TLIN1028-Q1 [TI]

具有集成稳压器的汽车本地互联网络 (LIN) 收发器;
TLIN1028-Q1
型号: TLIN1028-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成稳压器的汽车本地互联网络 (LIN) 收发器

稳压器
文件: 总54页 (文件大小:3174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
TLIN1028-Q1 LIN 125mA 系统基础芯(SBC)  
1 特性  
2 应用  
AEC-Q1001 ):符合汽车应用要求  
• 符合本地互连网(LIN) 物理层规ISO/DIS  
17987-4并符合适用LIN SAE J2602 推荐实  
践要求  
车身电子装置和照明  
混合动力、电动和动力总成系统  
汽车信息娱乐系统和仪表组  
电器  
提供功能安全  
3 说明  
有助于进行功能安全系统设计的文档  
• 支12V 应用  
• 宽工作范围  
TLIN1028-Q1 是一款本地互连网络 (LIN) 物理层收发  
符合 LIN 2.2AISO/DIS 179874 标准具有集成  
的低压(LDO) 稳压器。  
±58V LIN 总线故障保护  
– 支3.3V 5V LDO 输出  
– 睡眠模式超低电流消耗  
允许以下类型的唤醒事件:  
LIN 总线或通EN 引脚的本地唤醒  
– 上电和断电无干扰运行  
LIN 系统基础芯片 (SBC) 通过为功率微处理器、传  
感器或其他器件提供电流高达 70mA (D) 125mA  
DRB DDA3.3V 5V 电压轨来降低系统  
的复杂性。TLIN1028-Q1 具有经过优化的限流波形整  
形驱动器可降低电磁辐射 (EME)TLIN1028-Q1 将  
TXD 输入上的 LIN 协议数据流转化为 LIN 总线信号。  
接收器将数据流转化为逻辑电平信号此信号通过开漏  
RXD 引脚发送到微处理器。  
• 保护特性:  
ESD 保护、VSUP 欠压保护  
TXD 显性超(DTO) 保护、热关断  
– 系统级未供电节点或接地断开失效防护  
VCC 电源高125mADRB DDA 封装  
• 采SOIC (8) HSOIC (8) 封装以及无引线  
VSON (8) 封装具有改善的自动光学检(AOI) 功  
器件信息  
封装(1)  
封装尺寸标称值)  
4.90mm x 3.91mm  
4.90mm x 3.91mm  
3.00mm x 3.00mm  
器件型号  
TLIN1028D-Q1  
SOIC (8)  
TLIN1028DDA-Q1  
TLIN1028DRB-Q1  
HSOIC (8)  
VSON (8)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Commander  
Node  
VBAT  
VBAT  
Responder  
Node  
10 µF  
10 µF  
VSUP  
VSUP  
Vcc  
Vcc  
EN  
100 nF  
EN  
1
1
8
2
8
2
VDD  
VDD  
Commander  
Node  
100 nF  
I/O  
I/O  
MCU w/o  
pullup  
MCU w/o  
pullup  
Pull-up  
1 k  
V
DD I/O  
V
DD I/O  
Low  
Power  
MCU  
Low  
Power  
MCU  
LIN  
LIN  
LIN Bus  
LIN Bus  
4
4
LIN Controller  
Or  
SCI/UART  
LIN Controller  
Or  
SCI/UART  
5
5
220 pF  
220 pF  
RXD  
TXD  
RXD  
TXD  
6
7
6
7
GND  
3,PAD  
GND  
3,PAD  
nRST  
nRST  
简化版原理图指挥官节点(1)  
简化版原理图响应者节点(2)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEX4  
 
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................21  
9.3 Feature Description...................................................21  
9.4 Device Functional Modes..........................................25  
10 Application and Implementation................................29  
10.1 Application Information........................................... 29  
10.2 Typical Application.................................................. 29  
11 Power Supply Recommendations..............................34  
12 Layout...........................................................................35  
12.1 Layout Guidelines................................................... 35  
12.2 Layout Example...................................................... 36  
13 Device and Documentation Support..........................37  
13.1 Documentation Support.......................................... 37  
13.2 Related Links.......................................................... 37  
13.3 接收文档更新通知................................................... 37  
13.4 支持资源..................................................................37  
13.5 Trademarks.............................................................37  
13.6 Electrostatic Discharge Caution..............................38  
13.7 术语表..................................................................... 38  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 ESD Ratings, IEC Specification..................................4  
7.4 Recommended Operating Conditions.........................5  
7.5 Thermal Information....................................................5  
7.6 Power Supply Characteristics.....................................5  
7.7 Electrical Charateristics.............................................. 6  
7.8 AC Switching Characteristics......................................8  
7.9 Typical Characteristics..............................................10  
8 Parameter Measurement Information..........................12  
8.1 Test Circuit: Diagrams and Waveforms.....................12  
9 Detailed Description......................................................21  
9.1 Overview...................................................................21  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (July 2020) to Revision B (June 2022)  
Page  
• 将提到的所有旧术语实例更改为“指挥官”和“响应者”。.............................................................................. 1  
Changed nRST is only dependent.. statement to: nRST is dependent in the nRST (Reset Output) section... 23  
Changed nRST: Float to nRST: GND in the sleep mode section of 9-5 ......................................................25  
Changes from Revision * (August 2019) to Revision A (July 2020)  
Page  
• 将文档状态从预告信更改为数据.............................................................................................................1  
• 添加了特性提供功能安全.................................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
5 说明)  
休眠模式可实现超低电流消耗该模式允许通过 LIN 总线或 EN 引脚实现唤醒。LIN 总线有两种状态显性状态  
电压接近接地和隐性状态电压接近电池。在受支配状态下LIN 总线被内部上拉电阻器 (45k) 和串联二  
极管拉高所以响应者节点应用无需外部上拉组件。按照 LIN 规范指挥官节点应用需要一个外部上拉电阻器  
(1k) 加上一个串联二极管。  
6 Pin Configuration and Functions  
1
2
3
4
8
7
6
5
VSUP  
EN  
VCC  
1
2
3
4
8
7
6
5
VSUP  
EN  
VCC  
nRST  
TXD  
RXD  
nRST  
TXD  
RXD  
Thermal  
Pad  
GND  
LIN  
GND  
LIN  
Not to scale  
Not to scale  
6-1. D Package, 8-Pin (SOIC), Top View  
6-2. DRB Package, 8-Pin (VSON), Top View  
1
2
3
4
8
7
6
5
VSUP  
EN  
VCC  
nRST  
TXD  
RXD  
Thermal  
Pad  
GND  
LIN  
Not to scale  
6-3. DDA Package, 8-Pin (HSOIC), Top View  
6-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
VSUP  
EN  
HV Supply In Device supply voltage (connected to battery in series with external reverse-blocking diode)  
2
D I  
GND  
HV I/O  
D O  
Enable input  
3
GND  
LIN  
Ground (2) (3)  
4
LIN bus single-wire transmitter and receiver  
RXD output (open-drain) interface reporting state of LIN bus voltage  
TXD input interface to control state of LIN output  
Reset output (active low)  
5
RXD  
TXD  
nRST  
VCC  
6
D I  
7
D O  
8
Supply Out Output voltage from integrated LDO  
(1) HV - High Voltage, DI - Digital Input, DO - Digital Output, HV I/O - High Voltage Input/Output  
(2) When the thermal pad is present, it must be soldered to ground plane.  
(3) If the DDA package is placed onto a D package footprint without the thermal pad soldered down, expect the performance to match the  
D package and not the DDA package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN1028-Q1  
 
