIDE OF CHIP.  
FOR THE PINOUT, SEE THE FUNCTIONAL  
BLOCK DIAGRAM.  
(2)  
(4)  
(5)  
(7)  
90  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage V  
Supply voltage V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −8 V  
DD+  
DD−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
ID  
Input voltage, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
I
Voltage range on CLK IN and INT/EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
− to V  
+ 5.2 V  
DD  
DD−  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Current into CLK IN and INT/EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or JG package . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
and V .  
DD+  
DD−  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
D008  
D014  
FK  
J
725 mV  
5.8 mW/°C  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
12.6 mW/°C  
8.0 mW/°C  
464 mW  
608 mW  
880 mW  
880 mW  
672 mW  
1008 mW  
640 mW  
377 mW  
494 mW  
715 mW  
715 mW  
546 mW  
819 mW  
520 mW  
145 mW  
190 mW  
275 mW  
275 mW  
210 mW  
315 mW  
200 mW  
950 mV  
1375 mV  
1375 mV  
1050 mV  
1575 mV  
1000 mV  
JG  
N
P
recommended operating conditions  
C SUFFIX  
I SUFFIX  
Q SUFFIX  
M SUFFIX  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Supply voltage, V  
DD  
1.9  
8
1.9  
8
1.9  
8
1.9  
8
V
V
Common-mode input voltage, V  
V
V
V
1.9  
V
V
V
1.9  
V
V
V
1.9  
V
V
V
1.9  
IC  
DD−  
DD+  
DD−  
DD+  
DD−  
DD+  
DD−  
DD+  
Clock input voltage  
V
+5  
V
+5  
V
+5  
V
+5  
V
DD−  
0
DD−  
70  
DD−  
40  
DD−  
85  
DD−  
40  
DD−  
125  
DD−  
55  
DD−  
125  
Operating free-air temperature, T  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2652C  
MIN TYP MAX  
TLC2652AC  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
25°C  
0.6  
3
0.5  
1
V
IO  
Input offset voltage  
µV  
Full range  
4.35  
2.35  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.003  
0.03  
0.06  
0.003  
0.03 µV/°C  
VIO  
Input offset voltage long-term  
drift (see Note 4)  
25°C  
0.003  
2
0.003  
2
0.02 µV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
60  
100  
60  
60  
I
I
Input offset current  
Input bias current  
pA  
IO  
100  
4
4
60  
pA  
IB  
Full range  
100  
100  
−5  
to  
3.1  
−5  
to  
3.1  
Common-mode input voltage  
range  
V
R
= 50 Ω  
Full range  
V
ICR  
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.7  
4.7  
4.8  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 kΩ,  
= 10 kΩ,  
See Note 5  
See Note 5  
V
V
OM+  
L
L
4.7 4.9  
4.7  
4.7 4.9  
4.7  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
120  
120  
150  
135  
130  
150  
Large-signal differential  
voltage amplification  
A
VD  
V
O
=
4 V,  
R
= 10 kΩ  
dB  
Hz  
L
Full range  
25°C  
f
ch  
Internal chopping frequency  
Clamp on-state current  
450  
450  
25°C  
25  
25  
25  
25  
R
= 100 kΩ  
µA  
L
Full range  
25°C  
100  
100  
100  
Clamp off-state current  
V
V
= 4 V to 4 V  
pA  
O
Full range  
25°C  
100  
120  
120  
110  
110  
140  
135  
1.5  
120  
120  
110  
110  
140  
135  
1.5  
Common-mode rejection  
ratio  
= 0,  
= 50 Ω  
V
= V  
min,  
O
IC  
ICR  
CMRR  
dB  
dB  
R
Full range  
25°C  
S
V
V
= 1.9 V to 8 V,  
Supply-voltage rejection ratio  
DD  
k
SVR  
(V  
DD  
/V )  
IO  
= 0,  
R
= 50 Full range  
25°C  
O
S
2.4  
2.5  
2.4  
mA  
2.5  
I
Supply current  
DD  
Full range  
Full range is 0° to 70°C.  
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5. Output clamp is not connected.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢒꢖ  
ꢀꢇ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
operating characteristics specified free-air temperature, V  
= 5 V  
DD  
TLC2652C  
TLC2652AC  
TEST  
CONDITIONS  
PARAMETER  
T
A
UNIT  
V/µs  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2
1.5  
2.3  
1.8  
2.8  
2
1.5  
2.3  
1.8  
2.8  
SR+  
SR−  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V
R
C
= 2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
3.1  
3.1  
V/µs  
Full range  
25°C  
f = 10 Hz  
94  
23  
94  
23  
140  
35  
Equivalent input noise voltage  
(see Note 6)  
nV/Hz  
V
V
n
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 10 kHz  
f = 10 kHz,  
25°C  
0.8  
0.8  
Peak-to-peak equivalent input  
noise voltage  
µV  
N(PP)  
25°C  
2.8  
2.8  
I
n
Equivalent input noise current  
25°C  
0.004  
0.004  
fA/Hz  
R
C
= 10 k,  
Gain-bandwidth product  
25°C  
25°C  
1.9  
1.9  
MHz  
L
L
= 100 pF  
R
C
= 10 k,  
= 100 pF  
L
L
Phase margin at unity gain  
48°  
48°  
φm  
Full range is 0° to 70°C.  
