TLC2932A [TI]

HIGH PERFORMANCE PHASE LOCKED LOOP; 高性能锁相环
TLC2932A
型号: TLC2932A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH PERFORMANCE PHASE LOCKED LOOP
高性能锁相环

文件: 总19页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇ ꢆꢑꢋ ꢁ ꢎꢂ ꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
D
VCO (Voltage-Controlled Oscillator):  
D
Independent VCO, PFD Power-Down Mode  
Thin Small-Outline Package (14 Terminal)  
CMOS Technology  
D
D
D
− Complete Oscillator Using Only One  
External Bias Resistor (RBIAS)  
Pin Compatible TLC2932IPW  
− Lock Frequency:  
13 MHz to 32 MHz (VDD = 3 V +5%,  
T = –205C to 755C, x1 Output)  
A
14-PIN TSOP (PW PACKAGE)  
(TOP VIEW)  
13 MHz to 35 MHz (VDD = 3.3 V +5%,  
T = –205C to 755C, x1 Output)  
A
LOGIC V  
1
2
3
4
5
6
7
VCO V  
RBIAS  
VCO IN  
VCO GND  
VCO INHIBIT  
PFD INHIBIT  
TEST  
14  
13  
12  
11  
10  
9
15 MHz to 55 MHz (VDD = 5 V +5%,  
DD  
DD  
SELECT  
VCO OUT  
FIN−A  
T = –205C to 755C, x1 Output)  
A
− Selectable Output Frequency  
D
PFD (Phase Frequency Detector):  
High Speed, Edge-Triggered Detector  
with Internal Charge Pump  
FIN−B  
PFD OUT  
LOGIC GND  
8
description  
The TLC2932A is designed for phase-locked loop (PLL) systems and is composed of a voltage-controlled  
oscillator (VCO) and an edge-triggered type phase frequency detector (PFD). The oscillation frequency range  
of the VCO is set by an external bias resistor (R  
). The VCO has a 1/2 frequency divider at the output stage.  
BIAS  
The high speed PFD with internal charge pump detects the phase difference between the reference frequency  
input and signal frequency input from the external counter. Both the VCO and the PFD have inhibit functions,  
which can be used as power-down mode. Due to the TLC2932A high speed and stable oscillation capability,  
the TLC2932A is suitable for use as a high-performance PLL.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SMALL OUTLINE (PW)  
–20°C to 75°C  
TLC2932AIPW  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2005, Texas Instruments Incorporated  
ꢣꢠ ꢡ ꢗ ꢧꢘ ꢢꢥ ꢝ ꢡ ꢠ ꢚꢙ ꢣꢠ ꢦ ꢠ ꢨꢚ ꢢꢜꢠ ꢘꢞꢩ ꢂ ꢥꢝ ꢛꢝ ꢟꢞ ꢠꢛ ꢗꢡ ꢞꢗ ꢟ ꢣꢝ ꢞꢝ ꢝꢘ ꢣ ꢚꢞ ꢥꢠꢛ  
ꢡ ꢢꢠ ꢟ ꢗ ꢙꢗ ꢟ ꢝ ꢞ ꢗꢚ ꢘꢡ ꢝ ꢛ ꢠ ꢣꢠ ꢡ ꢗ ꢧꢘ ꢧꢚꢝ ꢨꢡ ꢩ ꢀꢠꢪ ꢝꢡ ꢈꢘꢡ ꢞꢛ ꢤꢜ ꢠꢘꢞ ꢡ ꢛ ꢠꢡ ꢠꢛ ꢦ ꢠꢡ ꢞꢥ ꢠ ꢛ ꢗꢧꢥ ꢞ ꢞꢚ  
ꢟ ꢥꢝ ꢘ ꢧꢠ ꢚꢛ ꢣꢗ ꢡ ꢟ ꢚꢘ ꢞꢗ ꢘꢤꢠ ꢞ ꢥꢠ ꢡ ꢠ ꢢꢛ ꢚꢣ ꢤꢟꢞ ꢡ ꢫ ꢗꢞꢥ ꢚꢤꢞ ꢘꢚꢞ ꢗꢟꢠ ꢩ  
1
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢇ ꢈꢉ ꢇ ꢊꢋ ꢌꢍ ꢎꢌꢏꢆ ꢐꢂꢋ ꢊ ꢇꢆꢑ ꢋ ꢁꢎ ꢂꢒ ꢋꢓ ꢁ ꢎ ꢎꢊ  
SLES150 − OCTOBER 2005  
functional block diagram  
12  
VCO IN  
BIAS  
4
FIN−A  
13  
10  
Phase  
Frequency  
Detector  
Voltage  
Controlled  
Oscillator  
3
6
5
9
FIN−B  
PFD OUT  
VCO OUT  
VCO INHIBIT  
SELECT  
PFD INHIBIT  
2
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
LOGIC VDD  
1
Power supply for the internal logic. This power supply should be separated from VCO V  
cross-coupling between supplies.  
to reduce  
DD  
SELECT  
2
I
VCO output frequency select. When SELECT is high, the VCO output frequency is ×1/2 and when  
low. The output frequency is ×1.  
VCO OUT  
FIN−A  
3
4
5
O
I
VCO output. When the VCO INHIBIT is high, VCO output is low.  
Input reference frequency f  
(REF IN)  
is applied to FIN−A.  
FIN−B  
I
