TLC5955RTQT [TI]

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器 | RTQ | 56 | -40 to 85;
TLC5955RTQT
型号: TLC5955RTQT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器 | RTQ | 56 | -40 to 85

驱动 驱动器
文件: 总54页 (文件大小:1890K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLC5955  
ZHCSC51 MARCH 2014  
TLC5955 48 通道,16 位,脉宽调制 (PWM) 发光二极管 (LED) 驱动器,  
具有 DCBCLED 开路-短路检测和内部电流设置功能  
1 特性  
3 说明  
1
48 个恒定灌电流输出通道  
支持最大 MCDC BC 数据的灌电流能力:  
TLC5955 是一款 48 通道,恒定灌电流驱动器。 每个  
通道具有一个独立可调节,脉宽调制 (PWM),灰度  
(GS) 亮度控制,此控制有 65,536 步长和 128 步长的  
恒定电流点校正 (DC)DC 可调节通道间的亮度偏  
差。 所有通道具有一个 128 步长的全局亮度控制  
(BC)BC 调节 RGB 色彩组之间的亮度偏差。 8  
步长最大电流控制 (MC) 为每个色彩组的所有通道选择  
最大输出电流范围。 可通过一个串行接口端口来访问  
GSDCBC MC 数据。  
23.9mA (VCC 3.6VMC = 5)  
31.9mA (VCC > 3.6V, MC = 7)  
灰度 (GS) 控制:  
支持增强型频谱或传统 PWM 16 位(65536  
个步长)  
最大电流 (MC) 控制:  
电流范围为 3mA 30mA 3 位(8 个步长)  
针对每个色彩组的 3 MC 设置  
TLC5955 具有两个错误标志:LED 开路检测 (LOD) 和  
LED 短路检测 (LSD)。 可使用一个串行接口端口来读  
取错误检测结果。  
点校正 (DC) 控制:  
范围在 26.2% 100% 之间的 7 位(128 个步  
长)  
全局亮度控制 (BC):  
器件信息  
订货编号  
封装  
封装尺寸  
10% 100% 范围内的 7 位(128 个步长)  
针对每个色彩组的 3 BC 设置  
带散热片薄型小外形  
尺寸封装 (HTSSOP) 14.0mm x 6.1mm  
TLC5955DCA  
LED 电源电压:高达 10V  
VCC3.0V 5.5V  
恒定电流精度:  
(56)  
四方扁平无引线  
8.0mm x 8.0mm  
(QFN) (56)  
TLC5955RTQ  
通道到通道:±2%(典型值),±5%(最大值)  
器件到器件:±2%(典型值),±4%(最大值)  
数据传输速率:25MHz  
灰度控制时钟:33MHz  
自动重复显示功能  
应用电路  
显示定时复位  
VLED  
自动数据刷新(只适用于 GS DC)  
LED 开路检测 (LOD)  
+
x48  
LED 短路检测 (LSD)  
欠压闭锁 (UVLO) 设定缺省数据  
延迟开关以防止涌入电流  
工作温度范围:-40°C +85°C  
GND  
OUTR0  
OUTB15  
SOUT  
Input Serial Data  
Shift Clock  
Output Serial Data  
SIN  
VCC  
SCLK  
LAT  
VCC  
TLC5955  
Data Latch  
2 应用范围  
GS Clock  
GSCLK  
GND  
GND  
LED 视频显示屏  
可变消息标志 (VMS)  
照明  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBVS237  
 
