TLE2024A-EP [TI]

增强型产品 Excalibur 高速、低功耗、精密运算放大器;
TLE2024A-EP
型号: TLE2024A-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品 Excalibur 高速、低功耗、精密运算放大器

放大器 运算放大器 放大器电路
文件: 总42页 (文件大小:889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
D
Controlled Baseline  
− One Assembly/Test Site, One Fabrication  
Site  
D
D
D
D
High Unity-Gain Bandwidth . . . 2 MHz Typ  
High Slew Rate . . . 0.45 V/µs Min  
Supply-Current Change Over Full Temp  
D
D
Extended Temperature Performance of  
−40°C to 125°C  
Enhanced Diminishing Manufacturing  
Sources (DMS) Support  
Range . . . 10 µA Typ at V  
=
15 V  
CC  
Specified for Both 5-V Single-Supply and  
15-V Operation  
D
Phase-Reversal Protection  
D
D
D
Enhanced Product-Change Notification  
D
High Open-Loop Gain . . . 6.5 V/µV  
(136 dB) Typ  
Qualification Pedigree  
Supply Current . . . 300 µA Max  
D
D
Low Offset Voltage . . . 100 µV Max  
Offset Voltage Drift With Time  
0.005 µV/mo Typ  
Low Input Bias Current . . . 50 nA Max  
Component qualification in accordance with JEDEC and industry  
standards to ensure reliable operation over an extended  
temperature range. This includes, but is not limited to, Highly  
Accelerated Stress Test (HAST) or biased 85/85, temperature  
cycle, autoclave or unbiased HAST, electromigration, bond  
intermetallic life, and mold compound life. Such qualification  
testing should not be viewed as justifying use of this component  
beyond specified performance and environmental limits.  
D
D
Low Noise Voltage . . . 19 nV/Hz Typ  
description  
The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new  
Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly  
improved slew rate and unity-gain bandwidth.  
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic  
improvement in unity-gain bandwidth and slew rate over similar devices.  
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both  
time and temperature. This means that a precision device remains a precision device even with changes in  
temperature and over years of use.  
This combination of excellent dc performance with a common-mode input voltage range that includes the  
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either  
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry  
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply  
rail.  
A variety of options are available in small-outline packaging for high-density systems applications.  
The Q-suffix devices are characterized for operation over the full automotive temperature range of −40°C to  
125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢥ  
Copyright 2007 Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢮ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
ORDERING INFORMATION  
V
max  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
IO  
PACKAGE  
T
A
AT 25°C  
200 µV  
500 µV  
300 µV  
500 µV  
750 µV  
1000 µV  
SOIC (D)  
SOIC (D)  
SOIC (D)  
SOIC (D)  
SOP (DW)  
SOP (DW)  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
Tape and reel  
TLE2021AQDREP  
TLE2021QDREP  
TLE2022AQDREP  
TLE2022QDREP  
TLE2024AQDWREP  
TLE2024QDWREP  
2021AE  
2021QE  
2022AE  
2022QE  
2024AE  
2024QE  
−40°C to 125°C  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available  
at www.ti.com/sc/package.  
TLE2021  
D PACKAGE  
(TOP VIEW)  
TLE2022  
D PACKAGE  
(TOP VIEW)  
TLE2024  
DW PACKAGE  
(TOP VIEW)  
OFFSET N1  
IN−  
NC  
V
OUT  
1OUT  
1IN−  
1IN+  
V
CC+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
4OUT  
4IN−  
4IN+  
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
2OUT  
2IN−  
2IN+  
CC+  
IN+  
V
/GND  
OFFSET N2  
V
/GND  
CC −  
V
/GND  
V
CC −  
CC −  
CC+  
3IN+  
3IN−  
3OUT  
NC  
2IN+  
2IN−  
2OUT  
NC  
NC − No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢐ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
equivalent schematic (each amplifier)  
V
CC+  
Q13  
Q22  
Q3  
Q17  
Q7  
Q28  
Q29  
Q31 Q35  
Q19  
Q1  
Q32  
Q34  
Q39  
Q24  
Q20  
Q5  
Q8  
Q36  
Q38  
Q11  
D3  
D4  
Q2  
C4  
OUT  
Q40  
IN −  
IN +  
Q4  
Q14  
Q12  
R7  
C3  
Q23 Q25  
C2  
Q10  
D2  
D1  
Q21  
Q27  
R6  
R1  
C1  
Q6  
R2  
R3  
Q9  
R4  
R5  
Q15  
Q37  
Q30 Q33  
Q26  
Q18  
OFFSET N1  
(see Note A)  
Q16  
OFFSET N2  
(see Note A)  
V
CC−  
/GND  
ACTUAL DEVICE COMPONENT COUNT  
COMPONENT  
TLE2021  
TLE2022  
TLE2024  
160  
28  
Transistors  
Resistors  
Diodes  
40  
7
80  
14  
8
4
16  
Capacitors  
4
8
16  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V  
CC+  
CC−  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ID  
V
I
CC  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mA  
I
Output current, I (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
Total current into V  
Total current out of V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
CC+  
CC−  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Operating free-air temperature range, T : Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Package thermal impedance, R  
(see Notes 4 and 5): D (8-pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W  
DW (16-pin) . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W  