Input for VCO external counter output frequency f  
external counter.  
. FIN−B is nominally provided from the  
(FIN−B)  
PFD OUT  
LOGIC GND  
TEST  
6
7
O
PFD output. When the PFD INHIBIT is high, PFD output is in the high-impedance state.  
GND for the internal logic.  
8
Connect to GND.  
PFD INHIBIT  
VCO INHIBIT  
VCO GND  
VCO IN  
9
I
I
PFD inhibit control. When PFD INHIBIT is high, PFD output is in the high-impedance state.  
VCO inhibit control. When VCO INHIBIT is high, VCO output is low.  
GND for VCO.  
10  
11  
12  
I
I
VCO control voltage input. Nominally the external loop filter output connects to VCO IN to control  
VCO oscillation frequency.  
RBIAS  
13  
14  
Bias supply. An external resistor (R  
oscillation frequency range.  
) between VCO V  
BIAS DD  
and R  
BIAS  
supplies bias for adjusting the  
VCO V  
DD  
Power supply for VCO. This power supply should be separated from LOGIC V  
cross-coupling between supplies.  
to reduce  
DD  
2
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
detailed description  
VCO oscillation frequency  
The VCO oscillation frequency is determined by an external register (R  
) connected between the VCO V  
DD  
BIAS  
and the BIAS terminals. The oscillation frequency and range depends on this resister value. For the lock  
frequency range refer to the recommended operating conditions. Figure 1 shows the typical frequency variation  
and VCO control voltage.  
VCO Oscillation Frequency Range  
Bias Resistor (R  
)
BIAS  
1/2 VDD  
VCO Control Voltage (VCO IN)  
Figure 1. Oscillation Frequency  
VCO output frequency 1/2 divider  
The TLC2932A SELECT terminal sets the f  
VCO output frequency as shown in Table 1. The 1/2 f  
output  
OSC  
OSC  
should be used for minimum VCO output jitter.  
Table 1. VCO Output 1/2 Divider Function  
SELLECT  
Low  
VCO OUTPUT  
f
OSC  
1/2 f  
High  
OSC  
VCO inhibit function  
The VCO has an externally controlled inhibit function which inhibit the VCO output. A high level on the VCO  
INHIBIT terminal stops the VCO oscillation and powers down the VCO. The output maintains a low level during  
the power−down mode as shown in Table 2.  
Table 2. VCO Inhibit Function  
VCO INHIBIT  
Low  
VCO OSCILLATOR  
Active  
VCO OUT  
Active  
I
DD(VCO)  
Normal  
High  
Stopped  
Low level  
Power Down  
PFD operation  
The PFD is a high-speed, edge-triggered detector with an internal charge pump. The PFD detects the phase  
difference between two frequency inputs supplied to FIN−A and FIN−B as shown in Figure 2. Normally the  
reference is supplied to FIN−A and the frequency from the external counter output is fed to FIN−B. For clock  
recovery PLL system, other types of phase detectors should be used.  
3
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢇ ꢈꢉ ꢇ ꢊꢋ ꢌꢍ ꢎꢌꢏꢆ ꢐꢂꢋ ꢊ ꢇꢆꢑ ꢋ ꢁꢎ ꢂꢒ ꢋꢓ ꢁ ꢎ ꢎꢊ  
SLES150 − OCTOBER 2005  
FIN−A  
FIN−B  
V
OH  
PFD OUT  
HI-Z  
V
OL  
Figure 2. PFD Function Timing Chart  
PFD inhibit control  
A high level on the PFD INHIBIT terminal places PFD OUT in the high-impedance state and the PFD stops  
phase detection as shown in Table 3. A high level on the PFD INHIBIT terminal can also be used as the  