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 28  
Applications and Implementation ...................... 38  
9.1 Application Information............................................ 38  
9.2 Typical Application .................................................. 38  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Terminal Configurations and Functions.............. 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ..................................... 6  
6.2 Handling Ratings....................................................... 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 Switching Characteristics.......................................... 9  
6.7 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 12  
9
10 Power Supply Recommendations ..................... 41  
11 Layout................................................................... 41  
11.1 Layout Guidelines ................................................. 41  
11.2 Layout Example .................................................... 42  
12 器件和文档支持 ..................................................... 43  
12.1 器件支持................................................................ 43  
12.2 文档支持................................................................ 43  
12.3 Trademarks........................................................... 43  
12.4 Electrostatic Discharge Caution............................ 43  
12.5 Glossary................................................................ 43  
13 机械封装和可订购信息 .......................................... 43  
7
8
7.1 Terminal-Equivalent Input and Output Schematic  
Diagrams.................................................................. 12  
7.2 Test Circuits ............................................................ 12  
7.3 Timing Diagrams..................................................... 13  
Detailed Description ............................................ 15  
4 修订历史记录  
日期  
修订版本  
注释  
2014 3 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
5 Terminal Configurations and Functions  
DCA Package  
HTSSOP-56  
(Top View)  
SIN  
SCLK  
1
2
3
4
5
6
7
8
9
56 GND  
55 GSCLK  
54 VCC  
LAT  
OUTB4  
OUTR4  
OUTG4  
OUTB0  
OUTR0  
OUTG0  
53 OUTB8  
52 OUTR8  
51 OUTG8  
50 OUTB12  
49 OUTR12  
48 OUTG12  
47 OUTB9  
46 OUTR9  
45 OUTG9  
44 OUTB13  
43 OUTR13  
42 OUTG13  
41 OUTB14  
40 OUTR14  
39 OUTG14  
38 OUTB10  
37 OUTR10  
36 OUTG10  
35 OUTB15  
34 OUTR15  
33 OUTG15  
32 OUTB11  
31 OUTR11  
30 OUTG11  
29 GND  
OUTB5 10  
OUTR5 11  
OUTG5 12  
OUTB1 13  
OUTR1 14  
OUTG1 15  
OUTB2 16  
OUTR2 17  
OUTG2 18  
OUTB6 19  
OUTR6 20  
OUTG6 21  
OUTB3 22  
OUTR3 23  
OUTG3 24  
OUTB7 25  
OUTR7 26  
OUTG7 27  
SOUT 28  
Thermal Pad  
(Solder Side)  
Copyright © 2014, Texas Instruments Incorporated  
3
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
RTQ Package  
QFN-56  
(Top View)  
OUTB0  
OUTG4  
OUTR4  
OUTB4  
LAT  
OUTB3  
OUTR3  
OUTG3  
OUTB7  
OUTR7  
OUTG7  
SOUT  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
3
4
5
SCLK  
6
SIN  
7
Thermal Pad  
(Solder Side)  
GND  
GND  
8
GSCLK  
VCC  
OUTG11  
OUTR11  
OUTB11  
OUTG15  
OUTR15  
OUTB15  
9
10  
11  
12  
13  
14  
OUTB8  
OUTR8  
OUTG8  
OUTB12  
4
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
Terminal Functions  
TERMINAL  
DCA NUMBER  
29, 56  
NAME  
RTQ NUMBER  
I/O  
DESCRIPTION  
GND  
8, 35  
Power ground  
Reference clock for the grayscale (GS) pulse width modulation (PWM) control for all outputs.  
Each GSCLK rising edge increments the grayscale counter for PWM control. When the LAT  
signal is input for a GS data write with the timing reset mode enabled, all constant-current  
outputs (OUTX0-OUTX15, where X = R, G, or B) are forced off, the grayscale counter is  
reset to 0, and the grayscale PWM timing controller is initialized.  
GSCLK  
LAT  
55  
3
34  
38  
I
I
The LAT rising edge either latches the data from the common shift register into the GS data  
latch when the MSB of the common shift register is 0 or latches the data into the control  
data latch when the MSB of the common shift register is 1. When the display timing reset bit  
(TMGRST) in the control data latch is 1, the grayscale counter initialized at the LAT signal is  
input for a grayscale data write. Dot correction (DC) data in the control data latch are copied  
to DC data latch at the same time.  
4, 7, 10, 13, 16, 19, 1, 4, 11, 14, 17, 20,  
Constant-current outputs for the blue color group.  
Multiple outputs can be configured in parallel to increase the constant-current capability.  
Different voltages can be applied to each output.  
OUTB0 to  
OUTB15  
22, 25, 32, 35, 38,  
41, 44, 47, 50, 53  
23, 26, 29, 32, 39,  
42, 45, 48, 51, 54  
O
O
O
6, 9, 12, 15, 18, 21,  
24, 27, 30, 33, 36,  
39, 42, 45, 48, 51  
3, 6, 9, 12, 15, 18,  
21, 24, 27, 30, 41,  
44, 47, 50, 53, 56  
Constant-current outputs for the green color group.  
Multiple outputs can be configured in parallel to increase the constant-current capability.  
Different voltages can be applied to each output.  
OUTG0 to  
OUTG15  
5, 8, 11, 14, 17, 20, 2, 5, 10, 13, 16, 19,  
Constant-current outputs for the red color group.  
Multiple outputs can be configured in parallel to increase the constant-current capability.  
Different voltages can be applied to each output.  
OUTR0 to  
OUTR15  
23, 26, 31, 34, 37,  
40, 43, 46, 49, 52  
22, 25, 28, 31, 40,  
43, 46, 49, 52, 55  
Serial data shift clock.  
Data present on SIN are shifted to the LSB of the common shift register with the SCLK  
rising edge. Data in the shift register are shifted toward the MSB at each SCLK rising edge.  
The MSB data of the common shift register appears on SOUT.  
SCLK  
SIN  
2
1
37  
36  
I
I
Serial data input for the 769-bit common shift register.  
This bit is the serial data output of the 769-bit common shift register.  
LED open detection (LOD) and LED short detection (LSD) can be read out with SOUT in the  
form of status information data (SID) after the LAT falling edge is input for a GS data write.  
SOUT is connected to the MSB of the 769-bit common shift register. Data are clocked out at  
the SCLK rising edge.  
SOUT  
28  
54  
7
O
VCC  
33  
Power-supply voltage  
The thermal pad is not connected to GND internally.  
The thermal pad must be connected to GND via the PCB.  
Thermal pad  
Copyright © 2014, Texas Instruments Incorporated  
5
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range, unless otherwise noted.  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VCC  
VIN  
Supply  
+6.0  
VCC + 0.3  
VCC + 0.3  
V
V
V
Input range  
SIN, SCLK, LAT, GSCLK  
SOUT  
Voltage(2)  
VOUT  
Output range  
OUTR0 to OUTR15, OUTG0 to  
OUTG15, OUTB0 to OUTB15  
–0.3  
+11  
V
TJ (max)  
Maximum operating junction temperature  
+150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to device ground terminal.  
6.2 Handling Ratings  
MIN  
MAX  
+150  
4000  
2000  
UNIT  
°C  
V
TSTG  
Storage temperature range  
–55  
Human body model (HBM) ESD stress voltage(2)  
Charged device model (CDM) ESD stress voltage(3)  
(1)  
VESD  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 4000-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 2000-V CDM allows safe  
manufacturing with a standard ESD control process.  
6
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
6.3 Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DC CHARACTERISTICS  
VCC  
VO  
Supply voltage  
3.0  
5.5  
10  
V
V
Voltage applied to output  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
OUTX0 to OUTX15(1)  
VIH  
VIL  
IOH  
IOL  
SIN, SCLK, LAT, GSCLK  
SIN, SCLK, LAT, GSCLK  
SOUT  
0.7 × VCC  
GND  
VCC  
V
0.3 × VCC  
–2  
V
mA  
mA  
mA  
mA  
SOUT  
2
OUTX0 to OUTX15(1), 3 V VCC 3.6 V  
OUTX0 to OUTX15(1), 3.6 V < VCC 5.5 V  
23.9  
31.9  
IOLC  
Constant output sink current  
Operating free-air temperature  
range  
TA  
TJ  
–40  
–40  
+85  
°C  
°C  
Operating junction temperature  
range  
+125  
AC CHARACTERISTICS  
fCLK (SCLK)  
Data shift clock frequency  
SCLK  
25  
33  
MHz  
MHz  
ns  
fCLK (GSCLK) Grayscale control clock frequency  
GSCLK  
tWH0  
tWL0  
SCLK  
10  
10  
10  
10  
30  
5
SCLK  
ns  
tWH1  
tWL1  
tWH2  
tSU0  
Pulse duration  
GSCLK  
ns  
GSCLK  
ns  
LAT  
ns  
SIN to SCLK↑  
ns  
LATto SCLK(auto data refresh is  
tSU1  
tSU2  
tSU3  
30  
50  
70  
ns  
ns  
ns  
disabled(2)  
)
Setup time  
Hold time  
LATfor GS data written to GSCLKwhen  
display time reset mode is disabled  
LATfor GS data written to GSCLKwhen  
display time reset mode is enabled  
tH0  
tH1  
(1) X = R, G, or B.  
SCLKto SIN  
2
5
ns  
ns  
SCLKto LAT↑  
(2) When auto data refresh is enabled, the first SCLK rising edge after the LAT signal input must be input after the first GSCLK is input.  
6.4 Thermal Information  
DCA (HTSSOP)  
RTQ (QFN)  
THERMAL METRIC(1)  
UNIT  
56 TERMINALS 56 TERMINALS  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
32.2  
16.8  
16.1  
0.8  
27.9  
14.9  
6.5  
θJCtop  
θJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
16.0  
0.9  
6.4  
θJCbot  
2.0  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014, Texas Instruments Incorporated  
7
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
6.5 Electrical Characteristics  
At TA = –40°C to +85°C and VCC = 3 V to 5.5 V, unless otherwise noted. Typical values at TA = +25°C and VCC = 3.3 V.  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
High-level output voltage  
(SOUT)  
VOH  
VOL  
IIN  
IOH = –2 mA  
VCC – 0.4  
VCC  
V
Low-level output voltage  
(SOUT)  
IOL = 2 mA  
0.4  
1
V
Input current  
(SIN, SCLK, LAT, GSCLK)  
VIN = VCC or GND  
–1  
μA  
SIN, SCLK, and LAT = GND, all OUTXn = off,  
GSCLK = GND, GSXn = 0000h, DCXn and BCX = 7Fh,  
VOUTXn = 0.8 V, MCX = 0 (3.2-mA target)(1)(2)  
ICC0  
ICC1  
ICC2  
15  
16  
18  
20  
22  
26  
mA  
mA  
mA  
SIN, SCLK, and LAT = GND, all OUTXn = off,  
GSCLK = GND, GSXn = 0000h, DCXn and BCX = 7Fh,  
VOUTXn = 0.8 V, MCX = 4 (19.1-mA target)  
Supply current (VCC  
)
SIN, SCLK, and LAT = GND, auto display repeat  
enabled, GSCLK = 33 MHz, GSXn = FFFFh, DCXn and  
BCX = 7Fh, VOUTXn = 0.8 V, MCX = 4 (19.1-mA target)  
VCC = 5.0 V, SIN, SCLK, and LAT = GND, auto display  
repeat enabled, GSCLK = 33 MHz, GSXn = FFFFh,  
DCXn and BCX = 7Fh, VOUTXn = 0.8 V, MCX = 7  
(31.9-mA target)  
ICC3  
20  
29  
mA  
All OUTXn = on, DCXn and BCX = 7Fh,  
VOUTXn = VOUTfix = 0.8 V, MCX = 4  
IOLC0  
IOLC1  
17.4  
29.1  
19.1  
31.9  
20.8  
34.7  
mA  
mA  
Constant output sink current  
(OUTX0 to OUTX15)  
VCC = 5.0 V, all OUTXn = on, DCXn and BCX = 7Fh,  
VOUTXn = VOUTfix = 0.8 V, MCX = 7  
IOLKG0  
IOLKG1  
IOLKG2  
TJ = +25°C  
0.1  
0.2  
0.8  
μA  
μA  
μA  
All OUTn = off,  
VOUTXn = VOUTfix = 10 V,  
MCX = 7  
Output leakage current  
(OUTX0 to OUTX15)  
TJ = +85°C  
TJ = +125°C  
0.3  
Constant-current error  
(channel-to-channel, OUTX0 to  
OUTX15)(3)  
All OUTXn = on, DCXn and BCX = 7Fh,  
VOUTXn = VOUTfix = 0.8 V, MCX = 4  
ΔIOLC0  
ΔIOLC1  
ΔIOLC2  
±2%  
±5%  
±4%  
±1  
Constant-current error  
(device-to-device, OUTX0 to  
OUTX15)(4)  
All OUTXn = on, DCXn and BCX = 7Fh,  
VOUTXn = VOUTfix = 0.8 V, MCX = 4  
±2%  
±0.1  
VCC = 3.0 V to 5.5 V, all OUTXn = on,  
DCXn and BCX = 7Fh, VOUTXn = VOUTfix = 0.8 V,  
MCX = 4  
Line regulation  
%/V  
(OUTx0 to OUTx15)(5)  
(1) X = R, G, or B. For example, MCX = MCR, MCG, and MCG.  
(2) n = 0 to 15.  
(3) The deviation of each output from the OUTX0 to OUTX15 constant-current average of the same color group. Deviation is calculated by  
the formula:  
IOLCXn  
- 1  
(IOLCX0 + IOLCX1 + ... + IOLCX14 + IOLCX15  
)
D (%) =  
´ 100  
16  
where X = R, G, or B; n = 0 to 15.  
(4) Deviation of the OUTX0 to OUTX15 constant-current average from the ideal constant-current value.  
Deviation is calculated by the formula:  
(IOLCX0 + IOLCX1 + ... IOLCX14 + IOLCX15  
)
- (Ideal Output Current)  
D (%) =  
´ 100  
16  
Ideal Output Current  
where X = R, G, or B; n = 0 to 15.  
Ideal current is the target current when MC is 4.  
(5) Line regulation is calculated by the formula:  
(IOLCXn at VCC = 5.5 V) - (IOLCXn at VCC = 3.0 V)  
100  
D (%/V) =  
´
(IOLCXn at VCC = 3.0 V)  
5.5 V - 3.0 V  
where X = R, G, or B; n = 0 to 15.  
8
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
Electrical Characteristics (continued)  
At TA = –40°C to +85°C and VCC = 3 V to 5.5 V, unless otherwise noted. Typical values at TA = +25°C and VCC = 3.3 V.  
PARAMETER  
CONDITION  
MIN  
TYP  
±0.1  
0.30  
MAX  
UNIT  
Load regulation  
All OUTXn = on, DCXn and BCX = 7Fh,  
VOUTXn = 0.8 V to 3.0 V, VOUTfix = 0.8 V, MCX = 4  
ΔIOLC3  
±1  
%/V  
(OUTx0 to OUTx15)(6)  
VLOD  
VLSD0  
VLSD1  
LED open-detection threshold  
All OUTXn = on  
0.25  
0.35  
V
V
V
All OUTXn = on, LSDVLT = 0  
All OUTXn = on, LSDVLT = 1  
0.65 × VCC 0.70 × VCC 0.75 × VCC  
0.85 × VCC 0.90 × VCC 0.95 × VCC  
LED short-detection threshold  
(6) Load regulation is calculated by the equation:  
(IOLCXn at VOUTXn = 3 V) - (IOLCXn at VOUTXn = 0.8 V)  
D (%/V) =  
100  
´
IOLCXn at VOUTXn = 0.8 V  
3 V - 0.8 V  
where X = R, G, or B; n = 0 to 15.  
6.6 Switching Characteristics  
At TA = –40°C to +85°C, VCC = 3 V to 5.5 V, CL = 15 pF, RL = 120 , MCX = 7, and VLED = 4.5 V, unless otherwise noted.  
Typical values at TA = +25°C and VCC = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
UNIT  
ns  
tR0  
tR1  
tF0  
tF1  
tD0  
SOUT  
5
Rise time  
OUTXn, VCC = 3.6 V, DCXn, and BCX = 7Fh, TA = +25°C(1)  
30  
3
ns  
SOUT  
5
ns  
Fall time  
OUTXn, VCC = 3.6 V, DCXn, and BCX = 7Fh, TA = +25°C  
SCLKto SOUT↑↓  
40  
20  
ns  
30  
ns  
GSCLKto OUTX4 and  
OUTX11 on or off  
tD1  
40  
43  
46  
49  
52  
55  
58  
61  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
GSCLKto OUTX0 and  
OUTX15 on or off  
tD2  
GSCLKto OUTX5 and  
OUTX10 on or off  
tD3  
GSCLKto OUTX1 and  
OUTX14 on or off  
tD4  
Propagation delay  
VCC = 3.6 V, GSCLK = 33 MHz, DCXn  
and BCX = 7Fh, TA = +25°C  
GSCLKto OUTX2 and  
OUTX13 on or off  
tD5  
GSCLKto OUTX6 and  
OUTX9 on or off  
tD6  
GSCLKto OUTX3 and  
OUTX12 on or off  
tD7  
GSCLKto OUTX7 and  
OUTX8 on or off  
tD8  
tOUTON – tGSCLK, VCC = 3.6 V to 5.5 V, GSXn = 0001h,  
GSCLK = 33 MHz, DCXn and BCX = 7Fh  
tON_ERR  
Output on-time error(2)  
–20  
20  
(1) X = R, G, or B; n = 0 to 15.  
(2) Output on-time error (tON_ERR) is calculated by the formula: tON_ERR = tOUT_ON – tGSCLK. tOUTON is the actual on-time of the constant-  
current driver. tGSCLK is the GSCLK period.  
Copyright © 2014, Texas Instruments Incorporated  
9
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = +25°C and VCC = 5.0 V, unless otherwise noted.  
40  
40  
35  