θJA  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D package . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V  
, and V .  
CC+  
CC−  
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately  
600 mV is applied between the inputs unless some limiting resistance is used.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
4. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
JA  
J
A
ambient temperature is P = (T (max) − T )/θ . Selecting the maximum of 150°C can affect reliability.  
D
J
A
JA  
5. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions  
MIN  
2
MAX  
20  
UNIT  
Supply voltage, V  
CC  
V
V
V
=
5 V  
15 V  
0
3.2  
CC  
Common-mode input voltage, V  
IC  
V
=
−15  
−40  
13.2  
125  
CC  
Operating free-air temperature, T  
°C  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2021 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
CC  
TLE2021-EP  
TLE2021A-EP  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
400  
25°C  
120  
600  
800  
100  
V
IO  
Input offset voltage  
µV  
Full range  
550  
Temperature  
coefficient of input  
offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
0.005  
0.2  
0.005  
0.2  
µV/mo  
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
IB  
Full range  
0
to  
−0.3  
to  
0
to  
−0.3  
to  
25°C  
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
High-level output  
voltage  
V
V
V
V
OH  
3.8  
3.8  
= 10 kΩ  
0.8  
0.8  
Low-level output  
voltage  
OL  
Full range  
0.95  
0.95  
Large-signal  
differential  
voltage amplification  
25°C  
0.3  
0.1  
1.5  
0.3  
0.1  
1.5  
A
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
VD  
O
L
Full range  
25°C  
85  
80  
110  
120  
85  
80  
110  
120  
Common-mode  
rejection ratio  
CMRR  
= V min,  
ICR  
IC  
S
Full range  
Supply-voltage  
rejection ratio  
25°C  
105  
100  
105  
100  
k
= 5 V to 30 V  
dB  
SVR  
CC  
Full range  
(V  
CC  
/V )  
IO  
25°C  
170  
9
300  
300  
170  
9
300  
300  
I
Supply current  
µA  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current  
change over operating  
temperature range  
I  
CC  
Full range  
µA  
Full range is −40°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2021 electrical characteristics at specified free-air temperature, V = 15 V (unless otherwise  
CC  
noted)  
TLE2021-EP  
TLE2021A-EP  
PARAMETER  
TEST CONDITIONS  
T
UNIT  
A
MIN  
TYP  
MAX  
500  
MIN  
TYP  
MAX  
25°C  
120  
80  
300  
450  
V
IO  
Input offset voltage  
µV  
Full range  
700  
Temperature  
coefficient of input  
offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
0.006  
0.2  
0.006  
0.2  
µV/mo  
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
25  
25  
IB  
Full range  
−15 −15.3  
−15 −15.3  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
−15  
to  
13.2  
−15  
to  
13.2  
Full range  
Maximum positive  
peak output voltage  
swing  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
V
V
V
V
OM+  
13.8  
13.8  
= 10 kΩ  
Maximum negative  
peak output voltage  
swing  
−13.7 −14.1  
−13.7 −14.1  
−13.6  
OM −  
Full range −13.6  
Large-signal  
differential voltage  
amplification  
25°C  
1
6.5  
1
6.5  
A
V
V
V
=
0 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
VD  
O
L
Full range  
0.5  
0.5  
25°C  
100  
96  
115  
120  
100  
96  
115  
120  
Common-mode  
rejection ratio  
CMRR  
= V min,  
ICR  
IC  
S
Full range  
Supply-voltage  
rejection ratio  
25°C  
105  
100  
105  
100  
k
=
CC  
2.5 V to 15 V  
dB  
SVR  
Full range  
(V  
CC  
/V )  
IO  
25°C  
200  
10  
350  
350  
200  
10  
350  
350  
I
Supply current  
µA  
µA  
CC  
Full range  
Supply current  
change over  
operating temperature  
range  
V
O
= 0,  
No load  
I  
CC  
Full range  
Full range is −40°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2022 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
CC  
TLE2022-EP  
MIN  
TLE2022A-EP  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
TYP MAX MIN  
TYP MAX  
400  
25°C  
600  
800  
V
IO  
Input offset voltage  
µV  
µV/°C  
µV/mo  
nA  
Full range  
550  
Temperature coefficient of  
input offset voltage  
α
VIO  
Full range  
2
2
Input offset voltage  
long-term drift (see Note 4)  
25°C  
0.005  
0.5  
0.005  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
0.4  
33  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
IO  
35  
nA  
IB  
Full range  
0
to  
−0.3  
to  
0
to  
−0.3  
to  
25°C  
3.5  
4
3.5  
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
4
4.3  
0.7  
4
4.3  
0.7  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
3.8  
3.8  
= 10 kΩ  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.3  
0.1  
85  
1.5  
0.4  
0.1  
87  
1.5  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
O
L
Full range  
25°C  
100  
115  
450  
102  
118  
450  
Common-mode rejection  
ratio  
CMRR  
= V min,  
ICR  
IC  
S
Full range  
25°C  
80  
82  
100  
95  
103  
98  
Supply-voltage rejection  
k
= 5 V to 30 V  
SVR  
CC  
ratio (V  
CC  
/V )  
IO  
Full range  
25°C  
600  
600  
600  
600  
I
Supply current  
CC  
Full range  
V
O
= 2.5 V,  