NOTE 6: This parameter is tested on a sample basis for the TLC2652A. For other test requirements, please contact the factory. This statement  
has no bearing on testing or nontesting of other parameters.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2652I  
TYP  
TLC2652AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
MAX  
3
MIN  
TYP  
MAX  
1
25°C  
0.6  
0.5  
V
IO  
Input offset voltage  
µV  
Full range  
4.95  
2.95  
Temperature coefficient of  
input offset voltage  
α
Full range  
0.003  
0.03  
0.06  
0.003  
0.03 µV/°C  
VIO  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.003  
2
0.003  
2
0.02 µV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
60  
150  
60  
60  
I
I
Input offset current  
Input bias current  
pA  
IO  
150  
4
4
60  
pA  
IB  
Full range  
150  
150  
−5  
to  
3.1  
−5  
to  
3.1  
Common-mode input  
voltage range  
V
R
= 50 Ω  
Full range  
V
ICR  
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
150  
4.7  
4.7  
4.8  
4.9  
150  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 kΩ, See Note 5  
= 10 kΩ, See Note 5  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
125  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
=
4 V,  
R = 10 kΩ  
L
dB  
Hz  
Full range  
25°C  
Internal chopping frequency  
Clamp on-state current  
450  
450  
25°C  
25  
25  
25  
25  
R
= 100 kΩ  
µA  
L
Full range  
25°C  
100  
100  
100  
Clamp off-state current  
V
V
= 4 V to 4 V  
pA  
O
Full range  
25°C  
100  
120  
120  
110  
110  
140  
135  
1.5  
120  
120  
110  
110  
140  
135  
1.5  
Common-mode rejection  
ratio  
= 0,  
= 50 Ω  
V
= V min,  
ICR  
O
IC  
CMRR  
dB  
dB  
R
Full range  
25°C  
S
V
V
=
1.9 V to 8 V,  
= 50 Ω  
Supply-voltage rejection  
DD  
k
SVR  
ratio (V  
DD  
/V )  
IO  
= 0,  
R
Full range  
25°C  
O
O
S
2.4  
2.5  
2.4  
mA  
2.5  
I
Supply current  
V
= 0,  
No load  
DD  
Full range  
Full range is 40° to 85°C.  
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5. Output clamp is not connected.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2652I  
TYP  
TLC2652AI  
TEST  
CONDITIONS  
PARAMETER  
T
A
UNIT  
V/µs  
MIN  
2
MAX  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2.8  
2
1.4  
2.3  
1.7  
2.8  
SR+  
SR−  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V
R
C
= 2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
1.4  
2.3  
1.7  
3.1  
3.1  
V/µs  
Full range  
25°C  
f = 10 Hz  
94  
23  
94  
23  
140  
35  
Equivalent input noise voltage  
(see Note 6)  
nV/Hz  
V
V
n
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
25°C  
0.8  
0.8  
Peak-to-peak equivalent input  
noise voltage  
µV  
N(PP)  
25°C  
2.8  
2.8  
I
n
Equivalent input noise current  
25°C  
0.004  
0.004  
pA/Hz  
f = 10 kHz,  
R
C
= 10 k,  
Gain-bandwidth product  
25°C  
25°C  
1.9  
1.9  
MHz  
L
L
= 100 pF  
R
C
= 10 k,  
= 100 pF  
L
L
Phase margin at unity gain  
48°  
48°  
φm  
Full range is 40° to 85°C.  
NOTE 6: This parameter is tested on a sample basis for the TLC2652A. For other test requirements, please contact the factory. This statement  
has no bearing on testing or nontesting of other parameters.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC2652Q  
TLC2652M  
TLC2652AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX  
3.5  
MIN  
TYP  
MAX  
25°C  
0.6  
0.5  
3
8
Input offset voltage  
(see Note 7)  
V
IO  
µV  
Full range  
10  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
0.003 0.03  
0.003 0.06  
0.003 0.03  
0.003 0.02  
µV/°C  
Input offset voltage  
long-term drift (see Note 4)  
25°C  
µV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
25°C  
Full range  
25°C  
2
4
60  
500  
60  
2
4
60  
500  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
IB  
Full range  
500  
500  
−5  
to  
3.1  
−5  
to  
3.1  
Common-mode input  
voltage range  
V
ICR  
R
= 50 Ω  
Full range  
V
S
25°C  
Full range  
25°C  
4.7  
4.7  
4.8  
4.9  
150  
4.7  
4.7  
4.8  
4.9  
150  
Maximum positive peak  
output voltage swing  
V
V
R
R
= 10 kΩ, See Note 5  
= 10 kΩ, See Note 5  
V
V
OM+  
L
L
4.7  
4.7  
120  
120  
4.7  
4.7  
135  
120  
Maximum negative peak  
output voltage swing  
OM−  
Full range  
25°C  
Large-signal differential  
voltage amplification  
A
VD  
V
O
=
4 V,  
R = 10 kΩ  
L
dB  
Hz  
Full range  
25°C  
f
ch  
Internal chopping frequency  
Clamp on-state current  
450  
450  
25°C  
25  
25  
25  
25  
V
O
= 5 V to 5 V  
µA  
pA  
dB  
dB  
mA  
Full range  
25°C  
100  
500  
100  
500  
Clamp off-state current  
R
= 100 kΩ  
L
Full range  
25°C  
120  
120  
110  
110  
140  
135  
1.5  
120  
120  
110  
110  
140  
135  
1.5  
Common-mode rejection  
ratio  
V
R
= 0,  
= 50 Ω  
V
= V min,  
ICR  
O
IC  
CMRR  
Full range  
25°C  
S
V
V
=
1.9 V to 8 V,  
= 50 Ω  
Supply-voltage rejection  
DD  
k
SVR  
ratio (V  
DD  
/V )  
IO  
= 0,  
R
Full range  
25°C  
O
O
S
2.4  
2.5  
2.4  
2.5  
I
Supply current  
V
= 0,  
No load  
DD  
Full range  
On products compliant to MIL-PRF-38535, this parameter is not production tested.  