power-down mode for the PFD.  
Table 3. VCO Output Control Function  
PFD INHIBIT  
Low  
DETECTION  
Active  
PFD OUT  
Active  
I
DD(PFD)  
Normal  
High  
Stopped  
Hi−Z  
Power Down  
VCO block schematic  
PFD block schematic  
Charge Pump  
V
DD  
FIN−A  
FIN−B  
PFD OUT  
Detector  
PFD INHIBIT  
4
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (each supply), V  
Input voltage range (each input), V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
+ 0.5 V  
IN  
DD  
Input current (each input), I  
Output current (each output), I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
IN  
O
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –20°C to 75°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltages are with respect to GND.  
2. For operation above 25_C free-air temperature, derate linearly at the rate of 5.6 mW/°C.  
recommended operating conditions  
PARAMETERS  
MIN  
TYP  
MAX  
UNIT  
V
DD  
V
DD  
V
DD  
= 3 V  
2.85  
3.135  
4.75  
3
3.15  
= 3.3 V  
= 5 V  
3.3  
5
3.465  
5.25  
Supply voltage (each supply, see Note 3)  
V
Input voltage, (inputs except VCO IN)  
Output current, (each output)  
0
0
V
V
mA  
V
DD  
2
VCO control voltage at VCO IN  
0.9  
13  
V
DD  
32  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3 V  
= 3.3 V  
= 5 V  
13  
15  
35  
55  
Lock frequency  
Bias Resisitor  
MHz  
= 3 V  
2.2  
2.2  
2.2  
5.1  
5.1  
5.1  
= 3.3 V  
= 5 V  
kΩ  
NOTE 3: It is recommended that the logic supply terminal (LOGIC V ) and the VCO supply terminal (VCO V ) should be at the same voltage  
DD DD  
and separated from each other.  
electrical characteristics, V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
VCO section  
PARAMETER  
TEST CONDITIONS  
= –2 mA  
MIN  
TYP  
MAX  
UNIT  
V
V
OH  
V
OL  
V
TH  
High level output voltage  
Low level output voltage  
I
I
2.4  
OH  
= 2 mA  
0.3  
2.1  
1
V
OL  
Input threshold voltage at select, VCO inhibit  
Input current at Select, VCO inhibit  
VCO IN input impedance  
0.9  
1.5  
V
I
I
V = V  
DD  
or GND  
µA  
MΩ  
µA  
mA  
I
Z
VCO IN = 1/2 V  
See Note 4  
10  
0.35  
8.4  
I(VCOIN)  
DD(INH)  
DD  
I
VCO supply current (inhibit)  
VCO supply current  
1
I
See Note 5  
17  
DD(VCO)  
NOTES: 4. Current into VCO V , when VCO INHIBIT = high, PFD is inhibited.  
DD  
5. Current into VCO V , when VCO IN = 1/2 V , R  
= 3.3 k, VCOOUT = 15−pF Load, VCO INHIBIT = GND, and PFD INHIBIT  
DD DD BIAS  
= GND.  
5
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢎꢊ  
SLES150 − OCTOBER 2005  
electrical characteristics, V  
= 3 V, T = 25°C (unless otherwise noted) (continued)  
A
DD  
PFD section  
PARAMETER  
TEST CONDITIONS  
= –2 mA  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High level output voltage  
Low level output voltage  
I
I
2.4  
OH  
OH  
= 2 mA  
0.3  
1
V
OL  
OL  
I
High impedance state output current  
High level input voltage at Fin−A, Fin−B  
Low level input voltage at Fin−A, Fin−B  
Input threshold voltage at PFD inhibit  
Input capacitance at Fin−A, Fin−B  
Input impedance at Fin−A, Fin−B  
PFD inhibit = high, V = V  
DD  
or GND  
µA  
V
OZ  
O
V
V
V
2.1  
0.9  
IH  
0.5  
2.1  
V
IL  
1.5  
