TLIN1039-Q1 [TI]

具有显性状态超时故障保护功能的局域互联网络 (LIN) 收发器;
TLIN1039-Q1
型号: TLIN1039-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有显性状态超时故障保护功能的局域互联网络 (LIN) 收发器

文件: 总38页 (文件大小:2240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
具有显性状态超TLIN1039-Q1 本地互连网(LIN) 收发器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q1001 标准  
• 符LIN 2.0LIN 2.1LIN 2.2LIN 2.2A 和  
ISO/DIS 179874 电气物理(EPL) 规格标准  
• 符SAE J2602-1 面向汽车应用LIN 网络标准  
提供功能安全  
车身电子装置和照明  
信息娱乐系统与仪表组  
混合动力电动汽车和动力总成系统  
被动安全  
电器  
可帮助进行功能安全系统设计的文档  
• 支12V 应用  
3 说明  
TLIN1039-Q1 是一款本地互连网络 (LIN) 物理层收发  
集成了唤醒和保护功能符合 LIN 2.0LIN 2.1、  
LIN 2.2LIN 2.2A ISO/DIS 179874 标准。LIN  
是一种单线双向总线通常用于车载网络。TLIN1039-  
Q1 旨在12V 应用提供支持具有更宽的工作电压范  
围和额外的总线故障保护。  
• 宽工作电源电压范围4.5 V 36V  
LIN 传输数据速率高20kbps  
LIN 接收数据速率高100kbps  
• 休眠模式超低电流消耗允许以下类型的唤醒事  
:  
LIN 总线  
TLIN1039-Q1 变送器支持高达 20kbps 的数据速率。  
TLIN1039-Q1 接收器支持高达 100kbps 的数据速率,  
从而更快速地执行内联编程。TLIN1039-Q1 使用一个  
可降低电磁辐射 (EME) 的限流波形整形驱动器将 TXD  
输入上的数据流转化为 LIN 总线信号。接收器将数据  
流转化为逻辑电平信号此信号通过开漏 RXD 引脚发  
送到微处理器。休眠模式可实现超低电流消耗该模式  
允许通LIN 总线EN 引脚实现唤醒。  
– 通EN 引脚的本地唤醒  
• 集45kΩLIN 上拉电阻器  
LIN 总线RXD 输出上实现上电/断电无干扰运  
• 保护特性:  
±45V LIN 总线容错  
VSUP 欠压保护  
TXD 显性超(DTO) 保护  
– 热关断保护  
器件信息  
– 系统级未供电节点或接地断开失效防护  
• 结温范围-40°C 150°C  
• 采用小SOT-23 封装  
封装(1)  
封装尺寸标称值)  
器件型号  
TLIN1039-Q1  
SOT-23 (8) (DDF)  
2.90mm x 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBAT  
VSUP  
VBAT  
VSUP  
VREG  
VSUP  
VREG  
VSUP  
VDD  
VDD  
Commander  
Node  
Pullup  
VDD  
VDD  
VSUP  
VSUP  
NC NC  
EN  
NC  
8
NC  
3
8
3
7
2
VDD  
EN  
I/O  
I/O  
2
7
VDD  
MCU w/o  
pullup  
MCU w/o  
pullup  
VDD I/O  
VDD I/O  
1 kΩ  
LIN Bus  
LIN  
LIN Bus  
MCU  
LIN  
MCU  
6
6
LIN Controller  
or  
SCI/UART  
LIN Controller  
Or  
SCU/UART  
1
4
1
4
220 pF  
220 pF  
RXD  
TXD  
RXD  
TXD  
GND  
5
GND  
5
简化版原理图响应者模式  
简化版原理图指挥官模式  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFH7  
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
Table of Contents  
9.1 Overview...................................................................20  
9.2 Functional Block Diagram.........................................20  
9.3 Feature Description...................................................21  
9.4 Functional Modes......................................................24  
10 Application and Implementation................................26  
10.1 Application Information........................................... 26  
10.2 Typical Application.................................................. 26  
11 Power Supply Recommendations..............................27  
12 Layout...........................................................................28  
12.1 Layout Guidelines................................................... 28  
12.2 Layout Example...................................................... 29  
13 Device and Documentation Support..........................30  
13.1 Related Documentation.......................................... 30  
13.2 接收文档更新通知................................................... 30  
13.3 支持资源..................................................................30  
13.4 Trademarks.............................................................30  
13.5 静电放电警告.......................................................... 30  
13.6 术语表..................................................................... 31  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 ESD Ratings - IEC Specification ................................5  
7.4 Thermal Information ...................................................6  
7.5 Recommended Operating Conditions ........................6  
7.6 Power Supply Characteristics ....................................6  
7.7 Electrical Characteristics ............................................7  
7.8 AC Switching Characteristics ...................................10  
7.9 Typical Characteristics.............................................. 11  
8 Parameter Measurement Information..........................12  
9 Detailed Description......................................................20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
August 2021  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
5 说明)  
TLIN1039-Q1 集成了一个用LIN 响应器节点应用、ESD 保护和故障保护的电阻器可减少应用中的外部组件数  
量。一旦发生接地漂移或电源电压断开该器件可防止反馈电流经 LIN 流向电源输入。器件还包含欠压保护、过  
热关断保护和接地失效保护功能。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
RXD  
EN  
1
2
3
4
8
7
6
5
NC  
VSUP  
LIN  
NC  
TXD  
GND  
Not to scale  
6-1. DDF Package, 8-Pin (SOT), Top View  
6-1. Pin Functions  
DESCRIPTION  
PIN  
Type  
Name  
RXD  
No.  
1
DO  
DI  
RXD output (open-drain) interface reporting state of LIN bus voltage  
Enable input - High puts the device in normal operation mode and low puts the device in sleep  
mode; integrated pull-down  
EN  
2
NC  
3
4
5
6
7
8
Not connected  
DI  
TXD  
GND  
LIN  
TXD input interface to control state of LIN output; integrated pull-down  
Ground  
GND  
HV I/O  
LIN bus single-wire transmitter and receiver  
VSUP  
NC  
HV Supply Device supply voltage (connected to battery in series with external reverse blocking diode)  
Not connected  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1) (2)  
MIN  
0.3  
45  
MAX  
45  
45  
6
UNIT  
V
VSUP  
Supply voltage range (ISO 17987)  
LIN Bus input voltage (ISO 17987)  
Logic input voltage (TXD, EN)  
Logic output voltage (RXD)  
Digital pin output current  
Junction Temp  
VLIN  
V
VLOGIC_INPUT  
V
0.3  
0.3  
VLOGIC_OUTPUT  
6
V
IO  
8
mA  
°C  
°C  
TJ  
165  
150  
55  
Tstg  
Storage temperature  
-65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to ground terminal.  
7.2 ESD Ratings  
VALUE  
±8000  
±10000  
±4000  
UNIT  
Human body model (HBM) classification level 3B: VSUP with respect to ground  
Human body model (HBM) classification level 3B: LIN with respect to ground  
Human body model (HBM) classification level 3A: all other pins, per AEC Q100-002(1)  
V
V
V
VESD Electrostatic discharge  
VESD Electrostatic discharge  
Charged device model (CDM) classification  
All pins  
±750  
V
level C5, per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings - IEC Specification  
VALUE  
UNIT  
IEC 62228-2 per ISO 10605  
Contact discharge  
R = 330 , C = 150 pF (IEC 61000-4-2)  
LIN, VSUP terminal to GND(1)  
LIN terminal to GND(1)  
±8000  
±8000  
-100  
75  
VESD Electrostatic discharge  
V
IEC 62228-2 per ISO 10605  
Indirect contact discharge  
R = 330 , C = 150 pF (IEC 61000-4-2)  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 1  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 2  
Non-synchronous transient  
LIN, VSUP terminal to GND(1)  
injection  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 3a  
VTRAN  
V
-150  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 3b  
150  
±30  
SAE J2962-1 per ISO 7637-3  
DCC - Slow transient pulse  
Direct capacitor coupling  
LIN terminal to GND(2)  
(1) Results given here are specific to the IEC 62228-2 Integrated circuits EMC evaluation of transceivers Part 2: LIN transceivers.  
Testing performed by OEM approved independent 3rd party, EMC report available upon request.  
(2) Results given here are specific to the SAE J2962-1 Communication Transceivers Qualification Requirements - LIN. Testing performed  
by OEM approved independent 3rd party, EMC report available upon request.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN1039-Q1  
 