Full range is 40° to 125°C for Q suffix, 55° to 125°C for M suffix.  
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
5. Output clamp is not connected.  
A
7. This parameter is not production tested. Thermocouple effects preclude measurement of the actual V  
of these devices in high  
IO  
speed automated testing. V is measured to a limit determined by the test equipment capability at the temperature extremes. The  
IO  
test ensures that the stabilization circuitry is performing properly.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC2652Q  
TLC2652M  
TLC2652AM  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
A
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
2
1.3  
2.3  
1.6  
2.8  
SR+  
SR−  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
Equivalent input noise voltage  
V/µs  
V/µs  
V
R
C
= 2.3 V,  
= 10 k,  
= 100 pF  
O
L
L
3.1  
Full range  
25°C  
f = 10 Hz  
94  
23  
nV/Hz  
V
V
n
f = 1 kHz  
25°C  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
25°C  
0.8  
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
µV  
N(PP)  
25°C  
2.8  
I
n
25°C  
0.004  
pA/Hz  
f = 10 kHz,  
Gain-bandwidth product  
R
C
= 10 k,  
25°C  
25°C  
1.9  
MHz  
L
L
= 100 pF  
R
C
= 10 k,  
= 100 pF  
L
L
φ
m
Phase margin at unity gain  
48°  
Full range is 40° to 125°C for the Q suffix, 55° to 125°C for the M suffix.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
electrical characteristics at V  
= 5 V, T = 25°C (unless otherwise noted)  
DD  
A
TLC2652Y  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
V
IO  
Input offset voltage  
0.6  
3
µV  
Input offset voltage long-term drift (see Note 4)  
Input offset current  
0.003 0.006 µV/mo  
V
IC  
= 0,  
R = 50 Ω  
S
I
I
2
4
60  
60  
pA  
pA  
IO  
Input bias current  
IB  
−5  
to  
3.1  
V
ICR  
Common-mode input voltage range  
R
= 50 Ω  
V
S
V
V
Maximum positive peak output voltage swing  
Maximum negative peak output voltage swing  
Large-signal differential voltage amplification  
Internal chopping frequency  
R
R
= 10 kΩ,  
= 10 kΩ,  
See Note 5  
See Note 5  
4.7  
4.7  
120  
4.8  
4.9  
150  
V
OM+  
L
L
V
OM−  
A
VD  
V
O
=
4 V,  
R
= 10 kΩ  
dB  
Hz  
µA  
pA  
L
f
ch  
450  
Clamp on-state current  
R
= 100 kΩ  
25  
L
Clamp off-state current  
V
O
= 4 V to 4 V  
100  
2.4  
V
R
= 0,  
= 50 Ω  
V
IC  
= V min,  
ICR  
O
CMRR Common-mode rejection ratio  
120  
110  
140  
dB  
S
V
DD  
=
1.9 V to 8 V,  
= 0,  
k
Supply-voltage rejection ratio (V /V  
DD IO  
)