30  
25  
20  
15  
10  
5
MC = 0  
MC = 1  
MC = 2  
MC = 3  
MC = 4  
MC = 5  
MC = 6  
MC = 7  
DC = 0h  
DC = 10h  
DC = 20h  
DC = 30h  
DC = 40h  
DC = 50h  
DC = 60h  
DC = 70h  
DC = 7Fh  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
Output Voltage (V)  
2
2.5  
3
Output Voltage (V)  
C001  
C002  
BCX = DCXn = 7Fh  
BCX = DCXn = 7Fh  
Figure 1. Output Current vs Output Voltage  
(MCX Changing)  
Figure 2. Output Current vs Output Voltage  
(DCXn Changing)  
35  
34  
33  
32  
31  
30  
29  
40  
35  
30  
25  
20  
15  
10  
5
BC = 0h  
BC = 10h  
BC = 20h  
BC = 30h  
BC = 40h  
BC = 50h  
BC = 60h  
BC = 70h  
BC = 7Fh  
T=±40ƒC  
A
TA = 25ƒC  
TA = 85ƒC  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
0.5  
1
1.5  
2
2.5  
3
Output Voltage (V)  
Output Voltage (V)  
C004  
C003  
BCX = DCXn = 7Fh  
BCX = DCXn = 7Fh  
Figure 4. Output Current vs Output Voltage (Temperature  
Changing)  
Figure 3. Output Current vs Output Voltage  
(BCX Changing)  
5
4
5
4
3
3
2
2
1
1
0
0
±1  
±2  
±3  
±4  
±5  
±1  
±2  
±3  
±4  
Max  
Min  
Max  
Min  
±5  
0
5
10  
15  
20  
25  
30  
35  
0
20  
40  
60  
80  
100  
±40  
±20  
Output Current (mA)  
Ambient Temperature (ƒC)  
BCX = DCXn = 7Fh  
C005  
C006  
BCX = DCXn = 7Fh  
VOUTXn = 0.8 V  
MCX = 4  
VOUTXn = 0.8 V  
Figure 5. Constant-Current Error vs Output Current  
(Channel-to-Channel in Each Color Group)  
Figure 6. Constant-Current Error vs Ambient Temperature  
(Channel-to-Channel in Each Color Group)  
10  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
Typical Characteristics (continued)  
At TA = +25°C and VCC = 5.0 V, unless otherwise noted.  
35  
35  
30  
25  
20  
15  
10  
5
MCX = 0  
MCX = 1  
MCX = 2  
MCX = 3  
MCX = 4  
MCX = 5  
MCX = 6  
MCX = 7  
MCX = 0  
MCX = 1  
MCX = 2  
MCX = 3  
MCX = 4  
MCX = 5  
MCX = 6  
MCX = 7  
30  
25  
20  
15  
10  
5
0
0
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
DC Data (Decimal)  
BC Data (Decimal)  
C007  
C008  
BCX = 7Fh  
VOUTXn = 0.8 V  
DCXn = 7Fh  
VOUTXn = 0.8 V  
Figure 7. Dot Correction (DC) Linearity  
Figure 8. Global Brightness Control (BC) Linearity  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 5 V  
VCC = 5 V  
0
0
0
5
10  
15  
20  
25  
30  
35  
0
20  
40  
60  
80  
100  
±40  
±20  
Output Current (mA)  
SIN = 12.5 MHz  
VOUT = 0.8 V  
Ambient Temperature (ƒC)  
BCX = DCXn = 7Fh  
GSCLK = 33 MHz  
C009  
C010  
BCX = DCXn = 7Fh  
SCLK = 25 MHz  
MCX = 4  
SIN = 12.5 MHz  
VOUT = 0.8 V  
GSCLK = 33 MHz  
GSXn = FFFFh  
SCLK = 25 MHz  
GSXn = FFFFh  
Figure 9. Supply Current vs Output Current  
Figure 10. Supply Current vs Ambient Temperature  
Ch1: GSCLK (5 V/div)  
Ch2: OUTR4 (2 V/div)  
Ch3: OUTGO (2 V/div)  
Ch4: OUTB5 (2 V/div)  
Time (20 ns/div)  
MCX = 7  
BCX = DCXn = 7Fh  
RL = 120 Ω  
GSCLK = 33 MHz  
VLED = 4.5 V  
GSXn = 0001h  
Figure 11. Constant-Current Output Voltage Waveform  
Copyright © 2014, Texas Instruments Incorporated  
11  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Terminal-Equivalent Input and Output Schematic Diagrams  
VCC  
VCC  
INPUT  
SOUT  
GND  
GND  
Figure 12. SIN, SCLK, LAT, GSCLK  
Figure 13. SOUT  
OUTXn(1)  
GND  
(1) X = R, G, or B; n = 0 to 15.  
Figure 14. OUTX0 Through OUTX15  
7.2 Test Circuits  
RL  
CL  
VCC  
GND  
VCC  
VCC  
(1)  
OUTXn  
VLED  
(2)  
SOUT  
GND  
VCC  
(1)  
CL  
(1) X = R, G, or B; n = 0 to 15.  
(2) CL includes measurement probe and jig capacitance.  
(1) CL includes measurement probe and jig capacitance.  
Figure 16. Rise Time and Fall Time Test Circuit  
for SOUT  
Figure 15. Rise Time and Fall Time Test Circuit  
for OUTXn  
VCC  
OUTR0  
VCC  
(1)  
OUTXn  
(1)  
GND  
OUTB15  
VOUTXn  
VOUTfix  
(1) X = R, G, or B; n = 0 to 15.  
Figure 17. Constant-Current Test Circuit for OUTXn  
12  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
7.3 Timing Diagrams  
tWH0, tWL0, tWH1, tWL1, tWH2  
:
VCC  
Input(1)  
50%  
GND  
tWH  
tWL  
tSU0, tSU1, tSU2, tSU3, tH0, tH1  
:
VCC  
Clock Input(1)  
50%  
GND  
VCC  
tSU  
tH  
Data and Control Input(1)  
50%  
GND  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 18. Input Timing  
tR0, tR1, tF0, tF1, tD0, tD1, tD2, tD3, tD4, tD5, tD6, tD7, tD8  
:
VCC  
Input(1)  
50%  
GND  
tD  
(2)  
VOH or VOUTXnH  
90%  
50%  
10%  
Output  
(2)  
VOL or VOUTXnL  
tR or tF  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
(2) X = R, G, or B; n = 0 to 15.  
Figure 19. Output Timing  
Copyright © 2014, Texas Instruments Incorporated  
13  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
Timing Diagrams (continued)  
GS Data Write  
GS Data Write  
R0  
0A  
B15  
15B  
B15  
14B  
B15  
13B  
B15  
12B  
R0  
3B  
R0  
2B  
R0  
1B  
R0  
0B  
B15  
15C  
B15  
14C  
B15  
13C  
B15  
12C  
B15  
11C  
B15  
10C  
SIN  
SCLK  
GSCLK  
LAT  
Low  
Low  
tSU1  
tH0  
tH1  
tSU0  
tWH0  
1
2
3
4
5
766 767 768 769  
1
2
3
4
5
tWH1  
6
7
tWL0  
tGSCLK  
65534  
65536  
65538  
1
2
3
4
5
6
65535  
65537  
tWH2  
tWL1  
tSU2, tSU3  
Grayscale Data  
In GS Data Latch  
(Internal)  
New Data  
Old Data  
tD0  
LOD  
B15  
LOD  
G15  
LOD  
R15  
LOD  
B14  
R0  
3A  
R0  
2A  
R0  
1A  
R0  
0A  
LOD  
B15  
LOD  
G15  
LOD  
R15  
LOD  
B14  
LOD  
G14  
LOD  
R14  
LOD  
B13  
SOUT  
Low  
Low  
tR0, tF0  
Display Timing Reset Enabled, Auto Display Repeat Disabled, All GS Data Are FFFFh  
tR1  
tF1  
(VOUTXnH  
)
OUTR4, OUTR11,  
OUTG4, OUTG11,  
OUTB4, OUTB11  
Off  
(VOUTXnL  
)
On  
tD1  
OUTR0, OUTR15,  
OUTG0, OUTG15,  
OUTB0, OUTB15  
Off  
On  
tD2  
OUTR5, OUTR10,  
OUTG5, OUTG10,  
OUTB5, OUTB10  
Off  
On  
tD3  
OUTR1, OUTR14,  
OUTG1, OUTG14,  
OUTB1, OUTB14  
Off  
On  
tD4  
OUTR2, OUTR13,  
OUTG2, OUTG13,  
OUTB2, OUTB13  
Off  
On  
tD5  
OUTR6, OUTR9,  
OUTG6, OUTG9,  
OUTB6, OUTB9  
Off  
On  
tD6  
OUTR3, OUTR12,  
OUTG3, OUTG12,  
OUTB3, OUTB12  
Off  
On  
tD7  
OUTR7, OUTR8,  
OUTG7, OUTG8,  
OUTB7, OUTB8  
Off  
On  
tD8  
Figure 20. Data Input, Output, and Constant Output Timing  
14  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
8 Detailed Description  
8.1 Overview  
The TLC5955 is 48-channel, 30-mA, constant-current LED driver that can control LED on-time with pulse width  
modulation (PWM) in 65,536 steps for grayscale (GS) control. A maximum of 281 trillion colors can be generated  
with red, green, and blue LEDs connected to the constant-current outputs.  
The device has a 128-step, 7-bit, output current control function called dot correction (DC) that can control each  
constant-current output. Inherently, LED lamps have different intensities resulting from manufacturing differences.  
The DC function can reduce the inherent differences in intensity and improve LED lamp brightness uniformity.  
The device also has a 128-step, 7-bit, output current control function called global brightness control (BC) that  
can control each color group output. The BC function can adjust the red, green, and blue LED intensity for true  
white with constant-current control. The device contributes higher image quality to LED displays with fine white  
balance tuning by using these GS, DC, and BC functions.  
The display controller can locate LED lamp failures via the device because the controller can detect LED lamp  
failures with the LED open detection (LOD) and LED short detection (LSD) functions and the reliability of the  
display can be improved by the LOD, LSD function.  
The device maximum constant-current output value can be set by internal register data instead of the general  
method of using an external resistor setting. Thus, any failure modes that occur from the external resistor can be  
eliminated and one resistor can be eliminated.  
The device constant-current output can drive approximately 19 mA at a 0.25-V output voltage and a +25°C  
ambient temperature. This voltage is called knee voltage. This 0.25-V, low-knee voltage can contribute to the  
design of a lower-power display system. The total number of LED drivers on one LED display panel can be  
reduced because 48 LED lamps can be driven by one LED driver. Therefore, designing fine-pitch LED displays is  
simplified.  
Copyright © 2014, Texas Instruments Incorporated  
15  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.2 Functional Block Diagram  
LSB  
MSB  
lodisdlat  
96-Bit LOD, LSD Data Latch  
VCC  
0
95  
96  
LSB  
MSB  
SIN  
769-Bit Common Shift Register  
SOUT  
0
Bit 768  
768  
SCLK  
latgs  
768  
LSB  
MSB  
768-Bit Grayscale (GS) Data Latch  
0
767  
379  
371  
8
MSB  
LSB  
8-Bit Write  
Command  
Decoder  
371-Bit Control Data Latch  
(DC, MC, BC, FC)  
LAT  
0
370  
336  
336-Bit DC Data Latch  
MC, BC, FC Bits  
UVLO  
768  
LSB  
MSB  
335  
35  
1
lodisdlat  
latgs  
0
3
16-Bit GS  
Counter  
48-Channel,  
16-Bit ES, Conventional PWM Timing  
GSCLK  
336  
48  
8-Set, 6-Channel Grouped  
Switching Delay  
30  
48  
Reference  
Current Control  
with 3-Bit MC and  
7-Bit BC for Each  
Color  
48-Channel Constant Sink Current Driver  
with 7-Bit DC  
1
LED Open Detection (LOD)  
LED Short Detection (LSD)  
96  
GND  
OUTR0 OUTG0 OUTB0  
OUTR15 OUTG15 OUTB15  
16  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
8.3 Feature Description  
8.3.1 Output Current Calculation  
The output current value controlled by MC, DC, and BC can be calculated by Equation 1.  
DCXn  
127  
BCX  
127  
IOUTn (mA) = IOLCMax (mA) ´  
0.262 + 0.738 ´  
´ 0.10 + 0.90 ´  
where:  
IOLCMax = the maximum constant-current value for all OUTXn for each color group programmed by MC data,  
DCXn = the dot correction value for each channel (0h to 7Fh),  
BCX = the global brightness control value (0h to 7Fh),  
X = R, G, or B for the red, green, or blue color group, and  
n = 0 to 15.  
(1)  
Each output sinks the IOLCMax current when they turn on and the dot correction (DC) data and the global  
brightness control (BC) data are set to the maximum value of 7Fh (127d). Each output sink current can be  
reduced by lowering the DC and BC values.  
When IOUT is set lower than 1 mA by both MC and BC or BC only, the output may be unstable. Output currents  
lower than 1 mA can be achieved by setting IOUT to 1 mA with MC and BC or BC only and then using DC to  
lower the output current.  
8.3.2 Register and Data Latch Configuration  
The TLC5955 has one common shift register and three data latches: the grayscale (GS) data latch, the control  
data latch, and the dot correction (DC) data latch. The common shift register is 769 bits long, the GS data latch is  
768 bits long, the control data latch is 371 bits long, and the DC data latch is 336 bits long.  
If the common shift register MSB is 0, the least significant 768 bits from the common shift register are latched  
into the GS data latch. If the MSB is 1, and bits 767 to 760 are 96h (10010110b), the data are latched into the  
control data latch. Refer to Figure 21 for the common shift register, GS data latch, control data latch, and DC  
data latch configurations.  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
Feature Description (continued)  
Common Shift Register (769 Bits)  
MSB  
LSB  
Latch  
Select  
Bit  
Common Common Common Common  
Data Bit Data Bit Data Bit  
Common Common Common Common Common  
Data Bit  
5
Common  
Data Bit  
763  
Common  
Data Bit  
0
SIN  
SOUT  
Data Bit  
764  
Data Bit Data Bit Data Bit Data Bit  
3
767  
766  
765  
4
2
1
SCLK  
768  
767  
766  
765  
764  
763  
3
2
1
0
5
4
Lower 768 Bits  
Bits 767:0  
768 Bits  
32  
Grayscale (GS) Data Latch (768 Bits)  
MSB  
The latch pulse  
comes from LAT  
when the MSB of  
the common shift  
register is 0 and the  
RFRESH bit is 0.  
When the REFRESH  
bit is 1, the latch  
pulse is input at the  
65536th GS clock  
after the LAT input.  
LSB  
0
16  
15  
48  
47  
31  
752  
767  
OUTR0  
Bit 15  
OUTB0  
Bit 15  
OUTG0  
Bit 15  
OUTR0  
Bit 0  
OUTB15  
Bit 15  
OUTR1  
Bit 0  
OUTB0  
Bit 0  
OUTG0  
Bit 0  
OUTB15  
Bit 0  
GS data for OUTG0  
GS data for OUTR0  
GS data for OUTB15  
GS data for OUTB0  
768 Bits  
To Grayscale Timing Control Circuit  
Bits 335:0  
Bits 344:336  
9–Bit  
Previous  
MC data  
RESET  
from  
UVLO  
Bits Bits  
341:339 338:336  
Bits  
344:342  
Bits 370:345  
LatMC  
Control Data  
Latch (371 Bits)  
Bits 767:760  
MSB  
767 --- 760  
8-Bit Command  
LSB  
LSB  
6:0  
MSB - 366  
370:366  
338:336  
341:339  
335:329 328:322  
358:352 351:345  
BRIGHT BRIGHT  
344:342  
Max  
Bits 6:0, Bits 6:0, Current  
365:359  
DOTCOR DOTCOR  
Bits 6:0, Bits 6:0,  
OUTB15 OUTG15  
DOTCOR  
Bits 6:0,  
OUTR0  
Max  
Current  
OUTGn  
Max  
Current  
OUTRn  
BRIGHT  
Bits 6:0,  
OUTBn  
FUNC  
Bits 4:0  
Decoder  
LAT  
(96h)  
OUTGn  
OUTRn  
OUTBn  
FC, 5 Bits  
BC, 21 Bits  
MC, 9 Bits  
DC, 336 Bits  
336 Bits  
LSB  
6:0  
335:322  
335:329  
DOTCOR DOTCOR  
Bits 6:0, Bits 6:0,  
OUTB15 OUTG15  
DOTCOR  
Bits 6:0,  
OUTR0  
DC, 336 Bits  
DC Data Latch (336 Bits)  
The latch pulse  
comes from LAT  
when the MSB of  
the common shift  
register is 1.  
5 Bits  
To Control Logic  
21 Bits  
To BC Circuit  
9 Bits  
336 Bits  
To Dot Correction Circuit  
To Output Current  
Reference Circuit  
Figure 21. Common Shift Register and Data Latches Configuration  
8.3.2.1 769-Bit Common Shift Register  
The 769-bit common shift register is used to shift data from the SIN terminal into the TLC5955. The data shifted  
into the register are used for GS, DC, maximum output current, global BC functions, and function control data  
write operations. The common shift register LSB is connected to SIN and the MSB is connected to SOUT. On  
each SCLK rising edge, the data on SIN are shifted into the LSB and all 769 bits are shifted towards the MSB.  
The register MSB is always connected to SOUT. When the device is powered up, the data in the 769-bit  
common shift register are random.  
18  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
Feature Description (continued)  
8.3.2.2 Grayscale (GS) Data Latch  
The GS data latch is 768 bits long, and sets the PWM timing for each constant-current output. The on-time of all  
constant-current outputs is controlled by the data in this data latch. The 768-bit GS data in the common shift  
register are copied to the data latch at a LAT rising edge when the common shift resister MSB is 0.  
When the device is powered up, the data are random and all constant-current outputs are forced off. However,  
no outputs turn on until GS data are written to the GS data latch even if a GSCLK is input. The data bit  
assignment is shown in Table 1. Refer to Figure 22 for a GS data write timing diagram.  
Table 1. Grayscale Data Latch Bit Description  
GS DATA  
LATCH BIT  
NUMBER  
GS DATA  
LATCH BIT  