No load  
Supply current change over  
operating temperature  
range  
I  
CC  
Full range  
37  
37  
µA  
Full range is −40°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2022 electrical characteristics at specified free-air temperature, V  
noted)  
= 15 V (unless otherwise  
CC  
TLE2022-EP  
MIN TYP MAX  
TLE2022A-EP  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
25°C  
150  
500  
700  
120  
300  
450  
V
IO  
Input offset voltage  
µV  
Full range  
Temperature coefficient  
of input offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.006  
0.5  
0.006  
0.4  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
35  
33  
IB  
Full range  
−15 −15.3  
−15 −15.3  
to  
to  
to  
to  
25°C  
13.5  
14  
13.5  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
−15  
to  
13.2  
−15  
to  
13.2  
Full range  
25°C  
Full range  
25°C  
14  
14.3  
14  
14.3  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM +  
13.8  
13.8  
= 10 kΩ  
−13.7 −14.1  
−13.7 −14.1  
−13.6  
Maximum negative peak  
output voltage swing  
OM−  
Full range −13.6  
25°C  
Full range  
25°C  
0.8  
0.8  
95  
4
106  
115  
550  
1
1
7
109  
118  
550  
Large-signal differential  
voltage amplification  
A
V
V
V
=
10 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
VD  
O
L
97  
93  
103  
98  
Common-mode rejection  
ratio  
CMRR  
= V min,  
ICR  
IC  
S
Full range  
25°C  
91  
100  
95  
Supply-voltage rejection  
k
= 2.5 V to 15 V  
SVR  
CC  
ratio (V  
CC  
/V )  
IO  
Full range  
25°C  
700  
700  
700  
700  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change  
over operating  
I  
CC  
Full range  
60  
60  
µA  
temperature range  
Full range is −40°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2024 electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
CC  
TLE2024-EP  
TLE2024A-EP  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
850  
25°C  
1100  
1300  
V
IO  
Input offset voltage  
µV  
Full range  
1050  
Temperature coefficient  
of input offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.005  
0.6  
0.005  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
0.5  
40  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
45  
IB  
Full range  
0
to  
3.5  
−0.3  
to  
0
to  
3.5  
−0.3  
to  
25°C  
4
4
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
0
to  
3.2  
0
to  
3.2  
Full range  
25°C  
Full range  
25°C  
3.9  
3.7  
4.2  
0.7  
1.5  
90  
3.9  
3.7  
4.2  
0.7  
1.5  
92  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
= 10 kΩ  
0.8  
0.8  
OL  
Full range  
25°C  
0.95  
0.95  
0.2  
0.1  
80  
80  
98  
93  
0.3  
0.1  
82  
Large-signal differential  
voltage amplification  
A
VD  
V
V
V
= 1.4 V to 4 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
O
L
Full range  
25°C  
Common-mode rejection  
ratio  
CMRR  
= V min,  
ICR  
IC  
S
Full range  
25°C  
82  
112  
100  
95  
115  
Supply-voltage rejection  
k
=
2.5 V to 15 V  
SVR  
CC  
ratio (V  
CC  
/V )  
IO  
Full range  
25°C  
800 1200  
1200  
800 1200  
1200  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change  
over operating  
I  
CC  
Full range  
50  
50  
µA  
temperature range  
Full range is −40°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2024 electrical characteristics at specified free-air temperature, V  
noted)  
= 15 V (unless otherwise  
CC  
TLE2024-EP  
MIN TYP MAX  
TLE2024A-EP  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
750  
25°C  
1000  
1200  
V
IO  
Input offset voltage  
µV  
Full range  
950  
Temperature coefficient  
of input offset voltage  
α
VIO  
Full range  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.006  
0.6  
0.006  
µV/mo  
V
IC  
= 0,  
R
= 50 Ω  
S
25°C  
Full range  
25°C  
6
10  
70  
90  
0.2  
45  
6
10  
70  
90  
I
I
Input offset current  
Input bias current  
nA  
nA  
IO  
50  
IB  
Full range  
−15 −15.3  
−15 −15.3  
25°C  
to  
13.5  
to  
14  
to  
13.5  
to  
14  
Common-mode input  
voltage range  
V
R
R
= 50 Ω  
V
ICR  
S
L
−15  
to  
13.2  
−15  
to  
13.2  
Full range  
25°C  
Full range  
25°C  
13.8  
13.7  
14.1  
13.8  
13.7  
14.2  
Maximum positive peak  
output voltage swing  
V
V
V
V
OM+  
= 10 kΩ  
−13.7 −14.1  
−13.7 −14.1  
−13.6  
Maximum negative peak  
output voltage swing  
OM−  
Full range −13.6  
25°C  
Full range  
25°C  
0.4  
0.4  
92  
88  
98  
93  
2
102  
112  
0.8  
0.8  
94  
4
105  
115  
Large-signal differential  
voltage amplification  
A
V
V
V
=
10 V,  
R
R
= 10 kΩ  
= 50 Ω  
V/µV  
dB  
dB  
µA  
VD  
O
L
Common-mode rejection  
ratio  
CMRR  
= V min,  
ICR  
IC  
S
Full range  
25°C  
90  
100  
95  
Supply-voltage rejection  
k
= 2.5 V to 15 V  
SVR  
CC  
ratio (V  
CC  
/V )  
IO  
Full range  
25°C  
1050 1400  
1400  
1050 1400  
1400  
I
Supply current  
CC  
Full range  
V
O
= 0,  
No load  
Supply current change  
over operating  
I  
CC  
Full range  
85  
85  
µA  
temperature range  
Full range is −40°C to 125°C.  
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2021 operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
PARAMETER  
TEST CONDITIONS  
T
MIN  
TYP  