135  
1.5  
dB  
SVR  
R
= 50 Ω  
= 0,  
V
O
S
I
Supply current  
V
O
No load  
mA  
DD  
NOTES: 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
at T = 25° using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
5. Output clamp is not connected.  
A
operating characteristics at V  
= 5 V, T = 25°C  
A
DD  
TLC2652Y  
TYP  
2.8  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
2
MAX  
SR+  
SR−  
Positive slew rate at unity gain  
Negative slew rate at unity gain  
V/µs  
V/µs  
V
C
=
2.3 V,  
R
= 10 k,  
O
L
L
= 100 pF  
2.3  
3.1  
f = 10 Hz  
94  
nV/Hz  
V
n
Equivalent input noise voltage  
f = 1 kHz  
23  
f = 0 to 1 Hz  
f = 0 to 10 Hz  
f = 1 kHz  
0.8  
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise current  
Gain-bandwidth product  
µV  
N(PP)  
2.8  
I
n
pA/Hz  
MHz  
f = 10 kHz,  
R
C
= 10 k,  
L
L
1.9  
C
= 100 pF  
L
L
φ
m
Phase margin at unity gain  
R
= 10 k,  
= 100 pF  
48°  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
IO  
Normalized input offset voltage  
vs Chopping frequency  
1
vs Common-mode input voltage  
vs Chopping frequency  
vs Free-air temperature  
2
3
4
I
IB  
Input bias current  
vs Chopping frequency  
vs Free-air temperature  
5
6
I
IO  
Input offset current  
Clamp current  
vs Output voltage  
vs Frequency  
7
8
V
V
Maximum peak-to-peak output voltage  
(OPP)  
vs Output current  
vs Free-air temperature  
9, 10  
11, 12  
Maximum peak output voltage  
Large-signal differential voltage amplification  
Chopping frequency  
OM  
vs Frequency  
vs Free-air temperature  
13  
14  
A
VD  
vs Supply voltage  
vs Free-air temperature  
15  
16  
vs Supply voltage  
vs Free-air temperature  
17  
18  
I
I
Supply current  
DD  
vs Supply voltage  
vs Free-air temperature  
19  
20  
Short-circuit output current  
Slew rate  
OS  
vs Supply voltage  
vs Free-air temperature  
21  
22  
SR  
Small-signal  
Large-signal  
23  
24  
Voltage-follower pulse response  
V
V
Peak-to-peak equivalent input noise voltage  
Equivalent input noise voltage  
vs Chopping frequency  
vs Frequency  
25, 26  
27  
N(PP)  
n
vs Supply voltage  
vs Free-air temperature  
28  
29  
Gain-bandwidth product  
vs Supply voltage  
vs Free-air temperature  
vs Load capacitance  
30  
31  
32  
φ
m
Phase margin  
Phase shift  
vs Frequency  
13  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
NORMALIZED INPUT OFFSET VOLTAGE  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
CHOPPING FREQUENCY  
70  
60  
25  
20  
V
V
T
A
=
5 V  
V
T
=
5 V  
DD  
= 0  
DD  
A
= 25°C  
IC  
= 25°C  
50  
40  
30  
15  
10  
5
20  
10  
0
−10  
0
100  
1 k  
10 k  
100 k  
−5 −4 −3 −2 −1  
0
1
2
3
4
5
Chopping Frequency − Hz  
V
IC  
− Common-Mode Input Voltage − V  
Figure 1  
Figure 2  
INPUT BIAS CURRENT  
vs  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
CHOPPING FREQUENCY  
100  
70  
V
V
V
= 5 V  
= 0  
= 0  
DD  
O
IC  
V
V
T
A
=
5 V  
DD  
= 0  
IC  
= 25°C  
60  
50  
40  
30  
20  
10  
10  
0
1
25  
45  
65  
85  
105  
125  
100  
1 k  
10 k  
100 k  
Chopping Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 3  
Figure 4  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
INPUT OFFSET CURRENT  
INPUT OFFSET CURRENT  
vs  
vs  
CHOPPING FREQUENCY  
FREE-AIR TEMPERATURE  
10  
8
25  
20  
15  
10  
5
V
V
T
A
=
5 V  
V
V
=
5 V  
DD  
= 0  
DD  
= 0  
IC  
IC  
= 25°C  
6
4
2
0
0
100  
25  
45  
65  
85  
105  
125  
1 k  
10 k  
100 k  
Chopping Frequency − Hz  
T
A
− Free-Air Temperature − °C  
Figure 5  
Figure 6  
MAXIMUM PEAK-TO-PEAK OUTPUT  
CLAMP CURRENT  
vs  
VOLTAGE  
vs  
OUTPUT VOLTAGE  
FREQUENCY  
10  
8
100 µA  
10 µA  
1 µA  
V
T
A
=
5 V  
DD  
= 25°C  
T
= 55°C  
= 125°C  
Positive Clamp Current  
A
100 nA  
6
10 nA  
T
A
4
1 nA  
100 pA  
10 pA  
2
0
Negative Clamp Current  
V
R
=
5 V  
DD  
L
= 10 kΩ  
1 pA  
100  
1 k  
10 k  
1 M  
4
4.2  
4.4  
4.6  
4.8  
5
f − Frequency − Hz  
|V | − Output Voltage − V  
O
Figure 7  
Figure 8  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
5
4.8  
4.6  
7.5  
V
T
A
=
5 V  
DD  
= 25°C  
V
T
A
= 7.5 V  
= 25°C  
DD  
7.3  
7.1  
V
OM+  
V
OM−  
V
V
OM+  
OM−  
4.4  
4.2  
4
6.9  
6.7  
0
0.4  
0.8  
1.2  
1.6  
2
0
0.4  
0.8  
1.2  
1.6  
2
|I | − Output Current − mA  
O
|I | − Output Current − mA  
O
Figure 9  
Figure 10  
MAXIMUM PEAK OUTPUT VOLTAGE  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
8
2.5  
4
0
V
R
=
7.5 V  
V
=
5 V  
R = 10 kΩ  
L
DD  
L
DD  
= 10 kΩ  
0
2.5  
−4  
−8  
−5  
50 25  
−75  
0
25  
50  
75 100 125  
50 25  
−75  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
120  
100  
60°  
80°  
Phase Shift  
80  
60  
100°  
120°  
A
VD  
40  
20  
140°  
160°  
180°  
200°  
220°  
0
20  
40  
V
R
C
= 5 V  
DD  
L
L
= 10 kΩ  
= 100 pF  
= 25°C  
T
A