NUMBER  
CONTROLLED  
CHANNEL  
CONTROLLED  
CHANNEL  
DEFAULT  
VALUE  
DEFAULT  
VALUE  
BIT NAME  
GSR0[15:0]  
GSG0[15:0]  
GSB0[15:0]  
GSR1[15:0]  
GSG1[15:0]  
GSB1[15:0]  
GSR2[15:0]  
GSG2[15:0]  
GSB2[15:0]  
GSR3[15:0]  
GSG3[15:0]  
GSB3[15:0]  
GSR4[15:0]  
GSG4[15:0]  
GSB4[15:0]  
GSR5[15:0]  
GSG5[15:0]  
GSB5[15:0]  
GSR6[15:0]  
GSG6[15:0]  
GSB6[15:0]  
GSR7[15:0]  
GSG7[15:0]  
GSB7[15:0]  
BIT NAME  
GSR8[15:0]  
GSG8[15:0]  
GSB8[15:0]  
GSR9[15:0]  
GSG9[15:0]  
GSB9[15:0]  
GSR10[15:0]  
GSG10[15:0]  
GSB10[15:0]  
GSR11[15:0]  
GSG11[15:0]  
GSB11[15:0]  
GSR12[15:0]  
GSG12[15:0]  
GSB12[15:0]  
GSR13[15:0]  
GSG13[15:0]  
GSB13[15:0]  
GSR14[15:0]  
GSG14[15:0]  
GSB14[15:0]  
GSR15[15:0]  
GSG15[15:0]  
GSB15[15:0]  
15-0  
Bits[15:0] for OUTR0  
Bits[15:0] for OUTG0  
Bits[15:0] for OUTB0  
Bits[15:0] for OUTR1  
Bits[15:0] for OUTG1  
Bits[15:0] for OUTB1  
Bits[15:0] for OUTR2  
Bits[15:0] for OUTG2  
Bits[15:0] for OUTB2  
Bits[15:0] for OUTR3  
Bits[15:0] for OUTG3  
Bits[15:0] for OUTB3  
Bits[15:0] for OUTR4  
Bits[15:0] for OUTG4  
Bits[15:0] for OUTB4  
Bits[15:0] for OUTR5  
Bits[15:0] for OUTG5  
Bits[15:0] for OUTB5  
Bits[15:0] for OUTR6  
Bits[15:0] for OUTG6  
Bits[15:0] for OUTB6  
Bits[15:0] for OUTR7  
Bits[15:0] for OUTG7  
Bits[15:0] for OUTB7  
399-384  
415-400  
431-416  
447-432  
463-448  
479-464  
495-480  
511-496  
527-512  
543-528  
559-544  
575-560  
591-576  
607-592  
623-608  
639-624  
655-640  
671-656  
687-672  
703-688  
719-704  
735-720  
751-736  
767-752  
Bits[15:0] for OUTR8  
Bits[15:0] for OUTG8  
Bits[15:0] for OUTB8  
Bits[15:0] for OUTR9  
Bits[15:0] for OUTG9  
Bits[15:0] for OUTB9  
Bits[15:0] for OUTR10  
Bits[15:0] for OUTG10  
Bits[15:0] for OUTB10  
Bits[15:0] for OUTR11  
Bits[15:0] for OUTG11  
Bits[15:0] for OUTB11  
Bits[15:0] for OUTR12  
Bits[15:0] for OUTG12  
Bits[15:0] for OUTB12  
Bits[15:0] for OUTR13  
Bits[15:0] for OUTG13  
Bits[15:0] for OUTB13  
Bits[15:0] for OUTR14  
Bits[15:0] for OUTG14  
Bits[15:0] for OUTB14  
Bits[15:0] for OUTR15  
Bits[15:0] for OUTG15  
Bits[15:0] for OUTB15  
31-16  
47-32  
63-48  
79-64  
95-80  
111-96  
127-112  
143-128  
159-144  
175-160  
191-176  
207-192  
223-208  
239-224  
255-240  
271-256  
287-272  
303-288  
319-304  
335-320  
351-336  
367-352  
383-368  
N/A  
(no default  
value)  
N/A  
(no default  
value)  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
B15  
14B  
R0  
3B  
R0  
2B  
R0  
1B  
B15 B15  
12C 11C  
B15  
15B  
B15  
13B  
R0  
0B  
B15  
15C 14C 13C  
B15  
B15  
R0  
0A  
Low  
Low  
SIN  
SCLK  
LAT  
1
2
3
4
1
2
3
4
5
6
766  
767 768  
769  
Common Shift Register LSB  
(Internal)  
R0  
0A  
R0  
0B  
B15  
15B  
B15  
14B  
R0  
3B  
R0  
2B  
R0  
1B  
B15  
15C  
B15  
B15  
B15  
14C 13C 12C  
Low  
Low  
Common Shift Register LSB+1  
(Internal)  
R0  
1B  
R0  
0A  
R0  
4B  
R0  
3B  
R0  
2B  
R0  
0B  
B15  
15C  
B15 B15  
14C 13C  
R0  
1A  
B15  
15B  
Low  
Low  
CommonShift Register MSB–2  
(Internal)  
LOD  
R15  
B15  
14A  
LOD  
G15  
LOD LOD  
B14 G14  
B15  
15B  
LOD LOD LOD LOD LOD  
R15A B14A G14A R14A B13A  
R0  
0A  
B15  
14B  
LOD  
G15A  
Low  
Common Shift Register MSB–1  
(Internal)  
LOD  
B15  
B15  
15A  
LOD  
G15  
R0  
0A  
B15  
15B  
LOD LOD LOD LOD LOD  
G15A R15A B14A G14A R14A  
LOD LOD  
R15 B14  
R0  
1A  
LOD  
B15A  
Low  
Common Shift Register MSB  
(Internal)  
LOD LOD LOD  
R15  
R0  
2A  
R0  
1A  
R0  
0A  
LOD LOD LOD LOD LOD  
B15A G15A R15A B14A G14A  
Low  
Low  
B15 G15  
Grayscale Data Latch  
(Internal)  
GS Data  
GS Data  
Control Data Latch  
(DC, MC, BC, FC)  
(Internal)  
DC, MC, BC, FC Data  
Control data are not changed.  
336-Bit DC Data Latch  
(Internal)  
Same data are copied from the DC data latch in the control data latch.  
DC Data  
LOD LOD LOD  
R15  
R0  
2A  
R0  
1A  
R0  
0A  
LOD LOD LOD LOD LOD  
Low  
L
SOUT  
B15 G15  
B15A G15A R15A B14A G14A  
Figure 22. Grayscale Data Write Timing Diagram (RFRESH = 0)  
8.3.2.3 Control Data Latch  
The control data latch is 371 bits long. The data latch contains dot correction (DC) data, maximum current (MC)  
data, global brightness control (BC) data, and function control (FC) data. The DC for each constant-current  
output are controlled by the data in the DC data latch. The control data in the data latch are updated with the  
lower 371 bits of the common shift register at the LAT rising edge when the common shift register MSB is 1. The  
336 bits of DC data are copied from the control data latch when the 65,536th GSCLK is input with RFRESH set  
to 1 in the control data latch after the GS data are written or the LAT rising edge for GS data writes is input when  
the RFRESH bit is 0.  
When the device is powered up, the data in the control data latch (except the MC bits) are random. Therefore,  
DC, BC, and FC data must be written to the control data latch before turning on the constant-current outputs.  
Furthermore, MC data should be set appropriately for the application. Refer to Figure 23 for a control data write  
timing diagram.  
20  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
DCR0  
0A  
DCR0 DCR0 DCR0 DCR0  
3B 2B 1B 0B  
L
H
L
H
H
L
H
H
L
H
L
SIN  
DC, MC, BC, FC are selected  
when the MSB is high.  
DC, MC, BC, FC data writes are selected when the MSB[1:9] bits are 96h (HLLHLHHL).  
SCLK  
1
2
3
4
5
1
2
3
4
5
6
766  
767  
768  
769  
LAT  
Common Shift Register LSB  
(Bit 0, Internal)  
DCR0  
0A  
0
DCR0 DCR  
1B  
DCR0  
0B  
DCR0  
3B  
H
H
H
H
H
L
H
L
L
L
L
L
L
H
2B  
Common Shift Register LSB +1  
(Bit 1, Internal)  
DCR0  
0A  
DCR0  
1A  
DCR1  
1B  
DCR0  
4B  
DCR0  
0B  
DCR0 DCR0  
3B 2B  
H
H
Common Shift Register  
(Bit 336, Internal)  
DCB0  
6A  
DCB0 DCB0  
3A  
4A  
MCR  
0A  
DCB0  
5A  
DCB0  
6B  
DCB0  
4B  
MCR  
0B  
DCB0  
5B  
DCB0 DCB0  
3B 2B  
MCG MCR MCR  
2B  
0B 1B  
Common Shift Register  
(Bit 344, Internal)  
MCB  
2A  
MCB  
2B  
MCB MCB MCG MCB  
1A  
BCR BCR BCR  
1B  
MCB MCB MCG MCG MCG  
1B  
2A  
1A  
0A  
0B  
2B  
2B  
0B  
0B  
1B  
Common Shift Register MSB–1  
(Bit 767, Internal)  
DCR0 DCR0  
1A 0A  
H
L
L
L
H
L
H
L
H
H
L
L
L
H
L
L
L
H
H
Common Shift Register MSB  
(Bit 768, Internal)  
DCR0  
0A  
DCR0 DCR0  
2A 1A  
H
H
H
H
GS Data Latch  
(Internal)  
On and off control data are not changed.  
DC data in the data latch are updated when the MSB of the common shift register  
is 1 and the write command bit (bits 767 :760) is 96h (10010110b).  
DC Data in Control Data Latch  
(Internal)  
New DC Data  
Old DC Data  
The 336-bit DC data are not updated at this time. DC data in the control data latch  
are copied to the 336-bit DC data latch when the GS data are copied from common  
shift register to the GS data latch.  
336-Bit DC Data Latch  
(Internal)  
DC Data are Not Changed  
DC Data  
MC data are updated when the same data are written twice with the write command  
data (96h). MCB2B to MCR0B data must be the same as MCB2A to MCR0A.  
The 9-bit MC data (bits 344:336) in the data latch are not updated at this time  
because the previous MC data (MCB2A to MCR0A) are written.  
MC Data Latch  
(Internal)  
New MC Data  
Old MC Data  
BC Data Latch  
(Internal)  
New BC Data  
Old BC Data  
BC and FC data in the data latch are updated when the MSB of the common shift  
register is 1 and write command bit (bits 767:760) is 96h10010110b.  
FC Data Latch  
(Internal)  
New FC Data  
Old FC Data  
DCR0 DCR0 DCR0  
0
H
L
L
H
L
H
L
L
H
H
SOUT  
H
2
1
Figure 23. Control Data Write Timing Diagram for DC, MC, BC, and FC  
Copyright © 2014, Texas Instruments Incorporated  
21  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.3.2.4 Dot Correction (DC) Data Latch  
DC data are 336 bits long; the data for each constant-current output are controlled by seven bits. Each constant-  
current output DC is controlled by the DC data latch. Each DC value individually adjusts the output current for  
each constant-current output. As explained in the Dot Correction (DC) Function section, the DC values are used  
to adjust the output current from 26.2% to 100% of the current value set by MC and BC data. When the device is  
powered on, the data in the DC data latch are random.  
The DC data bit assignment is shown in Table 2. See Table 9 for a summary of the DC data value versus set  
current value.  
Table 2. Dot Correction Data Bit Description  
CONTROL  
DATA LATCH  
BIT NUMBER  
CONTROL  
DATA LATCH  
BIT NUMBER  
CONTROLLED  
CHANNEL  
CONTROLLED  
CHANNEL  
DEFAULT  
VALUE  
DEFAULT  
VALUE  
BIT NAME  
DCR0[6:0]  
DCG0[6:0]  
DCB0[6:0]  
DCR1[6:0]  
DCG1[6:0]  
DCB1[6:0]  
DCR2[6:0]  
DCG2[6:0]  
DCB2[6:0]  
DCR3[6:0]  
DCG3[6:0]  
DCB3[6:0]  
DCR4[6:0]  
DCG4[6:0]  
DCB4[6:0]  
DCR5[6:0]  
DCG5[6:0]  
DCB5[6:0]  
DCR6[6:0]  
DCG6[6:0]  
DCB6[6:0]  
DCR7[6:0]  
DCG7[6:0]  
DCB7[6:0]  
BIT NAME  
DCR8[6:0]  
DCG8[6:0]  
DCB8[6:0]  
6-0  
DC bits[6:0] for OUTR0  
DC bits[6:0] for OUTG0  
DC bits[6:0] for OUTB0  
DC bits[6:0] for OUTR1  
DC bits[6:0] for OUTG1  
DC bits[6:0] for OUTB1  
DC bits[6:0] for OUTR2  
DC bits[6:0] for OUTG2  
DC bits[6:0] for OUTB2  
DC bits[6:0] for OUTR3  
DC bits[6:0] for OUTG3  
DC bits[6:0] for OUTB3  
DC bits[6:0] for OUTR4  
DC bits[6:0] for OUTG4  
DC bits[6:0] for OUTB4  
DC bits[6:0] for OUTR5  
DC bits[6:0] for OUTG5  
DC bits[6:0] for OUTB5  
DC bits[6:0] for OUTR6  
DC bits[6:0] for OUTG6  
DC bits[6:0] for OUTB6  
DC bits[6:0] for OUTR7  
DC bits[6:0] for OUTG7  
DC bits[6:0] for OUTB7  
174-168  
181-175  
188-182  
195-189  
202-196  
209-203  
216-210  
223-217  
230-224  
237-231  
244-238  
251-245  
258-252  
265-259  
272-266  
279-273  
286-280  
293-287  
300-294  
307-301  
314-308  
321-315  
328-322  
335-329  
DC bits[6:0] for OUTR8  
DC bits[6:0] for OUTG8  
DC bits[6:0] for OUTB8  
DC bits[6:0] for OUTR9  
DC bits[6:0] for OUTG9  
DC bits[6:0] for OUTB9  
DC bits[6:0] for OUTR10  
DC bits[6:0] for OUTG10  
DC bits[6:0] for OUTB10  
DC bits[6:0] for OUTR11  
DC bits[6:0] for OUTG11  
DC bits[6:0] for OUTB11  
DC bits[6:0] for OUTR12  
DC bits[6:0] for OUTG12  
DC bits[6:0] for OUTB12  
DC bits[6:0] for OUTR13  
DC bits[6:0] for OUTG13  
DC bits[6:0] for OUTB13  
DC bits[6:0] for OUTR14  
DC bits[6:0] for OUTG14  
DC bits[6:0] for OUTB14  
DC bits[6:0] for OUTR15  
DC bits[6:0] for OUTG15  
DC bits[6:0] for OUTB15  
13-7  
20-14  
27-21  
DCR9[6:0]  
DCG9[6:0]  
DCB9[6:0]  
34-28  
41-35  
48-42  
DCR10[6:0]  
DCG10[6:0]  
DCB10[6:0]  
DCR11[6:0]  
DCG11[6:0]  
DCB11[6:0]  
DCR12[6:0]  
DCG12[6:0]  
DCB12[6:0]  
DCR13[6:0]  
DCG13[6:0]  
DCB13[6:0]  
DCR14[6:0]  
DCG14[6:0]  
DCB14[6:0]  
DCR15[6:0]  
DCG15[6:0]  
DCB15[6:0]  
55-49  
62-56  
69-63  
76-70  
N/A  
(no default  
value)  
N/A  
(no default  
value)  
83-77  
90-84  
97-91  
104-98  
111-105  
118-112  
125-119  
132-126  
139-133  
146-140  
153-147  
160-154  
167-161  
8.3.2.5 Maximum Current (MC) Data Latch  
The maximum output current per channel, IOLCMax, is programmed by MC data and can be set with the serial  
interface. IOLCMax is the largest current for each output. Each output sinks the IOLCMax current when they turn on  
with DC and BC data set to the maximum value of 7Fh (127d). MC data must have the same data continuously  
written twice in order to change the data. When the device is powered on, the MC data are set to 0.  
The MC data bit assignment is shown in Table 3. See Table 8 for a summary of the MC data value for each color  
group versus the set current value.  
Table 3. Maximum Current Data Bit Assignment in the Control Data Latch  
CONTROL DATA  
LATCH BIT  
NUMBER  
CONTROLLED CHANNEL  
BIT NAME  
MCR[2:0]  
MCG[2:0]  
MCB[2:0]  
DEFAULT VALUE  
338-336  
341-339  
344-342  
0
0
0
MC bits[2:0] for red color group channels (OUTR0 to OUTR15)  
MC bits[2:0] for green color group channels (OUTG0 to OUTG15)  
MC bits[2:0] for blue color group channels (OUTB0 to OUTB15)  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
8.3.2.6 Global Brightness Control (BC) Data Latch  
Global BC data are seven bits long. The global brightness for all outputs is controlled by the data in the control  
data latch. The data are used to adjust the constant-current values for the 48-channel constant-current outputs.  
As explained in the Global Brightness Control (BC) Function section, the BC values are used to adjust the output  
current from 10% to 100% of the maximum value. When the device is powered on, the BC data are random.  
The global BC data bit assignment in the control data latch is shown in Table 4. See Table 10 for a summary of  
the BC data value versus set current value.  
Table 4. Global Brightness Control Data Bit Assignment in the Control Data Latch  
CONTROL DATA  
LATCH BIT  
NUMBER  
CONTROLLED CHANNEL  
BIT NAME  
BCR[6:0]  
BCG[6:0]  
BCB[6:0]  
DEFAULT VALUE  
351-345  
358-352  
365-359  
BC bits[6:0] for red color group channels (OUTR0 to OUTR15)  
N/A (no default value) BC bits[6:0] for green color group channels (OUTG0 to OUTG15)  
BC bits[6:0] for blue color group channels (OUTB0 to OUTB15)  
8.3.2.7 Function Control (FC) Data Latch  
The FC data latch is 5 bits long. This latch enables the auto display repeat and display timing reset functions,  
and sets the DC data auto refresh, PWM control mode, and the LSD detection voltage. Each function is selected  
by the data in the control data latch. When the device is powered on, the FC data are random. The FC data bit  
assignment in the control data latch is shown in Table 5.  
Table 5. Function Control Data Latch Bit Description  
DEFAULT  
BIT  
BIT  
VALUE  
NUMBER  
NAME  
(Binary)  
DESCRIPTION  
Auto display repeat mode enable bit  
0 = Disabled, 1 = Enabled  
366  
367  
DSPRPT  
TMGRST  
When this bit is 0, the auto display repeat function is disabled. Each constant-current  
output is turned on and off for one display period.  
When this bit is 1, each output repeats the PWM control every 65,536 GSCLKs.  
Display timing reset mode enable bit  
0 = Disabled, 1 = Enabled  
When this bit is 0, the GS counter is not reset and the outputs are not forced off even  
when a LAT rising edge is input for a GS data write.  
When this bit is 1, the GS counter is reset to 0 and all outputs are forced off at the  
LAT rising edge for a GS data write. Afterwards, PWM control resumes from the next  
GSCLK rising edge.  
Auto data refresh mode enable bit  
0 = Disabled, 1 = Enabled  
When this bit is 0, the auto data refresh function is disabled. The data in the common  
shift register are copied to the GS data latch at the next LAT rising edge for a GS  
data write. DC data in the control data latch are copied to the DC data latch at the  