0.5  
21  
MAX  
UNIT  
A
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
V/µs  
f = 10 Hz  
Equivalent input noise voltage  
(see Figure 2)  
V
n
nV/Hz  
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.9  
1.2  
42°  
Peak-to-peak equivalent input  
noise voltage  
V
µV  
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
MHz  
B
1
See Figure 3  
See Figure 3  
φ
m
Phase margin at unity gain  
TLE2021 operating characteristics at specified free-air temperature, V  
= 15 V  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
0.45  
0.4  
TYP  
MAX  
UNIT  
T
A
25°C  
0.65  
SR  
Slew rate at unity gain  
V
O
=
10 V, See Figure 1  
V/µs  
Full range  
25°C  
f = 10 Hz  
19  
15  
Equivalent input noise voltage  
(see Figure 2)  
V
n
nV/Hz  
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.09  
2
Peak-to-peak equivalent input  
noise voltage  
V
µV  
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
MHz  
B
1
See Figure 3  
See Figure 3  
25°C  
φ
m
Phase margin at unity gain  
25°C  
46°  
Full range is −40°C to 125°C for the Q-suffix devices.  
TLE2022 operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.5  
21  
MAX  
UNIT  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
V/µs  
f = 10 Hz  
Equivalent input noise voltage  
(see Figure 2)  
nV/Hz  
µV  
V
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
1.7  
47°  
V
I
Peak-to-peak equivalent input noise voltage  
N(PP)  
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
n
B
1
See Figure 3  
See Figure 3  
MHz  
φ
m
Phase margin at unity gain  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TLE2022 operating characteristics at specified free-air temperature, V  
= 15 V  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
0.45  
0.4  
TYP  
MAX  
UNIT  
T
A
25°C  
0.65  
SR  
Slew rate at unity gain  
V
O
=
10 V, See Figure 1  
V/µs  
nV/Hz  
µV  
Full range  
25°C  
f = 10 Hz  
19  
15  
Equivalent input noise  
voltage (see Figure 2)  
V
V
n
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.1  
Peak-to-peak equivalent  
input noise voltage  
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
25°C  
2.8  
MHz  
φ
m
Phase margin at unity gain  
25°C  
52°  
Full range is −40°C to 125°C.  
TLE2024 operating characteristics, V  
= 5 V, T = 25°C  
A
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.5  
21  
MAX  
UNIT  
SR  
Slew rate at unity gain  
V
O
= 1 V to 3 V, See Figure 1  
V/µs  
f = 10 Hz  
nV/Hz  
µV  
V
Equivalent input noise voltage (see Figure 2)  
Peak-to-peak equivalent input noise voltage  
n
f = 1 kHz  
17  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
0.16  
0.47  
0.1  
1.7  
47°  
V
N(PP)  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
MHz  
φ
m
Phase margin at unity gain  
TLE2024 operating characteristics at specified free-air temperature, V  
noted)  
= 15 V (unless otherwise  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
0.45  
0.4  
TYP  
MAX  
UNIT  
T
A
25°C  
Full range  
25°C  
0.7  
SR  
Slew rate at unity gain  
V
O
=
10 V, See Figure 1  
V/µs  
f = 10 Hz  
19  
15  
Equivalent input noise voltage  
(see Figure 2)  
nV/Hz  
µV  
V
V
n
f = 1 kHz  
25°C  
f = 0.1 to 1 Hz  
f = 0.1 to 10 Hz  
25°C  
0.16  
0.47  
0.1  
Peak-to-peak equivalent input noise voltage  
N(PP)  
25°C  
I
n
Equivalent input noise current  
Unity-gain bandwidth  
25°C  
pA/Hz  
B
1
See Figure 3  
See Figure 3  
25°C  
2.8  
MHz  
φ
m
Phase margin at unity gain  
25°C  
52°  
Full range is −40°C to 125°C.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
PARAMETER MEASUREMENT INFORMATION  
20 kΩ  
20 kΩ  
5 V  
15 V  
V
O
V
O
+
+
V
I
V
I
15 V  
30 pF  
(see Note A)  
20 kΩ  
30 pF  
(see Note A)  
20 kΩ  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 1. Slew-Rate Test Circuit  
2 kΩ  
2 kΩ  
15 V  
5 V  
20 Ω  
20 Ω  
V
O
+
V
O
2.5 V  
+
15 V  
20Ω  
20 Ω  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Voltage Test Circuit  
10 kΩ  
10 kΩ  
15 V  
5 V  
100 Ω  
+
V
I
V
I
V
O
100Ω  
V
O
+
2.5 V  
15 V  
30 pF  
(see Note A)  
10 kΩ  
30 pF  
(see Note A)  
10 kΩ  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
NOTE A: C includes fixture capacitance.  
L
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
PARAMETER MEASUREMENT INFORMATION  
5 V  
15 V  
+
0.1 µF  
10 kΩ  
V
O
V
O
+
V
I
V
I
10 kΩ  
− 15 V  
30 pF  
10 kΩ  
10 kΩ  
30 pF  
(see Note A)  
(see Note A)  
(a) SINGLE SUPPLY  
NOTE A: C includes fixture capacitance.  
(b) SPLIT SUPPLY  
L
Figure 4. Small-Signal Pulse-Response Test Circuit  
typical values  
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Input current  
Distribution  
5, 6, 7  
IO  
vs Common-mode input voltage  
8, 9, 10  
11, 12, 13  
I
I
IB  
vs Free-air temperature  
vs Differential input voltage  
vs Output current  
14  
I
15, 16, 17  
18  
V
V
Maximum peak output voltage  
High-level output voltage  
OM  
vs Free-air temperature  
vs High-level output current  
vs Free-air temperature  
19, 20  
21  
OH  
vs Low-level output current  
vs Free-air temperature  
22  
23  
V
V
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
Large-signal differential voltage amplification  