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 13  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
155  
V
R
= 7.5 V  
DD  
= 10 kΩ  
L
V
O
=
4 V  
150  
145  
140  
135  
50 25  
−75  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
Figure 14  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
CHOPPING FREQUENCY  
vs  
CHOPPING FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
460  
450  
440  
430  
420  
410  
400  
540  
520  
500  
480  
460  
440  
420  
V
= 5 V  
DD  
T
= 25°C  
A
−75 50 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
5
6
7
8
T − Free-Air Temperature − °C  
A
|V  
DD  
| − Supply Voltage − V  
Figure 15  
Figure 16  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
2
1.6  
1.2  
2
V
= 0  
O
V
V
=
=
7.5 V  
5 V  
DD  
No Load  
1.6  
1.2  
0.8  
0.4  
0
DD  
T
= 25°C  
A
V
DD  
= 2.5 V  
T
= 55°C  
A
0.8  
0.4  
0
T
= 125°C  
A
V
= 0  
O
No Load  
−75 50 25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
|V  
DD  
| − Supply Voltage − V  
Figure 17  
Figure 18  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
12  
8
15  
10  
5
V
T
A
= 0  
= 25°C  
V = 5 V  
DD  
V = 0  
O
O
4
V
ID  
= 100 mV  
V
ID  
= 100 mV  
0
0
−5  
−4  
−8  
V
ID  
= 100 mV  
−10  
−15  
V
ID  
= 100 mV  
−12  
0
1
2
3
4
5
6
7
8
−75 50 25  
0
25  
50  
75  
100 125  
|V  
DD  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 19  
Figure 20  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
4
3
4
V
R
C
= 5 V  
= 10 kΩ  
= 100 pF  
DD  
L
L
SR−  
SR−  
SR+  
3
SR+  
2
1
2
1
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
0
0
−75 50 25  
0
25  
50  
75 100 125  
0
1
2
3
4
5
6
7
8
T
A
− Free-Air Temperature − °C  
|V  
DD  
| − Supply Voltage − V  
Figure 21  
Figure 22  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL  
SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
4
3
100  
75  
V
R
C
= 5 V  
DD  
L
L
= 10 kΩ  
= 100 pF  
= 25°C  
T
A
2
50  
V
R
C
= 5 V  
DD  
L
L
1
25  
= 10 kΩ  
= 100 pF  
= 25°C  
0
0
T
A
−1  
−2  
25  
50  
−3  
−4  
−75  
−100  
0
5
10 15 20 25 30 35 40  
0
1
2
3
4
5
6
7
t − Time − µs  
t − Time − µs  
Figure 23  
Figure 24  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
PEAK-TO-PEAK INPUT NOISE VOLTAGE  
vs  
vs  
CHOPPING FREQUENCY  
CHOPPING FREQUENCY  
1.8  
5
V
R
=
5 V  
DD  
S
V
R
=
5 V  
DD  
S
1.6  
1.4  
1.2  
= 20 Ω  
= 20 Ω  
f = 0 to 1 Hz  
T
A
f = 0 to 10 Hz  
T
A
4
3
2
1
0
= 25°C  
= 25°C  
1
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
f
− Chopping Frequency − kHz  
f
− Chopping Frequency − kHz  
ch  
ch  
Figure 25  
Figure 26  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
EQUIVALENT INPUT NOISE VOLTAGE  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
100  
80  
2.1  
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
2
60  
40  
1.9  
20  
0
V
R
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
S
1.8  
1
10  
100  
1 k  
0
1
2
3
4
5
6
7
8
f − Frequency − Hz  
|V  
CC  
| − Supply Voltage − V  
Figure 27  
Figure 28  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
50°  
2.6  
2.4  
2.2  
2
R
C
T
A
= 10 kΩ  
= 100 pF  
= 25°C  
L
L
V
R
C
= 5 V  
= 10 kΩ  
= 100 pF  
DD  
L
L
48°  
46°  
44°  
42°  
40°  
1.8  
1.4  
1.2  
0
1
2
3
4
5
6
7
8
−75 50 25  
0
25  
50  
75  
100 125  
|V  
CC  
| − Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
FREE-AIR TEMPERATURE  
50°  
60°  
V
R
T
A
= 5 V  
= 10 kΩ  
= 25°C  
DD  
L
50°  
40°  
48°  
46°  
30°  
20°  
10°  
44°  
42°  
40°  
V
R
C
=
5 V  
DD  
L
L
= 10 kΩ  
= 100 pF  
0°  
0
200  
400  
600  
800  
1000  
−75  
0
25  
50  
75 100 125  
50 25  
C
− Load Capacitance − pF  
T
A
− Free-Air Temperature − °C  
L
Figure 31  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
APPLICATION INFORMATION  
capacitor selection and placement  
The two important factors to consider when selecting external capacitors C  
and C  
are leakage and  
XA  
XB  
dielectric absorption. Both factors can cause system degradation, negating the performance advantages  
realized by using the TLC2652.  
Degradation from capacitor leakage becomes more apparent with the increasing temperatures. Low-leakage  
capacitors and standoffs are recommended for operation at T = 125°C. In addition, guard bands are  
A
recommended around the capacitor connections on both sides of the printed circuit board to alleviate problems  
caused by surface leakage on circuit boards.  
Capacitors with high dielectric absorption tend to take several seconds to settle upon application of power, which  
directly affects input offset voltage. In applications where fast settling of input offset voltage is needed, it is  
recommended that high-quality film capacitors, such as mylar, polystyrene, or polypropylene, be used. In other  
applications, however, a ceramic or other low-grade capacitor can suffice.  