same time.  
When this bit is 1, the auto data refresh function is enabled. The data in the common  
shift register are copied to the GS data latch at the 65,536th GSCLK after the LAT  
rising edge for a GS data write. DC data in the control data latch are copied to the  
DC data latch at the same time.  
N/A  
(no default  
value)  
368  
RFRESH  
ES-PWM mode enable bit  
0 = Disabled, 1 = Enabled  
When this bit is 0, the conventional PWM control mode is selected. If the TLC5955 is  
used for multiplexing a drive, the conventional PWM mode should be selected to  
prevent excess on or off switching.  
369  
370  
ESPWM  
LSDVLT  
When this bit is 1, ES-PWM control mode is selected.  
LSD detection voltage selection bit  
LED short detection (LSD) detects a fault caused by a shorted LED by comparing the  
OUTXn voltage to the LSD detection threshold voltage. The threshold voltage is  
selected by this bit.  
When this bit is 0, the LSD voltage is VCC × 70%. When this bit is 1, the LSD voltage  
is VCC × 90%.  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.3.3 Status Information Data (SID)  
The status information data (SID) contains the status of the LED open detection (LOD) and LED short detection  
(LSD). When the MSB of the common shift register is set to 0 and the RFRESH bit in the control data latch is 0,  
the SID are loaded to the common shift register at the LAT falling edge after the data in the common shift  
register are loaded to the grayscale data latch. If the common shift register MSB is 1, the SID are not loaded to  
the common shift register.  
When the MSB of the common shift register is set to 0 and the RFRESH bit in the control data latch is 1, the SID  
are loaded to the common shift register at the GS counter 0000h just after LAT when the GS data are input. If  
the common shift register MSB is 1, the SID are not loaded to the common shift register. When the RFRESH bit  
is 1, the SCLK rising edge must be input with a low-level LAT signal after 65,538 GSCLKs (or more) are input  
from the LAT rising signal input.  
After being loaded into the common shift register, new SID data cannot be loaded until at least one new bit of  
data is written into the common shift register. To recheck SID without changing the GS data, reprogram the  
common shift register with the same data currently programmed into the GS latch. When LAT goes high, the GS  
data do not change, but new SID data are loaded into the common shift register. LOD and LSD are shifted out of  
SOUT with each SCLK rising edge. The SID load configuration is shown in Figure 24 and Table 6.  
SID are loaded  
to the common  
shift register at  
LOD  
Data of  
OUTB15  
LSD  
Data of  
OUTR0  
LOD  
Data of  
OUTR0  
the LAT falling  
edge when the  
common shift  
LOD  
Data of  
OUTB0  
LOD  
Data of  
OUTG0  
LSD  
Data of  
OUTB15  
LSD  
Data of  
OUTB0  
LSD  
Data of  
OUTG0  
register MSB is 0.  
MSB  
LSB  
Common Common  
Data Bit Data Bit  
Latch  
Select  
bit  
Common  
Data Bit  
767  
Common Common Common Common  
Data Bit Data Bit Data Bit Data Bit  
Common  
Data Bit  
674  
Common  
Data Bit  
673  
SIN  
SOUT  
SCLK  
672  
671-0  
722  
721  
720  
719  
Common Shift Register (769 Bits)  
Figure 24. SID Load Configuration  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
Table 6. SID Load Description  
COMMON SHIFT REGISTER BIT  
NUMBER  
COMMON SHIFT REGISTER BIT  
LOADED SID  
No data loaded  
NUMBER  
LOADED SID  
671-0  
672  
720  
OUTR0 LOD data  
OUTR0 LSD data  
(0 = No error, 1 = Error)  
721  
OUTG0 LOD data  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
OUTG0 LSD data  
OUTB0 LSD data  
OUTR1 LSD data  
OUTG1 LSD data  
OUTB1 LSD data  
OUTR2 LSD data  
OUTG2 LSD data  
OUTB2 LSD data  
OUTR3 LSD data  
OUTG3 LSD data  
OUTB3 LSD data  
OUTR4 LSD data  
OUTG4 LSD data  
OUTB4 LSD data  
OUTR5 LSD data  
OUTG5 LSD data  
OUTB5 LSD data  
OUTR6 LSD data  
OUTG6 LSD data  
OUTB6 LSD data  
OUTR7 LSD data  
OUTG7 LSD data  
OUTB7 LSD data  
OUTR8 LSD data  
OUTG8 LSD data  
OUTB8 LSD data  
OUTR9 LSD data  
OUTG9 LSD data  
OUTB9 LSD data  
OUTR10 LSD data  
OUTG10 LSD data  
OUTB10 LSD data  
OUTR11 LSD data  
OUTG11 LSD data  
OUTB11 LSD data  
OUTR12 LSD data  
OUTG12 LSD data  
OUTB12 LSD data  
OUTR13 LSD data  
OUTG13 LSD data  
OUTB13 LSD data  
OUTR14 LSD data  
OUTG14 LSD data  
OUTB14 LSD data  
OUTR15 LSD data  
OUTG15 LSD data  
OUTB15 LSD data  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
OUTB0 LOD data  
OUTR1 LOD data  
OUTG1 LOD data  
OUTB1 LOD data  
OUTR2 LOD data  
OUTG2 LOD data  
OUTB2 LOD data  
OUTR3 LOD data  
OUTG3 LOD data  
OUTB3 LOD data  
OUTR4 LOD data  
OUTG4 LOD data  
OUTB4 LOD data  
OUTR5 LOD data  
OUTG5 LOD data  
OUTB5 LOD data  
OUTR6 LOD data  
OUTG6 LOD data  
OUTB6 LOD data  
OUTR7 LOD data  
OUTG7 LOD data  
OUTB7 LOD data  
OUTR8 LOD data  
OUTG8 LOD data  
OUTB8 LOD data  
OUTR9 LOD data  
OUTG9 LOD data  
OUTB9 LOD data  
OUTR10 LOD data  
OUTG10 LOD data  
OUTB10 LOD data  
OUTR11 LOD data  
OUTG11 LOD data  
OUTB11 LOD data  
OUTR12 LOD data  
OUTG12 LOD data  
OUTB12 LOD data  
OUTR13 LOD data  
OUTG13 LOD data  
OUTB13 LOD data  
OUTR14 LOD data  
OUTG14 LOD data  
OUTB14 LOD data  
OUTR15 LOD data  
OUTG15 LOD data  
OUTB15 LOD data  
No data loaded  
Copyright © 2014, Texas Instruments Incorporated  
25  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.3.4 LED Open Detection (LOD)  
LOD detects a fault caused by an LED open circuit or a short from OUTXn to ground with low resistance by  
comparing the OUTXn voltage to the LOD detection threshold voltage (0.3 V, typically). If the OUTXn voltage is  
lower than the threshold voltage when OUTXn is on, that output LOD bit is set to 1 to indicate an open LED.  
Otherwise, the LOD bit is set to 0. LOD data are only valid for outputs that are programmed to be on. LOD data  
are latched into the LOD, LSD data latch at the 33rd GSCLK. LOD data for outputs programmed to be off at the  
33rd GSCLK are always 0. The LED open detection circuit is shown in Figure 25 and Table 7 lists an LOD truth  
table. Refer to Figure 26 for an LOD read timing diagram.  
8.3.5 LED Short Detection (LSD)  
LSD data detect a fault caused by a shorted LED between LED terminals by comparing the OUTXn voltage to  
the LSD detection threshold voltage level set by LSDVLT in the control data latch. If the OUTXn voltage is higher  
than the programmed voltage when OUTXn is on, the corresponding output LSD bit is set to 1 to indicate a  
shorted LED. Otherwise, the LSD bit is set to 0. LSD data are only valid for outputs that are programmed to be  
on. LSD data are latched into the LOD, LSD data latch at the 33rd GSCLK. LSD data for outputs programmed to  
be off at the 33rd GSCLK are always 0. The LSD open detection circuit is shown in Figure 25 and Table 7 lists  
an LSD truth table. Refer to Figure 26 for an LSD read timing diagram.  
VLED  
LED Lamp  
LSD Data  
OUTXn  
1 = Error  
VLSD  
Constant current is set  
by MC data.  
PWM  
Control  
LOD Data  
1 = Error  
VLOD  
GND  
Figure 25. LOD and LSD Circuit  
Table 7. LOD and LSD Truth Table  
CONDITION  
LSD  
SID DATA  
LOD  
LED is not opened (VOUTXn > VLOD  
0
)
LED is not shorted (VOUTXn VLSD  
LED is shorted between anode and cathode, or shorted to  
higher voltage side (VOUTXn > VLSD  
)
1
LED is open or shorted to GND (VOUTXn VLOD)  
)
26  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
65533 65535  
65534 65536  
1
2
3
4
5
31 32 33 34 35  
1
2
3
4
5
GSCLK  
Programmed output current  
(ON)  
OUTXn current  
(WhenGSDATA=FFFFh)  
0mA (OFF)  
Output current set by MC/DC/BC data  
0mA (OFF)  
LOD/LSD data  
aren’t stable just  
after OUTXn on.  
LOD data is always 0  
when OUTXn is off.  
48-bit LOD/LSD  
Circuit Output Data  
(Internal)  
XXXXh  
XXXXh  
XXXXh  
0000h  
XXXXh  
0000h  
LOD/LSD data latch is updated at 33rd GSCLK of the display period.  
96 Bit LOD/LSD  
Data Latch  
(Internal)  
Old data  
XXXXh  
XXXXh  
LAT signal for  
grayscale data writing  
LAT  
When RFRESH bit is 1, SID is loaded  
at 65536th GSCLK and SCLK must be  
input after 1st GSCLK input.  
769-bit common  
Shift Register Data  
(Internal)  
Grayscale Data  
XXXXh is loaded as SID.  
Figure 26. LOD and LSD Read and Load Timing Diagram  
8.3.6 Noise Reduction  
Large surge currents may flow through the device and the board on which the device is mounted if all 48 outputs  
turn on simultaneously at the start of each GS cycle. These large current surges can introduce detrimental noise  
and electromagnetic interference (EMI) into other circuits. The TLC5955 independently turns the outputs on with  
a series delay for each group to provide a soft-start feature. The output current sinks are grouped into eight  
groups. The first output group that is turned on or off are OUTR4, OUTG4, OUTB4, OUTR11, OUTG11, and  
OUTB11; the second output group is OUTX0 and OUTX15; the third output group is OUTX5 and OUTX10; the  
fourth output group is OUTX1 and OUTX14; the fifth output group is OUTX2 and OUTX13; the sixth output group  
is OUTX6 and OUTX9; the seventh output group is OUTX3 and OUTX12; and the eighth output group is OUTX7  
and OUTX8. Each output group is turned on and off sequentially with a small delay between groups.  
Copyright © 2014, Texas Instruments Incorporated  
27  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Maximum Current Control (MC) Function  
The maximum output current per channel, IOLCMax, is programmed by the MC data and is set with the serial  
interface. IOLCMax is the largest current for each output. Each OUTXn sinks the IOLCMax current when they turn on  
and the dot correction and global brightness control data are set to the maximum value of 7Fh (127d).  
When the device is powered on, the MC data are set to 0. MC data should be changed when all constant-current  
outputs (OUTXn, where X = R, G, or B; n = 0 to 7) are off. MCX = 6 and MCX = 7 are used when VCC is greater  
than 3.6 V. The same MC data must be written twice to change the maximum constant-current output. Table 8  
shows the characteristics of the constant-current sink versus the maximum current (MC) control data.  
Table 8. Maximum Constant-Current Output versus MC Data  
MCX(1) DATA  
IOLCMax (mA), OUTXn(2)  
BINARY  
000 (default)  
001  
DECIMAL  
HEX  
0 (default)  
0 (default)  
3.2  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8.0  
010  
11.2  
15.9  
19.1  
23.9  
27.1  
31.9  
011  
100  
101  
110(3)  
111(3)  
(1) X = R, G, or B.  
(2) X = R, G, or B. n = 0 to 15.  
(3) MCX7 and MCX6 can be used when VCC is greater than 3.6 V.  
8.4.2 Dot Correction (DC) Function  
The TLC5955 can individually adjust the output current of each channel (OUTx0 to OUTx15, where x is R, G, or  
B) by using DC. The DC function allows the brightness deviations of the LEDs connected to each output to be  
individually adjusted. Each output DC is programmed with a 7-bit word, so the value is adjusted with 128 steps  
within the range of 26.2% to 100% of IOLCMax. DC data are programmed into the TLC5955 with the serial  
interface. When the device is powered on, the DC data in the control latch contains random data. Therefore, DC  
data must be written to the DC data latch before turning the constant-current outputs on. Table 9 summarizes the  
DC data value versus the set current value.  
Table 9. DC Data versus Current Ratio and Set Current Value  
DCXn(1) DATA  
RATIO OF  
OUTPUT  
CURRENT TO  
IOLCMax (%)  
IOUT (mA)  
(MC = 7, typical) (MC = 0, typical)  
IOUT (mA)  
BINARY  
000 0000  
000 0001  
000 0010  
DECIMAL  
HEX  
00  
BC DATA (Hex)  
0
1
7F  
7F  
7F  
26.2  
26.7  
27.3  
8.36  
8.54  
8.73  
0.84  
0.86  
0.88  
01  
2
02  
111 1101  
111 1110  
111 1111  
125  
126  
127  
7D  
7E  
7F  
7F  
7F  
7F  
98.8  
99.4  
100.0  
31.5  
31.7  
31.9  
3.16  
3.18  
3.20  
(1) X = R, G, or B. n = 0 to 15.  
28  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
8.4.3 Global Brightness Control (BC) Function  
The TLC5955 has the ability to adjust the output current of all constant-current outputs of each color group  
(OUTR0 to OUTR15, OUTG0 to OUTG15, and OUTB0 to OUTB15) simultaneously to the same current ratio.  
This function is called global brightness control (BC). The BC function allows the global brightness of LEDs  
connected to the output to be adjusted. All outputs of each color group can be adjusted in 128 steps from 10% to  
100% of the maximum output current, IOLCMax. BC data are programmed into the TLC5955 with the serial  
interface. When the BC data change, the output current also changes immediately. When the device is powered  
on, the BC data contain random data. Table 10 summarizes the BC data versus the set current value.  
Table 10. BC Data versus Constant-Current Ratio and Set Current Value  
BCX(1) DATA  
RATIO OF  
OUTPUT  
CURRENT TO  
IOLCMax(%)  
DCXn(2) DATA  
IOUT (mA)  
IOUT (mA)  
BINARY  
000 0000  
000 0001  
000 0010  
DECIMAL  
HEX  
00  
(Hex)  
(MC = 7, typical) (MC = 0, typical)  
0
1
7F  
7F  
7F  
10.0  
10.7  
11.4  
3.19  
3.42  
3.64  
0.32  
0.34  
0.37  
01  
2
02  
111 1101  
111 1110  
111 1111  
125  
126  
127  
7D  
7E  
7F  
7F  
7F  
7F  
98.6  
99.3  
100.0  
31.5  
31.7  
31.9  
3.15  
3.18  
3.20  
(1) X = R, G, or B.  
(2) X = R, G, or B. n = 0 to 15.  
8.4.4 Grayscale (GS) Function (PWM Control)  
The TLC5955 can adjust the brightness of each output channel using a pulse width modulation (PWM) control  
scheme. The architecture of 16 bits per channel results in 65,536 brightness steps, from 0% up to 100%  
brightness.  
The PWM operation for OUTn is controlled by a 16-bit grayscale (GS) counter. The GS counter increments on  
each GS reference clock (GSCLK) rising edge. The GS counter resets to 0000h when the LAT rising signal for a  
GS data write is input with the display timing reset mode enabled.  
The TLC5955 has two types of PWM control: conventional PWM control and enhanced spectrum (ES) PWM  
control. The conventional PWM control can be selected when the ESPWM bit in the control data latch is 0. The  
ES PWM control is selected when the ESPWM bit is 1. The conventional PWM control should be selected for  
multiplexing a drive. The ES-PWM control should be selected for a static drive.  
The on-time (tOUT_ON) of each output (OUTn) can be calculated by Equation 2.  
tOUT_ON (ns) = tGSCLK (ns) × GSXn  
where:  
TGSCLK = one GS clock period,  
GSXn = the programmed GS value for OUTXn (GSXn = 0d to 65535d),  
X = R, G, or B for the red, green, or blue color group, and  
n = 0 to 15.  
(2)  
Copyright © 2014, Texas Instruments Incorporated  
29  
 