5.6  
10  
TH  
C
pF  
MΩ  
µA  
IN  
Z
IN  
I
I
High impedance state PFD supply current See Note 6  
PFD supply current See Note 7  
1
3
DD(Z)  
mA  
DD(PFD)  
NOTES: 6. The current into LOGIC V  
when FIN−A and FIN−B = ground, PFD INHIBIT = V , PFD OUT open, and VCO OUT is inhibited.  
DD  
DD  
DD  
7. The current into LOGIC V  
when FIN−A = 1 MHz and FIN−B = 1 MHz (V = 3 V, rectangular wave), PFD INHIBIT = GND, PFD  
I(PP)  
OUT open, and VCO OUT is inhibited.  
operation characteristics, V  
= 3 V, T = 25°C (unless otherwise noted)  
A
DD  
VCO section  
Parameter  
TEST CONDITIONS  
MIN  
TYP  
MAX  
33  
UNIT  
MHz  
µs  
f
f
t
t
Operation oscillation frequency  
R
= 3.3 k, VCO IN = 1/2 V  
17  
25  
OSC  
BIAS  
DD  
Time to stable oscillation (see Note 8)  
Rise time  
10  
STB  
C
C
R
= 15 pF  
9
7.6  
14  
ns  
r
f
L
Fall time  
= 15 pF  
12  
ns  
L
Duty cycle at VCO OUT  
= 3.3 k, VCO IN = 1/2 V  
45%  
50%  
55%  
BIAS  
DD  
α (f  
OSC  
)
Temperature coefficient of oscillation  
frequency  
VCO IN = 1/2 V , T = –20°C to  
DD  
75°C  
–0.264  
%/°C  
%/mV  
ps  
A
k
Supply voltage coefficient of oscillation  
frequency  
VCO IN = 1/2 V , V = 4.75 V to  
DD DD  
5.25 V  
0.004  
SVS  
(fosc)  
Jitter absolute (see Note 9)  
PLL jitter, N = 128  
325  
NOTES: 8. The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
9. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with  
a carefully deigned PCB with no device socket.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MH  
ns  
f
t
t
t
t
t
t
Maximum operation frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
17  
max  
PLZ  
PHZ  
PZL  
PZH  
r
22  
21  
6.5  
7
50  
50  
30  
30  
10  
10  
ns  
ns  
ns  
C
C
= 15 pF  
3.4  
1.9  
ns  
L
L
Fall time  
= 15 pF  
ns  
f
6
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
electrical characteristics, V  
= 3.3 V, T = 25°C (unless otherwise noted)  
A
DD  
VCO section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
OH  
V
OL  
V
TH  
High level output voltage  
Low level output voltage  
I
I
= –2 mA  
= 2 mA  
2.64  
OH  
0.33  
2.25  
1
V
OL  
Input threshold voltage at select, VCO inhibit  
Input current at Select, VCO inhibit  
VCO IN input impedance  
1.05  
1.65  
V
I
I
V = V  
DD  
or GND  
µA  
MΩ  
µA  
mA  
I
Z
VCO IN = 1/2 V  
See Note 10  
See Note 11  
10  
0.38  
10.8  
I(VCOIN)  
DD(INH)  
DD  
I
VCO supply current (inhibit)  
VCO supply current  
1
I
22  
DD(VCO)  
NOTES: 10. Current into VCO V , when VCO INHIBIT = high, PFD is inhibited.  
DD  
11. Current into VCO V , when VCO IN = 1/2 V , R  
= 3.3 k, VCOOUT = 15−pF Load, VCO INHIBIT = GND, and PFD INHIBIT  
DD DD BIAS  
= GND.  
PFD section  
PARAMETER  
TEST CONDITIONS  
= –2 mA  
MIN  
TYP  
MAX UNIT  
V
V
High level output voltage  
I
I
2.97  
V
OH  
OH  
Low level output voltage  
= 2 mA  
0.2  
1
V
µA  
V
OL  
OL  
I
High impedance state output current  
High level input voltage at Fin−A, Fin−B  
Low level input voltage at Fin−A, Fin−B  
Input threshold voltage at PFD inhibit  
Input capacitance at Fin−A, Fin−B  
Input impedance at Fin−A, Fin−B  
PFD inhibit = high, V = V or GND  
DD  
OZ  
O
V
V
V
2.1  
IH  
0.5  