vs Frequency  
24, 25  
O(PP)  
vs Frequency  
vs Free-air temperature  
26  
27, 28, 29  
A
VD  
OS  
CC  
vs Supply voltage  
vs Free-air temperature  
30 − 33  
34 − 37  
I
I
Short-circuit output current  
Supply current  
vs Supply voltage  
vs Free-air temperature  
38, 39, 40  
41, 42, 43  
CMRR Common-mode rejection ratio  
vs Frequency  
44, 45, 46  
47, 48, 49  
50, 51  
SR  
Slew rate  
vs Free-air temperature  
Voltage-follower small-signal pulse response  
Voltage-follower large-signal pulse response  
52 − 57  
0.1 to 1 Hz  
0.1 to 10 Hz  
58  
59  
V
V
B
Peak-to-peak equivalent input noise voltage  
Equivalent input noise voltage  
Unity-gain bandwidth  
N(PP)  
vs Frequency  
60  
n
1
vs Supply voltage  
vs Free-air temperature  
61, 62  
63, 64  
vs Supply voltage  
vs Load capacitance  
vs Free-air temperature  
65, 66  
67, 68  
69, 70  
φ
m
Phase margin  
Phase shift  
vs Frequency  
26  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLE2022  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLE2021  
INPUT OFFSET VOLTAGE  
20  
16  
12  
8
20  
16  
12  
8
231 Units Tested From 1 Wafer Lot  
398 Amplifiers Tested From 1 Wafer Lot  
V
=
15 V  
CC  
V
=
15 V  
CC  
T
A
= 25°C  
P Package  
T
A
= 25°C  
P Package  
4
4
0
0
600 450 300 150  
0
150 300  
450 600  
600 400  
200  
0
200  
400  
600  
V
IO  
− Input Offset Voltage − µV  
V
IO  
− Input Offset Voltage − µV  
Figure 5  
Figure 6  
TLE2021  
INPUT BIAS CURRENT  
vs  
DISTRIBUTION OF TLE2024  
INPUT OFFSET VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
16  
12  
8
40  
35  
30  
25  
20  
15  
10  
−5  
V
= 15 V  
CC  
796 Amplifiers Tested From 1 Wafer Lot  
15 V  
= 25°C  
T
A
= 25°C  
V
T
A
=
CC  
N Package  
4
0
0
15  
−1  
0.5  
0
0.5  
1
10  
−5  
0
5
10  
15  
V
IO  
− Input Offset Voltage − mV  
V
IC  
− Common-Mode Input Voltage − V  
Figure 7  
Figure 8  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2022  
INPUT BIAS CURRENT  
vs  
TLE2024  
INPUT BIAS CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
50  
45  
60  
50  
V
=
15 V  
CC  
V
= 15 V  
CC  
T
A
= 25°C  
T
A
= 25°C  
40  
40  
30  
20  
35  
30  
25  
20  
15  
10  
−5  
0
5
10  
15  
15  
10  
−5  
0
5
10  
15  
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 9  
Figure 10  
TLE2022  
INPUT BIAS CURRENT  
TLE2021  
INPUT BIAS CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
−5  
V
V
V
= 15 V  
V
V
V
= 15 V  
= 0  
= 0  
CC  
= 0  
CC  
O
IC  
O
IC  
= 0  
35  
30  
25  
20  
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 11  
Figure 12  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2024  
INPUT BIAS CURRENT  
vs  
INPUT CURRENT  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
T
A
= 15 V  
60  
50  
40  
CC  
= 0  
V
V
V
= 15 V  
CC  
O
IC  
IC  
= 25°C  
= 0  
= 0  
30  
20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
125  
75 50 25  
0
25  
50  
75 100  
|V | − Differential Input Voltage − V  
ID  
T
A
− Free-Air Temperature − °C  
Figure 13  
Figure 14  
TLE2022  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
TLE2021  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
16  
16  
14  
12  
10  
8
V
T
= 15 V  
V
T
=
15 V  
CC  
CC  
= 25°C  
= 25°C  
A
14  
12  
10  
8
A
V
V
OM+  
OM+  
V
OM−  
V
OM−  
6
6
4
4
2
2
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
I
O
− Output Current − mA  
|I | − Output Current − mA  
O
Figure 15  
Figure 16  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2024  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
MAXIMUM PEAK OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
OUTPUT CURRENT  
15  
14.5  
14  
16  
14  
12  
10  
8
V
CC  
= 5 V  
T
A
= 25°C  
V
OM+  
V
OM+  
V
OM−  
V
OM−  
13.5  
13  
6
4
V
R
= 15 V  
CC  
12.5  
= 10 kΩ  
= 25°C  
L
2
T
A
0
12  
14  
0
2
4
6
8
10  
12  
75 50 25  
0
25  
50  
75  
100 125  
I
O
− Output Current − mA  
T
A
− Free-Air Temperature − °C  
Figure 17  
Figure 18  
TLE2021  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
TLE2022 AND TLE2024  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
5
V
T
A
= 5 V  
= 25°C  
CC  
V
T
A
= 5 V  
= 25°C  
CC  
4
3
2
1
0
1
0
0
−2  
−4  
−6  
−8  
10  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 19  
Figure 20  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
LOW-LEVEL OUTPUT CURRENT  
5
4.8  
4.6  
4.4  
5
4
3
2
1
0
V
T
A
= 5 V  
= 25°C  
V
CC  
= 5 V  
CC  
No Load  
R
= 10 kΩ  
L
4.2  
4
75 50 25  
0
25  
50  
75  
100 125  
0
0.5  
1
1.5  
2
2.5  
3
T
A
− Free-Air Temperature − °C  
I
− Low-Level Output Current − mA  
OL  
Figure 21  
Figure 22  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
5
1
0.75  
0.5  
I
= 1 mA  
OL  
4
3
2
1
0
I
= 0  
OL  
0.25  
0
V
= 5 V  
= 10 kΩ  
= 25°C  
CC  
R
T
A
L
V
CC  
= 5 V  
1 M  
75 50 25  
0
25  
50  
75 100 125  
100  
1 k  
10 k  
100 k  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 23  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
30  
25  
20  
15  
10  
5
V
CC  
= 15 V  
R
T
A
= 10 kΩ  
= 25°C  
L
0
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
Figure 25  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