Unlike many choppers available today, the TLC2652 is designed to function with values of C and C in the  
XA  
XB  
range of 0.1 µF to 1 µF without degradation to input offset voltage or input noise voltage. These capacitors  
should be located as close as possible to the C and C pins and returned to either V or C RETURN. On  
XA  
XB  
DD−  
many choppers, connecting these capacitors to V  
is eliminated on the TLC2652.  
causes degradation in noise performance. This problem  
DD−  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
APPLICATION INFORMATION  
internal/external clock  
The TLC2652 has an internal clock that sets the chopping frequency to a nominal value of 450 Hz. On 8-pin  
packages, the chopping frequency can only be controlled by the internal clock; however, on all 14-pin packages  
and the 20-pin FK package, the device chopping frequency can be set by the internal clock or controlled  
externally by use of the INT/EXT and CLK IN pins. To use the internal 450-Hz clock, no connection is necessary.  
If external clocking is desired, connect INT/EXT to V  
and the external clock to CLK IN. The external clock  
DD−  
trip point is 2.5 V above the negative rail; however, CLK IN can be driven from the negative rail to 5 V above  
the negative rail. If this level is exceeded, damage could occur to the device unless the current into CLK IN is  
limited to 5 mA. When operating in the single-supply configuration, this feature allows the TLC2652 to be driven  
directly by 5-V TTL and CMOS logic. A divide-by-  
0
two frequency divider interfaces with CLK IN and  
V
T
A
= 5 V  
= 25°C  
DD  
sets the clock chopping frequency. The duty cycle  
of the external clock is not critical but should be  
kept between 30% and 60%.  
overload recovery/output clamp  
−5  
0
When large differential input voltage conditions  
are applied to the TLC2652, the nulling loop  
attempts to prevent the output from saturating by  
driving C and C to internally-clamped voltage  
XA  
XB  
levels. Once the overdrive condition is removed,  
a period of time is required to allow the built-up  
charge to dissipate. This time period is defined as  
overload recovery time (see Figure 33). Typical  
overload recovery time for the TLC2652 is  
significantly faster than competitive products;  
however, if required, this time can be reduced  
further by use of internal clamp circuitry  
accessible through CLAMP if required.  
50  
0
10 20 30 40 50 60 70 80  
t − Time − ms  
Figure 33. Overload Recovery  
The clamp is a switch that is automatically activated when the output is approximately 1 V from either supply  
rail. When connected to the inverting input (in parallel with the closed-loop feedback resistor), the closed-loop  
gain is reduced, and the TLC2652 output is prevented from going into saturation. Since the output must source  
or sink current through the switch (see Figure 7), the maximum output voltage swing is slightly reduced.  
thermoelectric effects  
To take advantage of the extremely low offset voltage drift of the TLC2652, care must be taken to compensate  
for the thermoelectric effects present when two dissimilar metals are brought into contact with each other (such  
as device leads being soldered to a printed circuit board). Dissimilar metal junctions can produce thermoelectric  
voltages in the range of several microvolts per degree Celsius (orders of magnitude greater than the 0.01-µV/°C  
typical of the TLC2652).  
To help minimize thermoelectric effects, careful attention should be paid to component selection and  
circuit-board layout. Avoid the use of nonsoldered connections (such as sockets, relays, switches, etc.) in the  
input signal path. Cancel thermoelectric effects by duplicating the number of components and junctions in each  
device input. The use of low-thermoelectric-coefficient components, such as wire-wound resistors, is also  
beneficial.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢈ  
ꢓꢔꢕ ꢂꢖꢒ ꢖꢑ ꢗ ꢂꢘꢑ ꢓꢓ ꢕꢔꢙꢒ ꢀꢇ ꢚꢖ ꢁꢖ ꢛꢕ ꢜ  
ꢑ ꢓꢕꢔ ꢇꢀ ꢖꢑ ꢗꢇꢁ ꢇꢐꢓ ꢁꢖ ꢝ ꢖꢕ ꢔꢒ  
ꢌꢍ  
  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
APPLICATION INFORMATION  
latch-up avoidance  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC2652 inputs  
and output are designed to withstand 100-mA surge currents without sustaining latch-up; however, techniques  
to reduce the chance of latch-up should be used whenever possible. Internal protection diodes should not, by  
design, be forward biased. Applied input and output voltages should not exceed the supply voltage by more than  
300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients  
should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails as close  
to the device as possible.  
The current path established if latch-up occurs is usually between the supply rails and is limited only by the  
impedance of the power supply and the forward resistance of the parasitic thyristor. The chance of latch-up  
occurring increases with increasing temperature and supply voltage.  
electrostatic discharge protection  
The TLC2652 incorporates internal ESD-protection circuits that prevent functional failures at voltages at or  
below 2000 V. Care should be exercised in handling these devices, as exposure to ESD may result in  
degradation of the device parametric performance.  
theory of operation  
Chopper-stabilized operational amplifiers offer the best dc performance of any monolithic operational amplifier.  
This superior performance is the result of using two operational amplifiers, a main amplifier and a nulling  
amplifier, plus oscillator-controlled logic and two external capacitors to create a system that behaves as a single  
amplifier. With this approach, the TLC2652 achieves submicrovolt input offset voltage, submicrovolt noise  
voltage, and offset voltage variations with temperature in the nV/°C range.  
