TLC5929 [TI]

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode; 16通道恒流LED驱动器,提供7位全局亮度控制,节电模式
TLC5929
型号: TLC5929
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
16通道恒流LED驱动器,提供7位全局亮度控制,节电模式

驱动器
文件: 总36页 (文件大小:650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control,  
Power-Save Mode, and Full Self-Diagnosis for LED Lamp  
Check for Samples: TLC5929  
1
FEATURES  
2-ns Delayed Switching Between Each  
Channel Minimizes Inrush Current  
23  
16 Constant-Current Sink Output Channels  
with On/Off Control  
Operating Temperature: 40°C to +85°C  
Current Capability:  
APPLICATIONS  
40 mA (VCC 3.6 V)  
50 mA (VCC > 3.6 V)  
Variable Message Signs (VMS)  
Illumination  
Global Brightness Control: 7-Bit (128 Steps)  
Power-Supply Voltage Range: 3.0 V to 5.5 V  
LED Power-Supply Voltage: Up to 10 V  
Constant-Current Accuracy:  
LED Video Displays  
DESCRIPTION  
The TLC5929 is a 16-channel constant current sink  
LED driver. Each channel can be turned on or off by  
writing data to an internal register. The constant  
current value of all 16 channels is set by a single  
external resistor with 128 steps for the global  
brightness control (BC).  
Channel-to-Channel = ±1% (typ)  
Device-to-Device = ±2% (typ)  
Data Transfer Rate: 33 MHz  
BLANK Pulse Width: 40 ns (min)  
LED Open Detection (LOD)/LED Short  
Detection (LSD) with Invisible Detection Mode  
(IDM)  
The TLC5929 has six error flags: LED open detection  
(LOD), LED short detection (LSD), output leakage  
detection (OLD), reference current terminal short  
detection (ISF), pre-thermal warning (PTW) and  
thermal error flag (TEF). In addition, the LOD and  
LSD functions have invisible detection mode (IDM)  
that can detect those errors even when the output is  
off. The error detection results can be read via a  
serial interface port.  
Output Leakage Detection (OLD) Detects 3 µA  
Leak  
Pre-Thermal Warning (PTW)  
Thermal Shutdown (TSD)  
Current Reference Terminal Short Flag (ISF)  
Power-Save Mode with 10-µA Consumption  
Undervoltage Lockout Sets the Default Data  
The TLC5929 also has a power-save mode that sets  
the total current consumption to 10 µA (typ) when all  
outputs are off.  
Typical Application Circuit (Multiple Daisy-Chained TLC5929s)  
VLED  
¼
¼
¼
¼
¼
¼
¼
¼
OUT0  
SIN  
OUT15  
SOUT  
OUT0  
SIN  
OUT15  
SOUT  
DATA  
SCLK  
LAT  
VCC  
VCC  
SCLK  
LAT  
SCLK  
LAT  
TLC5929  
TLC5929  
ICn  
IC1  
VCC  
GND  
VCC  
GND  
BLANK  
BLANK  
IREF  
BLANK  
IREF  
Controller  
RIREF  
RIREF  
3
SID Read  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2011, Texas Instruments Incorporated  
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE-LEAD  
TLC5929DBQR  
TLC5929DBQ  
TLC5929PWPR  
TLC5929PWP  
Tape and Reel, 2500  
Tube, 50  
SSOP/QSOP-24  
DBQ  
PWP  
TLC5929  
Tape and Reel, 2000  
Tube, 60  
HTSSOP-24 PowerPAD™  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
MIN  
MAX  
UNIT  
V
VCC  
0.3  
+6.0  
Voltage(2)  
SIN, SCLK, LAT, BLANK, IREF, SOUT  
OUT0 to OUT15  
0.3 VCC + 0.3  
V
0.3  
0
+11  
+65  
V
Current  
OUT0 to OUT15  
mA  
°C  
°C  
V
Operating junction, TJ (max)  
Storage, TSTG  
40  
55  
+150  
+150  
4000  
2000  
Temperature  
Human body model (HBM)  
Charged device model (CDM)  
Electrostatic Discharge Ratings  
V
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to device ground terminal.  
THERMAL INFORMATION  
TLC5929  
THERMAL METRIC(1)  
DBQ  
24 PINS  
85.3  
PWP  
24 PINS  
37.6  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
48.8  
24.5  
38.6  
11.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.9  
0.5  
ψJB  
38.3  
11.3  
θJCbot  
N/A  
5.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
RECOMMENDED OPERATING CONDITIONS  
At TA= 40°C to +85°C, unless otherwise noted.  
TLC5929  
NOM  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DC Characteristics: VCC = 3 V to 5.5 V  
VCC  
VO  
Supply voltage  
3.0  
3.3  
5.5  
V
V
Voltage applied to output  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
OUT0 to OUT15  
SIN, SCLK, LAT, BLANK  
SIN, SCLK, LAT, BLANK  
SOUT  
10  
VIH  
VIL  
IOH  
IOL  
0.7 × VCC  
VCC  
V
GND  
0.3 × VCC  
V
2  
mA  
mA  
SOUT  
2
OUT0 to OUT15,  
3 V VCC < 3.6 V  
40  
50  
mA  
mA  
IOLC  
Constant output sink current  
OUT0 to OUT15,  
3.6 V VCC < 5.5 V  
TA  
TJ  
Operating free-air temperature range  
Operating junction temperature range  
40  
40  
+85  
°C  
°C  
+125  
AC Characteristics: VCC = 3 V to 5.5 V  
fCLK (SCLK)  
tWH0  
tWL0  
tWH1  
tWH2  
tWL2  
tSU0  
Data shift clock frequency  
SCLK  
SCLK  
33  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
20  
40  
40  
5
SCLK  
Pulse duration  
(see Figure 4 and Figure 6)  
LAT  
BLANK  
BLANK  
SIN to SCLK↑  
LATto SCLK↑  
SIN to SCLK↑  
LATto SCLK↑  
Setup time  
(see Figure 4 and Figure 6)  
tSU1  
200  
3
tH0  
Hold time  
(see Figure 4 and Figure 6)  
tH1  
10  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLC5929  
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
At VCC = 3 V to 5.5 V and TA = 40°C to +85°C. Typical values at VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
TLC5929  
PARAMETER  
TEST CONDITIONS  
IOH = 2 mA at SOUT  
MIN  
TYP  
MAX  
VCC  
0.4  
UNIT  
V
VOH  
High-level output voltage  
Low-level output voltage  
LED open detection threshold  
V
CC 0.4  
VOL  
IOL = 2 mA at SOUT  
V
VLOD  
VLSD0  
VLSD1  
VLSD2  
VLSD3  
VIREF  
IIN  
All OUTn = on  
0.25  
0.30  
0.35  
V
All OUTn = on, detection voltage code = 0h  
All OUTn = on, detection voltage code = 1h  
All OUTn = on, detection voltage code = 2h  
All OUTn = on, detection voltage code = 3h  
RIREF = 1.3 kΩ  
0.32 × VCC 0.35 × VCC 0.38 × VCC  
0.42 × VCC 0.45 × VCC 0.48 × VCC  
0.52 × VCC 0.55 × VCC 0.58 × VCC  
0.62 × VCC 0.65 × VCC 0.68 × VCC  
V
V
LED short detection threshold  
V
V
Reference voltage output  
Input current  
1.175  
1.205  
1.235  
1
V
VIN = VCC or GND at SIN, SCLK, LAT, and BLANK  
1  
μA  
SIN/SCLK/LAT = low, BLANK = high, all OUTn = off,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = open  
ICC0  
2
5
3
7
mA  
mA  
SIN/SCLK/LAT = low, BLANK = high, all OUTn = off,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 3.6 kΩ  
(IOUT = 18.3 mA target)  
ICC1  
SIN/SCLK/LAT/BLANK = low, All OUTn = on,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 3.6 kΩ  
(IOUT = 18.3 mA target)  
ICC2  
ICC3  
ICC4  
5
9
7
11  
14  
mA  
mA  
mA  
SIN/SCLK/LAT/BLANK = low, All OUTn = on,  
VOUTn = 0.8 V, BC = 7Fh, RIREF = 1.6 kΩ  
(IOUT = 41.3 mA target)  
Supply current (VCC  
)
VCC = 5.0 V, SIN/SCLK/LAT/BLANK = low,  
All OUTn = on, VOUTn = 0.8 V, BC = 7Fh,  
RIREF = 1.3 k(IOUT = 50.8 mA target)  
11  
VCC = 5.0 V, SIN/SCLK/LAT/BLANK = low,  
All OUTn = on, VOUTn = 0.8 V, BC = 7Fh, RIREF = 1.3  
k(IOUT = 50.8 mA target), all output data off with  
power-save mode enabled  
ICC5  
10  
40  
µA  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 kΩ  
IOLC0  
IOLC1  
38.5  
47.3  
41.3  
50.8  
44.1  
54.3  
mA  
mA  
Constant output sink current  
(OUT0 to OUT15, see Figure 3)  
VCC = 5.0 V, All OUTn = on, VOUTn = VOUTfix = 1 V,  
BC = 7Fh, RIREF = 1.3 kΩ  
IOLKG0  
IOLKG1  
IOLKG2  
TJ = +25°C  
0.1  
0.2  
0.8  
μA  
μA  
μA  
Output leakage current  
(OUT0 to OUT15, see Figure 3) 10 V, RIREF = 1.6 kΩ  
BLANK = high, VOUTn = VOUTfix =  
TJ = +85°C(1)  
TJ = +125°C(1)  
0.3  
Constant-current error  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 k, TA = +25°C  
ΔIOLC0  
(channel-to-channel, OUT0 to  
±1  
±3  
±4  
%
%
OUT15)(2)  
Constant-current error  
(device-to-devicel, OUT0 to  
OUT15)(3)  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 k, TA = +25°C  
ΔIOLC1  
±2  
(1) Not tested; specified by design.  
(2) The deviation of each output from the average of OUT0 to OUT15 constant-current. Deviation is calculated by the formula:  
IOLC(n)  
- 1  
(IOLC(0) + IOLC(1) + ... + IOLC(14) + IOLC(15)  
)
D (%) = 100 ´  
16  
.
(3) The deviation of the OUT0 to OUT15 constant-current average from the ideal constant-current value. Deviation is calculated by the  
formula:  
(IOLC(0) + IOLC(1) + ... IOLC(14) + IOLC(15)  
)
- (Ideal Output Current)  
D (%) = 100 ´  
16  
Ideal Output Current  
Ideal current is calculated by the formula:  
1.205  
IOLC(IDEAL) = 54.8 ´  
RIREF  
4
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
ELECTRICAL CHARACTERISTICS (continued)  
At VCC = 3 V to 5.5 V and TA = 40°C to +85°C. Typical values at VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
TLC5929  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All OUTn = on, VOUTn = VOUTfix = 0.8 V, BC = 7Fh,  
RIREF = 1.6 kΩ  
ΔIOLC2  
ΔIOLC3  
Line regulation(4)  
±0.1  
±1  
%/V  
All OUTn = on, VOUTn = 0.8 V to 3 V, VOUTfix = 0.8 V,  
BC = 7Fh, RIREF = 1.6 kΩ  
Load regulation(5)  
±0.5  
±3  
%/V  
TTEF  
THYS  
TPTW  
Thermal error flag threshold  
Thermal error flag hysteresis  
Pre-thermal warning threshold  
Junction temperature(6)  
Junction temperature(6)  
Junction temperature(6)  
150  
5
165  
10  
180  
20  
°C  
°C  
°C  
125  
138  
150  
(4) Line regulation is calculated by the formula:  
(IOLC(n) at VCC = 5.5 V) - (IOLC(n) at VCC = 3.0 V)  
D (%) = 100 ´  
2.5 ´ (IOLC(n) at VCC = 3.0 V)  