V
IL  
1.05  
1.65  
5.6  
10  
2.25  
TH  
C
pF  
MΩ  
µA  
IN  
Z
IN  
I
I
High impedance state PFD supply current See Note 12  
PFD supply current See Note 13  
1
3
DD(Z)  
mA  
DD(PFD)  
NOTES: 12. The current into LOGIC V  
when FIN−A and FIN−B = ground, PFD INHIBIT = V , PFD OUT open, and VCO OUT is inhibited.  
DD  
DD  
DD  
13. The current into LOGIC V  
when FIN−A = 1 MHz and FIN−B = 1 MHz (V = 3.3 V, rectangular wave), PFD INHIBIT = GND,  
I(PP)  
PFD OUT open, and VCO OUT is inhibited.  
operation characteristics, V  
= 3.3 V, T = 25°C (unless otherwise noted)  
DD  
A
VCO section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f
Operation oscillation frequency  
R
= 3.3 k, VCO IN = 1/2 VDD  
BIAS  
18  
30  
43  
10  
14  
12  
55  
MHz  
µs  
OSC  
fstb  
tr  
Time to stable oscillation (see Note 14)  
Rise time  
C
C
R
= 15 pF  
8.5  
7.3  
50  
ns  
L
t
f
Fall time  
= 15 pF  
ns  
f
L
Duty cycle at VCO OUT  
=3.3 k, VCO IN = 1/2 VDD  
BIAS  
45  
%
DUTY  
α (f  
OSC  
)
Temperature coefficient of oscillation  
frequency  
VCO IN = 1/2 VDD, T = –20°C to 75°C  
–0.28  
7
%/°C  
A
k
(f  
)
Supply voltage coefficient of oscillation  
frequency  
VCO IN = 1/2 V , V  
DD DD  
= 4.75 V to 5.25 V  
0.004  
%/m  
V
SVS OSC  
Jitter absolute (see Note 15)  
PLL jitter, N = 128  
245  
ps  
NOTES: 14. The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
15. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with  
a carefully deigned PCB with no device socket.  
7
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢌꢏ  
ꢋꢓ  
ꢎꢊ  
SLES150 − OCTOBER 2005  
operation characteristics, V  
= 3.3 V, T = 25°C (unless otherwise noted) (continued)  
A
DD  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
f
t
t
t
t
t
t
Maximum operation frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
22  
max  
PLZ  
PHZ  
PZL  
PZH  
r
21  
21  
5.8  
6.2  
3
50  
50  
30  
30  
10  
10  
ns  
ns  
ns  
C
C
= 15 pF  
ns  
L
L
Fall time  
= 15 pF  
1.7  
ns  
f
electrical characteristics, V  
= 5 V, T = 25°C (unless otherwise noted)  
A
DD  
VCO section  
PARAMETER  
TEST CONDITIONS  
= –2 mA  
MIN  
TYP  
MAX  
UNIT  
V
OH  
V
OL  
V
TH  
High level output voltage  
Low level output voltage  
I
I
4
V
V
V
OH  
= 2 mA  
0.5  
3.5  
OL  
Input threshold voltage at select, VCO  
inhibit  
1.5  
2.5  
I
Input current at Select, VCO inhibit  
VCO IN input impedance  
VCO supply current (inhibit)  
VCO supply current  
V = V  
DD  
or GND  
1
µA  
M(  
I
I
Z
VCO IN = 1/2 V  
See Note 16  
See Note 17  
10  
0.56  
28  
I(VCOIN)  
DD  
IDD(inh)  
IDD(vco)  
1
µA  
mA  
50  
NOTES: 16. Current into VCO V , when VCO INHIBIT = high, PFD is inhibited.  
DD  
17. Current into VCO V , when VCO IN = 1/2 V , R  
DD DD BIAS  
= 3.3 k, VCOOUT = 15−pF Load, VCO INHIBIT = GND, and PFD INHIBIT  
= GND.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High level output voltage  
I
I
= –2 mA  
= 2 mA  
4.5  
OH  
OH  
Low level output voltage  
0.2  
1
V
OL  
OL  
I
High impedance state output current  
PFD inhibit = high, V = V  
or  
DD  
µA  
OZ  
o
GND  
V
V
V
High level input voltage at Fin−A, Fin−B  
Low level input voltage at Fin−A, Fin−B  