The TLC2652 on-chip control logic produces two dominant clock phases: a nulling phase and an amplifying  
phase. The term chopper-stabilized derives from the process of switching between these two clock phases.  
Figure 34 shows a simplified block diagram of the TLC2652. Switches A and B are make-before-break types.  
During the nulling phase, switch A is closed shorting the nulling amplifier inputs together and allowing the nulling  
amplifier to reduce its own input offset voltage by feeding its output signal back to an inverting input node.  
Simultaneously, external capacitor C stores the nulling potential to allow the offset voltage of the amplifier to  
XA  
remain nulled during the amplifying phase.  
Main Amplifier  
IN+  
IN−  
+
V
O
B
C
XB  
B
A
+
V
DD−  
Null  
Amplifier  
A
C
XA  
Figure 34. TLC2652 Simplified Block Diagram  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅꢃ ꢇ ꢆ ꢀꢁ ꢂꢃ ꢄ ꢅ ꢃ ꢈ  
ꢑꢓ ꢕ ꢔꢇꢀ ꢖ ꢑꢗ ꢇ ꢁ ꢇꢐ ꢓꢁ ꢖ ꢝꢖ ꢕ ꢔꢒ  
  
ꢓ ꢔꢕ ꢂꢖ ꢒꢖ ꢑ ꢗ ꢂꢘ ꢑꢓꢓ ꢕꢔꢙꢒ ꢀꢇꢚꢖ ꢁ ꢖꢛ ꢕꢜ  
SLOS019E − SEPTEMBER 1988 − REVISED FEBRUARY 2005  
APPLICATION INFORMATION  
theory of operation (continued)  
During the amplifying phase, switch B is closed connecting the output of the nulling amplifier to a noninverting  
input of the main amplifier. In this configuration, the input offset voltage of the main amplifier is nulled. Also,  
external capacitor C  
nulled during the next nulling phase.  
stores the nulling potential to allow the offset voltage of the main amplifier to remain  
XB  
This continuous chopping process allows offset voltage nulling during variations in time and temperature over  
the common-mode input voltage range and power supply range. In addition, because the low-frequency signal  
path is through both the null and main amplifiers, extremely high gain is achieved.  
The low-frequency noise of a chopper amplifier depends on the magnitude of the component noise prior to  
chopping and the capability of the circuit to reduce this noise while chopping. The use of the Advanced LinCMOS  
process, with its low-noise analog MOS transistors and patent-pending input stage design, significantly reduces  
the input noise voltage.  
The primary source of nonideal operation in chopper-stabilized amplifiers is error charge from the switches. As  
charge imbalance accumulates on critical nodes, input offset voltage can increase, especially with increasing  
chopping frequency. This problem has been significantly reduced in the TLC2652 by use of a patent-pending  
compensation circuit and the Advanced LinCMOS process.  
The TLC2652 incorporates a feed-forward design that ensures continuous frequency response. Essentially, the  
gain magnitude of the nulling amplifier and compensation network crosses unity at the break frequency of the  
main amplifier. As a result, the high-frequency response of the system is the same as the frequency response  
of the main amplifier. This approach also ensures that the slewing characteristics remain the same during both  
the nulling and amplifying phases.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
5962-9089501M2A  
ACTIVE  
LCCC  
CDIP  
FK  
20  
14  
1
TBD  
POST-PLATE  
A42  
N / A for Pkg Type  
-55 to 125  
5962-  
9089501M2A  
TLC2652MFKB  
5962-9089501MCA  
ACTIVE  
J
1
TBD  
N / A for Pkg Type  
-55 to 125  
5962-9089501MC  
A
TLC2652MJB  
5962-9089501MPA  
5962-9089503M2A  
ACTIVE  
ACTIVE  
CDIP  
JG  
FK  
8
1
1
TBD  
TBD  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
9089501MPA  
TLC2652M  
LCCC  
20  
POST-PLATE  
5962-  
9089503M2A  
TLC2652AMFKB  
5962-9089503MCA  
ACTIVE  
CDIP  
J
14  
1
TBD  
TBD  
A42  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
5962-9089503MC  
A
TLC2652AMJB  
5962-9089503MPA  
TLC2652AC-14D  
TLC2652AC-14DG4  
TLC2652AC-8D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
CDIP  
SOIC  
SOIC  
SOIC  
SOIC  
JG  
D
8
14  
14  
8
1
A42  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
9089503MPA  
TLC2652AM  
50  
50  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
2652AC  
2652AC  
2652AC  
2652AC  
D
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
TLC2652AC-8DG4  
D
8
Green (RoHS  
& no Sb/Br)  
TLC2652AC-8DR  
TLC2652ACN  
OBSOLETE  
ACTIVE  
SOIC  
PDIP  
D
N
0
TBD  
Call TI  
Call TI  
14  
25  
25  
50  
50  
50  
Pb-Free  
(RoHS)  
CU NIPDAU  
N / A for Pkg Type  
TLC2652ACN  
TLC2652ACN  
TLC2652AC  
TLC2652AC  
2652AI  
TLC2652ACNE4  
TLC2652ACP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
PDIP  
SOIC  
N
P
P
D
14  
8
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Pb-Free  