Where 2.5 is the difference between the maximum and minimum VCC voltage.  
(5) Load regulation is calculated by the equation:  
(IOLC(n) at VOUTn = 3 V) - (IOLC(n) at VOUTn = 0.8 V)  
D (%) = 100 ´  
2.2 ´ (IOLC(n) at VOUTn = 0.8 V)  
Where 2.2 is the difference between the maximum and minimum VCC voltage.  
(6) Not tested; specified by design.  
SWITCHING CHARACTERISTICS (See Figure 1, Figure 2, and Figure 5 through Figure 7)  
At VCC = 3 V to 5.5 V, TA = 40°C to +85°C, CL = 15 pF, RL = 82 , RIREF = 1.3 k, and VLED = 5.0 V.  
Typical values at VCC = 3.3 V and TA = +25°C, unless otherwise noted.  
TLC5929  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
10  
UNIT  
ns  
tR0  
tR1  
tF0  
tF1  
tD0  
SOUT  
Rise time  
OUTn, BC = 7Fh, TA = +25°C  
SOUT  
23  
3
60  
ns  
10  
ns  
Fall time  
OUTn, BC = 7Fh, TA = +25°C  
SCLKto SOUT↑↓  
31  
15  
60  
ns  
25  
ns  
LATor BLANK↑↓ to OUT0 sink current on/off,  
BC = 7Fh  
tD1  
35  
3
65  
11  
ns  
ns  
ns  
µs  
ns  
tD2  
Propagation delay  
OUTn on/off to OUTn + 1 on/off, BC = 7Fh  
LATto power-save mode by data writing for all output  
off  
tD3  
300  
20  
tD4  
SCLKto normal mode operation  
Output on/off data = all '1', BLANK low pulse = 40 ns, BC  
= 7Fh  
tON_ERR  
Output on-time error(1)  
30  
20  
Internal oscillator  
frequency  
fOSC  
12  
20  
28  
MHz  
(1) Output on-time error (tON_ERR) is calculated by the formula: tON_ERR (ns) = tOUT_ON 40 ns. tOUTON is the actual on-time of OUTn.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLC5929  
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
TEST CIRCUITS  
RL  
CL  
VCC  
GND  
VCC  
IREF  
OUTn  
VLED  
(1)  
RIREF  
(1) CL includes measurement probe and jig capacitance.  
Figure 1. Rise Time and Fall Time Test Circuit for OUTn  
VCC  
SOUT  
VCC  
(1)  
CL  
GND  
(1) CL includes measurement probe and jig capacitance.  
Figure 2. Rise Time and Fall Time Test Circuit for SOUT  
VCC  
OUT0  
OUTn  
VCC  
IREF  
RIREF  
GND OUT15  
VOUTn  
VOUTfix  
Figure 3. Constant-Current Test Circuit for OUTn  
6
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
TIMING DIAGRAMS  
tWH0, tWL0, tWH1, tWH2, tWL2  
:
VIH  
Input(1) 50%  
VIL  
tWH  
tWL  
tSU0, tSU1, tH0, tH1  
:
VIH  
SCLK Input(1)  
50%  
VIL  
tSU  
tH  
VIH  
SIN/LAT Input(1)  
50%  
VIL  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 4. Input Timing  
tR0, tR1, tF0, tF1, tD0, tD1, tD2  
:
VIH  
Input(1)  
50%  
VIL  
tD  
VOH or VOUTnH  
90%  
50%  
10%  
Output  
VOL or VOUTnL  
tR or tF  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 5. Output Timing  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLC5929  
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
DATA  
0A  
DATA  
16B  
DATA  
15B  
DATA DATA  
14B  
13B  
DATA  
12B  
DATA  
3B  
DATA DATA  
2B 1B  
DATA  
0B  
DATA  
16C  
DATA  
15C  
DATA DATA DATA  
14C 13C 12C  
DATA  
11C  
SIN  
SCLK  
LAT  
tH0  
tH1  
tSU0  
tWH0  
tSU1  
1
2
3
4
5
1
2
3
4
5
6
14  
15  
16  
17  
tWH1  
tWL0  
Shift Register  
DATA  
0A  
SID  
DATA DATA  
DATA DATA  
14B  
13B  
DATA DATA  
3B  
2B  
DATA DATA  
DATA  
DATA  
DATA DATA  
14C 13C  
DATA  
12C  
Selected SID 0B  
Selected SID 1B  
0A  
16B  
15B  
1B  
0B  
16C  
15C  
LSB Data (Internal)  
Shift Register  
DATA  
1A  
SID  
1A  
SID  
0A  
DATA  
16B  
DATA DATA  
DATA DATA  
DATA DATA  
2B 1B  
SID  
0B  
DATA  
16C  
DATA DATA  
DATA  
13C  
15B  
14B  
4B  
3B  
15C  
14C  
LSB + 1 Data (Internal)  
Shift Register  
DATA  
15A  
SID  
15A  
SID  
14A  
SID  
13A  
SID  
12A  
SID  
11A  
SID  
1A  
SID  
0A  
DATA DATA  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
SID  
10B  
Selected SID 15B  
16B  
15B  
MSB - 1 Data (Internal)  
Shift Register  
DATA  
SID  
15A  
SID  
14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
15B  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
DATA 16B  
16A  
MSB Data (Internal)  
Output On/Off  
DATA 15A to DATA 0A  
DATA 15B to DATA 0B  
Data Latch (Internal)  
Control  
Latest Control Data  
Data Latch (Internal)  
DATA  
16A  
SID  
15A  
SID  
14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
SID  
SID  
15B  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
DATA 16B  
SOUT  
1A  
0A  
tD0  
tR0/tF0  
tWH2  
BLANK  
tWL2  
tD1  
ON  
tD1  
VOUTnH  
OFF  
OFF  
(1)  
VOUTnL  
ON  
OUTn  
ON  
tOUTON  
OFF  
tD2  
tD2  
ON  
OFF  
OUTn + 1(1)  
ON  
ON  
tD1  
OFF  
OFF  
(2)  
ON  
OUTn  
ON  
tF1  
tD1  
OFF  
OFF  
OFF  
OFF  
(3)  
ON  
ON  
tR1  
OUTn  
ON  
OFF  
OFF  
OFF  
(4)  
OUTn  
ON  
(1) On/off latched data is '1'.  
(2) On/off latched data change from '1' to '0' at second LAT signal.  
(3) On/off latched data change from '0' to '1' at second LAT signal.  
(4) On/off latched data is '0'.  
Figure 6. Write for On/Off Data and Output Timing  
8
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
Low  
SIN  
SCLK  
LAT  
1
2
3
15 16  
17  
1
2
3
4
5
6
BLANK  
Don’t Care  
‘1’  
PSMODE Bit in  
Control Data Latch  
(Internal)  
Previous On/Off Data  
All Data are ‘0’  
On/Off Control  
Data Latch (Internal)  
OFF  
OFF  
OUT0  
OUT1  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OUT15  
Power-Save  
Mode  
Normal Mode  
Normal Mode  
Power-Save Mode  
Normal Mode  
tD3  
tD4  
More Than 100mA  
ICC  
(VCC Current)  
Less Than 100mA  
Figure 7. Power-Save Mode Timing  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLC5929  
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
PIN CONFIGURATIONS  
SSOP/QSOP-24  
DBQ PACKAGE  
(TOP VIEW)  
GND  
SIN  
1
2
3
4
5
6
7
8
9
24 VCC  
23 IREF  
SCLK  
LAT  
22 SOUT  
21 BLANK  
20 OUT15  
19 OUT14  
18 OUT13  
17 OUT12  
16 OUT11  
15 OUT10  
14 OUT9  
13 OUT8  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5 10  
OUT6 11  
OUT7 12  
HTSSOP-24  
PWP PACKAGE  
(TOP VIEW)  
GND  
SIN  
1
2
3
4
5
6
7
8
9
24 VCC  
23 IREF  
SCLK  
LAT  
22 SOUT  
21 BLANK  
20 OUT15  
19 OUT14  
18 OUT13  
17 OUT12  
16 OUT11  
15 OUT10  
14 OUT9  
13 OUT8  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
PowerPAD  
(Bottom Side)  
OUT5 10  
OUT6 11  
OUT7 12  
10  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
PIN DESCRIPTIONS  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
Blank all outputs. When BLANK is high, all constant-current outputs (OUT0 to OUT15) are forced off.  
BLANK  
21  
I
When BLANK is low, all constant-current outputs are controlled by the on/off control data in the data  
latch.  
Maximum current programming terminal. A resistor connected between IREF and GND sets the  
maximum current for every constant-current output. When this terminal is directly connected to GND,  
all outputs are forced off. The external resistor should be placed close to the device and must be in the  
range of 1.32 kΩ to 66.0 kΩ.  
IREF  
LAT  
23  
4
I/O  
I
Data latch. The rising edge of LAT latches the data from the common shift register into the output  
on/off data latch. At the same time, the data in the common shift register are replaced with SID, which  
is selected by SIDLD. See the Output On/Off Data Latch section and Status Information Data (SID)  
section for more details.  
GND  
1
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Ground  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Constant-current sink outputs. Multiple outputs can be configured in parallel to increase the  
constant-current capability. Different voltages can be applied to each output.  
Serial data shift clock. Data present on SIN are shifted to the LSB of the 17-bit shift register with the  
SCLK rising edge. Data in the shift register are shifted toward the MSB at each SCLK rising edge. The  
MSB data of the common shift register appear on SOUT.  
SCLK  
SIN  
3
2
I
I
Serial data input for the 17-bit common shift register. When SIN is high, a '1' is written to the LSB of  
the common shift register at the rising edge of SCLK.  
Serial data output of the 17-bit common shift register. SOUT is connected to the MSB of the 17-bit shift  
register. Data are clocked out at the rising edge of SCLK.  
SOUT  
VCC  
22  
24  
O
Power-supply voltage  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLC5929  
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
VCC  
16-bit LOD, LSD, or OLD data  
Reset  
UVLO  
LSB  
MSB  
SIN  
SOUT  
Load  
Select  
Common Shift Register  
0
16  
Bit16  
SCLK  
2
16  
LSB  
MSB  
All Off  
Output On/Off Data Latch  
16  
0
15  
16  
MSB  
LSB  
Function Control Data Latch  
(Global Brightness Control, LSD Voltage Select,  
Loaded Error Select, and Other Function Controls)  
16  
LAT  
2
15  
BC  
0
7
3
1
Error  
Select  
BLANK  
SID  
Selector  
2
2
To all  
Analog  
Circuits  
Power-  
Save  
Control  
IDM Timing  
Control  
OSC  
Temp  
Error  
Status  
ISF  
Reset  
165°C  
138°C  
Thermal  
Detector  
16  
2
SID  
Holder  
On/Off Control with Output Delay  
16  
ISF  
BC  
Reference  
Current  
Control  
IREF  
16-Channel, Constant-Current Sink Driver  
with 7-Bit Global Brightness Control  
16  
Error  
Select  
VLSD  
Select  
LED Open Detection (LOD)  
LED Short Detection (LSD)  
Output Leakage Detection (OLD)  
Detection  
Voltage  
GND  
GND  
OUT0  
OUT1  
OUT2  
OUT13 OUT14 OUT15  
12  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
 