Input threshold voltage at PFD inhibit  
Input capacitance at Fin−A, Fin−B  
Input impedance at Fin−A, Fin−B  
4.5  
1.5  
V
V
IH  
1
IL  
2.5  
5.6  
10  
3.5  
TH  
C
pF  
MΩ  
µA  
IN  
Z
IN  
I
I
High impedance state PFD supply current See Note 18  
PFD supply current See Note 19  
1
3
DD(Z)  
0.5  
mA  
DD(PFD)  
NOTES: 18. The current into LOGIC V  
when FIN−A and FIN−B = ground, PFD INHIBIT = V , PFD OUT open, and VCO OUT is inhibited.  
DD  
DD  
DD  
19. The current into LOGIC V  
when FIN−A = 1 MHz and FIN−B = 1 MHz (V = 5 V, rectangular wave), PFD INHIBIT = GND, PFD  
I(PP)  
OUT open, and VCO OUT is inhibited  
8
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
operation characteristics, V  
VCO section  
= 5 V, T = 25°C (unless otherwise noted)  
A
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
75  
UNIT  
MHz  
us  
f
f
t
t
f
Operation oscillation frequency  
R
= 3.3 k, VCO IN = 1/2 V  
37  
57  
OSC  
BIAS  
DD  
Time to stable oscillation (see Note 20)  
Rise time  
10  
STB  
C
C
R
= 15 pF  
7.5  
6.4  
10  
ns  
r
L
Fall time  
= 15 pF  
10  
ns  
f
L
Duty cycle at VCO OUT  
= 3.3 k, VCO IN = 1/2 V  
45%  
50%  
55%  
DUTY  
BIAS  
DD  
α (f  
OSC  
)
Temperature coefficient of oscillation  
frequency  
VCO IN = 1/2 V , T = –20°C to  
DD  
75°C  
–0.346  
0.002  
145  
%/°C  
%/mV  
ps  
A
k
(f  
Supply voltage coefficient of oscillation  
frequency  
VCO IN = 1/2 V , V = 4.75 V  
DD DD  
to 5.25 V  
SVS OS  
)
C
Jitter absolute (see Note 21)  
PLL jitter, N = 128  
NOTES: 20. The time period to the stable VCO oscillation frequency after the VCO INHIBIT terminal is changed to a low level.  
21. Jitter performance is highly dependent on circuit layout and external device characteristics. The jitter specification was made with  
a carefully deigned PCB with no device socket.  
PFD section  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
f
t
t
t
t
t
t
Maximum operation frequency  
PFD output disable time from low level  
PFD output disable time from high level  
PFD output enable time to low level  
PFD output enable time to high level  
Rise time  
38  
max  
PLZ  
PHZ  
PZL  
PZH  
r
20  
20  
4
40  
40  
20  
20  
10  
10  
ns  
ns  
4.3  
2.1  
1.3  
ns  
C
C
= 15 pF  
ns  
L
L
Fall time  
= 15 pF  
ns  
f
9
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢇ ꢈꢉ ꢇ ꢊꢋ ꢌꢍ ꢎꢌꢏꢆ ꢐꢂꢋ ꢊ ꢇꢆꢑ ꢋ ꢁꢎ ꢂꢒ ꢋꢓ ꢁ ꢎ ꢎꢊ  
SLES150 − OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
90%  
90%  
10%  
10%  
VCO OUT  
t
r
t
f
Figure 3. VCO Output Voltage Waveform  
VDD  
F
F
−A  
−B  
IN  
50%  
GND  
VDD  
IN  
50%  
GND  
VDD  
PFD INHIBIT  
PFD OUT  
50%  
50%  
GND  
VDD  
90%  
90%  
50%  
10%  
50%  
50%  
10%  
50%  
GND  
tPZH  
tPHZ  
tPZL  
tPLZ  
tr  
tf  
Figure 4. PFD Output Voltage Waveform  
Table 4. PFD Output Test Conditions  
PARAMETER  
R
C
S1  
S2  
L
L
t
PZH  
PHZ  
t
OPEN  
CLOSE  
OPEN  
t
r
1 kΩ  
15 pF  
t
PZL  
PLZ  
t
CLOSE  
t
f
10  
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
PARAMETER MEASUREMENT INFORMATION  
Measurement  
Point  
S1  
R
L
S2  
C
L
Figure 5. PFD Output Test Conditions  
TYPICAL CHARACTERISTICS  
VCO OSCILATION FREQUENCY  
VS  