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
Table 11 summarizes the GS data values versus the output on-time duty cycle. When the device powers up, all  
OUTXn are forced off, the GS counter initializes to 0000h, and the status remains the same until GS data are  
written. After that, each OUTXn on and off status can be controlled by GS data and GSCLK.  
Table 11. Output Duty Cycle and On-Time versus GS Data  
GS DATA  
GS DATA  
DECIMAL  
0
HEX  
0
ON-TIME DUTY (%)  
0
DECIMAL  
32768  
32769  
32770  
32771  
HEX  
8000  
8001  
8002  
8003  
ON-TIME DUTY (%)  
50.000  
50.002  
50.003  
50.005  
1
1
0.002  
2
2
0.003  
3
3
0.005  
8191  
8192  
8193  
1FFF  
2000  
2001  
12.498  
12.500  
12.502  
40959  
40960  
40961  
9FFF  
A000  
A001  
62.498  
62.500  
62.502  
16381  
16382  
16383  
16384  
16385  
16386  
16387  
3FFD  
3FFE  
3FFF  
4000  
4001  
4002  
4003  
24.996  
24.997  
24.998  
25.000  
25.002  
25.003  
25.005  
49149  
49150  
49151  
49152  
49153  
49154  
49155  
BFFD  
BFFE  
BFFF  
C000  
C001  
C002  
C003  
74.995  
74.997  
74.998  
75.000  
75.002  
75.003  
75.005  
24575  
24576  
24577  
5FFF  
6000  
6001  
37.498  
37.500  
37.502  
57343  
57344  
57345  
DFFF  
E000  
E001  
87.498  
87.500  
87.502  
32765  
32766  
32767  
7FFD  
7FFE  
7FFF  
49.995  
49.997  
49.998  
65533  
65534  
65535  
FFFD  
FFFE  
FFFF  
99.995  
99.997  
99.998  
30  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
8.4.4.1 Conventional PWM Control  
The first GS clock rising edge increments the GS counter by one and switches on all outputs with a non-zero GS  
value programmed into the GS data latch. Each additional GS clock rising edge increases the corresponding GS  
counter by one.  
The GS counter keeps track of the number of clock pulses from the respective GS clock inputs. Each output  
stays on while the counter is less than or equal to the programmed GS value. Each output turns off at the GS  
counter value rising edge when the counter becomes greater than the output GS latch value. Figure 27 illustrates  
the conventional PWM operation.  
LAT  
32768  
32769  
32770  
65535  
65536  
1
2
3
4
- - -  
1
2
3
4
- - -  
GSCLK  
OUTXn  
(VOUTXnH)  
(VOUTXnL)  
OFF  
ON  
No driver turns on when Grayscale data is zero.  
(GSDATA=000h)  
T=GSCLK*1  
(VOUTXnH)  
OFF  
OUTXn  
ON  
(VOUTXnL)  
(GSDATA=001h)  
T=GSCLK*2  
(VOUTXnH)  
OFF  
OUTXn  
(VOUTXnL)  
ON  
(GSDATA=002h)  
T=GSCLK*3  
(VOUTXnH)  
OFF  
OUTXn  
(VOUTXnL)  
ON  
(GSDATA=003h)  
T=GSCLK*32767  
T=GSCLK*32768  
(VOUTXnH)  
(VOUTXnL)  
OFF  
OUTXn  
ON  
(GSDATA=7FFFh)  
(VOUTXnH)  
(VOUTXnL)  
OFF  
OUTXn  
ON  
(GSDATA=8000h)  
T=GSCLK*32769  
(VOUTXnH)  
(VOUTXnL)  
OFF  
OUTXn  
ON  
(GSDATA=8001h)  
T=GSCLK*65533  
T=GSCLK*65534  
T=GSCLK*65535  
(VOUTXnH)  
(VOUTXnL)  
OFF  
OUTXn  
ON  
(GSDATA=FFFDh)  
(VOUTXnH)  
(VOUTXnL)  
OFF  
OUTXn  
ON  
(GSDATA=FFFEh)  
(VOUTXnH)  
(VOUTXnL)  
OFF  
OUTXn  
ON  
(GSDATA=FFFFh)  
OUTXn turn on at the first GSCLK rising edge except when GS data are 0 after the  
LAT rising signal for GS data writes is input with the display timing reset mode enabled.  
OUTXn do not turn on again except for when the LAT rising signal  
for GS data writes is input with the display timing reset mode  
enabled (TMGRST = 1), otherwise the auto repeat mode  
(DSPRPT = 1) is enabled.  
Figure 27. Conventional PWM Operation  
Copyright © 2014, Texas Instruments Incorporated  
31  
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.4.4.2 Enhanced Spectrum (ES) PWM Control  
In this PWM control, the total display period is divided into 128 display segments. The total display period is the  
time from the first GS clock (GSCLK) to the 65,536th GSCLK input. Each display segment has a maximum of  
512 GSCLKs. The OUTXn on-time changes, depending on the 16-bit GS data. Refer to Table 12 for the  
sequence of information and to Figure 28 for the timing information.  
Table 12. ES PWM Drive Turn On-Time Length  
GS DATA  
DECIMAL  
HEX  
OUTn DRIVER OPERATION  
0
1
2
3
4
5
6
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
Does not turn on  
Turns on for one GSCLK period in the first display segment  
Turns on for one GSCLK period in the first and 65th display segments  
Turns on for one GSCLK period in the first, 65th, and 33rd display segments  
Turns on for one GSCLK period in the first, 65th, 33rd, and 97th display segments  
Turns on for one GSCLK period in the first, 65th, 33rd, 97th, and 17th display segments  
Turns on for one GSCLK period in the first, 65th, 33rd, 97th, 17th, and 81st display segments  
The number of display segments where OUTn is turned on for one GSCLK is incremented by increasing GS data  
in the following order:  
1 > 65 > 33 > 97 > 17 > 81 > 49 > 113 > 9 > 73 > 41 > 105 > 25 > 89 > 57 > 121 > 5 > 69 > 37 > 101 > 21 > 85 >  
53 > 117 > 13 > 77 > 45 > 109 > 29 > 93 > 61 > 125 > 3 > 67 > 35 > 99 > 19 > 83 > 51 > 115 > 11 > 75 > 43 >  
107 > 27 > 91 > 59 > 123 > 7 > 71 > 39 > 103 > 23 > 87 > 55 > 119 > 15 > 79 > 47 > 111 > 31 > 95 > 63 > 127 >  
2 > 66 > 34 > 98 > 18 > 82 > 50 > 114 > 10 > 74 > 42 > 106 > 26 > 90 > 58 > 122 > 6 > 70 > 38 > 102 > 22 > 86  
> 54 > 118 > 14 > 78 > 46 > 110 > 30 > 94 > 62 > 126 > 4 > 68 > 36 > 100 > 20 > 84 > 52 > 116 > 12 > 76 > 44  
> 108 > 28 > 92 > 60 > 124 > 8 > 72 > 40 > 104 > 24 > 88 > 56 > 120 > 16 > 80 > 48 > 112 > 32 > 96 > 64 >  
128.  
Turns on for one GSCLK period in the first to 127th display segments, but does not turn on in the 128th display  
segment  
127  
007Fh  
128  
129  
0080h  
0081h  
Turns on for one GSCLK period in all display segments (first to 128th)  
Turns on for two GSCLK periods in the first display period and for one GSCLK period in all other display periods  
The number of display segments where OUTn is turned on for one GSCLK is incremented by increasing GS data  
in the following order:  
1 > 65 > 33 > 97 > 17 > 81 > 49 > 113 > 9 > 73 > 41 > 105 > 25 > 89 > 57 > 121 > 5 > 69 > 37 > 101 > 21 > 85 >  
53 > 117 > 13 > 77 > 45 > 109 > 29 > 93 > 61 > 125 > 3 > 67 > 35 > 99 > 19 > 83 > 51 > 115 > 11 > 75 > 43 >  
107 > 27 > 91 > 59 > 123 > 7 > 71 > 39 > 103 > 23 > 87 > 55 > 119 > 15 > 79 > 47 > 111 > 31 > 95 > 63 > 127 >  
2 > 66 > 34 > 98 > 18 > 82 > 50 > 114 > 10 > 74 > 42 > 106 > 26 > 90 > 58 > 122 > 6 > 70 > 38 > 102 > 22 > 86  
> 54 > 118 > 14 > 78 > 46 > 110 > 30 > 94 > 62 > 126 > 4 > 68 > 36 > 100 > 20 > 84 > 52 > 116 > 12 > 76 > 44  
> 108 > 28 > 92 > 60 > 124 > 8 > 72 > 40 > 104 > 24 > 88 > 56 > 120 > 16 > 80 > 48 > 112 > 32 > 96 > 64 >  
128.  
Turns on for two GSCLK periods in the first to 127th display segments and turns on one GSCLK period in the  
128th display segment  
255  
256  
257  
00FFh  
0100h  
0101h  
Turns on for two GSCLK periods in all display segments (first to 128th)  
Turns on for three GSCLK periods in the first display segments and for two GSCLK periods in all other display  
segments  
The number of display segments where OUTn is turned on for one GSCLK is incremented by increasing GS data  
in the following order:  
1 > 65 > 33 > 97 > 17 > 81 > 49 > 113 > 9 > 73 > 41 > 105 > 25 > 89 > 57 > 121 > 5 > 69 > 37 > 101 > 21 > 85 >  
53 > 117 > 13 > 77 > 45 > 109 > 29 > 93 > 61 > 125 > 3 > 67 > 35 > 99 > 19 > 83 > 51 > 115 > 11 > 75 > 43 >  
107 > 27 > 91 > 59 > 123 > 7 > 71 > 39 > 103 > 23 > 87 > 55 > 119 > 15 > 79 > 47 > 111 > 31 > 95 > 63 > 127 >  
2 > 66 > 34 > 98 > 18 > 82 > 50 > 114 > 10 > 74 > 42 > 106 > 26 > 90 > 58 > 122 > 6 > 70 > 38 > 102 > 22 > 86  
> 54 > 118 > 14 > 78 > 46 > 110 > 30 > 94 > 62 > 126 > 4 > 68 > 36 > 100 > 20 > 84 > 52 > 116 > 12 > 76 > 44  
> 108 > 28 > 92 > 60 > 124 > 8 > 72 > 40 > 104 > 24 > 88 > 56 > 120 > 16 > 80 > 48 > 112 > 32 > 96 > 64 >  
128.  
Turns on for 511 GSCLK periods in the first to 127th display segments, but only turns on for 510 GSCLK periods  
in the 128th display segment  
65479  
65480  
65481  
FEFFh  
FF00h  
FF01h  
Turns on for 511 GSCLK periods in all display segments (first to 128th)  
Turns on for 512 GSCLK periods in the first display period and for 511 GSCLK periods in the second to 128th  
display segments  
Turns on for 512 GSCLK periods in the first to 63rd and 65th to 127th display segments; also turns on for 511  
GSCLK periods in the 64th and 128th display segments  
65534  
FFFEh  
Turns on for 512 GSCLK periods in the first to 127th display segments but only turns on for 511 GSCLK periods  
in the 128th display segment  
65535  
FFFFh  
32  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
LAT  
16382 16385  
16383 16386  
16384 16387  
32766  
32767  
32768  
32769  
32770  
32771  
49150  
49151  
49152  
49153  
49154  
49155  
65023  
65024  
65025  
65026  
65536  
65534  
65535  
511  
512  
513  
514  
1
2
3
GSCLK  
32nd 33rd  
Period Period  
2nd  
Period  
64th 65th  
Period Period  
96th  
Period  
97th  
Period  
127th  
Period  
128th  
Period  
1st  
Period  
(Voltage Level = H)  
1st Period  
OFF  
ON  
OUTXn  
(Voltage Level = L)  
T = GSCLK x 1d  
(GS Data = 0000h)  
OFF  
OUTXn  
When Auto  
Display Repeat  
is On  
ON  
(GS Data = 0001h)  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
OFF  
OUTXn  
ON  
(GS Data = 0002h)  
T = GSCLK x 1d  
OFF  
OUTXn  
ON  
(GS Data = 0003h)  
T = GSCLK x 1d  
T = GSCLK x 1d  
OFF  
OUTXn  
ON  
(GS Data = 0004h)  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
OFF  
OUTXn  
ON  
(GS Data = 0041h)  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 511d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
OFF  
OUTXn  
ON  
(GS Data = 0080h)  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 1d  
T = GSCLK x 2d  
T = GSCLK x 2d  
T = GSCLK x 1d  
T = GSCLK x 2d  
OFF  
OUTXn  
ON  
(GS Data = 0081h)  
OUTXn  
OFF  
ON  
(GS Data = 0082h)  
T = GSCLK x 511d  
T = GSCLK x 512d  
T = GSCLK x 511d in 2nd to 128th Periods  
T = GSCLK x 511d in 2nd to 128th Periods  
OUTXn  
OFF  
(GS Data = FF80h)  
OFF  
OUTXn  
ON  
(GS Data = FF81h)  
T = GSCLK x 512d  
T = GSCLK x 512d  
T = GSCLK x 512d in 2nd to 63rd and 65rd to 127th Periods, T = GSCLK x 511din 64th Period  
T = GSCLK x 511d  
T = GSCLK x 511d  
OFF  
OUTXn  
ON  
T = GSCLK x 512d in 2nd to 127th Periods  
(GS Data = FFFEh)  
OFF  
OUTXn  
ON  
(GS Data = FFFFh)  
Figure 28. ES PWM Operation  
Copyright © 2014, Texas Instruments Incorporated  
33  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.4.4.3 Auto Display Repeat Function  
This function can repeat the total display period as long as GSCLK is present, as shown in Figure 29. This  
function is switched on or off by the content of the DSPRPT bit in the control data latch.  
When the DSPRPT bit is 1, auto display repeat is enabled and the entire display period repeats. When the  
DSPRPT bit is 0, auto display repeat is disabled and the entire display period only executes one time after a LAT  
signal rising edge is input for GS data writes when the display timing reset is enabled.  
LAT  
1
4
65534  
65535  
65536  
1
4
65534  
65535  
65536  
1
4
7
1
65534  
65535  
65536  
1
2
5
2
5
2
5
8
2
2
3
65533  
3
65533  
3
6
9
GSCLK  
1 (Auto Display  
Repeat enabled)  
DSPRPT= 0  
(Auto Display  
Repeat disabled)  
TMGRST bit  
in Control Data  
Latch (Internal)  
TMGRST bit=1  
DSPRPT bit  
in Control Data  
Latch (Internal)  
1st entire  
display period  
1st entire display period  
2nd entire display period  
3rd entire display period  
Display period is repeated  
by Auto DisplayRepeat  
function.  
OUTXn is forced off  
when LAT rising edge is  
input for GS data writing  
with timing reset mode  
enable (TMGRST=1).  
OFF  
OUTXn  
ON  
OUTXn is not turned on again  
because Display Auto Repeat  
is disable (DSPRPT=0).  
(GSDATA=FFFFh)  
Figure 29. Auto Display Repeat Function  
34  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
8.4.4.4 Display Timing Reset Function  
The display timing reset function allows initializing the display timing with a LAT rising edge. This function can be  
switched on or off with the TMGRST bit in the control data latch. When the TMGRST bit is 1, the GS counter is  
reset to 0 and all outputs are forced off at the LAT rising edge for a GS data write. Furthermore, the 768-bit GS  
data latch is updated with the data from the common shift register and the 336-bit DC data latch is updated with  
the DC data in the 371-bit control data latch. When the TMGRST bit is 0, the GS counter is not reset and the  
outputs are not forced off, even if a LAT rising edge is input. A timing diagram for this function is shown in  
Figure 30.  
Control Data Write (MSB of the Common Shift Register = 1)  
Grayscale Data Write (MSB of the Common Shift Register = 0)  
Grayscale Data Write  
DCR0 DCR0 DCR0 DCR0  
2A  
DCR0  
0A  
GSB15 GSB15  
14A  
GSR0 GSR0 GSR0  
1A  
GSR0  
0A  
GSB15 GSB15 GSB15  
13B  
Low  
1
SIN  
SCLK  
LAT  
Low  
4A  
3A  
1A  
15A  
3A  
2A  
15B  
14B  
1
2
3
764  
765  
766  
767  
768  
769  
766  
767  
768  
769  
2
3
4
GSCLK  
DSPRPT Bit in Control Data  
(Internal)  
DSPRPT Bit = 1  
TMGRST Bit = 1  
RFRESH Bit = 0  
TMGRST Bit in Control Data  
(Internal)  
RFRESH Bit in Control Data  
(Internal)  
CommonShift Register  
(Internal)  
SID are loaded at the LAT falling edge.  
GS Counter Data  
(Internal)  
GS counter data are incremented at each  
GSCLK rising edge.  
GS counter data are incremented  
at each GSCLK rising edge.  
0
GS counter is reset to zero when LAT for  
GS data writes is input with TMGRST = 1.  
Internal LAT Enable  
(Internal)  
Always Enabled  
Internal LAT Signal  
(Internal)  
GS Data Latch  
(Internal)  
Old Grayscale Data  
New Grayscale Data  
Control Data Latch  
(Internal)  
New Control Data  
Old Control Data  
DC Data Latch  
(Internal)  
New DC Data  
Old DC Data  
OUTXn are forced off when LAT for GS data  
writes is input with the TMGRST bit = 1.  
OFF  
(1)  
OUTXn are controlled by old GS, DC data.  
OUTXn are controlled by new GS, DC data.  
OUTXn  
ON  
LOD  
B15A  
LOD  
LOD  
G15A R15A B14A  
LOD  
DCR0 DCR0 DCR0  
0A  
Low  
SOUT  
High  
2A  
1A  
Figure 30. Display Timing Reset Function (DSPRPT = 1, TMGRST = 1, and RFRESH = 0)  
Copyright © 2014, Texas Instruments Incorporated  
35  
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
8.4.4.5 Auto Data Refresh Function  
This function delays updating the grayscale (GS) and dot correction (DC) data until the end of one entire display  
period. If both DC data and GS data are written by the end of an entire display period, the input DC data are held  
in the control data latch and the GS data are held in the common shift register. Both DC and GS data are copied  
to the 336-bit DC data latch and 768-bit GS data latch at the end of an entire display period. The data latches  
are used for the next display period. GS data are directly copied from the common shift register to the GS data  
latch. Therefore, GS data must be written after the DC data are written. Furthermore, the GS data in the common  
shift resistor must not be changed until all data are copied to the GS data latch. Figure 31 and Figure 32 show  
timing diagrams for this function.  
Control Data Write (MSB of the Common Shift Register = 1)  
Grayscale Data Wriet (MSB of the Common Shift Register = 0)  
Grayscale Data Write  
GSB15 GSB15  
14A  
GSR0 GSR0 GSR0  
3A  
GSR0  
0A  
GSB15  
L
15B  
DCR0 DCR0 DCR0 DCR0  
3A  
DCR0  
0A  
L
SIN  
SCLK  
LAT  
4A  
2A  
1A  
15A  
2A  
1A  
1
2
1
2
3
764  
765  
766  
767  
768  
769  
766  
767  
768  
769  
65535th GSCLK  
65536th GSCLK  
1
3
5
7
2
4
6
8
GSCLK  
DSPRPT Bit  
in Control Data  
(Internal)  
DSPRPT bit=1  
TMGRST bit=0  
RFRESH bit=1  
TMGRST Bit  
in Control Data  
(Internal)  
RFRESH Bit  
in Control Data  
(Internal)  
CommonShift  
Register  
(Internal)  
SID are loaded at 1st  
GSCLK input.  
GS Counter  
Data (Internal)  
GS counter data is incremented  
at each GSCLK rising edge.  
GS counter data is incremented  
at each GSCLK rising edge.  
0
The internal LAT enable is set  
to high level when LAT is input  
for GS data writing.  
The internal LAT enable  
is set to low level when  
1st GSCLK is input.  
Internal LAT  
Enable  
(Internal)  
The internal LAT signal is generated  
at 65536th GSCLK when Internal LAT  
enable is high level only.  
Internal  
LAT Signal  
(Internal)  
GS Data  
Latch  
(Internal)  
New Grayscale Data  
Old Grayscale Data  
Control Data  
Latch  
(Internal)  
New Control Data  
Old Control Data  
DC Data  
Latch  
(Internal)  
Old DC Data  
New DC Data  
OFF  
OUTn are controlled  
by new GS/DC data  
OUTn are controlled by old GS/DC data.  
DCR0 DCR0 DCR0  
OUTn  
.
ON  
LOD LOD  
B15A G15A  
L
H
SOUT  
2A  
1A  
0A  
Figure 31. Auto Data Refresh Function 1 (DSPRPT = 1, TMGRST = 0, and RFRESH = 1)  
36  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
Control Data Write (MSB of the Common Shift register = 1  
Grayscale Data Write (MSB of the Common Shift Register = 0)  
Grayscale Data Write  
DCR0 DCR0 DCR0 DCR0  
2A  
DCR0  
0A  
GSB15 GSB15  
14A  
GSR0 GSR0 GSR0  
1A  
GSR0  
0A  
GSB15 GSB15 GSB15  
13B  
L
L
SIN  
764  
4A  
3A  
1A  
15A  
3A  
2A  
15B  
14B  
1
2
3
765  
766  
767  
768  
769  
766  
767  
768  
769  
1
2
3
4
SCLK  
LAT  
GSCLK  
DSPRPT bit  
in Control Data  
(Internal)  
DSPRPT bit =1  
TMGRST bit =0  
RFRESH bit =0  
TMGRST bit  
in Control Data  
(Internal)  
RFRESH bit  
in Control Data  
(Internal)  
CommonShift  
Register  
(Internal)  
SID are loaded at the LAT falling edge.  
GS Counter  
Data (Internal)  
GS counter data is incremented  
at each GSCLK rising edge.  
Internal LAT  
Enable  
(Internal)  
Always enable  
Internal  
LAT Signal  
(Internal)  
GS Data  
Latch  
(Internal)  
Old Grayscale Data  
New Grayscale Data  
Control Data  
Latch  
(Internal)  
Old Control Data  
New Control Data  
DC Data  
Latch  
(Internal)  
Old DC Data  
New DC Data  
OFF  
OUTn are controlled  
by old GS/DC data.  
OUTn are controlled  
by new GS/DC data.  
OUTn  
ON  
LOD  
G15A R15A B14A  
DCR0 DCR0 DCR0  
2A 1A 0A  
LOD  
B15A  
LOD  
LOD  
L
H
SOUT  
Figure 32. Auto Data Refresh Function 2 (DSPRPT = 1, TMGRST = 0, and RFRESH = 0)  
Copyright © 2014, Texas Instruments Incorporated  
37  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
9 Applications and Implementation  
9.1 Application Information  
The device is a 48-channel, constant sink current, LED driver. This device is typically connected in series to drive  
many LED lamps with only a few controller ports. Output current control data and PWM control data can be  
written from the SIN input terminal. The PWM timing reference clock can be supplied from the GSCLK input  
terminal. Also, the LED open and short error flag can be read out from the SOUT output terminal. Furthermore,  
the device maximum GSCLK clock frequency is 33 MHz and can reduce flickering discernable by the human  
eye.  
9.2 Typical Application  
9.2.1 Daisy-Chain Application  
In this application, the device VCC and LED lamp anode voltages are supplied from different power supplies.  
VLED  
+
x48  
¼
x48  
¼
¼¼  
¼
¼
OUTR0  
SIN  
OUTB15  
SOUT  
OUTR0  
SIN  
OUTB15  
DATA  
SCLK  
LAT  
SOUT  
VCC  
VCC  
SCLK  
LAT  
SCLK  
LAT  
TLC5955  
TLC5955  
VCC  
VCC  
IC1  
ICn  
GSCLK  
GSCLK  
GSCLK  
Controller  
GND  
GND  
GND  
GND  
3
Error Read  
Figure 33. Multiple Daisy-Chained TLC5955 Devices  
9.2.1.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 13. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VCC input voltage range  
3.0 V to 5.5 V  
LED lamp (VLED) input voltage range  
Maximum LED forward voltage (VF) + 0.3 V (knee voltage)  
Low level = GND, High level = VCC  
SIN, SCLK, LAT, and GSCLK voltage range  
38  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Step-by-Step Design Procedure  
To begin the design process, a few parameters must be decided upon. The designer needs to know the  
following:  
Maximum output constant-current value for each color LED ramp.  
Maximum LED forward voltage (VF).  
Current ratio of red, green, and blue LED lamps for the best white balance.  
Are the auto display repeat function, display timing reset function, or auto data refresh function used?  
Which PWM control method is used: ES-PWM or conventional PWM?  
Is the LED short detect (LSD) function used? If so, which detection level (70% VCC or 90% VCC) is used?  
9.2.1.2.2 Maximum Current (MC) Data  
There are a total of nine bits of MC data for the red, green, and blue LED ramp. Select the MC data to be greater  
than each LED ramp current and write the data with other control data.  
9.2.1.2.3 Global Brightness Control (BC) Data  
There are a total of three sets of 7-bit BC data for the red, green, and blue LED ramp. Select the BC data for the  
best white balance of the red, green, and blue LED ramp and write the data with other control data.  
9.2.1.2.4 Dot Correction (DC) Data  
There are a total of 48 sets of 7-bit DC data for each current adjustment. Select the DC data for the best  
uniformity of each color LED ramp and write the data with other control data.  
9.2.1.2.5 Grayscale (GS) Data  
There are a total of 48 sets of 16-bit GS data for the PWM control of each output. Select the GS data of the LED  
ramp intensity and color control and write the data with other GS data.  
9.2.1.2.6 Other Control Data  
There are five bits control data to set the function mode for the auto display repeat, display timing reset, auto  
data refresh, ES-PWM, and LSD functions explained in the Device Functional Modes section. Write the 5-bit  
control data for the appropriate operation of the display system with MC, BC, and DC data as the control data.  
Copyright © 2014, Texas Instruments Incorporated  
39  
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
9.2.1.3 Application Curves  
One LED connected to each output.  
Ch1: VCC (2 V/div)  
Ch1: VCC (2 V/div)  
Ch2: VLED (2 V/div)  
Ch2: VLED (2 V/div)  
Ch3: VOUTB0 (1 V/div, Blue LED Connected)  
Ch3: VOUTB0 (1 V/div, Blue LED Connected)  
Ch4: LAT (5 V/div)  
Ch4: LAT (5 V/div)  
Time (40 ns/div)  
Time (400 s/div)  
MCX = 4  
BCX = DCXn = 7Fh  
GSCLK = 33 MHz  
DSPRPT = 1  
MCX = 4  
BCX = DCXn = 7Fh  
GSCLK = 33 MHz  
DSPRPT = 1  
VLED = 4.2 V  
VCC = 3.3 V  
VLED = 4.2 V  
VCC = 3.3 V  
TMGRST, RFRESH, ESPWM, LSDVLT = 0  
TMGRST, RFRESH, ESPWM, LSDVLT = 0  
Figure 34. Output Waveform Immediately After First GS  
Figure 35. Output Waveform Immediately After First GS  
Data Latch Input (GSXn = 0001h)  
Data Latch Input (GSXn = 7FFFh)  
40  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
10 Power Supply Recommendations  
The VCC power-supply voltage should be well regulated. An electrolytic capacitor must be used to reduce the  
voltage ripple to less than 5% of the input voltage. Furthermore, the VLED voltage should be set to the voltage  
calculated by Equation 3:  
VLED LED VF × Number of LED Lamps Connected in Series + 0.3 V (20 mA for Constant-Current Example)  
where:  
VF = Forward voltage  
(3)  
Because the total current of the constant-current output is large, some electrolytic capacitors must be used to  
prevent the OUTXn terminal voltage from dropping lower than the calculated voltage from Equation 3.  
11 Layout  
11.1 Layout Guidelines  
1. Place the decoupling capacitor near the VCC and GND terminals.  
2. Route the GND pattern as widely as possible for large GND currents. Maximum GND current is  
approximately 1.53 A.  
3. Routing between the LED cathode side and the device OUTXn should be as short and straight as possible to  
reduce wire inductance.  
4. The PowerPAD must be connected to the GND layer because the pad is not internally connected to GND  
and should be connected to a heat sink layer to reduce device temperature.  
Copyright © 2014, Texas Instruments Incorporated  
41  
 