120  
100  
80  
60°  
80°  
Phase Shift  
100°  
120°  
140°  
160°  
180°  
200°  
V
CC  
= 15 V  
A
VD  
60  
V
CC  
= 5 V  
40  
20  
R
C
T
A
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
0
20  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
Figure 26  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
AMPLIFICATION  
vs  
FREE-AIR TEMPERATURE  
10  
8
6
5
R
= 10 kΩ  
L
R
= 10 kΩ  
L
V
CC  
=
15 V  
V
CC  
= 15 V  
4
6
3
2
4
2
1
0
V
= 5 V  
V
= 5 V  
75  
CC  
CC  
0
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 27  
Figure 28  
TLE2024  
LARGE-SCALE DIFFERENTIAL VOLTAGE  
TLE2021  
AMPLIFICATION  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10  
8
10  
8
R
= 10 kΩ  
L
V
T
A
= 0  
= 25°C  
O
6
V
CC  
= 15 V  
V
ID  
= −100 mV  
4
6
2
0
4
−2  
−4  
−6  
−8  
10  
2
V
= 100 mV  
12  
ID  
V
0
=
5 V  
50  
CC  
0
75 50 25  
25  
75 100 125  
0
2
4
6
8
10  
14  
16  
T
A
− Free-Air Temperature − °C  
|V | − Supply Voltage − V  
CC  
Figure 29  
Figure 30  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
15  
12  
8
V
T
A
= 0  
= 25°C  
O
T
A
= 25°C  
10  
5
V
ID  
V
O
= −100 mV  
= V  
CC  
V
ID  
= −100 mV  
4
0
−5  
0
−4  
−8  
− 12  
V
= 100 mV  
= 0  
ID  
O
V
= 100 mV  
ID  
V
10  
15  
0
2
4
6
8
10  
12  
14  
16  
0
5
10  
15  
20  
25  
30  
|V  
CC  
| − Supply Voltage − V  
V
− Supply Voltage − V  
CC  
Figure 31  
Figure 32  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
15  
10  
8
6
V
CC  
= 5 V  
T
A
= 25°C  
V
ID  
V
O
= 100 mV  
V
V
= −100 mV  
= 5 V  
ID  
O
= V  
CC  
4
5
2
0
0
− 2  
− 4  
− 6  
− 8  
−5  
10  
15  
V
V
= 100 mV  
= 0  
ID  
O
V
ID  
V
O
= 100 mV  
= 0  
0
5
10  
15  
20  
25  
30  
− 75 − 50 − 25  
0
25  
50  
75 100 125  
V
CC  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
Figure 33  
Figure 34  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
TLE2021  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
6
4
12  
8
V
CC  
= 5 V  
V
V
= 15 V  
V
= −100 mV  
= 5 V  
CC  
= 0  
ID  
V
O
O
2
V
ID  
= −100 mV  
4
0
−2  
−4  
−6  
−8  
10  
0
−4  
−8  
12  
V
ID  
V
O
= 100 mV  
= 0  
V
ID  
= 100 mV  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature −°C  
T
A
− Free-Air Temperature − °C  
Figure 35  
Figure 36  
TLE2022 AND TLE2024  
SHORT-CIRCUIT OUTPUT CURRENT  
TLE2021  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
250  
200  
150  
100  
50  
15  
10  
5
V
= 0  
O
V
V
= 15 V  
CC  
= 0  
No Load  
O
V
= 100 mV  
ID  
T
A
= 125°C  
0
T
A
= 25°C  
−5  
10  
15  
T
= 55°C  
A
V
ID  
= 100 mV  
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
− Free-Air Temperature − °C  
|V | − Supply Voltage − V  
CC  
Figure 37  
Figure 38  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2024  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
500  
400  
1000  
V
= 0  
O
V
= 0  
O
No Load  
T
A
= 125°C  
No Load  
800  
600  
T
= 25°C  
T
A
= 25°C  
A
300  
T
A
= 55°C  
T
A
= 125°C  
T
A
= 55°C  
200  
100  
400  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 39  
Figure 40  
TLE2022  
SUPPLY CURRENT  
vs  
TLE2021  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
225  
200  
175  
150  
125  
100  
75  
500  
400  
V
= 15 V  
CC  
V
= 15 V  
CC  
V
CC  
= 2.5 V  
V
CC  
= 2.5 V  
300  
200  
100  
50  
V
= 0  
V
= 0  
O
O
25  
No Load  
No Load  
0
0
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 41  
Figure 42  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2024  
SUPPLY CURRENT  
vs  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
1000  
120  
100  
80  
60  
40  
20  
0
V
=
15 V  
CC  
800  
600  
V
= 15 V  
CC  
V
= 2.5 V  
CC  
V
CC  
= 5 V  
400  
200  
V
= 0  
O
No Load  
T
A
= 25°C  
0
75 50 25  
0
25  
50  
75 100 125  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
T
A
− Free-Air Temperature − °C  
f − Frequency − Hz  
Figure 43  
Figure 44  
TLE2024  
TLE2022  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
V
= 15 V  
CC  
T
A
= 25°C  
V
= 15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
T
A
= 25°C  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 45  
Figure 46  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2022  
SLEW RATE  
TLE2021  
SLEW RATE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
V
= 15 V  
CC  
V
=
15 V  
CC  
V
CC  
= 5 V  
V
= 5 V  
CC  
R
C
= 20 kΩ  
= 30 pF  
R
C
= 20 kΩ  
= 30 pF  
L
L
L
L
See Figure 1  
See Figure 1  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 47  
Figure 48  
TLE2024  
SLEW RATE  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
vs  
FREE-AIR TEMPERATURE  
1
0.8  
0.6  
0.4  
0.2  
0
100  
50  
V
R
C
= 15 V  
CC  
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
V
= 15 V  
CC  
See Figure 4  
0
V
= 5 V  
CC  
50  
100  
R
C
= 20 kΩ  
L
L
= 30 pF  
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
0
20  
40  
60  
80  
T
A
− Free-Air Temperature − °C  
t − Time − µs  
Figure 49  
Figure 50  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL  
PULSE RESPONSE  
TLE2021  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
2.6  
2.55  
2.5  
4
3
2
1
0
V
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