VCO OSCILATION FREQUENCY  
VS  
VCO CONTROL VOLTAGE  
Vdd=3.0V Rbias=3.3kohm  
VCO CONTROL VOLTAGE  
Vdd=3.0V Rbias=2.2kohm  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
−25°C  
80  
−25°C  
25°C  
25°C  
70  
85°C  
60  
85°C  
50  
40  
30  
20  
10  
0
0
1
2
3
4
0
1
2
3
4
VCOIN − VCO Control Voltage − V  
VCOIN − VCO Control Voltage − V  
Figure 6.  
Figure 7.  
11  
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢇ ꢈꢉ ꢇ ꢊꢋ ꢌꢍ ꢎꢌꢏꢆ ꢐꢂꢋ ꢊ ꢇꢆꢑ ꢋ ꢁꢎ ꢂꢒ ꢋꢓ ꢁ ꢎ ꢎꢊ  
SLES150 − OCTOBER 2005  
TYPICAL CHARACTERISTICS  
VCO OSCILATION FREQUENCY  
VS  
VCO OSCILATION FREQUENCY  
VS  
VCO CONTROL VOLTAGE  
Vdd=3.3V Rbias=2.2kohm  
VCO CONTROL VOLTAGE  
Vdd=3.0V Rbias=5.1kohm  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
−25°C  
25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
85°C  
−25°C  
25°C  
85°C  
0
1
2
3
4
0
1
2
3
4
VCOIN − VCO Control Voltage − V  
VCOIN − VCO Control Voltage − V  
Figure 8.  
Figure 9.  
VCO OSCILATION FREQUENCY  
VS  
VCO OSCILATION FREQUENCY  
VS  
VCO CONTROL VOLTAGE  
Vdd=3.3V Rbias=5.1kohm  
VCO CONTROL VOLTAGE  
Vdd=3.3V Rbias=3.3kohm  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
−25°C  
25°C  
−25°C  
25°C  
85°C  
85°C  
0
1
2
3
4
0
1
2
3
4
VCOIN − VCO Control Voltage − V  
VCOIN − VCO Control Voltage − V  
Figure 10.  
Figure 11.  
12  
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
TYPICAL CHARACTERISTICS  
VCO OSCILATION FREQUENCY  
VS  
VCO OSCILATION FREQUENCY  
VS  
VCO CONTROL VOLTAGE  
Vdd=5.0V Rbias=3.3kohm  
VCO CONTROL VOLTAGE  
Vdd=5.0V Rbias=2.2kohm  
140  
140  
120  
100  
80  
−25°C  
120  
25°C  
−25°C  
100  
85°C  
25°C  
85°C  
80  
60  
40  
20  
0
60  
40  
20  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCOIN − VCO Control Voltage − V  
VCOIN − VCO Control Voltage − V  
Figure 12.  
Figure 13.  
VCO OSCILATION FREQUENCY  
VS  
VCO Oscilation frequency  
Vs  
VCO CONTROL VOLTAGE  
Vdd=5.0V Rbias=5.1kohm  
Bias resister  
Vdd=3V, VCOIN=1.5V, Ta=25’C  
140  
120  
100  
80  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
−25°C  
25°C  
85°C  
60  
40  
20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCOIN − VCO Control Voltage − V  
Rbias(kohm)  
Figure 14.  
Figure 15.  
13  
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢇ ꢈꢉ ꢇ ꢊꢋ ꢌꢍ ꢎꢌꢏꢆ ꢐꢂꢋ ꢊ ꢇꢆꢑ ꢋ ꢁꢎ ꢂꢒ ꢋꢓ ꢁ ꢎ ꢎꢊ  
SLES150 − OCTOBER 2005  
TYPICAL CHARACTERISTICS  
VCO Oscilation frequency  
Vs  
VCO Oscilation frequency  
Vs  
Bias resister  
Bias resister  
Vdd=5V, VCOIN=2.5V, Ta=25’C  
Vdd=3.3V, VCOIN=1.6V, Ta=25’C  
65  
63  
61  
59  
57  
55  
53  
51  
49  
47  
45  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
1
2
3
4
5
6
1
2
3
4
5
6
Rbias(kohm)  
Rbias(kohm)  
Figure 16.  
Figure 17.  
Temperature Coefficient Oscilation frequency  
Temperature Coefficient Oscilation frequency  
Vs  
Bias resister  
Vs  
Bias resister  
Vdd=3.3V, VCOIN=1.6V, Ta=−20’C to 75’C  
Vdd=3V, VCOIN=1.5V, Ta=−20’C to 75’C  
0.000  
−0.050  
−0.100  
−0.150  
−0.200  
−0.250  
−0.300  
−0.350  
−0.400  
−0.450  
−0.500  
0.000  
−0.050  
−0.100  
−0.150  
−0.200  
−0.250  
−0.300  
−0.350  
−0.400  
−0.450  
−0.500  
1
2
3
4
5
6
1
2
3
4
5
6
Rbias(kohm)  
Rbias(kohm)  