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
TYPICAL CHARACTERISTICS  
At TA = +25°C, unless otherwise noted.  
REFERENCE RESISTOR  
vs OUTPUT CURRENT  
OUTn CURRENT vs  
OUTPUT VOLTAGE (+3.3 V)  
60  
50  
40  
30  
20  
10  
0
100  
10  
1
VCC = 3.3 V, BC = 7Fh, VOUTn = 0.8 V  
66.0  
33.0  
IOLCMax = 40 mA  
13.2  
IOLCMax = 30 mA  
6.60  
IOLCMax = 20 mA  
4.40  
3.30  
2.64  
2.20  
IOLCMax = 2 mA  
IOLCMax = 10 mA  
IOLCMax = 5 mA  
1.89  
1.65  
40  
IOLCMax = 1 mA  
1.47  
1.32  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
10  
20  
30  
50  
Output Voltage (V)  
IOLCMax (V)  
Figure 8.  
Figure 9.  
OUTn CURRENT vs  
OUTPUT VOLTAGE (+3.3 V)  
OUTn CURRENT vs  
OUTPUT VOLTAGE (+5 V)  
46  
45  
44  
43  
42  
41  
40  
39  
38  
60  
50  
40  
30  
20  
10  
0
VCC = 3.3 V  
VCC = 5 V, BC = 7Fh, VOUTn = 0.8 V, (50 mA = 1 V)  
BC = 7Fh  
RIREF = 1.58 kW  
IOLCMax = 50 mA  
IOLCMax = 40 mA  
VOUTn = 0.8 V  
IOLCMax = 30 mA  
IOLCMax = 20 mA  
TA = -40°C  
TA = +25°C  
TA = +85°C  
IOLCMax = 2 mA  
IOLCMax = 10 mA  
IOLCMax = 5 mA  
IOLCMax = 1 mA  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Voltage (V)  
Output Voltage (V)  
Figure 10.  
Figure 11.  
CONSTANT-CURRENT ERROR  
OUTn CURRENT vs  
OUTPUT VOLTAGE (+5 V)  
vs OUTPUT CURRENT SET BY RIREF or BC DATA  
(Channel-to-Channel)  
56  
55  
54  
53  
52  
51  
50  
49  
48  
3
2
VCC = 5 V  
BC = 7Fh  
BC = 7Fh  
VOUTn = 0.8 V  
RIREF = 1.28 kW  
(50 mA = 1 V)  
VOUTn = 1 V  
1
0
-1  
-2  
-3  
TA = -40°C  
TA = +25°C  
TA = +85°C  
VCC = 3.3 V  
VCC = 5 V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
10  
20  
30  
40  
50  
Output Voltage (V)  
Output Current (mA)  
Figure 12.  
Figure 13.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLC5929  
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, unless otherwise noted.  
CONSTANT-CURRENT ERROR  
vs AMBIENT TEMPERATURE (Channel-to-Channel)  
GLOBAL BRIGHTNESS  
CONTROL LINEARITY  
3
2
60  
50  
40  
30  
20  
10  
0
RIREF = 1.6 kW  
VCC = 3.3 V  
VCC = 5 V  
IO = 2 mA  
VOUTn = 0.8 V  
IO = 5 mA  
1
IO = 10 mA  
IO = 20 mA  
IO = 40 mA  
IO = 50 mA  
0
-1  
-2  
-3  
VCC = 3.3 V  
VCC = 5 V  
-40  
-20  
0
20  
40  
60  
80  
100  
0
16  
32  
48  
64  
80  
96  
112  
128  
Temperature (°C)  
BC Data (Decimal)  
Figure 14.  
Figure 15.  
SUPPLY CURRENT  
vs OUTPUT CURRENT SET BY RIREF  
SUPPLY CURRENT  
vs AMBIENT TEMPERATURE  
16  
14  
12  
10  
8
14  
12  
10  
8
BC = 7Fh  
RIREF = 1.6 kW  
SIN = 17.5 MHz  
SCLK = 35 MHz  
All Outputs On  
6
6
BC = 7Fh  
RIREF = 1.6 kW  
4
4
SIN = 17.5 MHz  
SCLK = 35 MHz  
All Outputs On  
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 5 V  
2
2
VCC = 5 V  
0
0
0
10  
20  
30  
40  
50  
-40  
-20  
0
20  
40  
60  
80 100  
Output Current (mA)  
Ambient Temperature (°C)  
Figure 16.  
Figure 17.  
SUPPLY CURRENT IN POWER-SAVE MODE  
vs AMBIENT TEMPERATURE  
CONSTANT-CURRENT OUTPUT  
VOLTAGE WAVEFORM  
30  
25  
20  
15  
10  
5
CH1 (5 V/div)  
CH2 (2 V/div)  
BC = 7Fh  
CH1-BLANK  
RIREF = 1.6 kW  
CH2-OUT0  
SIN = SCLK = Low  
Power-Save Mode  
CH3 (2 V/div)  
CH4 (2 V/div)  
CH3-OUT1  
CH4-OUT15  
VLED = 5 V  
RL = 100W  
CL = 15pF  
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 5 V  
BC = 7Fh  
RIREF = 1.6 kW  
0
Time (20ns/div)  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (°C)  
Figure 18.  
Figure 19.  
14  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
DETAILED DESCRIPTION  
MAXIMUM CONSTANT SINK CURRENT  
The maximum output current of each channel (IOLCMax) is programmed by a single resistor (RIREF) that is placed  
between the IREF and GND pins. The current value can be calculated by Equation 1:  
VIREF  
RIREF  
=
´ 54.8  
IOLCMax  
Where:  
VIREF = the internal reference voltage on IREF (typically 1.205 V when the global brightness control data are  
at maximum.  
IOLCMax = 1 mA to 40 mA for VCC 3.6 V, or 1 mA to 50 mA for VCC > 3.6 V at OUT0 to OUT15 with BC =  
7Fh  
(1)  
IOLCMax is the highest current for each output. Each output sinks IOLCMax current when it is turned on with the  
maximum global brightness control (BC) data. Each output sink current can be reduced by lowering the global  
brightness control value. RIREF must be between 1.32 kΩ and 66.0 kΩ in order to hold IOLCMax between 50 mA  
(typ) and 1 mA (typ). Otherwise, the output may be unstable. Output currents lower than 1 mA can be achieved  
by setting IOLCMax to 1 mA or higher and then using the global brightness control to lower the output current.  
Figure 8 and Table 1 show the characteristics of the constant-current sink versus the external resistor, RIREF  
.
Table 1. Maximum Constant Current Output versus  
External Resistor Value  
IOLCMax (mA)  
RIREF (kΩ, typ)  
1.32  
50 (VCC > 3.6 V only)  
45 (VCC > 3.6 V only)  
1.47  
40  
35  
30  
25  
20  
15  
10  
5
1.65  
1.89  
2.20  
2.64  
3.30  
4.40  
6.60  
13.2  
2
33.0  
1
66.0  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLC5929  
 
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
GLOBAL BRIGHTNESS CONTROL (BC) FUNCTION  
The TLC5929 has the ability to adjust the output current of all constant current outputs simultaneously. This  
function is called global brightness control (BC). The global BC for all outputs (OUT0 to OUT15) can be set with  
a 7-bit word. The global BC adjusts all output currents in 128 steps from 0% to 100%. where 100% corresponds  
to the maximum output current set by RIREF. Equation 2 calculates the actual output current. BC data can be set  
via the serial interface.  
IOLCMax (mA) ´ BC  
IOLCn (mA) =  
127  
Where:  
IOLCMax = the maximum constant-current value for each output determined by RIREF  
BC = the global brightness control value in the control data latch (0h to 7Fh)  
.
(2)  
Table 2 shows the BC data versus the constant-current ratio against IOLCMAx  
.
Table 2. BC Data versus Constant-Current Ratio Against IOLCMAx  
BC DATA  
RATIO OF OUTPUT  
CURRENT TO IOLCMax  
(%)  
IOLC  
IOLC  
BINARY  
000 0000  
000 0001  
000 0010  
∙ ∙ ∙  
DECIMAL  
HEX  
00  
(mA, IOLCMax= 40mA, typ) (mA, IOLCMax= 1mA, typ)  
0
0
0
0
1
01  
0.8  
0.31  
0.63  
∙ ∙ ∙  
0.01  
0.02  
∙ ∙ ∙  
2
02  
1.6  
∙ ∙ ∙  
125  
126  
127  
∙ ∙ ∙  
7D  
7E  
7F  
∙ ∙ ∙  
111 1101  
111 1110  
111 1111  
98.4  
99.2  
100.0  
39.4  
39.7  
40.0  
0.98  
0.99  
1.00  
16  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
 
 
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
REGISTER AND DATA LATCH CONFIGURATION  
The TLC5929 has one common shift register and two control data latches. The common shift register is 17-bits  
long and the two control data latches are 16-bits long. When the MSB of the common shift register is '0' and LAT  
shows a rising edge, the lower 16 bits of the common shift register are copied into the output on/off data latch.  
When the MSB is '1' and LAT shows a rising edge, the lower 16 bits are copied into the control data latch.  
Figure 20 shows the configuration of the common shift register and the two control data latches.  
SID 16 Bits  
Common Shift Register (17 Bits)  
MSB  
LSB  
Latch Common Common Common Common Common  
Select Data Bit Data Bit Data Bit Data Bit Data Bit  
Common Common Common Common Common  
Data Bit Data Bit Data Bit Data Bit Data Bit  
SIN  
SOUT  
SCLK  
Bit  
15  
14  
13  
12  
11  
4
3
2
1
0
16  
15  
14  
13  
12  
11  
3
2
1
0
4
Lower 16 Bits  
Output On/Off Data Latch (16 Bits)  
MSB  
LSB  
This latch pulse  
comes from the  
OUTON OUTON OUTON OUTON OUTON  
14  
OUTON OUTON OUTON OUTON OUTON  
3
LAT pin when the  
MSB of the Common  
Shift Register is ‘0’.  
15  
13  
12  
11  
4
2
1
0
15  
14  
13  
12  
11  
3
2
1
0
4
16 Bits  
To  
Output On/Off  
Control Circuit  
16 Bits  
Control Data Latch (16 Bits)  
MSB  
LSB  
This latch pulse  
comes from the  
Power-  
IDM  
IDM  
IDM  
IDM  
LSD  
LSD  
SID  
Load  
SID  
Load  
Brightness  
Control  
Enable Time 1 Time 0 Select 1 Select 0 Voltage 1 Voltage 0 Control 1 Control 0 (BC) 6  
Brightness  
Control  
LAT pin when the  
MSB of the Common  
Shift Register is ‘1’.  
Save Working Working Current Current  
Detect  
Detect  
(BC) 0  
15  
14  
13  
12  
11  
10  
9
7
6
0
8
1 Bit  
2 Bits  
2 Bits  
2 Bits  
2 Bits  
7 Bits  
To  
To  
IDM  
To  
IDM  
To  
LSD  
To  
SID  
To  
Output  
Power-Save  
Mode  
Control Circuit Control Circuit  
Working Time  
Current  
Control Circuit  
Circuit  
Data Load  
Control Circuit  
Constant-Current  
Control Circuit  
Figure 20. Common Shift Register and Control Data Latches Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLC5929  
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
Common Shift Register  
The 17-bit common shift register is used to shift data from the SIN pin into the TLC5929. The data shifted into  
the register are used for the output on/off control, global BC, and the control functions. The LSB of the common  
shift register is connected to SIN and the MSB is connected to SOUT. On each rising edge of SCLK, the data on  
SIN are shifted into the LSB and all 17 bits are shifted towards the MSB. The register MSB is always connected  
to SOUT.  
In addition, the status information data (SID) selected by the load select data in the control data latch are loaded  
to the lower 16 bits of the common shift register when a rising edge is input on LAT and the MSB of the shift  
register is '0'.  
When the device is powered on, all 17 bits of the common shift register are set to '0'.  
Output On/Off Data Latch  
The output on/off data latch is 16 bits long and sets the on or off status for each constant-current output.  
When BLANK is low, the output corresponding to the specific bit in the output on/off data latch is turned on if the  
data is '1' and remains off if the data is '0'. When BLANK is high, all outputs are forced off, but the data in the  
latch do not change as long as LAT does not latch in new data.  
When the device is powered on, all bits in the data latch are set to '0'.  
The output on/off data latch configuration is shown in Figure 21 and the data bit assignment is shown in Table 3.  
From  
Common Shift  
Register  
16 Bits  
Output On/Off Data Latch (16 Bits)  
MSB  
LSB  
OUTON OUTON OUTON OUTON OUTON  
OUTON OUTON OUTON OUTON OUTON  
15  
14  
13  
12  
11  
4
3
2
1
0
15  
14  
13  
12  
11  
3
2
1
0
4
16 Bits  
To  
Output On/Off  
Control Circuit  
Figure 21. Output On/Off Data Latch Configuration  
Table 3. On/Off Control Data Latch Bit Assignment  
CONTROLLED  
BIT NUMBER  
BIT NAME  
OUTON0  
OUTON1  
OUTON2  
∙ ∙ ∙  
CHANNEL  
OUT0  
OUT1  
OUT2  
∙ ∙ ∙  
DESCRIPTION  
0
1
'0' = Output off  
2
∙ ∙ ∙  
'1' = Output on with BLANK low. When  
the device is powered on, all bits are set  
to '0'.  
13  
OUTON13  
OUT13  
14  
15  
OUTON14  
OUTON15  
OUT14  
OUT15  
18  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
 
 
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
Function Control Data Latch  
The function control data latch is 16 bits long and contains the global brightness control (BC) data, status  
information data (SID) load control data, LED short detection (LSD) voltage level data, the current value of the  
invisible detection mode (IDM), IDM working time, and power-save mode enable control data.  
When the device is powered up, the data in this data latch are set to the default values shown in Table 4. This  
table contains the bit names, numbers and descriptions.  
The function control data latch configuration is shown in Figure 22. Table 4 lists the bit descriptions.  
From Common Shift Register  
16 Bits  
Control Data Latch (16 Bits)  
MSB  
LSB  
Power-  
IDM  
IDM  
IDM  
IDM  
LSD  
LSD  
SID  
SID  
Brightness  
Control  
Brightness  
Control  
Save Working Working Current Current Detect  
Detect  
Load  
Load  
Enable Time 1 Time 0 Select 1 Select 0 Voltage 1 Voltage 0 Control 1 Control 0 (BC) 6  
(BC) 0  
15  
14  
13  
12  
11  
10  
9
7
6
0
8
1 Bit  
2 Bits  
2 Bits  
2 Bits  
2 Bits  
7 Bits  
To  
Power-Save  
Mode  
Control Circuit Control Circuit  
To  
IDM  
Working Time  
To  
IDM  
Current  
Control Circuit  
To  
LSD  
Circuit  
To  
SID  
Data Load  
Control Circuit  
To  
Output  
Constant-Current  
Control Circuit  
Figure 22. Function Control Data Latch Configuration  
Table 4. Function Control Data Latch Bit Description  
DEFAULT  
VALUE  
BIT  
BIT  
NUMBER  
NAME  
(BINARY)  
DESCRIPTION  
Global brightness control. These seven bits control the current of all outputs  
with 128 steps between 0% to 100% of the maximum current value set by the  
external resistor. Table 2 shows the current value truth table.  
[6:0]  
[8:7]  
BCALL  
SIDLD  
1111111  
SID load control. These two bits select the SID loaded to the common register  
when the LAT pulse is input for on/off data writing (MSB of the common shift  
register must be '0'). Table 6 shows the selected data truth table.  
00  
11  
LSD detection voltage select. These two bits select the detection threshold  
voltage for the LED short detection (LSD). Table 7 shows the detect voltage  
truth table.  
[10:9]  
LSDVLT  
IDM current select. These two bits select the sink current at OUTn for the IDM  
to detect the LED open detection (LOD) or the LED short detection (LSD)  
without visible lighting. Table 8 shows the current value truth table. Figure 27  
and Figure 28 show the IDM operation timing.  
[12:11]  
[14:13]  
[15]  
IDMCUR  
IDMTIM  
00  
11  
1
IDM working time select. These two bits select the time of the IDMCUR output  
sink current at OUTn to detect the LED open detection (LOD) or LED short  
detection (LSD) without visible light. Table 9 shows the work-time truth table.  
Figure 27 and Figure 28 show the IDM operation timing.  
Power save mode enable. This bit enables or disables the power-save mode.  
When the mode is enabled (PSMODE = '1'), the device goes into power-save  
mode if all data in the on/off data latch are '0'. Table 10 shows the power-save  
mode truth table. Figure 25 shows the power-save mode operation timing.  
PSMODE  
Output On/Off Data Write Timing and Output Control  
When the 17-bit shift register MSB is '0', the output on/off data latch can be updated with the lower 16 bits of  
data in the shift register at the rising edge of the LAT signal, after the data are stored in the shift register using  
the SIN and SCLK signals. When the output on/off data latch is updated, SID (selected by the SIDLD bit) is  
loaded into the shift register, except when SIDLD = '00' (see Table 6). The output on/off data write timing is  
shown in Figure 23.  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLC5929  
 
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
DATA DATA DATA DATA DATA DATA  
0A 16B 15B 14B 13B 12B  
Low  
DATA DATA DATA DATA  
3B 2B 1B 0B  
DATA DATA DATA DATA DATA DATA  
15C 14C 13C 12C 11C  
SIN  
16C  
High  
SCLK  
LAT  
1
2
3
4
5
1
2
3
4
5
6
14  
15  
16  
17  
Shift Register  
LSB Data  
SID  
0A  
SID  
0B  
DATA  
0A  
DATA DATA DATA DATA  
16B  
DATA DATA DATA DATA DATA  
15C  
DATA DATA DATA  
1B  
DATA  
0B  
15B  
14B  
13B  
3B  
2B  
16C  
14C 13C 12C  
(Internal)  
‘0’  
‘1’  
Shift Register  
LSB + 1 Data  
(Internal)  
DATA  
16B  
SID  
1A  
SID  
1B  
DATA  
1A  
SID  
0A  
DATA DATA  
15B  
14B  
DATA DATA DATA DATA  
1B  
SID DATA DATA DATA DATA  
0B  
16C  
15C  
14C 13C  
4B  
3B  
2B  
‘0’  
‘1’  
Shift Register  
MSB - 1 Data  
(Internal)  
DATA  
15A  
SID  
15A  
SID  
15B  
SID  
14A  
DATA DATA  
12A  
SID  
1A  
SID DATA  
0A  
SID SID  
14B 13B  
SID  
12B  
SID SID  
11B 10B  
DATA  
13A  
DATA  
15B  
11A  
16B  
‘0’  
Shift Register  
MSB Data  
(Internal)  
DATA  
16A  
DATA  
16B  
SID SID  
15A 14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
SID SID  
15B 14B  
SID  
13B  
SID SID  
12B 11B  
‘0’  
‘0’  
Output On/Off  
Data Latch  
(Internal)  
DATA15B to DATA0B  
DATA15A to DATA0A  
Control  
Data Latch  
(Internal)  
Control data do not change from previous data  
DATA  
16B  
DATA  
16A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
15B  
SID  
14B  
SID  
13B  
SID  
12B  
SID  
11B  
SID  
15A  
SID  
14A  
SID SID  
13A 12A  
SOUT  
Low  
Low  
BLANK  
OFF  
ON  
OFF  
OFF  
(1)  
OUTn  
ON  
ON  
OFF  
ON  
OFF  
(2)  
OUTn  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
(3)  
OUTn  
ON  
OFF  
ON  
OFF  
(4)  
OUTn  
These dotted arrows point to the  
output pulse timing for IDM.  
(1) On/off latch data is '1'.  
(2) On/off latch data change from '1' to '0' at second LAT signal.  
(3) On/off latch data is change from '0' to '1' at second LAT signal.  
(4) On/off latch data is '0'.  
Figure 23. On/Off Data Write Timing  
20  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
Function Control Data Writing  
When the MSB is 1' in the 17-bit shift register, the control data latch can be updated with the lower 16 bits of  
data in the shift register at the rising edge of the LAT signal after the data are stored to the shift register using  
the SIN and SCLK signals. When the control data latch is updated, SID is not loaded into the shift register. The  
function control data write timing is shown in Figure 24.  
DATA DATA DATA DATA DATA DATA  
12B  
DATA DATA DATA DATA  
3B 2B 1B 0B  
DATA DATA DATA DATA DATA DATA  
15C 14C 13C 12C 11C  
SIN  
0A  
16B  
15B  
14B  
13B  
16C  
Low  
High  
SCLK  
LAT  
1
2
3
4
5
1
2
3
4
5
6
14  
15  
16  
17  
Shift Register  
LSB Data  
SID  
0A  
DATA  
0B  
DATA  
0A  
DATA DATA DATA DATA  
16B  
DATA DATA DATA  
3B 2B 1B  
DATA DATA DATA DATA DATA  
16C  
15B  
14B  
13B  
15C  
14C 13C 12C  
(Internal)  
‘1’  
‘0’  
Shift Register  
LSB + 1 Data  
(Internal)  
SID  
1A  
DATA  
1A  
SID  
0A  
DATA DATA  
15B  
DATA DATA DATA DATA DATA  
14C 13C  
DATA  
16B  
DATA DATA DATA  
2B  
DATA  
1B  
14B  
0B  
16C  
15C  
4B  
3B  
‘1’  
‘0’  
Shift Register  
MSB - 1 Data  
(Internal)  
DATA  
15A  
SID  
15A  
SID DATA DATA DATA  
14A  
SID  
1A  
SID DATA  
0A  
DATA  
15B  
DATA DATA DATA DATA DATA  
14B 13B 12B 11B 10B  
13A  
12A  
11A  
16B  
‘1’  
Shift Register  
MSB Data  
(Internal)  
DATA  
16A  
SID SID  
15A 14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
DATA DATA DATA DATA DATA  
15B 14B 13B 12B 11B  
DATA  
16B  
‘0’  
‘1’  
Output On/Off  
Data Latch  
(Internal)  
DATA15A to DATA0A  
DATA15B to DATA0B  
DATA15A to DATA0A  
Function Control  
Data Latch  
Previous Function Control Data  
(Internal)  
DATA  
16A  
SID  
2A  
SID  
1A  
SID  
0A  
DATA DATA DATA DATA DATA  
15B  
SID  
15A  
SID  
14A  
SID SID  
13A 12A  
DATA  
16B  
SOUT  
14B  
13B  
12B  
11B  
Low  
High  
Figure 24. Function Control Data Write Timing  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLC5929  
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
Function Control Data Bit Assignment  
The function control data latch is 16 bits long and is used to adjust the output current values for LED brightness,  
SID selection, LSD voltage level, output current for IDM, output on-time for IDM, and power-save mode  
enable/disable. When the device powers on, the function control data latch is set to the default value (E67Fh).  
The function control data latch truth tables are shown in Table 5 through Table 10.  
Table 5. Global Brightness Control (BC) Truth Table  
BCALL  
BITS[6:0]  
0000000  
0000001  
∙ ∙ ∙  
DESCRIPTION  
Output current of OUTn is set to IOLCMax × 0%  
IOLCMax × 0.8%  
∙ ∙ ∙  
1111110  
1111111  
I
OLCMax × 99.2%  
I
OLCMax × 100% (default value)  
Table 6. SID Load Control Truth Table (see Table 11 for more details)  
SIDLD  
LSDVLT  
IDMCUR  
IDMTIM  
BIT 8  
BIT 7  
STATUS INFORMATION DATA (SID) LOADED TO THE COMMON SHIFT REGISTER  
No data is loaded (default value)  
0
0
1
1
0
1
0
1
LED open detection (LOD) or thermal error flag (TEF) data are loaded  
LED short detection (LSD) or pre-thermal flag (PTF) data are loaded  
Output leakage detection (OLD) or IREF pin short flag (ISF) data are loaded  
Table 7. LSD Threshold Voltage Truth Table  
BIT 10  
BIT 9  
LED SHORT DETECTION (LSD) THRESHOLD VOLTAGE  
VLSD0 (0.35 × VCC typ)  
0
0
1
1
0
1
0
1
VLSD1 (0.45 × VCC typ)  
VLSD2 (0.55 × VCC typ)  
VLSD3 (0.65 × VCC typ, default value)  
Table 8. Current Select for IDM  
BIT 12  
BIT 11  
SINK CURRENT AT OUTn FOR INVISIBLE DETECTION MODE (IDM)  
0
0
1
1
0
1
0
1
IDM is disabled (default value)  
2 µA (typ)  
10 µA (typ)  
20 µA (typ)  
Table 9. IDM Work-Time Truth Table  
BIT 14  
BIT 13  
INVISIBLE DETECTION MODE (IDM) WORKING TIME  
All outputs are turned on for 17 OSC clocks (0.85 µs typ)  
All outputs are turned on for 33 OSC clocks (1.65 µs typ)  
All outputs are turned on for 65 OSC clocks (3.25 µs typ)  
All outputs are turned on for 129 OSC clocks (6.45 µs typ, default value)  
0
0
1
1
0
1
0
1
22  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
 
 
 
 
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
Table 10. Power-Save Mode Truth Table  
PSMODE  
BIT 15  
POWER-SAVE MODE FUNCTION  
Power-save mode is disabled. The device does not go into power-save mode even if the bits  
in the output on/off data latch are all '0'.  
0
1
Power save mode is enabled (default value). The device goes into power-save mode when  
the bits in the output on/off data latch are all '0'.  
Table 11. SID Load Assignment  
BIT NUMBER  
LOADED INTO  
COMMON SHIFT  
SIDLD BIT  
(BINARY)  
SELECTED  
DETECTOR  
CHECKED OUTn  
REGISTER  
DESCRIPTION  
No detector  
selected  
00  
No data loaded The data in the common shift register are not changed.  
The data in the common shift register are updated with LOD or  
TEF data.  
OUT0  
0
OUT1  
1
All bits '1' = device junction temperature (TJ) is very high (TJ >  
TTEF) and all outputs are forced off by the thermal shutdown  
function.  
LED open  
detection (LOD)  
01  
∙ ∙ ∙  
∙ ∙ ∙  
'1' = OUTn shows lower voltage than the LED open detection  
threshold (VLOD).  
OUT14  
OUT15  
OUT0  
14  
15  
0
'0' = normal operation.  
The data in the common shift register are updated with LSD or  
PTW data.  
OUT1  
1
All bits '1' = device junction temperature (TJ) is high (TJ > TPTW).  
LED short  
detection (LSD)  
10  
11  
∙ ∙ ∙  
∙ ∙ ∙  
'1' = OUTn shows higher voltage than the LED short detection  
threshold (VLSD) selected by LSDVLT.  
OUT14  
OUT15  
OUT0  
14  
15  
0
'0' = normal operation.  
The data in the common shift register are updated with OLD or  
ISF data.  
OUT1  
∙ ∙ ∙  
1
All bits '1' = IREF pin is shorted to GND with low impedance.  
'1' = OUTn is leaking to GND with greater than 3µA.  
'0' = normal operation.  
Output leakage  
detection (OLD)  
∙ ∙ ∙  
14  
15  
OUT14  
OUT15  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLC5929  
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
POWER-SAVE MODE  
In power-save mode, the TLC5929 input current becomes 10 µA (typ). When the PSMODE bit in the control data  
latch is '1', power-save mode is enabled. If the rising edge of LAT writes '0' into all bits of the output on/off data  
latch or any data into the control data latch with all bits of the on/off data latch being '0', the TLC5929 goes into  
power-save mode. The device stays in power-save mode until the next rising edge on SCLK is received. The  
power-save mode timing is shown in Figure 25.  
Low  
SIN  
SCLK  
1
2
3
4
5
1
2
3
14  
15  
16  
17  
LAT  
Don’t Care  
BLANK  
‘1’  
PSMODE bit  
in Control Data  
Latch (Internal)  
Output On/Off  
Control Data  
Previous On/Off Data  
All Data are ‘0’  
Latch (Internal)  
OFF  
OFF  
OUT0  
OUT1  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
OUT15  
Power-Save  
Mode  
Power-Save mode(2) (ICC = 10 mA,typ)  
See (1)  
Normal mode  
Normal mode  
Normal Mode  
(1) Contents depend on output on/off data.  
(2) When PSMODE bit is '0', the device does not go into power-save mode even if the output on/off data is all '0'.  
(3) Because it takes 20 µs (max) to return to normal mode, the first SCLK rising edge should be input at least 20 µs before OUTn is enabled.  
Figure 25. Power-Save Mode Timing  
LED OPEN DETECTION (LOD)  
LOD detects a fault caused by an open circuit in the nth LED string, or a short from OUTn to ground, by  
comparing the OUTn voltage to the LOD detection threshold voltage level (VLOD = 0.3 V, typ). If the OUTn  
voltage is lower than VLOD, that output LOD bit is set to '1' to indicate an open LED string. Otherwise, the LOD bit  
is set to '0'. LOD data are only valid for outputs that are programmed to be enabled. LOD data for outputs that  
are programmed to be disabled are always '0' (see Table 11), except when IDM is enabled.  
The LOD data are stored in a 16-bit register called SID holder (see the Functional Block Diagram) at the rising  
edge of BLANK when the SIDLD bits are set to '01' (see Table 6). However, when the IDM is enabled, the LOD  
bits are stored in the SID holder at the end of the IDM working time selected by IDMTIM (see Table 9).  
The stored LOD data can be read out through the common shift register as SID at the SOUT pin. LOD/LSD data  
are not valid for 0.5 µs after the output is turned on.  
When the device resumes operation from power-save mode, the LOD cannot be executed before the  
propagation delay (tD4) has elapsed because LOD does not work during power-save mode.  
24  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
 
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
LED SHORT DETECTION (LSD)  
The LSD data are stored into a 16-bit register called SID holder at the rising edge of BLANK when the SIDLD  
bits are set to '10' (see Table 6) or when IDM is enabled. The LSD bits are stored in the SID holder at the end of  
the IDM working time (IDMTIM). The stored LSD data can be read out through the common shift register as SID  
at the SOUT pin. Note that the LOD/LSD bits are not stable during the first 0.5 µs after the falling edge of  
BLANK.  
LSD data detect a fault caused by a shorted LED by comparing the OUTn voltage to the LSD detection threshold  
voltage level set by LSDVLT in the control data latch (see Table 4 and Table 7). If the OUTn voltage is higher  
than the programmed voltage, the corresponding output LSD bit is set to '1' to indicate a shorted LED.  
Otherwise, the LSD bit is set to '0'. LSD data are only valid for outputs that are programmed to be enabled. LSD  
data for outputs that are programmed to be disabled are always '0' (see Table 11), except when IDM is enabled.  
When the device resumes operation from the power-save mode, LSD cannot be executed before the propagation  
delay (tD4) has elapsed because LSD does not work during power-save mode.  
INVISIBLE DETECTION MODE (IDM)  
Invisible detection mode (IDM) can detect LOD and LSD even when the output on/off data are set to the off  
state. When the IDMCUR bits in the control data latch are set to any value except '00', all outputs start sinking  
the current set by the IDMCUR bits at the falling edge of BLANK and stop sinking the current at the rising edge  
of BLANK, or the time set by IDMTIM has elapsed. When OUTn stops, the selected SID data by SIDLD bits are  
latched into the SID holder.  
When the IDMCUR bits in the control data latch are set to '00', IDM is disabled.  
Figure 26 shows the LOD/LSD/OLD/IDM circuits. Figure 27 and Figure 28 illustrate the IDM operation timing and  
Table 12 shows a truth table for LOD/LSD/OLD.  
VCC  
VLED  
OLD  
Control  
2 mA (typ)  
LED Lamp  
LSD/OLD Data  
‘1’ = Error  
OUTn  
On/Off  
Control  
Up to  
50 mA  
VLSD  
2 mA/10 mA/20 mA  
IDM  
Control  
(typ)  
LOD Data  
‘1’ = Error  
GND  
VLOD  
Figure 26. LOD/LSD/OLD/IDM Circuit  
Table 12. LOD/LSD/OLD Truth Table  
LOD  
LSD  
OLD  
CORRESPONDING BIT IN SID  
OUTn does not leak to GND  
(VOUTn > VLSD when  
constant-current output off and  
OUTn source current on)  
LED is not opened (VOUTn  
>
LED is not shorted (VOUTn ≤  
0
VLOD  
)
VLSD  
)
Current leaks from OUTn to  
internal GND, or OUTn is shorted  
to external GND with high  
impedance (VOUTn VLSD when  
constant-current output off and  
OUTn source current on)  
LED is shorted between anode  
and cathode, or shorted to higher  
LED is open or shorted to GND  
(VOUTn VLOD  
1
)
voltage side (VOUTn > VLSD  
)
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TLC5929  
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
SIDLD in  
Control Data  
‘01’  
Latch (Internal)  
High  
BLANK  
Low  
Current set by external  
resistor and BC data  
When the BLANK signal is high, all outputs  
Programmed Output Current  
are forced off, even if the IDM on-time has  
not yet elapsed.  
OUTn Current  
0mA  
for LED Lighting  
0mA  
Output current selected by  
IDMCUR in the function control latch.  
2/10/20 mA  
2/10/20 mA  
0mA  
OUTn current  
0mA  
for IDM  
LOD data are held in SID holder when  
BLANK is high or when the IDM working  
time elapses.  
On-time selected by IDMTIM  
in the function control latch.  
SID Holder  
LOD  
Previous Data  
LOD  
XXXXh  
LOD  
XXXXh  
Data (Internal)  
LOD data go to SID holder when BLANK is low or when the IDM working time has not yet elapsed.  
16-Bit LOD  
Detector Output  
Data (Internal)  
LOD  
0000h  
LOD  
0000h  
LOD  
0000h  
LOD  
XXXXh  
LOD  
XXXXh  
LOD data are unstable  
immediately after  
LOD detector output data are all '0' when IDM working time elapses .  
BLANK goes low.  
LAT  
17-Bit Common  
Shift Register  
Data (internal)  
Latched Output On/Off Data  
LOD is Loaded into the Shift Register  
Figure 27. IDM Operation Timing with LOD Selected and IDM Enabled  
SIDLD in  
Control Data  
‘01’  
Latch (Internal)  
High  
BLANK  
Low  
Current set by external  
When the BLANK signal is high, all outputs  
resistor and BC data  
Programmed Output Current  
are forced off, even if the IDM on-time has  
not yet elapsed.  
OUTn Current  
The output for IDM  
0mA  
for LED Lighting  
0mA  
is not turned on because  
IDM is disabled by  
the IDMCUR bit setting.  
OUTn current  
0mA  
0mA  
0mA  
for IDM  
LOD data are held in SID holder  
when BLANK is high.  
SID Holder  
LOD  
Previous Data  
LOD  
XXXXh  
LOD  
XXXXh  
Data (Internal)  
LOD data go to SID holder when BLANK is low.  
16-Bit LOD  
Detector Output  
Data (Internal)  
LOD  
0000h  
LOD  
0000h  
LOD  
0000h  
LOD  
XXXXh  
LOD  
XXXXh  
LOD detector output data are  
all '0' when BLANK is high.  
LOD data are unstable  
immediately after BLANK  
goes low.  
LAT  
17-Bit Common  
Shift Register  
Data (internal)  
LOD is Loaded into the Shift Register  
Latched On/Off Control Data  
Figure 28. IDM Operation Timing with LOD Selected and IDM Disabled  
26  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
OUTPUT LEAKAGE DETECTION (OLD)  
When IDM mode is enabled, OLD is always disabled.  
Output leakage detection (OLD) detects a fault caused by a short with high resistance from OUTn to GND by  
comparing the OUTn voltage to the LSD detection threshold voltage when the output on/off data are set to the off  
state. OLD can also detect a short between adjacent pins. A very small current is sourced from the turned-off  
OUTn to detect leaking when the SIDLD bits are '11' and BLANK is low. OLD operation is disabled when the  
SIDLD bits are set to any value except '11', and then the current source is stopped. If the OUTn voltage is lower  
than the programmed LSD threshold voltage, the corresponding OLD bit is set to '1' to indicate a leaking LED.  
Otherwise, the OLD bit is set to '0'. The OLD result is valid for disabled outputs only. The OLD data are latched  
into the SID holder when BLANK goes high. The OLD bits of the enabled outputs are always '0'. When the  
device resumes operation from power-save mode, OLD cannot be executed until after the propagation delay (tD4  
has elapsed because OLD does not work during power-save mode.  
)
STATUS INFORMATION DATA (SID)  
The status information data (SID) contains the status of the LED open detection (LOD), LED short detection  
(LSD), output leakage detection (OLD), pre-thermal warning (PTW), thermal error flag (TEF), and IREF short flag  
(ISF), depending on the SIDLD bits in the control data latch. When the MSB of the common shift register is set to  
'0', the selected SID overwrite the lower 16 bits in the common shift register at the rising edge of LAT after the  
data in the common shift register are copied to the output on/off data latch. If the MSB of the common shift  
register is '1', the data in the common shift register do not change.  
After being copied into the common shift register, new SID data are not available until new data are written into  
the common shift register. If new data are not written, the LAT signal is ignored. To recheck SID without  
changing the on/off control data, reprogram the common shift register with the same data currently programmed  
into the on/off data latch. When LAT goes high, the output on/off data do not change, but new SID data are  
loaded into the common shift register. LOD, LSD, OLD, PTW, TEF, and ISF are shifted out of SOUT with each  
rising edge of SCLK.  
The SID reading must be delayed for a duration of tD4 or more after the device resumes operation from the  
power-save mode because SID does not indicate correct data during the power-save mode. The SID load  
configuration and SID read timing are shown in Figure 29 and Figure 30, respectively.  
Selected SID (16 bits) by SIDLD Data in the Control Data Latch  
MSB  
LSB  
Selected Selected Selected Selected Selected  
SID for SID for SID for SID for SID for  
OUT15 OUT14 OUT13 OUT12 OUT11  
Selected Selected Selected Selected Selected  
SID for SID for SID for SID for SID for  
OUT4  
OUT3  
OUT2  
OUT1  
OUT0  
15  
14  
13  
12  
11  
3
2
1
0
4
SID are loaded to the  
common shift register  
at the rising edge of  
No data are loaded  
into the MSB of the  
common shift register  
LAT when the common  
shift register MSB is ‘0’.  
MSB = ‘0’  
LSB  
Latch Common Common Common Common Common  
Select Data Bit Data Bit Data Bit Data Bit Data Bit  
Common Common Common Common Common  
Data Bit Data Bit Data Bit Data Bit Data Bit  
SIN  
SOUT  
SLCK  
Bit  
15  
14  
13  
12  
11  
4
3
2
1
0
16  
15  
14  
13  
12  
11  
3
2
1
0
4
Common Shift Register (17 Bits)  
Figure 29. SID Load Configuration  
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TLC5929  
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
High  
DATA DATA DATA DATA  
16C 15C 14C 13C  
DATA  
1A  
DATA  
0A  
DATA DATA DATA DATA DATA  
16B  
DATA DATA DATA  
3B 2B 1B  
DATA  
0B  
SIN  
15B  
14B  
13B 12B  
Low  
SCLK  
15  
16  
17  
1
2
3
1
2
3
4
5
14  
15  
16  
17  
LAT  
Shift Register  
LSB Data  
DATA DATA  
1A  
SID  
0A  
SID  
0B  
DATA  
16B  
DATA  
0A  
DATA DATA DATA  
13B  
DATA DATA DATA  
3B 2B 1B  
DATA  
0B  
DATA DATA  
15C  
2A  
15B  
14B  
16C  
(Internal)  
‘0’  
‘1’  
Shift Register  
LSB + 1 Data  
(Internal)  
SID  
1A  
DATA  
16B  
DATA DATA DATA DATA  
1B  
SID  
1B  
SID DATA  
16C  
DATA DATA  
2A  
DATA  
1A  
DATA DATA  
15B  
14B  
SID  
0A  
3A  
4B  
3B  
2B  
0B  
‘1’  
‘0’  
Shift Register  
MSB - 1 Data  
(Internal)  
DATA  
16A  
DATA  
15A  
SID  
15A  
SID DATA DATA DATA  
14A  
13A 12A 11A  
SID  
1A  
SID DATA  
16B  
SID  
15B  
DATA  
0
DATA  
15B  
SID SID  
14B 13B  
0A  
‘0’  
SID data selected by SIDLD bit is loaded into the common  
shift register at LAT rising edge, except when SIDLD is ‘00’.  
Shift Register  
MSB Data  
(Internal)  
DATA  
16A  
DATA DATA  
1
SID SID  
15A 14A  
SID  
13A  
SID  
12A  
SID  
2A  
SID  
1A  
SID  
0A  
DATA  
16B  
SID SID  
15B 14B  
0
‘0’  
‘0’  
Output On/Off  
Data Latch  
(Internal)  
DATA15A to DATA0A  
Previous On/Off Data  
DATA15B to DATA0B  
SIDLD in Function  
Control Data  
Don’t Care  
Latch (Internal)  
LOD data are selected when SIDLD is ‘01’. LSD data are selected when SIDLD is set to ‘10’.  
OLDdata are selected when the SID are set to ‘11’. No SID are loaded when SIDLD is ‘00’.  
DATA  
16A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
15B  
SID  
14B  
DATA  
16B  
DATA DATA  
1
SID  
15A  
SID  
14A  
SID SID  
13A 12A  
SOUT  
0
Low  
Low  
16 bit Status Information Data (SID)  
BLANK  
Detector data selected by SIDLD are held in SID holder when BLANK is high, orwhen IDM working time has elapsed.  
The held data are loaded into the common shift register except when SIDLD is ‘00’.  
SID Holder  
Data  
Detector data  
XXXXh  
Detector data  
XXXXh  
(Internal)  
LOD data go to SID holder when BLANK is low,  
or when IDM working time has not elapsed.  
16-Bit  
LOD, LSD, or OLD  
Detector Output  
Data (Internal)  
Detector data  
0000h  
Detector data  
0000h  
Detector  
XXXXh  
Detector data  
XXXXh  
The detector data are not stable immediately  
after the BLANK signal goes low.  
Figure 30. SID Read Timing  
28  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
TLC5929  
www.ti.com  
SBVS159 APRIL 2011  
THERMAL SHUTDOWN (TSD) AND THERMAL ERROR FLAG (TEF)  
The thermal shutdown (TSD) function turns off all constant-current outputs when the junction temperature (TJ)  
exceeds the threshold (TTEF = +165°C, typ) and sets all LOD data bits to '1'. When the junction temperature  
drops below (TTEF THYST), the output control starts normally. The TEF remains '1' until the next rising edge on  
LAT even if the temperature drops below the low level. Figure 31 shows the timing diagram and Table 13 shows  
the truth table for TEF.  
SCLK  
LAT  
Common Shift  
LOD/TEF Data  
Register Bits[15:0]  
(Internal)  
These data are copied to the on/off data latch at LAT rising edge.  
Common Shift  
‘0’  
Register Bit 16  
(Internal)  
Output On/Off  
Previous On/Off Data  
New Latched GS Data  
Data (Internal)  
SIDLD Data  
(Internal)  
‘01’ (LOD is selected)  
High  
Low  
BLANK  
Resumed with T  
J
All outputs are forced off  
going down.  
by TSD function.  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OUTn  
T
J
³ T  
T ³ T  
J TEF  
TEF  
T
< T  
- T  
T
³ T  
T ³ T  
J PTW  
J
TEF HYST  
J
PTW  
Device Junction  
Temperature (TJ)  
T
< T  
T < T  
J PTW  
J
PTW  
PTW is not reset at LAT rising edge because SIDLD  
does not select LOD. PTW is reset to ‘0’ when the  
device junction temperature is less than T and  
PTW  
SIDLD selects LOD.  
‘1’  
‘1’  
‘1’  
‘1’  
PTW in SID  
‘0’  
TEF is reset to ‘0’at LAT riging edge for  
on/off data writing when the device junction  
temperature is less than T and SIDLD  
(Internal Data)  
PTW is set to ‘1’ when device  
junction temperature is greater  
than T  
TEF  
selects LOD.  
.
‘1’  
PTW  
TEF in SID  
‘0’  
‘0’  
(Internal Data)  
TEF is set to ‘1’ when device junction  
temperture is grerater than T  
TEF  
.
Figure 31. TEF/PTW/ISF Timing (LOD selected)  
Table 13. TEF/PTW/ISF Truth Table  
CORRESPONDING DATA BITS  
IN SID  
TEF  
PTW  
ISF  
Device temperature is lower than Device temperature is lower than  
high-side detect temperature pre-thermal warning temperature  
(temperature TTEF (temperature TPTW  
IREF terminal is not shorted  
Depends on LOD/LSD/OLD  
)
)
Device temperature is higher  
than high-side detect  
temperature and all outputs are  
Device temperature is higher  
than pre-thermal warning  
temperature  
IREF terminal is shorted to GND SID is all 1s for TEF when SIDLD  
with low impedance and all  
outputs (OUT0 to OUT15) are  
forced off  
bit = '01'. SID is all 1s for PTW  
when SIDLD = '10'. SID is all 1s  
for ISF when SIDLD = '11'.  
forced off (temperature >TTEF  
)
(temperature > TPTW  
)
Copyright © 2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TLC5929  
 