(RoHS)  
TLC2652ACPE4  
TLC2652AI-14D  
8
Pb-Free  
(RoHS)  
14  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLC2652AI-14DG4  
TLC2652AI-8D  
TLC2652AI-8DG4  
TLC2652AI-8DR  
TLC2652AI-8DRG4  
TLC2652AIN  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
PDIP  
PDIP  
LCCC  
D
14  
8
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
POST-PLATE  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
2652AI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
75  
Green (RoHS  
& no Sb/Br)  
2652AI  
8
Green (RoHS  
& no Sb/Br)  
2652AI  
D
8
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
2652AI  
D
8
Green (RoHS  
& no Sb/Br)  
2652AI  
N
14  
14  
8
Pb-Free  
(RoHS)  
TLC2652AIN  
TLC2652AIN  
TLC2652AI  
TLC2652AI  
TLC2652AINE4  
TLC2652AIP  
N
25  
Pb-Free  
(RoHS)  
P
50  
Pb-Free  
(RoHS)  
TLC2652AIPE4  
TLC2652AMFKB  
P
8
50  
Pb-Free  
(RoHS)  
FK  
20  
1
TBD  
-55 to 125  
-55 to 125  
5962-  
9089503M2A  
TLC2652AMFKB  
TLC2652AMJB  
ACTIVE  
CDIP  
J
14  
1
TBD  
A42  
N / A for Pkg Type  
5962-9089503MC  
A
TLC2652AMJB  
TLC2652AMJG  
TLC2652AMJGB  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
JG  
JG  
8
8
1
1
TBD  
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
TLC2652  
AMJG  
9089503MPA  
TLC2652AM  
TLC2652C-14D  
TLC2652C-8D  
OBSOLETE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
8
Call TI  
Call TI  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
2652C  
2652C  
2652C  
TLC2652C-8DG4  
TLC2652C-8DR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2500  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLC2652C-8DRG4  
TLC2652CN  
ACTIVE  
SOIC  
PDIP  
PDIP  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
LCCC  
D
8
14  
14  
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
POST-PLATE  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
N / A for Pkg Type  
2652C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
N
N
P
25  
25  
Pb-Free  
(RoHS)  
TLC2652CN  
TLC2652CN  
TLC2652CP  
TLC2652CP  
2652I  
TLC2652CNE4  
TLC2652CP  
Pb-Free  
(RoHS)  
50  
Pb-Free  
(RoHS)  
TLC2652CPE4  
TLC2652I-8D  
P
8
50  
Pb-Free  
(RoHS)  
D
D
D
D
P
8
75  
Green (RoHS  
& no Sb/Br)  
TLC2652I-8DG4  
TLC2652I-8DR  
TLC2652I-8DRG4  
TLC2652IP  
8
75  
Green (RoHS  
& no Sb/Br)  
2652I  
8
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
2652I  
8
Green (RoHS  
& no Sb/Br)  
2652I  
8
Pb-Free  
(RoHS)  
TLC2652IP  
TLC2652IP  
T2652M  
TLC2652IPE4  
TLC2652M-8DG4  
TLC2652MFKB  
P
8
50  
Pb-Free  
(RoHS)  
D
FK  
8
1000  
1
Green (RoHS  
& no Sb/Br)  
20  
TBD  
-55 to 125  
5962-  
9089501M2A  
TLC2652MFKB  
TLC2652MJG  
ACTIVE  
ACTIVE  
CDIP  
CDIP  
JG  
JG  
8
8
1
1
TBD  
TBD  
A42  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
TLC2652MJG  
TLC2652MJGB  
9089501MPA  
TLC2652M  
TLC2652Q-8D  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
T2652Q  
TLC2652Q-8DG4  
Green (RoHS  
& no Sb/Br)  
T2652Q  
(1) The marketing status values are defined as follows:  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC2652, TLC2652A, TLC2652AM, TLC2652M :  
Catalog: TLC2652A, TLC2652  
Military: TLC2652M, TLC2652AM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Military - QML certified for Military and Defense Applications  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2010  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC2652AI-8DR  
TLC2652C-8DR  
TLC2652I-8DR  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2010  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC2652AI-8DR  
TLC2652C-8DR  
TLC2652I-8DR  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
2500  
2500  
2500  
340.5  
340.5  
340.5  
338.1  
338.1  
338.1  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLC2652Y

Advanced LinCMOSE PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654A

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC-14D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC-14DR

OP-AMP, 24uV OFFSET-MAX, 1.9MHz BAND WIDTH, PDSO14, PLASTIC, SOIC-14
TI

TLC2654AC-8D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC-8DG4

Advanced LinCMOS(TM) Low-Noise Chopper-Stabilized Operational Amplifier 8-SOIC
TI

TLC2654AC-8DR

Advanced LinCMOS(TM) Low-Noise Chopper-Stabilized Operational Amplifier 8-SOIC
TI

TLC2654AC14D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654AC8D

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI

TLC2654ACL

OP-AMP, 24uV OFFSET-MAX, 1.9MHz BAND WIDTH, MBCY8, HERMETIC SEALED, METAL CAN-8
TI

TLC2654ACN

Advanced LinCMOSE LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS
TI