Figure 18.  
Figure 19.  
14  
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
TYPICAL CHARACTERISTICS  
VCO Oscilation frequency  
Vs  
VCO Supply Voltage  
VCOIN=1.5V, Ta=25’C  
Temperature Coefficient Oscilation frequency  
Vs  
Bias resister  
Vdd=5.0V, VCOIN=2.5V, Ta=−20’C to 75’C  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
0.000  
−0.050  
−0.100  
−0.150  
−0.200  
−0.250  
−0.300  
−0.350  
−0.400  
−0.450  
−0.500  
15  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
1
2
3
4
5
6
VCO Supply Voltage (V)  
Rbias(kohm)  
Figure 20.  
Figure 21.  
VCO Oscilation frequency  
Vs  
VCO Oscilation frequency  
Vs  
VCO Supply Voltage  
VCOIN=2.5V, Ta=25’C  
VCO Supply Voltage  
VCOIN=1.6V, Ta=25’C  
65  
63  
61  
59  
57  
55  
53  
51  
49  
47  
45  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
4.5  
5.5  
4
5
6
2.8  
3.2  
3.4  
3.6  
3.8  
3
VCO Supply Voltage (V)  
VCO Supply Voltage (V)  
Figure 22.  
Figure 23.  
15  
TI.COM  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢃ ꢆ  
ꢇ ꢈꢉ ꢇ ꢊꢋ ꢌꢍ ꢎꢌꢏꢆ ꢐꢂꢋ ꢊ ꢇꢆꢑ ꢋ ꢁꢎ ꢂꢒ ꢋꢓ ꢁ ꢎ ꢎꢊ  
SLES150 − OCTOBER 2005  
TYPICAL CHARACTERISTICS  
Supply Voltage Coefficient of Oscilation frequency  
Supply Voltage Coefficient of Oscilation frequency  
Vs  
Bias resister  
Vs  
Bias resister  
Vdd=3.0V to 3.6V,VCOIN=1.6V, Ta=25’C  
Vdd=2.7V to 3.3V,VCOIN=1.5V, Ta=25’C  
0.100  
0.080  
0.100  
0.080  
0.060  
0.060  
0.040  
0.040  
0.020  
0.020  
0.000  
0.000  
−0.020  
−0.040  
−0.060  
−0.080  
−0.100  
−0.020  
−0.040  
−0.060  
−0.080  
−0.100  
1
2
3
4
5
6
1
2
3
4
5
6
Rbias (kohm)  
Rbias (kohm)  
Figure 24.  
Figure 25.  
Recommended Lock frequency  
Supply Voltage Coefficient of Oscilation frequency  
Vs  
Bias resister  
Vs  
Bias resister  
Vdd=2.85V to 3.15V, Ta=−20’C to 75’C  
Vdd=4.5V to 5.5V,VCOIN=2.5V, Ta=25’C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
−0.020  
−0.040  
−0.060  
−0.080  
−0.100  
5
0
1
2
3
4
5
6
1
2
3
4
5
6
Rbias (kohm)  
Rbias (kohm)  
Figure 26.  
Figure 27.  
16  
TI.COM  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢃꢆ  
ꢇꢈ ꢉꢇ ꢊꢋ ꢌꢍ ꢎꢌ ꢏꢆꢐ ꢂꢋ ꢊꢇꢆ ꢑꢋ ꢁ ꢎ ꢂꢒꢋ ꢓ ꢁꢎ ꢎ ꢊ  
SLES150 − OCTOBER 2005  
TYPICAL CHARACTERISTICS  
Recommended Lock frequency  
Recommended Lock frequency  
Vs  
Vs  
Bias resister  
Bias resister  
Vdd=4.75V to 5.25V, Ta=−20’C to 75’C  
Vdd=3.135V to 3.465V, Ta=−20’C to 75’C  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
1
2
3
4
5
6
1
2
3
4
5
6
Rbias (kohm)  
Rbias (kohm)  
Figure 28.  
Figure 29.  
17  
TI.COM  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TLC2932AIPW

HIGH PERFORMANCE PHASE LOCKED LOOP
TI

TLC2932AIPWG4

锁相环系统 | PW | 14 | -20 to 75
TI

TLC2932AIPWR

锁相环系统 | PW | 14 | -20 to 75
TI

TLC2932AIPWRG4

HIGH PERFORMANCE PAHSE LOCKED LOOP
TI

TLC2932IPW

暂无描述
TI

TLC2932IPWLE

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2932IPWR

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2932PW

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2932PWR

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2933

HIGH-PERFORMANCE PHASE-LOCKED LOOP
TI

TLC2933A

HIGH PERFORMANCE PHASE LOCKED LOOP
TI

TLC2933AIPW

HIGH PERFORMANCE PHASE LOCKED LOOP
TI