TLC5955  
ZHCSC51 MARCH 2014  
www.ti.com.cn  
11.2 Layout Example  
Via  
Top-Side PCB Pattern  
Bottom-Side PCB Pattern  
LAT SIN  
GND  
GSCLK  
VLED  
VLED  
SCLK  
VCC  
SIN  
GND  
SCLK  
LAT  
GSCLK  
VCC  
OUTB4  
OUTB8  
OUTR4  
OUTG4  
OUTB0  
OUTR8  
OUTG8  
OUTB12  
OUTR0  
OUTR12  
OUTG0  
OUTB5  
OUTR5  
OUTG12  
OUTB9  
OUTR9  
Power  
OUTG5  
OUTB1  
OUTR1  
OUTG9  
OUTB13  
OUTR13  
Via to Heatsink Layer  
OUTG1  
OUTB2  
OUTR2  
OUTG13  
OUTB14  
OUTR14  
OUTG2  
OUTB2  
OUTR6  
OUTG6  
OUTG14  
OUTB10  
OUTR10  
OUTG10  
OUTB6  
OUTR3  
OUTB15  
OUTR15  
OUTG3  
OUTB7  
OUTR7  
OUTG15  
OUTB11  
OUTR11  
OUTG7  
SOUT  
OUTG11  
GND  
To Next  
VLED  
To Next To Next  
To Next  
SCLK  
To Next  
GSCLK  
To Next  
VLED  
LAT  
SIN  
Figure 36. Layout Example  
42  
Copyright © 2014, Texas Instruments Incorporated  
TLC5955  
www.ti.com.cn  
ZHCSC51 MARCH 2014  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
要获得 LED 驱动器解决方案,请访问 http://www.ti.com.cn/solution/cn/lighting_signage。  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
PowerPAD™ 耐热增强型封装应用报告》,SLMA002  
12.3 Trademarks  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
43  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC5955DCA  
TLC5955DCAR  
TLC5955RTQR  
TLC5955RTQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
QFN  
DCA  
DCA  
RTQ  
RTQ  
56  
56  
56  
56  
35  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLC5955  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
TLC5955  
TLC5955  
TLC5955  
QFN  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RTQ0056G  
PLASTIC QUAD FLATPACK-NO LEAD  
8.15  
7.85  
A
B
8.15  
7.85  
PIN 1 INDEX AREA  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6±0.1  
(0.2) TYP  
15  
28  
52X 0.5  
14  
29  
57  
4X  
6.5  
SYMM  
5.6±0.1  
1
42  
0.30  
0.18  
56X  
PIN 1 ID  
(OPTIONAL)  
43  
56  
0.1  
C A B  
C
0.5  
0.3  
56X  
SYMM  
0.05  
4225369 / A 10/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RTQ0056G  
PLASTIC QUAD FLATPACK-NO LEAD  
(0.78)  
(5.6)  
8X (1.33)  
6X (1.22)  
43  
56X (0.6)  
56  
1
42  
56X (0.24)  
6X (1.22)  
8X (1.33)  
52X (0.5)  
SYMM  
(7.8)  
(5.6)  
57  
(R0.05)  
TYP  
14  
29  
(Ø0.2) TYP  
VIA  
15  
28  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225369 / A 10/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. it is recommended thar vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RTQ0056G  
PLASTIC QUAD FLATPACK-NO LEAD  
(7.8)  
8X (0.665)  
8X (1.33)  
43  
56X (0.6)  
56  
56X (0.24)  
1
42  
57  
8X (1.33)  
52X (0.5)  
SYMM  
(7.8)  
8X (0.665)  
(R0.05) TYP  
16X  
(
1.13)  
14  
29  
METAL  
TYP  
15  
28  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
66% PRINTED COVERAGE BY AREA  
SCALE: 10X  
4225369 / A 10/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLC5957