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
MIN  
0.3  
58  
MAX  
UNIT  
V
VSUP  
Supply voltage range  
42  
VLIN  
LIN Bus input voltage  
58  
V
VCC50  
Regulated 5 V Output Supply  
Regulated 3.3 V Output Supply  
Reset output voltage  
6
V
0.3  
0.3  
0.3  
0.3  
0.3  
VCC33  
4.5  
V
VnRST  
VCC + 0.3  
V
VLOGIC_INPUT  
VLOGIC_OUTPUT  
IVCC  
Logic input voltage  
6
6
V
Logic output voltage  
V
VCC supply current(2)  
300  
8
mA  
mA  
mA  
°C  
°C  
IO  
Digital pin output current  
Reset and RXD open-drain output current  
Junction temperature  
8  
5  
IO(nRST_RXD)  
TJ  
5
165  
150  
40  
65  
Tstg  
Storage temperature range  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Device will enter thermal shutdown prior to hitting this limit. If the limit is reached the device may sustain permanent damage.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level H2: VSUP, LIN, and WAKE with  
respect to ground  
±8000  
Human body model (HBM) classification level 3A: all other pins, per AEC  
Q100-002(1)  
V(ESD)  
Electrostatic discharge  
±4000  
±750  
V
Charged device model (CDM) classification level  
All pins  
C5, per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings, IEC Specification  
VALUE  
UNIT  
V
Electrostatic discharge per IEC 62228-2 (1), LIN, VSUP  
terminal to GND  
Contact discharge  
Indirect ESD discharge  
Contact discharge  
Air discharge  
Pulse 1  
±15000  
±15000  
±8000  
±25000  
-100  
V(ESD)  
V
V(ESD)  
Powered electrostatic discharge per SAE J2962-1(3)  
V
Pulse 2a  
75  
ISO 7637-2 and IEC 62215-3 transients per IEC  
62228-1(2)  
Transient  
Transient  
V
V
Pulse 3a  
-150  
Pulse 3b  
100  
ISO 7637 slow transients pulse  
Per SAE J2962-1(4)  
30  
(1) IEC 62228-2 ESD testing performed at third party. Different system-level configurations may lead to different results.  
(2) ISO 7637 is a system-level transient test. Different system-level configurations may lead to different results.  
(3) SAE J2962-1 Testing performed at third party US3 approved EMC test facility.  
(4) ISO 7637 is a system-level transient test. Results given here are specific to the SAE J2962-1 Test specification conditions. Different  
system-level configurations may lead to different results.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
 
 
 
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7.4 Recommended Operating Conditions  
MIN  
5.5  
0
NOM  
MAX  
28  
UNIT  
V
VSUP  
Supply voltage  
VLIN  
LIN bus input voltage  
28  
V
VLOGIC5  
VLOGIC33  
IOH(DO)  
IOL(DO)  
C(VSUP)  
C(VCC)  
C(VCC)  
ESRCO  
Logic pin voltage  
0
5.25  
3.465  
V
Logic pin voltage  
0
V
Digital terminal HIGH level output current  
Digital terminal LOW level output current  
VSUP supply capacitance  
-2  
mA  
mA  
nF  
µF  
µF  
Ω
2
100  
1.5  
VCC supply capacitance; 20 µA to full load  
VCC supply capacitance; no load to full load  
Output ESR requirements  
10  
0.001  
2
7.5 Thermal Information  
TLIN1028  
DRB  
8 PINS  
45.7  
THERMAL METRIC(1)  
D
8 PINS  
119.4  
51.5  
64.9  
9.6  
DDA  
8 PINS  
40.9  
60.5  
15.6  
4.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
49.2  
18.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJT  
63.7  
n/a  
18.8  
15.8  
4.6  
ψJB  
RθJC(bot)  
2.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Power Supply Characteristics  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
36  
UNIT  
V
SUPPLY VOLTAGE AND CURRENT  
Device is operational beyond the LIN  
defined nominal supply voltage range. See  
8-1 and 8-2  
Operational supply voltage (ISO/DIS 17987  
Param 10)(2)  
VSUP  
5.5  
Normal and Standby Modes: Ramp VSUP  
while LIN signal is a 10 kHz square wave  
with 50 % duty cycle and swing between 5.5  
V VLIN 28 V. See 8-1 and 8-2  
5.5  
5.5  
1.8  
28  
V
Nominal supply voltage (ISO/DIS 17987  
Param 10)(2)  
VSUP  
Sleep Mode  
Ramp Up  
28  
4.2  
2.7  
V
V
V
UVSUPR  
UVSUPF  
Under voltage VSUP threshold  
Under voltage VSUP threshold  
3.5  
2.1  
Ramp Down  
Delta hysteresis voltage for VSUP under  
voltage threshold  
UVHYS  
ISUP  
1.5  
V
Transceiver and LDO supply current (D  
Package)  
Transceiver normal mode dominant plus  
LDO output  
80  
mA  
mA  
Transceiver and LDO supply current (DRB  
and DDA Packages)  
Transceiver normal mode dominant plus  
LDO output  
ISUP  
135  
Normal Mode: EN = VCC, bus dominant:  
total bus load where RLIN 500 and CLIN  
10 nF  
1.2  
1
5
mA  
mA  
ISUPTRXDOM  
Supply current transceiver only  
Standby Mode: EN = 0 V, bus dominant:  
total bus load where RLIN 500 and CLIN  
10 nF  
2.1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN1028-Q1  
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7.6 Power Supply Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Normal Mode: EN = VCC  
Bus recessive: LIN = VSUP  
,
450  
775  
µA  
,
Standby Mode: EN = 0 V, LIN = recessive =  
SUP, IOH from processor 1 µA  
38  
55  
55  
33  
V
ISUPTRXREC  
Supply current transceiver only(3)  
Added Standby Mode current through the  
RXD pull-up resistor with a value of 100 k:  
EN = 0 V, LIN = recessive = VSUP, RXD =  
GND(1)  
µA  
µA  
5.5 V < VSUP 28 V, LIN = VSUP, EN = 0 V,  
TXD and RXD floating  
ISUPTRXSLP  
Sleep mode supply current transceiver only  
17  
REGULATED OUTPUT VCC  
VCC  
Regulated output (D package)  
VSUP = 5.5 to 28 V, ICC = 1 to 70 mA  
2
2
%
2  
2  
VCC  
Regulated output (DRB and DDA package) VSUP = 5.5 to 28 V, ICC = 1 to 125 mA  
%
Line regulation  
50  
50  
50  
mV  
mV  
mV  
VCC(VSUP)  
VCC(VSUPL)  
VCC(VSUPL)  
VSUP = 5.5 to 28 V, ΔVCC, ICC = 10 mA  
ICC = 1 to 125 mA, VSUP = 14 V, ΔVCC  
ICC = 1 to 70 mA, VSUP = 14 V, ΔVCC  
Load regulation (DRB and DDA package)  
Load regulation (D package)  
Dropout voltage (5 V LDO) (DRB and DDA  
package)  
VDROP  
VDROP  
VDROP  
300  
300  
350  
600  
600  
700  
mV  
mV  
mV  
V
V
V
V
SUP VCC, ICC = 125 mA;  
SUP VCC, ICC = 70 mA;  
SUP VCC, ICC = 125 mA;  
SUP VCC, ICC = 70 mA;  
Dropout voltage (5 V LDO) (D package)  
Dropout voltage (3.3 V LDO) (DRB and DDA  
package)  
VDROP  
Dropout voltage (3.3 V LDO) (D package)  
Under voltage 5 V VCC threshold  
350  
4.7  
700  
mV  
V
UVCC5R  
UVCC5F  
UVCC33R  
UVCC33F  
Ramp Up  
4.86  
Under voltage 5 V VCC threshold  
Ramp Down  
Ramp Up  
4.2  
4.45  
2.9  
V
Under voltage 3.3 V VCC threshold (3)  
Under voltage 3.3 V VCC threshold(3)  
3.1  
15  
V
Ramp Down  
2.5  
1
2.75  
V
VCC undervoltage deglitch time. An UVCC  
event will not be recognized unless the  
duration is longer than this.(3)  
tDET(UVCC)  
CnRST = 20pF  
µs  
ICCOUT  
ICCOUT  
ICCOUTL  
Output current (D Package)  
Output current (DRB and DDA package)  
Output current limit  
VCC in regulation with 12 V VSUP  
VCC in regulation with 12 V VSUP  
VCC short to ground  
0
0
70  
125  
275  
mA  
mA  
mA  
VRIP = 0.5 VPP, Load = 10 mA, ƒ= 100 Hz,  
CO = 10 μF  
PSRR  
Power supply rejection ratio(3)  
60  
10  
dB  
TSDR  
Thermal shutdown temperature  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
Internal junction temperature - rising  
Internal junction temperature - falling  
165  
°C  
°C  
°C  
TSDF  
150  
TSDHYS  
(1) RXD pin is an open-drain output. In standby mode RXD is pulled low which has the device pulling current through VSUP through the  
pull-up resisitor to VCC. The value of the pull-up resistor impacts the standby mode current. A 10 kresistor value can add as much  
as 500 µA of current.  
(2) Operational supply voltage and nominal supply voltage are in relationship to the LIN transceiver. A VSUP above 28 V means the  
device will function but may not meet the rest of the parametric data while the nominal range means the device will meet the  
parametric data minus any differences provided in the test conditions.  
(3) Specified by design  
7.7 Electrical Charateristics  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RXD OUTPUT TERMINAL (OPEN-DRAIN)  
Based upon a 2 kΩto 10 kΩexternal pull-  
up to VCC  
VOL  
IOL  
Output low voltage  
0.2  
VCC  
mA  
Low-level output current, open-drain  
LIN = 0 V, RXD = 0.4 V  
1.5  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7.7 Electrical Charateristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILKG  
Leakage current, high-level  
LIN = VSUP, RXD = VCC  
0
5
µA  
5  
TXD INPUT TERMINAL  
VIL  
Low-level input voltage  
0.8  
5.5  
5
V
V
0.3  
2
VIH  
IIH  
High-level input voltage  
High-level input leakage current  
Internal pull-up resistor value  
TXD = high  
0
µA  
kΩ  
5  
125  
RTXD  
350  
800  
LIN TERMINAL (REFERENCED TO VSUP  
)
LIN recessive, TXD = high, IO = 0 mA, VSUP  
= 5.5 V to 36 V  
VOH  
High-level output voltage(1)  
0.85  
VSUP  
VSUP  
VSUP  
VSUP  
V
LIN dominant, TXD = low, VSUP = 5.5 V to  
36 V  
VOL  
Low-level output voltage(1)  
High-level input voltage(1)  
Low-level input voltage(1)  
0.2  
0.6  
LIN recessive, TXD = high, IO = 0 mA, VSUP  
= 5.5 V to 36 V  
VIH  
0.47  
0.4  
LIN dominant, TXD = low, VSUP = 5.5 V to  
36 V  
VIL  
0.53  
42  
TXD & RXD open, VLIN = 5.5 V to 42 V, Bus  
Load = 60 kΩ+ diode and 1.1 kΩ+ diode  
VSUP where impact of recessive LIN bus < 5%  
(ISO/DIS 17987 Param 11)  
VSUP_NON_OP  
0.3  
TXD = 0 V, VLIN = 36 V, RMEAS = 440 ,  
VSUP = 36 V,  
I BUS_LIM  
Limiting current (ISO/DIS 17987 Param 12)  
40  
90  
200  
mA  
VBUSdom < 4.518 V; 8-6  
VLIN = 0 V, VSUP = 12 V Driver off/recessive,  
Receiver leakage current, dominant (ISO/DIS  
17987 Param 13)  
I BUS_PAS_dom  
I BUS_PAS_rec1  
I BUS_PAS_rec2  
I BUS_NO_GND  
mA  
µA  
1  
R
MEAS = 499 ; 8-7  
Receiver leakage current, recessive (ISO/DIS  
17987 Param 14)  
VLIN VSUP, 5.5 V VSUP 36 V Driver  
off, RMEAS = 1 k; 8-8  
20  
8
Receiver leakage current, recessive (ISO/DIS  
17987 Param 14)  
µA  
VLIN = VSUP, Driver off, RMEAS = 1 k; 8-8  
8  
1  
Leakage current, loss of ground (ISO/DIS 17987 GND = VSUP, VSUP = 12 V, 0 V VLIN 28  
1
mA  
Param 15)  
V, RMEAS = 1 k; 8-9  
Leakage current, loss of supply (ISO/DIS 17987  
Param 16)  
0 V VLIN 28 V, VSUP = GND, RMEAS  
10 k; 8-10  
=
IBUS_NO_BAT  
VBUSdom  
VBUSrec  
8
µA  
LIN dominant (including LIN dominant for  
wake up); 8-3, 8-4  
Low-level input voltage (ISO/DIS 17987 Param  
17)  
0.4  
VSUP  
VSUP  
High-level input voltage (ISO/DIS 17987 Param  
18)  
0.6  
LIN recessive; 8-3, 8-4  
Receiver center threshold (ISO/DIS 17987 Param  
19)  
VBUS_CNT  
VHYS  
0.475  
0.07  
0.4  
0.5  
0.525  
0.175  
1.0  
VSUP  
VSUP  
V
VBUS_CNT = (VIL + VIH)/2; 8-3, 8-4  
VHYS = (VIL - VIH); 8-3, 8-4  
By design and characterization  
Hysteresis voltage (ISO/DIS 17987 Param 20)(2)  
Serial diode LIN term pull-up path (ISO/DIS 17987  
Param 21)  
VSERIAL_DIODE  
0.7  
45  
Internal Pull-up resistor to VSUP (ISO/DIS 17987  
Param 26)  
RPU  
Normal and Standby modes  
20  
60  
kΩ  
IRSLEEP  
CLINPIN  
Pull-up current source to VSUP  
Capacitance of the LIN pin (6)  
Sleep mode, VSUP = 12 V, LIN = GND  
µA  
pF  
20  
2  
25  
EN INPUT TERMINAL  
VIH  
VIL  
High-level input voltage  
2
0.3  
30  
5.5  
0.8  
500  
6
V
V
Low-level input voltage  
Hysteresis voltage  
VHYS  
IIL  
By design and characterization  
EN = Low  
mV  
µA  
kΩ  
Low-level input current  
Internal pull-down resistor  
0
6  
REN  
125  
350  
800  
nRST TERMINAL (OPEN DRAIN OUTPUT)  
ILKG  
VOL  
IOL  
Leakage current, high-level  
Low-level output voltage  
LIN = VSUP, nRST = VCC  
6
µA  
VCC  
mA  
6  
Based upon external pull up to VCC  
LIN = 0 V, nRST = 0.4 V  
0.2  
Low-level output current, open-drain  
1.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7.7 Electrical Charateristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DUTY CYCLE CHARACTERISTICS  
THREC(MAX) = 0.744 x VSUP  
,
THDOM(MAX) = 0.581 x VSUP  
,
Duty Cycle 1 (ISO/DIS 17987 Param 27 and  
J2602 Normal battery)(3) (4)  
VSUP = 7 V to 18 V, tBIT = 50/52 µs,  
D1 = tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
8-12)  
D1  
D2  
D3  
0.396  
THREC(MIN) = 0.422 x VSUP  
THDOM(MIN) = 0.284 x VSUP, VSUP = 7.6 V to  
18 V,  
,
Duty Cycle 2 (ISO/DIS 17987 Param 28 and  
J2602 Normal battery)(3) (4)  
0.581  
tBIT = 50/52 µs (20 kbps), D2 =  
t
BUS_rec(MAX)/(2 x tBIT) (See 8-11, 8-12)  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
=
0.616 x VSUP  
,
Duty Cycle 3 (ISO/DIS 17987 Param 29 and  
J2602 Normal battery)(3) (4)  
VSUP = 7 V to 18 V, tBIT = 96 µs (10.4 kbps),  
D3 = tBUS_rec(min)/(2 x tBIT) (See 8-11, 图  
8-12)  
0.417  
THREC(MIN) = 0.389 x VSUP  
,
THDOM(MIN) = 0.251 x VSUP  
,
VSUP = 7.6 V to 18 V, tBIT = 96 µs (10.4  
kbps),  
Duty Cycle 4 (ISO/DIS 17987 Param 30 and  
J2602 Normal battery)(3) (4)  
D4  
0.59  
D4 = tBUS_rec(MAX)/(2 x tBIT) (See 8-11, 图  
8-12)  
THREC(MAX) = 0.665 x VSUP, THDOM(MAX)  
0.499 x VSUP, VSUP = 5.5 V to 7 V, tBIT  
50/52 µs, D1LB = tBUS_rec(min)/(2 x tBIT) (See 图  
8-11, 8-12)  
=
=
Duty Cycle 1  
D1LB  
D2LB  
D3LB  
D4LB  
0.396  
J2602 Low battery (4) (5)  
T THREC(MIN) = 0.496 x VSUP, THDOM(MIN)  
0.361 x VSUP, VSUP = 6.1 V to 7.6 V, tBIT  
50/52 µs, D2LB = tBUS_rec(MAX)/(2 x tBIT) (See  
=
=
Duty Cycle 2  
0.581  
J2602 Low battery (4) (5)  
8-11, 8-12)  
THREC(MAX) = 0.665 x VSUP, THDOM(MAX)  
=
0.499 x VSUP, VSUP = 5.5 V to 7 V, tBIT = 96  
µs, D3LB = tBUS_rec(min)/(2 x tBIT) (See 8-11,  
8-12)  
Duty Cycle 3  
0.417  
J2602 Low battery (4) (5)  
T THREC(MIN) = 0.496 x VSUP, THDOM(MIN)  
0.361 x VSUP, VSUP = 6.1 V to 7.6 V, tBIT  
96 µs, D4LB = tBUS_rec(MAX)/(2 x tBIT) (See 图  
8-11, 8-12)  
=
=
Duty Cycle 4  
0.59  
J2602 Low battery (4) (5)  
(1) SAE J2602 loads include: commander node: 5.5 nF; 4 kand for a commander node: 5.5 nF; 875 Ω  
(2) VHYS is defined for both ISO 17987 and SAE J2602-1.  
(3) ISO 17987 loads include 1 nF; 1 k/ 6.8nF; 660 / 10 nF; 500 ; with tBIT values of 50 µs and 96 µs  
(4) SAE J2602 loads include: commander node: 5.5 nF; 4 k/ 899 pF; 20 kand for a responder node: 5.5 nF; 875 / 899 pF; 900 ;  
with tBIT values of 52 µs and 96 µs  
(5) ISO 17987 does not have a low battery specification. Using the ISO 17987 loads these low battery duty cycle parameters are covered  
for tBIT values of 50 µs and 96 µs  
(6) Specified by design  
7.8 AC Switching Characteristics  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
6
UNIT  
µs  
DEVICE SWITCHING CHARACTERISTICS  
trx_pdr  
trx_pdf  
Receiver rising/falling propagation delay time  
(ISO/DIS 17987 Param 31)  
RRXD = 2.4 k, CRXD = 20 pF  
(See 8-13, 8-14 and 8-18)  
Rising edge with respect to falling edge,  
(trx_sym = trx_pdf trx_pdr), RRXD = 2.4 k,  
CRXD = 20 pF (8-13, 8-14 and 图  
8-18)  
Symmetry of receiver propagation delay time  
Receiver rising propagation delay time (ISO/DIS  
17987 Param 32)  
trs_sym  
2
µs  
2  
LIN wakeup time (minimum dominant time on  
LIN bus for wakeup)  
tLINBUS  
25  
100  
150  
µs  
See 8-17, 9-3 and 9-4  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7.8 AC Switching Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
17  
MAX  
UNIT  
Time to clear false wake-up prevention logic if  
LIN bus had a bus stuck dominant fault  
(recessive time on LIN bus to clear bus stuck  
dominant fault)  
tCLEAR  
8
50  
µs  
See 9-4  
tTXD_DTO  
tEN  
Dominant state time out  
20  
3
34  
80  
12  
ms  
µs  
Time of enable pin state change before  
initiating mode change or sampling TXD  
pin: See 8-15  
Enable pin deglitch time(1)  
Time to change from normal mode to sleep  
or standby after TXD pin sampling after  
EN pin set low: See 8-15  
Mode change delay time from normal mode to  
sleep or standby modes  
tMODE_CHANGE  
20  
µs  
µs  
Time to change from sleep mode to normal  
mode through EN pin and not due to a  
wake event; RXD pulled up to VCC: See 图  
8-15  
Mode change delay time from sleep mode to  
normal mode  
tMODE_CHANGE  
400  
Time for normal mode to initialize and data  
on RXD pin to be valid after tEN: See 图  
8-15  
tNOMINT  
Normal mode initialization time  
Power-up time  
35  
2
µs  
Upon power up, time it takes for nRST to  
go high  
tPWR  
ms  
(1) Specified by design  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
7.9 Typical Characteristics  
80  
75  
70  
65  
60  
55  
50  
45  
130  
125  
120  
115  
110  
105  
100  
95  
40  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
90  
35  
30  
25  
20  
-40°C  
25°C  
85°C  
105°C  
125°C  
85  
80  
75  
0
3
6
9
12  
15  
VSUP (V)  
18  
21  
24  
27  
30  
D001  
5
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
Package = DRB  
VCC = 3.3 V  
Temp = Ambient  
Package = D  
VCC = 3.3 V  
Temp = Ambient  
7-2. ICC vs VSUP vs Temperature  
7-1. ICC vs VSUP vs Temperature  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
20  
3
6
9
12  
15  
18  
VSUP (V)  
21  
24  
27  
30  
33  
D006  
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
VSUP (V)  
Package = DDA  
VCC = 3.3 V  
Temp = Ambient  
Package = D  
VCC = 5 V  
Temp = Ambient  
7-3. ICC vs VSUP vs Temperature  
7-4. ICC vs VSUP vs Temperature  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
50  
40  
40  
30  
30  
20  
5
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
4
6
8
10  
12  
14  
16  
VSUP (V)  
18  
20  
22  
24  
26  
28  
30  
Package = DRB  
VCC = 5 V  
Temp = Ambient  
Package = DDA  
VCC = 5 V  
Temp = Ambient  
7-5. ICC vs VSUP vs Temperature  
7-6. ICC vs VSUP vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
22  
20  
18  
16  
14  
12  
10  
8
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
5
5
5
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
D003  
5
5
5
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
D013  
Package = D  
VCC = 3.3 V  
Temp = Ambient  
Package = DRB  
VCC = 3.3 V  
Temp = Ambient  
7-7. Sleep Mode Current Across VSUP and  
7-8. Sleep Mode Current Across VSUP and  
Temperature  
Temperature  
22  
20  
18  
16  
14  
12  
10  
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
8
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
D023  
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
D008  
Package = DDA  
VCC = 3.3 V  
Temp = Ambient  
Package = D  
VCC = 5 V  
Temp = Ambient  
7-9. Sleep Mode Current Across VSUP and  
7-10. Sleep Mode Current Across VSUP and  
Temperature  
Temperature  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
105°C  
115°C  
125°C  
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
D018  
7.5  
10  
12.5  
15  
17.5  
VSUP (V)  
20  
22.5  
25  
27.5  
30  
D028  
Package = DRB  
VCC = 5 V  
Temp = Ambient  
Package = DDA  
VCC = 5 V  
Temp = Ambient  
7-11. Sleep Mode Current Across VSUP and  
7-12. Sleep Mode Current Across VSUP and  
Temperature  
Temperature  
备注  
For the LDO ICC vs VSUP vs Temperature typical curves the data was collected on a high-k EVM board  
using a forced air system. The curves show performance based upon thermal resistance RθJB  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Test Circuit: Diagrams and Waveforms  
5
8
1
VCC  
RXD  
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
2
VSUP  
EN  
VPS  
7
6
4
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
LIN  
3
Jitter: < 25 ns  
GND  
Measurement Tools  
O-scope:  
DMM  
8-1. Test System: Operating Voltage Range with RX and TX Access  
Delta t = + 5 µs (tBIT  
= 50 µs)  
Trigger Point  
RX  
2 * tBIT = 100 µs (20 kBaud)  
8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
8-3. LIN Bus Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
5
2
VCC  
8
1
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
RXD  
EN  
VCC  
VSUP  
VPS  
7
6
4
LIN  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
3
GND  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-4. LIN Receiver Test with RX access  
5
2
8
1
VCC  
VCC  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VSUP  
EN  
VPS1  
D
4
3
6
LIN  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
3
VPS2  
RBUS  
GND  
Measurement Tools  
O-scope:  
DMM  
8-5. VSUP_NON_OP Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
5
2
1
7
VCC  
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VSUP  
EN  
VPS  
RMEAS  
=
440  
7
6
4
LIN  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
3
TXD  
GND  
T = 10 ms  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-6. Test Circuit for IBUS_LIM at Dominant State (Driver on)  
5
8
VCC  
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
2
1
VSUP  
EN  
VPS  
RMEAS = 499  
4
7
6
LIN  
3
GND  
Measurement Tools  
O-scope:  
DMM  
8-7. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
5
2
8
1
VCC  
VCC  
VPS1  
VSUP  
EN  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
RMEAS  
=1 k  
4
7
6
LIN  
VPS2  
VPS2 2 V/s ramp  
[8 V 36 V]  
3
GND  
V Drop across resistor  
< 20 mV  
Measurement Tools  
O-scope:  
DMM  
8-8. Test Circuit for IBUS_PAS_rec  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
5
2
8
1
VCC  
VCC  
VPS1  
VSUP  
EN  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
RMEAS  
= 1 k  
4
3
7
6
LIN  
VPS2  
VPS2 2 V/s ramp  
[0 V 36 V]  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
8-9. Test Circuit for IBUS_NO_GND Loss of GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
8
1
5
VCC  
VCC  
2
VSUP  
EN  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VPS  
RMEAS  
10 k  
=
4
7
6
LIN  
VPS 2 V/s ramp  
[0 V 36 V]  
3
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
8-10. Test Circuit for IBUS_NO_BAT Loss of Battery  
5
2
8
1
VCC  
VCC  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VSUP  
EN  
VPS1  
RMEAS  
4
7
6
LIN  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
3
VPS2  
TXD  
GND  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-11. Test Circuit Slope Control and Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
tBIT  
tBIT  
RECESSIVE  
TXD (Input)  
DOMINANT  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
LIN Bus  
Signal  
VSUP  
Thresholds  
RX Node 2  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
D = tBUS_REC(MIN)/(2 x tBIT  
)
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
D = tBUS_REC(MAX)/(2 x tBIT  
)
8-12. Definition of Bus Timing  
VCC  
2.4 k  
5
2
VCC  
8
1
RXD  
VCC  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
20 pF  
VSUP  
EN  
VPS  
4
7
6
LIN  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 Hz  
3
GND  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-13. Propagation Delay Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
THREC(MAX)  
Thresholds  
RX Node 1  
THDOM(MAX)  
LIN Bus  
Signal  
VSUP  
THREC(MIN)  
Thresholds  
RX Node 2  
THDOM(MIN)  
RXD: Node 1  
D1 (20 kbps)  
trx_pdr(1)  
trx_pdf(1)  
D3 (10.4 kbps)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
Copyright © 2017, Texas Instruments Incorporated  
8-14. Propagation Delay  
Wake Event  
tMODE_CHANGE  
tMODE_CHANGE  
tNOMINT  
tEN  
EN  
tEN  
Can be high or low  
TXD  
EN  
Filter/TXD  
Sampling  
Window  
Enable  
Filter  
Transition  
Sleep  
Standby  
Transition  
Normal  
Normal  
MODE  
Mirrors  
Bus  
Wake Request  
RXD = Low  
RXD  
Indeterminate Ignore  
Floating for sleep  
Indeterminate Ignore  
Mirrors Bus  
Can be high or low  
TXD  
EN  
Filter/TXD  
Sampling  
Window  
Enable  
Filter  
Transition  
Standby  
Transition  
Normal  
Normal  
MODE  
Wake Request  
RXD = Low  
Mirrors  
Bus  
RXD  
Indeterminate Ignore  
Indeterminate Ignore  
Mirrors Bus  
8-15. Mode Transitions  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
EN  
tEN  
Weak Internal Pullup  
TXD  
Weak Internal Pullup  
VSUP  
LIN  
RXD  
Floating  
tMODE_CHANGE  
+
Sleep  
MODE  
Normal  
tNOMINIT  
8-16. Wakeup Through EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
0.6 x VSUP  
LIN  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
Weak Internal Pullup  
EN  
Floating  
RXD  
MODE  
Sleep  
Standby  
Normal  
8-17. Wakeup through LIN  
VSUP  
VCC  
100 nF  
10 µF  
10 µF  
nRST  
EN  
RLIN  
TXD  
GND  
RRXD  
LIN  
RXD  
CLIN  
CRXD  
8-18. Test Circuit for AC Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN1028-Q1 LIN transceiver is a Local Interconnect Network (LIN) physical layer transceiver, compliant to  
LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and ISO/DIS 179874 with integrated wake-up and protection features. The  
LIN bus is a single-wire, bidirectional bus that typically is used in low-speed in-vehicle networks with data rates  
that range up to 20 kbps. The LIN receiver works up to 100 kbps supporting in-line programming. The device  
converts the LIN protocol data stream on the TXD input into a LIN bus signal using a current-limited wave-  
shaping driver which reduces electromagnetic emissions (EME). The receiver converts the data stream to logic-  
level signals that are sent to the microprocessor through the open-drain RXD pin. The LIN bus has two states:  
dominant state (voltage near ground) and recessive state (voltage near battery). In the recessive state, the LIN  
bus is pulled high by the internal pull-up resistor (45 k) and a series diode.  
Ultra-low current consumption is possible using the sleep mode. The TLIN1028-Q1 provides two methods to  
wake up from sleep mode: EN pin and LIN bus. The device integrates a low dropout voltage regulator with a  
wide input from VSUP providing 5 V ±2% or 3.3 V ±2% with up to 125 mA of current depending upon system  
implementation. nRST is asserted high when VCC increases above UVCC and stays high as long as VCC is above  
this threshold.  
9.2 Functional Block Diagram  
VSUP  
VCC  
5.0-V or 3.3-V LDO  
POR  
UV  
DET  
CNTL  
VSUP  
RXD  
VSUP/2  
Filter  
VCC  
Comp  
250 kΩ  
nRST  
45 k  
Control  
EN  
Fault  
Detection  
& Protection  
350 kΩ  
350 kΩ  
LIN  
VCC  
GND  
Dominant  
State  
Timeout  
DR/  
Slope  
CTL  
TXD  
9-1. Functional Block Diagram  
9.3 Feature Description  
9.3.1 LIN Pin  
This high-voltage input or output pin is a single-wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 58 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter meets thresholds and AC parameters according to the LIN specification. The transmitter is a low-  
side transistor with internal current limitation and thermal shutdown. During a thermal shutdown condition, the  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
VSUP, so no external pull-up components are required for the LIN responder node applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander node application.  
9.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are ratio-metric with the device supply pin according to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAEJ2602  
specifications. This allows the TLIN1028-Q1 to be used for high-speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1 k) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification.  
9-2 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
Simplified Transceiver  
VLIN_Bus  
diodes in the pullup path  
VSUP  
VSUP/2  
RXD  
VBAT  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 k  
LIN Bus  
45 k  
LIN  
VCC  
350 kꢀ  
TXD  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
9-2. Commander Node Configuration with Voltage Levels  
9.3.2 TXD (Transmit Input)  
TXD is the interface to the node processors LIN protocol controller that is used to control the state of the LIN  
output. When TXD is low, the LIN output is dominant (near ground). When TXD is high, the LIN output is  
recessive (near VSUP). See 9-2. The TXD input structure is compatible with processors that use 3.3 V and 5 V  
VI and VO. TXD has an internal pull-up resistor. The LIN bus is protected from being stuck dominant through a  
system failure driving TXD low through the dominant state time-out timer.  
9.3.3 RXD (Receive Output)  
RXD is the interface to the processor's LIN protocol controller, which reports the state of the LIN bus voltage. LIN  
recessive (near VSUP) is represented by a high level on the RXD and LIN dominant (near ground) is represented  
by a low level on the RXD pin. The RXD output structure is an open-drain output stage. This allows the device to  
be used with 3.3 V and 5 VI/O processors. If the processor's RXD pin does not have an integrated pull-up, an  
external pull-up resistor to the processors I and O supply voltage is required. In standby mode, the RXD pin is  
driven low to indicate a wake-up request from the LIN bus from sleep mode. When going from normal mode to  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
standby mode, the RXD pin is released and pulled-up to the voltage rail that the external pull-up resistor is  
connected. A LIN bus wake event will cause the RXD pin to be pulled low indicating a wake request.  
9.3.4 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse-battery blocking  
diode.  
The VSUP pin is a high-voltage-tolerant pin. A decoupling capacitor with a value of 100 nF is recommended to be  
connected close to this pin to improve the transient performance. If there is a loss of power at the ECU level, the  
device has ultra low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems  
in which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied). When VSUP drops low enough the regulated output drops out of regulation. The LIN bus works  
with a VSUP as low as 5.5 V, but at a lower voltage, the performance is indeterminate and not ensured. If VSUP  
voltage level drops enough, it triggers the UVSUP, and if it keeps dropping, at some point it passes the POR  
threshold.  
9.3.5 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage. If there is a loss of ground at the ECU level, the  
device has ultra low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems  
in which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.6 EN (Enable Input)  
EN controls the operational modes of the device. When EN is high, the device is in normal operating mode  
allowing a transmission path from TXD to LIN and from LIN to RXD. When EN is low, the device is put into sleep  
or standby mode and there are no transmission paths available. EN has an internal pull-down resistor to ensure  
the device remains in low power mode even if EN is left floating. EN should be held low until VSUP reaches the  
expected system voltage level.  
9.3.7 nRST (Reset Output)  
The VCC pin is monitored for under voltage events. This pin is internally pulled up to VCC and when an  
undervoltage event takes place, this pin is pulled low. The pin returns to VCC once the voltage on VCC exceeds  
the under-voltage threshold. nRST is dependent on the value VCC and not the operational mode. If UVCC takes  
place for longer than tDET(UVCC) nRST is pulled to ground. If a thermal shutdown event takes place, this pin is  
pulled to ground.  
9.3.8 VCC (Supply Output)  
The VCC terminal can provide 5 V or 3.3 V with up to 125 mA to power up external devices when using high-k  
boards and thermal management best practices in order to keep the virtual junction temperature below 165 °C  
and avoid thermal shutdown.  
9.3.9 Protection Features  
The device has several protection features that are described as follows.  
9.3.9.1 TXD Dominant Time Out (DTO)  
During normal mode, if TXD is inadvertently driven permanently low by a hardware or software application  
failure, the LIN bus is protected by the dominant state time-out timer. This timer is triggered by a falling edge on  
the TXD pin. If the low signal remains on TXD for longer than tTXD_DTO, the transmitter is disabled, thus allowing  
the LIN bus to return to recessive state and communication to resume on the bus. The protection is cleared and  
the tTXD_DTO timer is reset by a rising edge on TXD. The TXD pin has an internal pull-up to ensure the device  
fails to a known recessive state if TXD is disconnected. During this fault, the transceiver remains in normal mode  
(assuming no change of state request on EN), the RXD pin reflects the LIN bus and the LIN bus pull-up  
termination remains on.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
9.3.9.2 Bus Stuck Dominant System Fault: False Wake Up Lockout  
The device contains logic to detect bus stuck dominant system faults and prevents the device from waking up  
falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus. If the bus  
is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck dominant,  
preventing excessive current use. 9-3 and 9-4 show the behavior of this protection.  
RXD  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
9-3. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wakeup  
RXD  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
9-4. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wakeup  
9.3.9.3 Thermal Shutdown  
The LIN transmitter is protected by current-limiting circuit; however, if the junction temperature of the device  
exceeds the thermal shutdown threshold, the device puts the LIN transmitter into the recessive state and turns  
off the VCC regulator. The nRST pin is pulled to ground during a TSD event. Once the over-temperature fault  
condition has been removed and the virtual junction temperature has cooled beyond the hysteresis temperature,  
the transmitter is re-enabled. During this fault the device enters a TSD off mode. Once the junction temperature  
cools, the device enters standby mode as per the state diagram.  
9.3.9.4 Under Voltage on VSUP  
The device contains a power-on reset circuit to avoid false bus messages during under voltage conditions when  
VSUP is less than UVSUP  
.
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
9.3.9.5 Unpowered Device and LIN Bus  
In automotive applications, some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remain powered by the battery. The device has extremely low unpowered leakage current from the bus,  
so an unpowered node does not affect the network nor load it down.  
9.4 Device Functional Modes  
nRST: Float  
The TLIN1028-Q1 has three functional modes of operation: normal, sleep, and standby. The next sections  
describes these modes as well as how the device moves between the different modes. 9-5 graphically shows  
the relationship while 9-1 shows the state of pins.  
9-1. Operating Modes  
LIN BUS  
Termination  
Mode  
EN  
RXD  
Transmitter  
nRST  
Comment  
nRST is internally connected to the LDO output which  
is pulled to ground in sleep mode.  
Sleep  
Low  
Floating Weak Current pull-up  
Off  
Ground  
nRST is internally connected to the LDO output which  
in standby init mode is pulled low until VCC raises  
beyond UVCC threshold.  
Standby  
Init  
Low  
Low  
Low  
Floating  
Low  
Off  
Off  
Off  
Ramping  
VCC  
45 k(typical)  
45 k(typical)  
45 k(typical)  
Standby  
from  
SLP  
Wake-up event detected, waiting on processors to set  
EN  
nRST comes on to VCC once thresholds are met.  
Standby  
from  
Norm  
LDO is on and RXD is high but if a LIN bus wake  
event takes place RXD is pulled low.  
High  
VCC  
LIN Bus  
Data  
Normal  
High  
NA  
On  
Off  
VCC  
LIN transmission up to 20 kbps  
45 k(typical)  
45 k(typical)  
nRST is pulled low as the LDO is turned off which  
means UVCC threshold has been met.  
TSD Off  
Floating  
Ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
Unpowered System  
VSUP < UVSUP  
VSUP < UVSUP  
VSUP UVSUP  
Standby Init Mode  
VCC > UVCC  
EN = High  
Transceiver: Off  
WUP Receiver: Off  
RXD: Floating  
Termination: 45 k  
LDO: Ramping up  
Any State  
VCC > UVCC  
EN = Low  
Tj > TSD  
TSD Off Mode  
Standby Mode  
Transceiver: Off  
WUP Receiver: On  
RXD: Floating  
Termination: 45 k  
LDO: Off  
Tj < TSD  
Transceiver: Off  
WUP Receiver: On  
RXD: Signals wake event  
Termination: 45 k  
LDO: On  
nRST: Low (Fault Condition)  
nRST: High  
EN = Low > tEN  
AND TXD = High  
AND nRST = High  
VSUP < UVSUP  
LIN Bus Wake up  
Unpowered State  
EN = High > tEN  
nRST = High  
VSUP < UVSUP  
VSUP < UVSUP  
Normal Mode  
Sleep Mode  
EN = Low > tEN  
AND TXD = Low  
AND nRST = High  
Transceiver: On  
WUP Receiver: Off  
RXD: LIN Bus Data  
Termination: 45 k  
LDO: On  
Transceiver: Off  
WUP Receiver: On  
RXD: Floating  
Termination: Weak pullup  
LDO: Off  
EN = High > tEN  
nRST: High  
nRST: Low  
9-5. Operating State Diagram  
9.4.1 Normal Mode  
If the EN pin is high after the device enters standby init mode, the device enters normal mode. If EN is low, it  
enters standby mode. In normal operational mode, the receiver and transmitter are active and the LIN  
transmission up to the LIN specified maximum of 20 kbps is supported. If TXD pin is dominant at the time of  
entering normal mode the LIN transmitter is kept off until a recessive is applied to TXD. The receiver detects the  
data stream on the LIN bus and outputs it on RXD for the LIN controller. A recessive signal on the LIN bus is a  
digital high and a dominant signal on the LIN bus is a digital low. The driver transmits input data from TXD to the  
LIN bus. Normal mode is entered as EN transitions high while the device is in sleep or standby mode for > tEN  
.
Once EN has been high for tEN the device enters normal mode after tMODE_CHANGE and tNOMINIT  
.
9.4.2 Sleep Mode  
Sleep Mode is the power saving mode for the TLIN1028-Q1. Even with extremely low current consumption in  
this mode, the device can still wake up from the LIN bus through a wake-up signal or if EN is set high for > tEN  
.
The wake-up events must be active for the respective time periods (tLINBUS).  
While the device is in sleep mode, the following conditions exist:  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short-circuited to ground). However, the weak current pull-up is active to prevent false wake-up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
EN input and LIN wake-up receiver are active.  
9.4.3 Standby Mode  
Standby mode is entered either by a wake-up event through LIN bus while the device is in sleep mode or by the  
EN pin from normal or standby init modes. From normal mode EN must be low for > tEN and TXD and nRST are  
high. RXD pin in standby mode is dependent upon how standby mode was entered. If entered from normal  
mode or power up, RXD is high. If entered from sleep mode, RXD is pulled low to indicate a wake event. When  
entering standby mode from normal or standby init modes, a wake event on the LIN bus causes the RXD pin to  
be pulled low.  
During power up, if EN is low the device goes into standby mode, and if EN is high, the device goes into normal  
mode. EN has an internal pull-down resistor ensuring EN is pulled low if the pin is left floating in the system.  
9.4.4 Wake-Up Events  
There are two ways to wake-up from sleep mode:  
Remote wake-up initiated by the falling edge of a recessive (high) to dominant (low) state transition on the  
LIN bus where the dominant state is held for the tLINBUS filter time. After this tLINBUS filter time has been met  
and a rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up  
event eliminating false wake ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake-up through EN being set high for longer than tEN  
.
9.4.4.1 Wake-Up Request (RXD)  
When the TLIN1028-Q1 encounters a wake-up event from the LIN bus, RXD goes low and the device transitions  
to standby mode until EN is reasserted high and the device enters normal mode. Once the device enters normal  
mode, the RXD pin releases the wake-up request signal and the RXD pin then reflects the receiver output from  
the LIN bus.  
9.4.5 Mode Transitions  
When the device is transitioning between modes, the device needs the time tMODE_CHANGE and tNOMINT to allow  
the change to fully propagate from the EN pin through the device into the new state.  
9.4.6 Voltage Regulator  
The device has an integrated high-voltage LDO that operates over a 5.5 V to 28 V input voltage range for both  
3.3 V and 5 V VCC. The device has an output current capability of 70 mA and 125 mA depending upon package  
and support fixed output voltages of 3.3 V (TLIN10283-Q1) or 5 V (TLIN10285-Q1). It features thermal shutdown  
and short-circuit protection to prevent damage during over-temperature and over-current conditions  
9.4.6.1 VCC  
The VCC pin is the regulated output based on the required voltage. The regulated voltage accuracy is ± 2%. The  
output is current limited. In the event that the regulator drops out of regulation, the output tracks the input minus  
a drop based on the load current. When the input voltage drops below the UVSUP threshold, the regulator shuts  
down until the input voltage returns above the UVSUPR level. The device monitors situations where VCC may drop  
below the UVCC level thus causing the nRST pin to be pulled low.  
9.4.6.2 Output Capacitance Selection  
For stable operation over the full temperature range and with load currents up to 125 mA on VCC a certain  
capacitance is expected and depends upon the minimum load current. To support no load to full load a value of  
10 µF and ESR smaller than 2 Ω is needed. For 20 µA to full load an 1.5 µF capacitance can be used. The low  
ESR recommendation is to improve the load transient performance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
9.4.6.3 Low-Voltage Tracking  
At low input voltages, the regulator drops out of regulation and the output voltage tracks input minus a voltage  
based on the load current (IL) and power-switch resistor. This tracking allows for a smaller input capacitance and  
can possibly eliminate the need for a boost converter during cold-crank conditions.  
9.4.6.4 Power Supply Recommendation  
The device is designed to operate from an input-voltage supply range between 5.5 V and 28 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the device. The recommended  
minimum capacitance at the pin is 100 nF . The max voltage range is for the LIN functionality. Exceeding 24V for  
the LDO reduces the effective current sourcing capability due to thermal considerations.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TLIN1028-Q1 can be used as both a responder device and a commander device in a LIN network. The  
device comes with the ability to support a remote wake-up requests. It can provide the power to the local  
processor.  
10.2 Typical Application  
The device comes with an integrated 45 kpull-up resistor and series diode for responder node applications.  
For commander node applications, an external 1 kpull-up resistor with series blocking diode can be used. 图  
10-1 shows the device being used in both commander and responder node applications.  
Commander  
Node  
10 µF  
VSUP  
Vcc  
100 nF(4)  
EN  
I/O  
2
8
1
VDD  
Commander  
Node  
MCU w/o  
pull-up(2)  
Pull-up(3)  
V
DD I/O  
1 k  
LIN  
MCU  
4
LIN Controller  
Or  
5
220 pF  
RXD  
TXD  
SCI/UART(1)  
6
GND  
7
3
nRST  
Responder  
Node  
10 µF  
Vcc  
VSUP  
100 nF(4)  
EN  
I/O  
2
8
1
VDD  
MCU w/o  
pull-up(2)  
Responder Node(3)  
V
DD I/O  
LIN  
MCU  
4
LIN Controller  
Or  
5
6
7
220 pF  
RXD  
TXD  
SCI/UART(1)  
3
GND  
nRST  
(1) If RXD on MCU or LIN responder node has internal pullup; no external pull-up resistor is needed.  
(2) If RXD on MCU or LIN responder node does not have an internal pull-up requires external pull-up resistor.  
(3) Commander node applica ons require and external 1 k pull-up resistor and serial diode.  
(4) Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF  
10-1. Typical LIN Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
10.2.1.1 Normal Mode Application Note  
When using the TLIN1028-Q1 in systems which are monitoring the RXD pin for a wake-up request, special care  
should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition period  
between states as the receivers are switched. The application software should not look for an edge on the RXD  
pin indicating a wake-up request until tMODE_CHANGE. This is shown in 8-15 when transitioning to normal mode  
there is an initialization period shown as tNOMINIT  
.
10.2.1.2 TXD Dominant State Timeout Application Note  
The maximum dominant TXD time allowed by the TXD dominant state time out limits the minimum possible data  
rate of the device. The LIN protocol has different constraints for commander and responder node applications;  
thus, there are different maximum consecutive dominant bits for each application case and thus different  
minimum data rates.  
10.2.1.3 Brownout  
10-17 and 10-18 show the behavior of the LIN, nRST and VCC pins during a brownout condition. For the  
TLIN10283-Q1, VSUP down to ~ 2.24 V has results as shown. For the TLIN10285-Q1, VSUP down to ~ 2.63 V  
has results as shown. When VSUP drops below these levels the signals are indeterminate.  
10.2.2 Detailed Design Procedures  
For processors or LIN responder nodes with an internal pull-up on RXD, no external pull-up resistor is needed.  
For processors or LIN responder nodes without internal pull-up on RXD, an external pull-up resistor is required.  
Commander node applications require an external 1 kpull-up resistor and serial diode.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
10.2.3 Application Curves  
Characteristic curves below show the LDO performance ramping between 0 V and up to 7 V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
30  
20  
10  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VSUP (V)  
5.5  
6
6.5  
7
D012  
D002  
Package = DRB  
ICC = 125 mA  
VCC = 3.3 V  
Temperature =  
Ambient  
Package = D  
ICC = 70 mA  
VCC = 3.3 V  
Temperature =  
Ambient  
10-3. ISUP vs VSUP vs Temperature  
10-2. ISUP vs VSUP vs Temperature  
130  
120  
110  
100  
90  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
30  
20  
10  
0
0
-5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
7
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
7
D022  
D007  
Package = DDA  
ICC = 125 mA  
VCC = 3.3 V  
Temperature =  
Ambient  
Package = D  
ICC = 70 mA  
VCC = 5 V  
Temperature =  
Ambient  
10-4. ISUP vs VSUP vs Temperature  
10-5. ISUP vs VSUP vs Temperature  
130  
120  
110  
100  
90  
130  
120  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
30  
20  
105°C  
115°C  
125°C  
105°C  
115°C  
125°C  
20  
10  
10  
0
0
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
7
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
7
D017  
D027  
Package = DRB  
ICC = 125 mA  
VCC = 5 V  
Temperature =  
Ambient  
Package = DDA  
ICC = 125 mA  
VCC = 5 V  
Temperature =  
Ambient  
10-6. ISUP vs VSUP vs Temperature  
10-7. ISUP vs VSUP vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
4
4
105°C  
115°C  
125°C  
105°C  
115°C  
125°C  
2
2
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
D004  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
D014  
Package = D  
Mode = Sleep  
3.3 V VCC = Off  
Temperature =  
Ambient  
Package = DRB  
Mode = Sleep  
3.3 V VCC = Off  
Temperature =  
Ambient  
10-8. ISUP vs VSUP vs Temperature Ramp-down 10-9. ISUP vs VSUP vs Temperature Ramp-down  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
4
4
105°C  
115°C  
125°C  
105°C  
115°C  
125°C  
2
2
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
D024  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
D009  
Package = DDA  
Mode = Sleep  
3.3 V VCC = Off  
Temperature =  
Ambient  
Package = D  
Mode = Sleep  
5 V VCC = Off  
Temperature =  
Ambient  
10-10. ISUP vs VSUP vs Temperature Ramp-down 10-11. ISUP vs VSUP vs Temperature Ramp-down  
18  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
4
4
105°C  
115°C  
125°C  
105°C  
115°C  
125°C  
2
2
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
D019  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VSUP (V)  
4
4.5  
5
5.5  
6
6.5  
D029  
Package = DRB  
Mode = Sleep  
5 V VCC = Off  
Temperature =  
Ambient  
Package = DDA  
Mode = Sleep  
5 V VCC = Off  
Temperature =  
Ambient  
10-12. ISUP vs VSUP vs Temperature Ramp-down 10-13. ISUP vs VSUP vs Temperature Ramp-down  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
10-14. LIN Bus Performance  
10-15. Dominant to Recessive Propagation  
Delay  
10-16. Recessive to Dominant Propagation  
10-17. TLIN10283-Q1 Brownout  
Delay  
10-18. TLIN10285-Q1 Brownout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The TLIN1028-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 5.5 V  
to 28 V . A 100 nF decoupling capacitor should be placed as close to the VSUP pin of the device as possible.For  
applications where the device goes from no load to full load, a minimum decoupling capacitance to ground of 10  
μF is recommended when the LDO turns on. If the device is going from 20 µA to full load then a minimum of 1.5  
µF capacitance is recommended.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
12 Layout  
PCB design should start with understanding that frequency bandwidth from approximately 3 MHz to 3 GHz is  
needed thus high frequency layout techniques must be applied during PCB design. Placement at the connector  
also prevents these noisy events from propagating further into the PCB and system.  
12.1 Layout Guidelines  
Pin 1 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed as close  
to the device as possible.  
Pin 2 (EN): EN is an input pin that is used to place the device in a low power sleep mode. If this feature is not  
used, the pin should be pulled high to the regulated voltage supply of the microprocessor through a series  
resistor, values between 1 kand 10 k. Additionally, a series resistor may be placed on the pin to limit  
current on the digital lines in the event of an over-voltage fault.  
Pin 3 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 4 (LIN): This pin connects to the LIN bus. For responder node applications, a 220 pF capacitor to ground  
is implemented. For commander node applications, an additional series resistor and blocking diode should be  
placed between the LIN pin and the VSUP pin. See 10-1  
Pin 5 (RXD): The pin is an open-drain output and requires and external pull-up resistor in the range of 1 kΩ  
to 10 kto function properly. If the microprocessor paired with the transceiver does not have an integrated  
pull-up, an external pull-up resistor should be placed on RXD. If RXD is connected to the VCC pin a higher  
pull-up resistor value can be used to reduce standby current.  
Pin 6 (TXD): The TXD pin is the transmit input signal to the device from the processors. A series resistor can  
be placed to limit the input current to the device in the event of an over voltage on this pin. A capacitor to  
ground can be placed close to the input pin of the device to filter noise.  
Pin 7 (nRST): This pin connects to the processors as a reset out.  
Pin 8 (VCC): Output source, either 3.3 V or 5 V depending upon the version of the device.  
备注  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TLIN1028-Q1  
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
12.2 Layout Example  
VSUP  
C2  
VSUP  
1
2
VCC  
8
U1  
Only needed for  
the Commander  
node  
VCC  
GND  
GND  
R2  
EN  
EN  
nRST  
7
LIN  
GND  
GND  
3
4
GND  
6
5
R4  
TXD  
TXD  
GND  
VCC  
GND  
LIN  
RXD  
RXD  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
ISO/DIS 17987-1: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and  
use case definition  
ISO/DIS 17987-4: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
SAE J2602-1: LIN Network for Vehicle Applications  
LIN2.0, LIN2.1, LIN2.2 and LIN2.2A specification  
EMC requirements:  
SAE J2962-2: TBD  
HW Requirements for CAN, LIN, FR V1.3: German OEM requirements for LIN  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO/DIS 17987-7: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer  
(EPL) conformance test specification  
SAE J2602-2: LIN Network for Vehicle Applications Conformance Test  
TLINx441 LDO Performance, SLLA427  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
13.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TLIN1028-Q1  
 
 
 
 
 
 
TLIN1028-Q1  
ZHCSK68B AUGUST 2019 REVISED JUNE 2022  
www.ti.com.cn  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TLIN1028-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN10283DDARQ1  
TLIN10283DRBRQ1  
TLIN10283DRQ1  
ACTIVE SO PowerPAD  
DDA  
DRB  
D
8
8
8
8
8
8
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TLN83  
ACTIVE  
ACTIVE  
SON  
NIPDAU  
NIPDAU  
TLN83  
TLN83  
TLN85  
TLN85  
TLN85  
SOIC  
TLIN10285DDARQ1  
TLIN10285DRBRQ1  
TLIN10285DRQ1  
ACTIVE SO PowerPAD  
DDA  
DRB  
D
NIPDAUAG  
NIPDAU  
ACTIVE  
ACTIVE  
SON  
SOIC  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLIN10283DDARQ1  
SO  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
PowerPAD  
TLIN10283DRBRQ1  
TLIN10283DRQ1  
SON  
DRB  
D
8
8
8
3000  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.8  
3.3  
6.4  
6.4  
3.3  
5.2  
5.2  
1.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
SOIC  
TLIN10285DDARQ1  
SO  
DDA  
PowerPAD  
TLIN10285DRBRQ1  
TLIN10285DRQ1  
SON  
DRB  
D
8
8
3000  
2500  
330.0  
330.0  
12.4  
12.4  
3.3  
6.4  
3.3  
5.2  
1.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
SOIC  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLIN10283DDARQ1  
TLIN10283DRBRQ1  
TLIN10283DRQ1  
SO PowerPAD  
SON  
DDA  
DRB  
D
8
8
8
8
8
8
2500  
3000  
2500  
2500  
3000  
2500  
366.0  
367.0  
356.0  
366.0  
367.0  
356.0  
364.0  
367.0  
356.0  
364.0  
367.0  
356.0  
50.0  
35.0  
35.0  
50.0  
35.0  
35.0  
SOIC  
TLIN10285DDARQ1  
TLIN10285DRBRQ1  
TLIN10285DRQ1  
SO PowerPAD  
SON  
DDA  
DRB  
D
SOIC  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLIN10283DDARQ1

具有集成稳压器的汽车本地互联网络 (LIN) 收发器 | DDA | 8 | -40 to 125
TI

TLIN10283DRBRQ1

具有集成稳压器的汽车本地互联网络 (LIN) 收发器 | DRB | 8 | -40 to 125
TI

TLIN10283DRQ1

具有集成稳压器的汽车本地互联网络 (LIN) 收发器 | D | 8 | -40 to 125
TI

TLIN10285DDARQ1

具有集成稳压器的汽车本地互联网络 (LIN) 收发器 | DDA | 8 | -40 to 125
TI

TLIN10285DRBRQ1

具有集成稳压器的汽车本地互联网络 (LIN) 收发器 | DRB | 8 | -40 to 125
TI

TLIN10285DRQ1

具有集成稳压器的汽车本地互联网络 (LIN) 收发器 | D | 8 | -40 to 125
TI

TLIN1029A-Q1

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN1029A-Q1_V01

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN1029ADRBRQ1

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN1029ADRQ1

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN1029AMDRBRQ1

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN1039-Q1

具有显性状态超时故障保护功能的局域互联网络 (LIN) 收发器
TI