V
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
R
C
L
L
R
C
L
L
T
A
T
A
See Figure 4  
See Figure 1  
2.45  
2.4  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t − Time − µs  
t − Time − µs  
Figure 51  
Figure 52  
TLE2024  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SCALE  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
4
3
2
1
0
4
3
2
1
0
V
R
C
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
L
L
V
R
C
= 5 V  
= 10 kΩ  
= 30 pF  
= 25°C  
CC  
L
L
T
A
T
A
See Figure 1  
See Figure 1  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t − Time − µs  
t − Time − µs  
Figure 53  
Figure 54  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
TLE2022  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
V
=
15 V  
15  
10  
CC  
V
= 15 V  
CC  
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
T
A
See Figure 1  
See Figure 1  
5
5
0
0
− 5  
10  
15  
−5  
10  
15  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
t − Time − µs  
t − Time − µs  
Figure 55  
Figure 56  
TLE2024  
PEAK-TO-PEAK EQUIVALENT  
INPUT NOISE VOLTAGE  
0.1 TO 1 Hz  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
15  
10  
5
0.5  
0.4  
V
R
C
= 15 V  
CC  
L
L
V
=
15 V  
CC  
= 10 kΩ  
= 30 pF  
= 25°C  
T
A
= 25°C  
T
A
0.3  
See Figure 1  
0.2  
0.1  
0
0
− 0.1  
− 0.2  
− 0.3  
− 0.4  
− 0.5  
−5  
−10  
−15  
0
20  
40  
60  
80  
0
1
2
3
4
5
6
7
8
9
10  
t − Time − µs  
t − Time − s  
Figure 57  
Figure 58  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
PEAK-TO-PEAK EQUIVALENT  
EQUIVALENT INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
0.1 TO 10 Hz  
vs  
FREQUENCY  
0.5  
0.4  
200  
160  
120  
80  
V
T
=
15 V  
CC  
V
= 15 V  
CC  
= 25°C  
R
= 20 Ω  
= 25°C  
A
S
T
A
0.3  
See Figure 2  
0.2  
0.1  
0
− 0.1  
− 0.2  
− 0.3  
− 0.4  
− 0.5  
40  
0
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1 k  
10 k  
t − Time − s  
f − Frequency − Hz  
Figure 59  
Figure 60  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
4
3
2
1
0
4
3
2
1
0
R
C
= 10 kΩ  
= 30 pF  
L
L
R
C
= 10 kΩ  
L
L
= 30 pF  
T
= 25°C  
A
T
= 25°C  
A
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 61  
Figure 62  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2021  
UNITY-GAIN BANDWIDTH  
vs  
TLE2022 AND TLE2024  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
3
2
1
0
4
3
2
1
0
R
C
= 10 kΩ  
L
L
R
C
= 10 kΩ  
L
L
= 30 pF  
= 30 pF  
See Figure 3  
See Figure 3  
V
= 15 V  
CC  
V
= 15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 63  
Figure 64  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
55°  
53°  
51°  
49°  
47°  
45°  
50°  
48°  
46°  
44°  
42°  
40°  
R
C
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
R
C
T
A
= 10 kΩ  
= 30 pF  
= 25°C  
L
L
T
A
See Figure 3  
See Figure 3  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
|V  
CC  
| − Supply Voltage − V  
|V  
CC  
| − Supply Voltage − V  
Figure 65  
Figure 66  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
TYPICAL CHARACTERISTICS  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
TLE2021  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
70°  
60°  
50°  
40°  
30°  
20°  
10°  
0°  
60°  
50°  
40°  
30°  
20°  
10°  
0
R
= 10 kΩ  
= 30 pF  
L
R
= 10 kΩ  
= 25°C  
L
T
A
T
A
See Figure 3  
See Figure 3  
V
= 15 V  
CC  
V
= 15 V  
CC  
V
= 5 V  
CC  
V
CC  
= 5 V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
L
L
Figure 67  
Figure 68  
TLE2021  
PHASE MARGIN  
TLE2022 AND TLE2024  
PHASE MARGIN  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
50°  
48°  
46°  
44°  
42°  
40°  
38°  
36°  
54°  
52°  
R
C
= 10 kΩ  
= 30 pF  
L
L
See Figure 3  
V
= 15 V  
CC  
V
= 15 V  
CC  
50°  
48°  
V
CC  
= 5 V  
46°  
44°  
V
= 5 V  
CC  
R
C
= 10 kΩ  
= 30 pF  
L
L
42°  
40°  
See Figure 3  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 69  
Figure 70  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢂꢊ ꢋꢉꢁ ꢌꢍꢎ ꢏ ꢐꢌ ꢑꢐ ꢆꢒꢇꢂ ꢂꢓ ꢁ ꢔꢕꢆꢇꢔ ꢕ ꢂꢏ ꢇꢏ ꢂꢋ ꢌ ꢒꢌ ꢔ ꢖ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
voltage-follower applications  
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,  
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur  
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It  
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent  
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For  
feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem can  
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).  
C
= 20 pF to 50 pF  
F
I
F
1 mA  
R
F
V
CC+  
CC−  
+
V
O
V
I
V
Figure 71. Voltage Follower  
Input offset voltage nulling  
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in  
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null  
pins may be left disconnected.  
IN −  
OFFSET N2  
+
IN +  
5 kΩ  
OFFSET N1  
V
− (split supply)  
CC  
1 kGND (single supply)  
Figure 72. Input Offset Voltage Null Circuit  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆꢂ ꢀ ꢁ ꢂ ꢃ ꢅ ꢉ ꢆꢂ ꢇ  
ꢂ ꢊꢋꢉ ꢁ ꢌ ꢍꢎ ꢏ ꢐ ꢌ ꢑꢐꢆꢒ ꢇꢂ ꢂ ꢓ ꢁꢔ ꢕꢆꢇ ꢔꢕ ꢂ ꢏ ꢇꢏꢂ ꢋꢌꢒ ꢌꢔ ꢖ  
ꢔꢇ ꢂ ꢏꢉꢀ ꢌ ꢔꢖ ꢉ ꢁ ꢉꢗ ꢇꢁ ꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and  
Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this  
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most  
cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal  
of Solid-State Circuits, SC-9, 353 (1974).  
99  
3
V
CC+  
egnd  
+
din  
91  
ree  
cee  
Iee  
92  
9
fb  
+
rp  
1
90  
ro2  
hlim  
+
+
vb  
dip  
vip  
vin  
re1  
re2  
+
+
vc  
IN−  
IN+  
r2  
13  
Q1  
14  
Q2  
C2  
7
6
53  
+
2
vlim  
dc  
de  
ga  
gcm  
dp  
C1  
8
11  
12  
ro1  
rc1  
rc2  
54  
5
V
CC−  
4
+
ve  
OUT  
Figure 73. Boyle Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢄ ꢃ ꢅ ꢆꢂ  ꢃꢄ ꢃꢅ ꢉꢆ ꢂ ꢇ  
ꢑꢐ  
ꢔ ꢇꢂꢏ ꢉꢀ ꢌꢔ ꢖꢉꢁ ꢉꢗ ꢇ ꢁꢌ ꢘꢌ ꢂꢏ ꢒ  
SGLS235B− FEBRUARY 2004 − REVISED JUNE 2007  
.SUBCKT TLE2021 1 2 3 4 5  
*
hcmr 80  
1
4
poly(2) vcm+ vcm− 0 1E2 1E2  
185E−6  
irp  
iee  
iio  
3
3
2
88  
c1  
c2  
c3  
11 12 6.244E−12  
10 dc 15.67E−6  
0
0
6
7
0
13.4E−12  
10.64E−9  
2E−9  
1E−21  
87  
i1  
cpsr 85 86 15.9E−9  
dcm+ 81 82 dx  
dcm− 83 81 dx  
q1  
q2  
R2  
11 89 13 qx  
12 80 14 qx  
6
9
100.0E3  
dc  
5
54  
53 dx  
5 dx  
rcm 84 81 1K  
ree 10 99 14.76E6  
rn1 87  
rn2 87 88 11.67E3  
de  
dlp  
dln  
dp  
90 91 dx  
92 90 dx  
4
0
2.55E8  
3 dx  
ro1  
ro2  
8
7
5
62  
ecmr 84 99 (2 99) 1  
99 63  
egnd 99  
epsr 85  
ense 89  
0
0
2
poly(2) (3,0) (4,0) 0 .5 .5  
poly(1) (3,4) −60E−6 2.0E−6  
poly(1) (88,0) 120E−6 1  
vcm+ 82 99 13.3  
vcm− 83 99 −14.6  
vb  
vc  
9
3
0
dc 0  
fb  
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6  
53 dc 1.300  
+ −50E7 50E7 50E7 −50E7 547E6  
ve  
54  
7
91  
0
0
4
8
0
dc 1.500  
dc 0  
dc 3.600  
ga  
gcm  
6
0
0
6
11 12 188.5E−6  
10 99 335.2E−12  
vlim  
vlp  
vln  
vpsr  
gpsr 85 86 (85,86) 100E−6  
92 dc 3.600  
86 dc 0  
grc1  
grc2  
4
4
11 (4,11) 1.885E−4  
12 (4,12) 1.885E−4  
.model dx d(is=800.0E−18)  
.model qx pnp(is=800.0E−18 bf=270)  
.ends  
gre1 13 10 (13,10) 6.82E−4  
gre2 14 10 (14,10) 6.82E−4  
hlim  
90  
0 vlim 1k  
Figure 74. Boyle Macromodel for the TLE2021  
.SUBCKT TLE2022 1 2 3 4 5  
*
rc1  
rc2  
4
4
11 2.842E3  
12 2.842E3  
c1  
11 12 6.814E−12  
ge1 13 10 (10,13) 31.299E−3  
ge2 14 10 (10,14) 31.299E−3  
ree 10 99 11.07E6  
ro1  
ro2  
rp  
c2  
6
7
20.00E−12  
dc  
de  
dlp  
dln  
dp  
5
53 dx  
54 5 dx  
90 91 dx  
92 90 dx  
8
7
3
9
3
5 250  
99 250  
4 137.2E3  
0 dc 0  
53 dc 1.300  
4
3 dx  
vb  
vc  
egnd 99  
0
poly(2) (3,0) (4,0) 0 .5 .5  
fb  
7
99poly(5) vb vc ve vlp vln 0  
ve  
54 4 dc 1.500  
8 dc 0  
vlp 91 0 dc 3  
vln 92 dc 3  
+ 45.47E6 −50E6 50E6 50E6 −50E6  
vlim 7  
ga 6  
gcm 06  
iee  
0
11 12 377.9E−6  
10 99 7.84E−10  
10 DC 18.07E−6  
0
3
.model dx d(is=800.0E−18)  
.model qx pnp(is=800.0E−18 bf=257.1)  
.ends  
hlim 90 0 vlim 1k  
q1  
q2  
r2  
11 2 13 qx  
12 1 14 qx  
6
9 100.0E3  
Figure 75. Boyle Macromodel for the TLE2022  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
TLE2021AQDREP  
TLE2021QDREP  
TLE2022AQDREP  
TLE2022QDREP  
TLE2024AQDWREP  
TLE2024QDWREP  
V62/04755-01XE  
V62/04755-02XE  
V62/04755-03XE  
V62/04755-04XE  
V62/04755-05YE  
V62/04755-06YE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DW  
DW  
D
16  
16  
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DW  
DW  
16  
16  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLE2021-EP, TLE2021A-EP, TLE2022-EP, TLE2022A-EP, TLE2024-EP, TLE2024A-EP :  
Catalog: TLE2021, TLE2021A, TLE2022, TLE2022A, TLE2024, TLE2024A  
Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2024-Q1, TLE2024A-Q1  
Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2024M, TLE2024AM  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TLE2021AQDREP  
TLE2021QDREP  
TLE2022AQDREP  
TLE2022QDREP  
TLE2024AQDWREP  
TLE2024QDWREP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
16.4  
16.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.7  
2.7  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
8
6.4  
5.2  
8.0  
D
8
6.4  
5.2  
8.0  
DW  
DW  
16  
16  
10.75  
10.75  
10.7  
10.7  
12.0  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLE2021AQDREP  
TLE2021QDREP  
TLE2022AQDREP  
TLE2022QDREP  
TLE2024AQDWREP  
TLE2024QDWREP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
2500  
2500  
2000  
2000  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
346.0  
29.0  
29.0  
29.0  
29.0  
33.0  
33.0  
D
8
D
8
DW  
DW  
16  
16  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

TLE2024ACDW

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACDW

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, SOIC-16
ROCHESTER

TLE2024ACDWG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACDWR

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACDWRG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACN

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024ACNE4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDW

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDWG4

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI

TLE2024AIDWR

QUAD OP-AMP, 950uV OFFSET-MAX, 2.8MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, SOIC-16
ROCHESTER

TLE2024AIJ

IC,OP-AMP,QUAD,BIPOLAR,DIP,16PIN,CERAMIC
TI

TLE2024AIN

EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS
TI