 
TLC5929  
SBVS159 APRIL 2011  
www.ti.com  
PRE-THERMAL WARNING (PTW)  
The PTW function indicates that the device junction temperature is high. The PTW is set and all LSD data bits  
are set to '1' while the device junction temperature exceeds the temperature threshold (TPTW = +138°C, typ);  
however, the outputs are not forced off. When the PTW indicates a high temperature, the device temperature  
should be reduced by lowering the power dissipated in the driver to avoid a forced shutdown by the thermal  
shutdown circuit. This reduction can be accomplished by lowering the values of the BC data or the LED supply  
voltage. The PTW remains '1' until the next rising edge on LAT, even if the temperature drops below TPTW  
.
Figure 31 shows a timing diagram and Table 13 shows the truth table for PTW.  
CURRENT REFERENCE (IREF PIN) SHORT FLAG (ISF)  
The ISF function indicates that the IREF pin is shorted with low impedance to GND. When ISF is set, all OLD  
data bits are set to '1'. Then all outputs (OUTn) are forced off and remain off until the short is removed. Table 13  
shows the truth table for ISF.  
NOISE REDUCTION  
Large surge currents may flow through the device and the board on which the device is mounted if all 16 outputs  
turn on simultaneously when BLANK goes low or on/off data change at the LAT rising edge with BLANK low.  
These large current surges could introduce detrimental noise and electromagnetic interference (EMI) into other  
circuits. The TLC5929 turns the outputs on with a 2-ns series delay for each output in order to provide a circuit  
soft-start feature.  
30  
Submit Documentation Feedback  
Copyright © 2011, Texas Instruments Incorporated  
Product Folder Link(s): TLC5929  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLC5929DBQ  
ACTIVE  
ACTIVE  
SSOP/QSOP  
SSOP/QSOP  
DBQ  
DBQ  
24  
24  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
TLC5929DBQR  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jun-2011  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC5929DBQR  
SSOP/  
QSOP  
DBQ  
24  
2500  
330.0  
16.4  
6.5  
9.0  
2.1  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jun-2011  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP/QSOP DBQ 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
TLC5929DBQR  
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TLC59291

具有低静态电流和完全自诊断功能的 8/16 通道恒流 LED 驱动器
TI

TLC59291RGER

具有低静态电流和完全自诊断功能的 8/16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC59291RGET

具有低静态电流和完全自诊断功能的 8/16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC5929DBQ

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929DBQR

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929PWP

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929PWPR

16-Channel, Constant-Current LED Driver with 7-Bit Global Brightness Control, Power-Save Mode
TI

TLC5929RGER

具有 7 位全局亮度控制、省电模式和自诊断功能的 16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC5929RGET

具有 7 位全局亮度控制、省电模式和自诊断功能的 16 通道恒流 LED 驱动器 | RGE | 24 | -40 to 85
TI

TLC5930

12-CHANNEL LED DRIVER
TI

TLC5930PWP

12-CHANNEL LED DRIVER
TI

TLC5930PWPG4

12 Channel LED Driver 24-HTSSOP -20 to 85
TI