 
 
 
 
 
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7.4 Thermal Information  
TLIN1039-Q1  
DDF(SOT)  
8 PINS  
125.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
64.3  
45.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.8  
ΨJT  
45.5  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Recommended Operating Conditions  
parameters valid across -40TJ 150(unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
36  
UNIT  
V
VSUP  
VLIN  
Supply Voltage  
LIN Bus input voltage  
36  
V
VLOGIC  
TJ  
Logic Pin Voltage  
0
5.25  
150  
V
Operating virtual junction temperature range  
Thermal shutdown rising  
Thermal shutdown falling  
Thermal shutdown hysteresis  
-40  
160  
°C  
°C  
°C  
°C  
TSDR  
TSDF  
TSD(HYS)  
150  
10  
7.6 Power Supply Characteristics  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply Voltage and Current  
Device is operational beyond the LIN  
defined nominal supply voltage range  
See 8-1 and 8-2  
Operational supply voltage  
ISO 17987 Param 10  
4.5  
36  
V
VSUP  
Normal and standby modes(1)  
See 8-1 and 8-2  
4.5  
4.5  
36  
36  
V
V
Nominal supply voltage  
ISO 17987 Param 10  
Sleep mode  
Normal mode  
EN = High, RLIN 500 , CLIN 10 nF  
1.2  
1
6.5  
mA  
Supply current  
Bus dominant  
Standby mode  
EN = 0 V, RLIN 500 , CLIN 10 nF  
1.7  
700  
30  
mA  
µA  
µA  
µA  
µA  
Normal mode  
EN = High  
300  
20  
9
Supply current  
Bus recessive  
ISUP  
Standby mode  
EN = 0 V  
4.5 V < VSUP 14 V,  
EN = 0 V, TXD and RXD floating  
14  
Supply current  
Sleep mode  
14 V < VSUP 36 V,  
EN = 0 V, TXD and RXD floating  
22  
UVSUP(R)  
UVSUP(F)  
UVHYS  
Under voltage VSUP threshold  
Under voltage VSUP threshold  
Ramp up  
4.15  
4
4.45  
V
V
V
Ramp down  
3.5  
Delta hysteresis voltage for VSUP under voltage threshold  
0.13  
(1) Ramp VSUP while LIN signal is a 10 kHz square wave with 50% duty cycle and 36 V swing.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7.7 Electrical Characteristics  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.6  
5
UNIT  
RXD Output Terminal  
(4)  
VOL  
IOL  
Low-level voltage  
Based upon external pull-up to VCC  
LIN = 0 V, RXD = 0.4 V  
V
Low-level output current, open drain  
Leakage current, high-level  
1.5  
mA  
µA  
ILKG  
LIN = VSUP, RXD = VCC  
5  
TXD Input Terminal  
VIL  
Low-level input voltage  
0.8  
V
V
VIH  
High-level input voltage  
2
5  
125  
ILKG  
RTXD  
EN Input Terminal  
Low-level input leakage current  
TXD = 0 V  
5
µA  
Internal pull-down resistor value  
350  
800  
kΩ  
VIL  
Low-level input voltage  
0.8  
5.25  
500  
5
V
V
0.3  
2
VIH  
High-level input voltage  
Hysteresis voltage  
VHYS  
By design and characterization  
EN = 0 V  
30  
mV  
µA  
IIL  
Low-level input current  
Internal pull-down resistor  
5  
125  
REN  
350  
800  
kΩ  
LIN Terminal  
TXD = VCC, IO = 0 mA  
7 V VSUP 36 V  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
LIN recessive high-level output voltage(3)  
LIN recessive high-level output voltage(3)  
LIN recessive high-level output voltage(1) (2)  
LIN dominant low-level output voltage(3)  
LIN dominant low-level output voltage(3)  
LIN dominant low-level output voltage(1) (2)  
0.85  
3
VSUP  
TXD = VCC, IO = 0 mA  
4.5 V VSUP < 7 V  
V
TXD = VCC, IO = 0 mA  
7 V VSUP 18 V  
0.8  
VSUP  
VSUP  
V
TXD = 0 V  
7 V VSUP 36 V  
0.2  
1.2  
0.2  
TXD = 0 V  
4.5 V VSUP < 7 V  
TXD = 0 V  
7 V VSUP 18 V  
VSUP  
LIN dominant (including LIN dominant for  
wake up)  
See 8-3 and 8-4  
Low-level input voltage  
ISO 17987 Param 17  
VBUSdom  
0.4  
VSUP  
LIN recessive  
See 8-3 and 8-4  
High-level input voltage  
ISO 17987 Param 18  
VBUSrec  
VIH  
0.6  
0.47  
VSUP  
VSUP  
VSUP  
V
LIN recessive high-level input voltage threshold(1)  
0.6  
0.53  
42  
7 V VSUP 18 V  
7 V VSUP 18 V  
(2)  
LIN dominant low-level input voltage threshold(1)  
VIL  
0.4  
(2)  
TXD & RXD open  
4.5 V LIN 45 V  
VSUP_NON_OP  
VBUS_CNT  
VHYS  
VSUP where impact of recessive LIN bus < 5%(3)  
Receiver center threshold  
0.3  
0.475  
VBUS_CNT = (VBUSrec + VBUSdom)/2  
See 8-3 and 8-4  
0.5  
0.525  
0.175  
VSUP  
VHYS = VBUSrec - VBUSdom  
See 8-3 and 8-4  
Hysteresis voltage (ISO 17987)  
VSUP  
VHYS = VIH - VIL  
See 8-3 and 8-4  
VHYS  
Hysteresis voltage (SAE J2602)  
0.07  
0.4  
40  
0.175  
1.0  
VSUP  
V
VSERIAL_DIODE  
IBUS(LIM)  
Serial diode LIN termination pull-up path  
ISERIAL_DIODE = 10 µA  
0.7  
90  
Limiting current  
ISO 17987 Param 12  
TXD = 0 V, VLIN = 18 V  
VSUP = 18 V  
200  
mA  
Driver off/recessive, LIN = 0 V  
VSUP = 12 V  
See 8-6  
IBUS_PAS_dom  
Receiver leakage current, dominant  
Receiver leakage current, recessive  
mA  
µA  
1  
Driver off/recessive, LIN VSUP  
4.5 V VSUP 36 V  
See 8-7  
IBUS_PAS_rec1  
20  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Driver off/recessive, LIN = VSUP  
See 8-7  
IBUS_PAS_rec2  
Receiver leakage current, recessive  
5
µA  
5  
GNDDevice = VSUP = 18 V  
RMeas = 1 kΩ  
IBUS_NO_GND  
Leakage current, loss of ground  
Leakage current, loss of ground (5)  
1
1
mA  
mA  
1  
1  
0 V < VLIN < 18 V  
VSUP = 8 V, GND = open, VSUP = 18 V, GND  
= open  
RCOMMANDER = 1 k, CL = 1 nF  
RRESPONDER = 20 k, CL = 1 nF  
LIN = dominant  
Ileak gnd(dom)  
VSUP = 8 V, GND = open, VSUP = 18 V, GND  
= open  
RCOMMANDER = 1 k, CL = 1 nF  
RRESPONDER = 20 k, CL = 1 nF  
LIN = recessive  
Ileak gnd(rec)  
Leakage current, loss of ground (5)  
Leakage current, loss of supply  
100  
5
µA  
100  
VSUP = GND  
0 V VLIN 18 V  
IBUS_NO_BAT  
µA  
µA  
IRSLEEP  
RPU  
Pull-up current source to VSUP sleep mode  
Pull-up resistor to VSUP  
VSUP = 14 V, LIN = GND  
Normal and standby modes  
VSUP = 14 V  
20  
1.5  
60  
20  
45  
kΩ  
CLIN  
Capacitance of the LIN pin  
25  
pF  
Duty Cycle Characteristics  
THREC(MAX) = 0.744 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 7 V to 18 V, tBIT = 50 µs  
Duty Cycle 1(3)  
D1  
0.396  
0.396  
0.396  
ISO 17987 Param 27  
D1 = tBUS_rec(min)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 50 µs  
D1  
D1  
D2  
D2  
D2  
D3  
D3  
Duty Cycle 1 (3) (6)  
D1 = tBUS_rec(min)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MAX) = 0.744 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 7 V to 18 V, tBIT = 52 µs  
,
,
Duty cycle 1(1) (2) (6)  
D1 = tBUS_rec(min)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MIN) = 0.422 x VSUP  
THDOM(MIN) = 0.284 x VSUP  
VSUP = 7 V to 18 V, tBIT = 50 µs  
Duty Cycle 2(3)  
ISO 17987 Param 28  
0.581  
0.581  
0.581  
D2 = tBUS_rec(MAX)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MIN) = 0.496 x VSUP  
THDOM(MIN) = 0.361 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 50 µs  
,
,
Duty cycle 2(3) (6)  
D2 = tBUS_rec(MAX)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MIN) = 0.422 x VSUP  
THDOM(MIN) = 0.284 x VSUP  
VSUP = 7 V to 18 V, tBIT = 52 µs  
,
,
Duty cycle 2(1) (2) (6)  
D2 = tBUS_rec(MAX)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty Cycle 3(3)  
ISO 17987 Param 29  
0.417  
0.417  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 96 µs  
Duty Cycle 3(3) (6)  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See 8-10 and 8-11  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
D3  
D4  
D4  
D4  
Duty cycle 3(1) (2) (6)  
0.417  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty Cycle 4(3)  
ISO 17987 Param 30  
0.59  
0.59  
0.59  
D4 = tBUS_rec(MAX)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 96 µs  
Duty Cycle 4(3) (6)  
D4 = tBUS_rec(MAX)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty cycle 4(1) (2) (6)  
D4 = tBUS_rec(MAX)/(2 x tBIT  
)
See 8-10 and 8-11  
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 52 µs  
,
,
D1LB  
D2LB  
D3LB  
D4LB  
Duty cycle 1 at low battery(1) (2) (6)  
Duty cycle 2 at low battery(1) (2) (6)  
Duty cycle 3 at low battery(1) (2) (6)  
Duty cycle 4 at low battery(1) (2) (6)  
0.396  
0.396  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 52 µs  
0.581  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 96 µs  
,
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 96 µs  
0.581  
10.8  
THREC(MAX) = 0.744 x VSUP  
,
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Recessive to dominant  
THDOM(MAX) = 0.581 x VSUP  
7 V VSUP 18 V, tBIT = 52 µs  
tREC(MAX)_D1 - tDOM(MIN)_D1  
Tr-d max_D1  
Td-r max_D2  
Tr-d max_D3  
Td-r max_D4  
Tr-d max_low  
Td-r max_low  
µs  
µs  
µs  
µs  
µs  
µs  
THREC(MAX) = 0.422 x VSUP  
,
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Dominant to recessive  
THDOM(MAX) = 0.284 x VSUP  
7 V VSUP 18 V, tBIT = 52 µs  
tDOM(MAX)_D2 - tREC(MIN)_D2  
8.4  
15.9  
17.28  
10.8  
8.4  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
7 V VSUP 18 V, tBIT = 96 µs  
tREC(MAX)_D3 - tDOM(MIN)_D3  
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Recessive to dominant  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
7 V VSUP 18 V, tBIT = 96 µs  
tDOM(MAX)_D4 - tREC(MIN)_D4  
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Dominant to recessive  
THREC(MAX) = 0.665 x VSUP  
,
Low battery transmitter propagation delay timings  
for the duty cycle(1) (2) (6)  
Recessive to dominant  
THDOM(MAX) = 0.499 x VSUP  
5.5 V VSUP 7 V, tBIT = 52 µs  
tREC(MAX)_low - tDOM(MIN)_low  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
6.1 V VSUP 7 V, tBIT = 52 µs  
tDOM(MAX)_low - tREC(MIN)_low  
Low battery transmitter propagation delay timings  
for the duty cycle(1) (2) (6)  
Dominant to recessive  
(1) SAE 2602 commander node load conditions: 5.5 nF/4 kand 899 pF/20 kΩ  
(2) SAE 2602 responder node load conditions: 5.5 nF/875 and 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) RXD uses open drain output structure therefore VOL level is based upon microcontroller supply voltage.  
(5) Ileak gnd = (VBAT - VLIN)/RLoad  
(6) Specified by design  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN1039-Q1  
 
 
 
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7.8 AC Switching Characteristics  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device Switching Characteristics  
Receiver rising propagation delay time  
ISO 17987 Param 31  
trx_pdr  
trx_pdf  
trx_pdr  
trx_pdf  
5
5
6
6
µs  
µs  
µs  
µs  
5.5 V VSUP , RRXD = 2.4 k, CRXD = 20  
pF  
Receiver falling propagation delay time  
ISO 17987 Param 31  
See 8-12 and 8-13  
Receiver rising propagation delay time  
ISO 17987 Param 31  
4.5 V VSUP < 5.5 V, RRXD = 2.4 k,  
CRXD = 20 pF  
See 8-12 and 8-13  
Receiver falling propagation delay time  
ISO 17987 Param 31  
Rising edge with respect to falling edge  
trx_sym = trx_pdf trx_pdr  
RRXD = 2.4 k, CRXD = 20 pF  
See 8-12 and 8-13  
Symmetry of receiver propagation delay time  
Receiver rising propagation delay time  
ISO 17987 Param 32  
trx_sym  
2
µs  
2  
tLINBUS  
tCLEAR  
Minimum dominant time on LIN bus for wake-up  
25  
8
65  
25  
150  
50  
µs  
µs  
See 8-16, 9-2 and 9-3  
Time to clear false wake-up prevention logic if LIN  
bus had a bus stuck dominant fault (recessive  
time on LIN bus to clear bus stuck dominant fault)  
See 9-3  
Time to change from normal mode to sleep  
mode through EN pin  
See 9-4 and 8-14  
tMODE_CHANGE Mode change delay time  
2
15  
45  
µs  
µs  
Time for normal mode to initialize and data  
on RXD pin to be valid, includes  
tMODE_CHANGE for standby to normal mode.  
See 8-14  
tNOMINT  
Normal mode initialization time(1)  
Time it takes for valid data on RXD upon  
power-up  
tPWR  
Power-up time  
1.5  
80  
ms  
ms  
tTXD_DTO  
Dominant state time out  
20  
50  
(1) The transition time from sleep mode to normal mode includes both tMODE_CHANGE and tNOMINT  
.
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
7.9 Typical Characteristics  
40  
35  
30  
25  
20  
15  
10  
5
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
-55°C  
25°C  
125°C  
150°C  
-55°C  
25°C  
125°C  
150°C  
0
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
D001  
D002  
7-1. VOH vs VSUP and Temperature  
7-2. VOL vs VSUP and Temperature  
2.5  
500  
450  
400  
350  
300  
250  
200  
150  
2.25  
2
1.75  
1.5  
1.25  
1
-55°C  
25°C  
125°C  
150°C  
-55°C  
25°C  
125°C  
150°C  
0.75  
0.5  
0.25  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
D003  
D004  
7-3. ISUP Dominant vs VSUP and Temperature  
7-4. ISUP Recessive vs VSUP and Temperature  
1.2  
13  
12  
11  
10  
9
1
0.8  
0.6  
8
0.4  
7
-55°C  
25°C  
125°C  
150°C  
-55°C  
25°C  
125°C  
150°C  
6
0.2  
0
5
4
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
D005  
D006  
7-5. Standby Mode ISUP Dominant vs VSUP and Temperature  
7-6. Standby Mode ISUP Recessive vs VSUP and Temperature  
14  
12  
10  
8
-55°C  
25°C  
6
125°C  
150°C  
4
0
5
10  
15  
20  
25  
Supply voltage (V)  
30  
35  
40  
D007  
7-7. Sleep Mode ISUP vs VSUP and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
1
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
2
VSUP  
VPS  
EN  
NC  
3
4
6
Pulse Generator  
tR/tF Square Wave: < 20 ns  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
TXD  
5
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Test System: Operating Voltage Range with RX and TX Access: Parameters 9, 10  
Delta t = + 5 µs  
Trigger Point  
(tBIT = 50 µs)  
RX  
2 x tBIT = 100 µs (20 kBaud)  
8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
8-3. LIN Bus Input Signal  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
1
2
3
4
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
VSUP  
VPS  
EN  
NC  
6
Pulse Generator  
tR/tF Square Wave: < 20 ns  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
TXD  
5
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-4. LIN Receiver Test with RX access Param 17, 18, 19, 20  
1
8
7
NC  
RXD  
EN  
Power Supply 1  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
2
VSUP  
VPS1  
D
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
6
5
3
4
NC  
LIN  
VPS2  
TXD  
RBUS  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-5. VSUP_NON_OP Param 11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
1
RXD  
8
7
NC  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
2
3
VSUP  
VPS  
EN  
NC  
RMEAS = 499  
6
LIN  
5
4
TXD  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-6. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V, Param 13  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1
2
8
7
NC  
RXD  
EN  
VPS1  
VSUP  
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VPS2  
1 k  
6
3
4
NC  
LIN  
VPS2 2 V/s ramp  
[8 V 36 V]  
5
TXD  
GND  
V Drop across resistor  
< 20 mV  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-7. Test Circuit for IBUS_PAS_rec Param 14  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1
2
8
7
NC  
RXD  
EN  
5 V  
VPS1  
VSUP  
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VPS2  
1 k  
6
5
3
4
NC  
LIN  
VPS2 2 V/s ramp  
[0 V 36 V]  
TXD  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-8. Test Circuit for IBUS_NO_GND Loss of GND  
8
1
2
NC  
RXD  
EN  
5 V  
7
VSUP  
Power Supply 2  
Resolution: 10mV/ 1mA  
10 k  
6
3
4
Accuracy: 0.2%  
VPS  
NC  
LIN  
VPS 2 V/s ramp  
[0 V 36 V]  
5
TXD  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-9. Test Circuit for IBUS_NO_BAT Loss of Battery  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN1039-Q1  
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
1
2
8
7
RXD  
NC  
5 V  
Power Supply 1  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VSUP  
EN  
NC  
VPS1  
RMEAS  
6
3
4
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
LIN  
Pulse Generator  
tR/tF Square Wave: < 20 ns  
5
:
VPS2  
TXD  
GND  
:
tR/tF Triangle Wave: < 40ns  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-10. Test Circuit Slope Control and Duty Cycle Param 27, 28, 29, 30  
TBIT  
D = 50%  
TXD (Input)  
D112: 0.744 * VSUP  
D312: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D112: 0.581 * VSUP  
D312: 0.616 * VSUP  
LIN Bus  
Signal  
D212: 0.422 * VSUP  
D412: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D212: 0.284 * VSUP  
D412: 0.251 * VSUP  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
8-11. Definition of Bus Timing Parameters  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
VCC  
2.4 k  
1
2
8
7
RXD  
EN  
NC  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
20 pF  
VSUP  
VPS  
6
3
4
Pulse Generator  
tR/tF Square Wave: < 20 ns  
NC  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
5
TXD  
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
8-12. Propagation Delay Test Circuit; Param 31, 32  
D1: 0.744 * VSUP  
D3: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D1: 0.581 * VSUP  
D3: 0.616 * VSUP  
LIN Bus  
Signal  
D2: 0.422 * VSUP  
D4: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D2: 0.284 * VSUP  
D4: 0.251 * VSUP  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
8-13. Propagation Delay  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
Wake Event  
tMODE_CHANGE  
tNOMINT  
tMODE_CHANGE  
EN  
Transition  
Sleep  
Standby  
Transition  
Normal  
Normal  
MODE  
Indeterminate  
Ignore  
Mirrors  
Bus  
Wake Request  
RXD = Low  
RXD  
Floating  
Indeterminate Ignore  
Mirrors Bus  
8-14. Mode Transitions  
EN  
Weak Internal Pulldown  
TXD  
Weak Internal Pulldown  
VSUP  
LIN  
RXD  
Floating  
Sleep  
MODE  
Normal  
8-15. Wakeup Through EN  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
0.6 x VSUP  
LIN  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
Weak Internal Pulldown  
EN  
Floating  
Sleep  
RXD  
MODE  
Standby  
Normal  
8-16. Wakeup through LIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN1039-Q1 is a Local Interconnect Network (LIN) physical layer transceiver, compliant with LIN 2.0, LIN  
2.1, LIN 2.2, LIN 2.2A and ISO/DIS 179874 standards, with integrated wake-up and protection features. The  
LIN bus is a single-wire bidirectional bus typically used for low speed in-vehicle networks. The device transmitter  
supports data rates from 2.4 kbps to 20 kbps and the receiver works up to 100 kbps supporting in-line  
programming. The LIN protocol data stream on the TXD input is converted by the TLIN1039-Q1 into a LIN bus  
signal using a current-limited wave-shaping driver as outlined by the LIN physical layer specification. The  
receiver converts the data stream to logic-level signals that are sent to the microprocessor through the open-  
drain RXD pin. The LIN bus has two states: dominant state (voltage near ground) and recessive state (voltage  
near battery). In the recessive state, the LIN bus is pulled high by the internal pull-up resistor (45 k) and a  
series diode. No external pull-up components are required for responder node applications. Commander node  
applications require an external pull-up resistor (1 k) plus a series diode per the LIN specification.  
The device is designed to support 12-V applications with a wide input voltage operating range and also supports  
low-power sleep mode. The device also provides two methods to wake up: EN pin and from the LIN bus.  
The TLIN1039-Q1 integrates ESD protection and fault protection which allow for a reduction in the required  
external components in the applications. In the event of a ground shift or supply voltage disconnection, the  
device prevents back-feed current through LIN to the supply input. The device also includes undervoltage  
detection, temperature shutdown protection, and loss-of-ground protection.  
9.2 Functional Block Diagram  
VSUP/2  
RXD  
VSUP  
Receiver  
Filter  
EN  
45 kΩ  
350 kΩ  
Wake Up  
State & Control  
Fault Detection  
& Protection  
LIN  
Dominant  
State  
Timeout  
TXD  
DR Slope CTL  
350 kΩ  
GND  
Copyright © 2020, Texas Instruments Incorporated  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 LIN (Local Interconnect Network) Bus  
This high voltage input/output pin is a single-wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 45 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter has thresholds and AC parameters according to the LIN specification. The transmitter is a low-  
side transistor with internal current limitation and thermal shutdown. During a thermal shutdown condition, the  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
VSUP, so no external pull-up components are required for the LIN responder node applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander node application  
per the LIN specification.  
9.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are proportional to the device supply pin in accordance to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAE J2602  
specifications. This allows the TLIN1039-Q1 to be used for high speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1 k) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification.  
9-1 shows a commander node configuration, and how the voltage levels are defined.  
Voltage drop across the  
diodes in the pull-up path  
VLIN_Bus  
VSUP  
VSUP  
VSUP/2  
RXD  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
45 kΩ  
1 kΩ  
LIN  
LIN Bus  
TXD  
350 kΩ  
Transmitter  
with slope control  
GND  
VLIN_Dominant  
t
Copyright © 2020, Texas Instruments Incorporated  
9-1. Commander Node Configuration with Voltage Levels  
9.3.2 TXD (Transmit Input and Output)  
TXD is the interface to the MCU LIN protocol controller or SCI and UART that is used to control the state of the  
LIN output. When TXD is low, the LIN output is dominant (near ground). When TXD is high, the LIN output is  
recessive (near VBattery). See 9-1. The TXD input structure is compatible with microcontrollers with 3.3 V and  
5 V I/O and integrates a weak pull-down resistor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
9.3.3 RXD (Receive Output)  
RXD is the interface to the MCU's LIN protocol controller or SCI and UART, which reports the state of the LIN  
bus voltage. LIN recessive (near VBattery) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage.  
This allows the device to be used with 3.3 V and 5 V I/O microcontrollers. If the microcontrollers RXD pin does  
not have an integrated pull-up, an external pull-up resistor to the microcontroller I/O supply voltage is required. In  
standby mode the RXD pin is driven low to indicate a wake-up request from the LIN bus.  
9.3.4 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse-blocking diode (图  
9-1). If there is a loss of power at the ECU level, the device has extremely low leakage from the LIN pin, which  
does not load the bus down. This is optimal for LIN systems in which some of the nodes are unpowered (ignition  
supplied) while the rest of the network remains powered (battery supplied).  
9.3.5 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage, as well as ensuring the input and output  
voltages are within their appropriate thresholds. If there is a loss of ground at the ECU level, the device has  
extremely low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems in  
which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.6 EN (Enable Input)  
EN controls the operational modes of the device. When EN is high, the device is in normal operating mode  
allowing a transmission path from TXD to LIN and from LIN to RXD. When EN is low, the device is put into sleep  
mode and there are no transmission paths available. After LIN bus wake-up is received, the device can enter  
normal mode only by making EN = high. EN has an internal pull-down resistor to make sure the device remains  
in low-power mode even if EN floats.  
9.3.7 Protection Features  
The TLIN1039-Q1 has several protection features such as:  
9.3.8 TXD Dominant Timeout (DTO)  
While the LIN driver is active, TXD DTO circuit prevents the local node from blocking network communication in  
event of a hardware or software failure where TXD is held dominant longer than the timeout period tTXD_DTO. The  
TXD DTO circuit is triggered by a falling edge on TXD. If no rising edge is seen before the timeout constant of  
the circuit, tTXD_DTO, expires the LIN driver is disabled releasing the bus line to the recessive level. This keeps  
the bus free for communication between other nodes on the network. The LIN driver is re-activated on the next  
dominant to recessive transition on the TXD terminal, thus clearing the dominant timeout. During this fault, the  
transceiver remains in normal mode, the integrated LIN bus pull-up termination remains on, and the LIN receiver  
and RXD terminal remain active reflecting the LIN bus data.  
The TXD pin has an internal pull-down to make sure the transceiver fails to a known state if TXD is  
disconnected. If EN pin is high at power-up the TLIN1039-Q1 enters normal mode. With the internal TXD  
connected low, the DTO timer starts. To avoid a tTXD_DTO fault, a recessive signal should be put onto the TXD pin  
before the tTXD_DTO timer expires, or the transceiver should be into sleep mode by connecting EN pin low.  
9.3.9 Bus Stuck Dominant System Fault: False Wake-Up Lockout  
The TLIN1039-Q1 contains logic to detect bus stuck dominant system faults and prevents the device from  
waking up falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus.  
If the bus is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck  
dominant, preventing excessive current consumption. 9-2 and 9-3 show the behavior of this protection.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
Copyright © 2020, Texas Instruments Incorporated  
9-2. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wake-up  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
Copyright © 2020, Texas Instruments Incorporated  
9-3. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wake-up  
9.3.10 Thermal Shutdown  
The LIN transmitter is protected by current limiting circuitry. If the junction temperature of the device exceeds the  
thermal shutdown threshold, the device puts the LIN transmitter into the recessive state. Once the over-  
temperature fault condition has been removed and the junction temperature has cooled beyond the hysteresis  
temperature, the transmitter is re-enabled, assuming the device remains in the normal operation mode. During  
this fault, the transceiver remains in normal mode (assuming no change of state request on EN), the transmitter  
is in recessive state, the RXD pin reflects the LIN bus and LIN bus pull-up termination remains on.  
9.3.11 Under Voltage on VSUP  
The TLIN1039-Q1 contains a power-on reset circuit to avoid false bus messages during under voltage conditions  
when VSUP is less than UVSUP  
.
9.3.12 Unpowered Transceiver  
In automotive applications, some LIN nodes in a system can be unpowered, ignition supplied, while others in the  
network remains powered by the battery. The TLIN1039-Q1 has extremely low unpowered leakage current from  
the bus so an unpowered node does not affect the network or load it down.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
9.4 Functional Modes  
The TLIN1039-Q1 has three functional modes of operation: normal, sleep, and standby. The next sections will  
describe these modes as well as how the device moves between the different modes. 9-4 graphically shows  
the relationship while 9-1 shows the state of pins  
9-1. Operating Modes  
MODE  
EN  
RXD  
LIN BUS TERMINATION  
TRANSMITTER  
COMMENT  
Sleep  
Low  
Floating  
Weak current pull-up  
Off  
Wake-up event detected,  
waiting on MCU to set EN  
Standby  
Normal  
Low  
Low  
Off  
On  
45 kΩ  
45 kΩ  
High  
LIN bus data  
LIN transmission up to 20 kbps  
Unpowered System  
VSUP < UVSUP  
VSUP > UVSUP  
EN = LOW  
,
VSUP > UVSUP  
EN = High  
,
VSUP < UVSUP  
VSUP < UVSUP  
Standby Mode  
Driver: Off  
RXD: Low  
LIN termination: 45 k  
VSUP < UVSUP  
EN = High  
Normal Mode  
LIN bus wake-up  
Sleep Mode  
Driver: On  
RXD: LIN Bus Data  
LIN termination: 45 kΩ  
Driver: Off  
RXD: Floating  
LIN termination: Weak pull-up  
EN = Low  
EN = High  
9-4. Operating State Diagram  
9.4.1 Normal Mode  
If the EN pin is high at power-up, the device will power-up in normal mode. If the EN pin is low, it will power-up in  
standby mode. The EN pin controls the mode of the device. In normal operational mode the receiver and  
transmitter are active and the LIN transmission up to the LIN specified maximum of 20 kbps is supported. The  
receiver detects the data stream on the LIN bus and outputs it on RXD for the LIN controller. A recessive signal  
on the LIN bus is a logic high and a dominant signal on the LIN bus is a logic low. The driver transmits input data  
from TXD to the LIN bus. Normal mode is entered as EN transitions high while the TLIN1039-Q1 is in sleep or  
standby mode for > tNOMINT  
.
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
9.4.2 Sleep Mode  
Sleep mode is the power saving mode for the TLIN1039-Q1. Sleep mode is only entered when the EN pin is low  
and from normal mode. Even with extremely low current consumption in this mode, the TLIN1039-Q1 can still  
wake-up from LIN bus through a wake-up signal or if EN is set high for tMODE_CHANGE. The LIN bus is filtered  
to prevent false wake-up events. The wake-up events must be active for the respective time periods (tLINBUS).  
The sleep mode is entered by setting EN low for longer than tMODE_CHANGE  
.
While the device is in sleep mode:  
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short circuited to ground). However, the weak current pull-up is active to prevent false wake-up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
EN input and LIN wake-up receiver are active.  
9.4.3 Standby Mode  
This mode is entered whenever a wake-up event occurs through LIN bus while the device is in sleep mode. The  
LIN bus responder mode termination circuit is turned on when standby mode is entered. Standby mode is  
signaled through a low level on RXD. See Standby Mode Application Note for more application information.  
When EN is set high for longer than tMODE_CHANGE while the device is in standby mode, the device returns to  
normal mode. The normal transmission paths from TXD to LIN bus and LIN bus to RXD are enabled.  
9.4.4 Wake-Up Events  
There are two ways to wake up from sleep mode:  
Remote wake up initiated by the falling edge of a recessive (high) to dominant (low) state transition on LIN  
bus where the dominant state is be held for tLINBUS filter time. After the tLINBUS filter time has been met, a  
rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up event,  
eliminating false wake-ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake-up through EN being set high for longer than tMODE_CHANGE  
.
9.4.4.1 Wake-Up Request (RXD)  
When the TLIN1039-Q1 encounters a wake-up event from the LIN bus, RXD goes low and the device transitions  
to standby mode until EN is reasserted high and the device enters normal mode. Once the device enters normal  
mode, the RXD pin releases the wake-up request signal and the RXD pin then reflects the receiver output from  
the LIN bus.  
9.4.4.2 Mode Transitions  
When the TLIN1039-Q1 is transitioning from normal to sleep or standby modes the device needs the time  
tMODE_CHANGE to allow the change to fully propagate from the EN pin through the device into the new state.  
When transitioning from sleep or standby to normal mode the device needs tNOMINT  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN1039-Q1  
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
10 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TLIN1039-Q1 can be used as both a responder node device and a commander node device in a LIN  
network. The device comes with the ability to support both remote wake up request and local wake up request.  
10.2 Typical Application  
The device integrates a 45 kpull-up resistor and series diode for responder node applications. For commander  
applications an external 1 kpull-up resistor with series blocking diode can be used. 10-1 shows the device  
being used in both commander node and responder node applications.  
VBAT  
VSUP  
VDD  
VDD  
VSUP  
VDD  
(4)  
(3)  
I/O  
EN  
1 k  
(2)  
TLIN1039 LIN  
MCU  
VDD  
LIN Controller  
Or  
220 pF  
SCI/UART(1)  
RXD  
TXD  
GND  
GND  
Commander Node  
VBAT  
VSUP  
VDD  
VDD  
VSUP  
(4)  
VDD  
I/O  
EN  
(2)  
MCU  
TLIN1039 LIN  
VDD  
LIN Controller  
Or  
220 pF  
SCI/UART(1)  
RXD  
TXD  
GND  
GND  
Responder Node  
(1) If RXD on MCU, or LIN transceiver, has an internal pull-up, then an external pull-up resistor is not required.  
(2) If RXD on MCU, or LIN transceiver, does not have an internal pull-up, then an external pull-up resistor is required.  
(3) Commander node applications require an external 1 k pull-up resistor and serial diode.  
(4) Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF  
10-1. Typical LIN Bus  
10.2.1 Design Requirements  
The RXD output structure is an open-drain output stage. This allows the TLIN1039-Q1 to be used with 3.3 V and  
5 V I/O processor. If the RXD pin of the processor does not have an integrated pull-up, an external pull-up  
resistor to the processor I/O supply voltage is required. The external pull-up resistor value should be between 1  
kΩto 10 kΩ, depending on supply used (See IOL in electrical characteristics). The VSUP pin of the device should  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
be decoupled with a 100 nF capacitor by placing it close to the VSUP supply pin. The system should include  
additional decoupling on the VSUP line as needed per the application requirements.  
10.2.2 Detailed Design Procedures  
10.2.2.1 Normal Mode Application Note  
When using the TLIN1039-Q1 in systems which are monitoring the RXD pin for a wake-up request, special care  
should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition period  
between states as the receivers are switched. The application software should not look for an edge on the RXD  
pin, for indication of wake-up request, until tMODE_CHANGE has been met. This is shown in 8-14  
10.2.2.2 Standby Mode Application Note  
If the TLIN1039-Q1 detects an under voltage on VSUP, the RXD pin transitions low and signals to the software  
that the TLIN1039-Q1 is in standby mode. The transceiver should be returned to sleep mode for the lowest  
power state.  
10.2.3 Application Curves  
10-2 and 10-3 show the propagation delay from the TXD pin to the LIN pin for the dominant to recessive  
and recessive to dominant edges. The device was configured as a commander node with an external pull-up  
resistor (1 kΩ) and 680 pF bus capacitance.  
10-3. Recessive to Dominant Propagation Delay  
10-2. Dominant to Recessive Propagation Delay  
11 Power Supply Recommendations  
The was designed to operate directly from a car battery, or any other DC supply ranging from 4.5 V to 36 V. The  
VSUP pin of the transceiver should be decoupled with a 100-nF capacitor by placing it close to the VSUP supply  
pin. The system should include additional decoupling on the VSUP line as needed per the application  
requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN1039-Q1  
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
12 Layout  
For the PCB design to be successful, start with design of the protection and filtering circuitry. Because ESD  
transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high frequency layout  
techniques must be applied during PCB design. Placement at the connector also prevents these noisy events  
from propagating further into the PCB and system.  
12.1 Layout Guidelines  
Pin 1 (RXD): The pin is an open-drain output and requires an external pull-up resistor in the range of 1 kto  
10 kto function properly. Note that the minimum value depends on the logic supply used. See IOL in  
electrical specifications. If the microprocessor paired with the transceiver does not have an integrated pull-up,  
an external resistor should be placed between RXD and the regulated voltage supply for the microprocessor.  
Pin 2 (EN): EN is an input pin that is used to place the device in a low-power sleep mode. If this feature is not  
used the pin should be pulled high to the regulated voltage supply of the microprocessor through a series  
resistor between 1 kand 10 k. Additionally, a series resistor may be placed on the pin to limit current on  
the digital lines in the case of an over voltage fault.  
Pin 3 (NC): Not Connected.  
Pin 4 (TXD): The TXD pin is used to transmit the input signal from the microcontroller. To prevent an over-  
voltage on this pin, a series resistor can be placed to limit the input current to the device. A capacitor to  
ground can be placed close to the input pin of the device to filter noise.  
Pin 5 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 6 (LIN): This pin connects to the LIN bus. For responder mode applications a 220 pF capacitor to ground  
is implemented. For commander mode applications, an additional series resistor and blocking diode should  
be placed between the LIN pin and the VSUP pin. See Typical LIN Bus.  
Pin 7 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed as close  
to the device as possible.  
Pin 8 (NC): Not Connected.  
Note  
All ground and power connections should be made as short as possible, and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
12.2 Layout Example  
VDD  
RXD  
1
2
NC  
8
7
RXD  
U1  
VDD  
VSUP  
R2  
EN  
EN  
VSUP  
C3  
GND  
D1  
Only needed for  
the commander  
node  
LIN  
3
5
6
NC  
LIN  
GND  
GND  
GND  
5
TXD  
GND  
TXD  
R6  
GND  
12-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN1039-Q1  
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
ISO/DIS 17987-1.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and  
use case definition  
ISO/DIS 17987-4.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
SAE J2602-1: LIN Network for Vehicle Applications  
LIN Specifications LIN 2.0, LIN 2.1, LIN 2.2 and LIN 2.2A  
EMC requirements:  
SAE J2962-1: Communication Transceivers Qualification Requirements - LIN  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
IEC 61000-4-2  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO/DIS 17987-7.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer  
(EPL) conformance test specification  
SAE J2602-2: LIN Network for Vehicle Applications Conformance Test  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN1039-Q1  
 
 
 
 
 
 
TLIN1039-Q1  
ZHCSOR2 AUGUST 2021  
www.ti.com.cn  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated transceiver. This data is subject to change without notice and revision  
of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN1039-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN1039DDFRQ1  
ACTIVE SOT-23-THIN  
DDF  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
2JIF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLIN1039DDFRQ1  
SOT-  
DDF  
8
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23-THIN DDF  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TLIN1039DDFRQ1  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLIN1039DDFRQ1

具有显性状态超时故障保护功能的局域互联网络 (LIN) 收发器 | DDF | 8 | -40 to 125
TI

TLIN1431-Q1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC
TI

TLIN14313RGYRQ1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125
TI

TLIN14315RGYRQ1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125
TI

TLIN1441-Q1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器
TI

TLIN14413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN14413DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN14415DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN14415DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN2021A-Q1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器
TI

TLIN2021ADRBRQ1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器 | DRB | 8 | -40 to 125
TI

TLIN2022A-Q1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器
TI