具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器
TI

TLC5957RTQR

具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5957RTQT

具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5958

具有预充电 FET、LED 开路检测功能和 48k 位存储器的 48 通道、16 位 ES-PWM LED 驱动器
TI

TLC59581

具有预充电 FET、LOD Caterpillar 且支持 32 路多路复用的 48 通道 16 位 ESPWM LED 驱动器
TI

TLC59581RTQR

具有预充电 FET、LOD Caterpillar 且支持 32 路多路复用的 48 通道 16 位 ESPWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC59581RTQT

具有预充电 FET、LOD Caterpillar 且支持 32 路多路复用的 48 通道 16 位 ESPWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC59582

具有预充电 FET、LOD Caterpillar 且支持 16 路多路复用的 48 通道 16 位 ESPWM LED 驱动器
TI

TLC59582RTQR

具有预充电 FET、LOD Caterpillar 且支持 16 路多路复用的 48 通道 16 位 ESPWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC59582RTQT

具有预充电 FET、LOD Caterpillar 且支持 16 路多路复用的 48 通道 16 位 ESPWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5958RTQR

具有预充电 FET、LED 开路检测功能和 48k 位存储器的 48 通道、16 位 ES-PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5958RTQT

具有预充电 FET、LED 开路检测功能和 48k 位存储器的 48 通道、16 位 ES-PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI