TLIN1029ADRQ1 [TI]

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout;
TLIN1029ADRQ1
型号: TLIN1029ADRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

文件: 总41页 (文件大小:2364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout  
1 Features  
2 Applications  
AEC-Q100 (Grade 1) Qualified for automotive  
applications  
Compliant with LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2 A  
and ISO/DIS 17987–4 electrical physical layer  
(EPL) specification  
Body electronics and lighting  
Infotainment and cluster  
Hybrid electric vehicles and power train systems  
Passive safety  
Appliances  
Conforms to SAE J2602-1 LIN network for vehicle  
applications  
3 Description  
Supports 12 V applications  
The TLIN1029A-Q1 is a local interconnect network  
(LIN) physical layer transceiver with integrated wake-  
up and protection features, compliant with LIN 2.0,  
LIN 2.1, LIN 2.2, LIN 2.2 A and ISO/DIS 17987–4  
standards. LIN is a single-wire bidirectional bus  
typically used for in-vehicle networks using data rates  
up to 20 kbps. The TLIN1029A-Q1 is designed to  
support 12-V applications with wider operating voltage  
and additional bus-fault protection.  
LIN transmit data rate up to 20-kbps  
LIN receive data rate up to 100 kbps  
Wide operational supply voltage range from 4-V to  
36-V  
Sleep mode: ultra-low current consumption allows  
wake-up event from:  
– LIN bus  
– Local wake up through EN  
Power up and down glitch free operation on LIN  
bus and RXD output  
The LIN receiver supports data rates up to 100 kbps  
for faster in-line programming. The TLIN1029A-Q1  
converts the data stream on the TXD input into a LIN  
bus signal using a current-limited wave-shaping driver  
which reduces electromagnetic emissions (EME). The  
receiver converts the data stream to logic level signals  
that are sent to the microprocessor through the open-  
drain RXD pin. Ultra-low current consumption is  
possible using the sleep mode which allows wake-up  
via LIN bus or EN pin.  
Protection features:  
– ±45-V LIN bus fault tolerant  
– Under voltage protection on VSUP  
– TXD Dominant time out protection (DTO)  
– Thermal shutdown protection  
– Unpowered node or ground disconnection  
failsafe at system level.  
Available in SOIC (8) and leadless VSON (8) with  
wettable flanks  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
4.90 mm x 3.91 mm  
3.00 mm x 3.00 mm  
SOIC (D) (8)(2)  
TLIN1029A-Q1  
VSON (DRB) (8)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) Product preview  
VBAT  
VSUP  
VBAT  
VSUP  
VREG  
VSUP  
VREG  
VSUP  
VDD  
VDD  
VSUP  
Commander  
Node  
Pullup  
VDD  
VDD  
VSUP  
NC NC  
EN  
8
3
7
2
VDD  
NC  
8
I/O  
NC  
3
EN  
MCU w/o  
pullup  
I/O  
2
7
VDD  
MCU w/o  
pullup  
VDD I/O  
LIN  
LIN Bus  
MCU  
6
VDD I/O  
1 kΩ  
LIN Bus  
MCU  
LIN  
LIN Controller  
or  
SCI/UART  
1
4
6
220 pF  
RXD  
TXD  
LIN Controller  
Or  
SCU/UART  
1
4
220 pF  
RXD  
TXD  
GND  
5
GND  
5
Simplified Schematics, Responder Mode(2)  
Simplified Schematics, Commander Mode(1)  
1. Commander represents industry norm 'master'.  
2. Responder represents industry norm 'slave'.  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 ESD Ratings - IEC ..................................................... 4  
7.4 Thermal Information ...................................................4  
7.5 Recommended Operating Conditions ........................5  
7.6 Electrical Characteristics ............................................5  
7.7 Duty Cycle Characteristics .........................................7  
7.8 Switching Characteristics ...........................................9  
7.9 Typical Characteristics..............................................10  
8 Parameter Measurement Information..........................12  
9 Detailed Description......................................................20  
9.1 Overview...................................................................20  
9.2 Functional Block Diagram.........................................20  
9.3 Feature Description...................................................21  
9.4 Device Functional Modes..........................................24  
10 Application Information Disclaimer...........................26  
10.1 Application Information........................................... 26  
10.2 Typical Application.................................................. 26  
11 Power Supply Recommendations..............................28  
12 Layout...........................................................................29  
12.1 Layout Guidelines................................................... 29  
12.2 Layout Example...................................................... 30  
13 Device and Documentation Support..........................31  
13.1 Documentation Support.......................................... 31  
13.2 Receiving Notification of Documentation Updates..31  
13.3 Support Resources................................................. 31  
13.4 Trademarks.............................................................31  
13.5 Electrostatic Discharge Caution..............................32  
13.6 Glossary..................................................................32  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 32  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
December 2020  
REVISION  
NOTES  
*
Initial Release  
5 Description (continued)  
The TLIN1029A-Q1 integrates a resistor for LIN responder node applications, ESD protection, and fault  
protection which allow for a reduced amount of external components in the applications. The device prevents  
back-feed current through LIN to the supply input in case of a ground shift or supply voltage disconnection. The  
TLIN1029A-Q1 also includes undervoltage detection, temperature shutdown protection, and loss-of-ground  
protection.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
6 Pin Configuration and Functions  
RXD  
EN  
1
2
3
4
8
7
6
5
NC  
RXD  
EN  
1
2
3
4
8
7
6
5
NC  
VSUP  
LIN  
V
SUP  
Thermal  
Pad  
NC  
NC  
LIN  
TXD  
GND  
TXD  
GND  
Not to scale  
Not to scale  
Figure 6-1. D Package, 8-Pin (SOIC), Top View  
Figure 6-2. DRB Package, 8-Pin (VSON), Top View  
Table 6-1. Pin Functions  
PIN  
Type  
DESCRIPTION  
Name  
RXD  
No.  
1
DO  
DI  
RXD output (open-drain) interface reporting state of LIN bus voltage  
EN  
2
Enable input - High puts the device in normal operation mode and low puts the device in sleep mode  
NC  
3
Not connected  
TXD  
GND  
LIN  
4
DI  
TXD input interface to control state of LIN output - Internally pulled to ground  
5
GND  
HV I/O  
Ground  
6
LIN bus single-wire transmitter and receiver  
VSUP  
NC  
7
HV Supply Device supply voltage (connected to battery in series with external reverse blocking diode)  
8
-
Not connected  
Thermal Pad  
Can be connected to the PCB ground plane to improve thermal coupling (DRB package only)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1) (2)  
Symbol  
Parameter  
MIN  
–0.3  
–45  
MAX  
45  
45  
6
UNIT  
VSUP  
VLIN  
Supply voltage range (ISO 17987)  
LIN bus input voltage (ISO 17987)  
Logic pin voltage (RXD, TXD, EN)  
Digital pin output current  
V
V
VLOGIC  
IO  
–0.3  
V
8
mA  
°C  
TJ  
Junction temperature range  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to ground terminal.  
7.2 ESD Ratings  
ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level 3A: TXD, RXD,  
EN Pins, per AEC Q100-002(1)  
±4000  
Human body model (HBM) classification level 3B: LIN and VSUP  
Pin with respect to ground  
±8000  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM)  
classification level C5, per AEC All terminals  
Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings - IEC  
ESD and Surge Protection Ratings  
VALUE  
UNIT  
IEC 62228-2 per ISO 10605  
Contact discharge  
R = 330 Ω, C = 150 pF  
Electrostatic discharge, LIN, VSUP to  
GND(1)  
V(ESD)  
±8000  
V
Pulse 1  
Pulse 2  
Pulse 3a  
Pulse 3b  
–100  
75  
V
V
V
V
ISO 7637-2 and IEC 62228-2 per IEC  
62215-3 transients according to IBEE LIN  
EMC test specifications(2) (LIN , VSUP to  
GND )  
VTRAN  
–150  
100  
(1) Results given here are specific to the IEC 62228-2 Integrated circuits – EMC evaluation of transceivers – Part 2: LIN transceivers.  
Testing performed by OEM approved independent 3rd party, EMC report available upon request.  
(2) ISO 7637 is a system level transient test. Different system level configurations may lead to diffrent results  
7.4 Thermal Information  
TLIN1029AD-Q1  
D (SOIC)  
8-PINS  
115.5  
TLIN1029ADRB-Q1  
THERMAL METRIC(1)  
DRB (VSON)  
8-PINS  
48.5  
UNIT  
RΘJA  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
58.7  
55.5  
58.9  
22.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
14.1  
1.2  
ΨJB  
58.2  
22.2  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
 
 
 
 
 
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7.4 Thermal Information (continued)  
TLIN1029AD-Q1  
D (SOIC)  
TLIN1029ADRB-Q1  
THERMAL METRIC(1)  
DRB (VSON)  
8-PINS  
4.8  
UNIT  
8-PINS  
RΘJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Recommended Operating Conditions  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER - DEFINITION  
MIN  
4
NOM  
MAX  
36  
UNIT  
V
VSUP  
VLIN  
Supply voltage  
LIN Bus input voltage  
0
36  
V
VLOGIC  
TA  
Logic Pin Voltage (RXD, TXD, EN)  
Ambient temperature range  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
0
5.25  
125  
V
-40  
165  
°C  
°C  
TSD  
TSD(HYS)  
15  
7.6 Electrical Characteristics  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX UNIT  
Power Supply  
Device is operational beyond the LIN  
defined nominal supply voltage range  
See Figure 8-1 and Figure 8-2  
Operational supply voltage (ISO/DIS  
17987 Param 10)  
VSUP  
36  
36  
V
V
Normal and Standby Modes: ramp VSUP  
while LIN signal is a 10 kHz square  
wave with 50 % duty cycle and 36V  
swing. See Figure 8-1 and Figure 8-2  
4
Nominal supply voltage (ISO/DIS 17987  
Param 10)  
VSUP  
Sleep Mode  
4
36  
V
V
Min is falling edge and Max is rising  
edge  
UVSUP  
UVHYS  
Under voltage VSUP threshold  
2.9  
3.85  
Delta hysteresis voltage for VSUP under  
voltage threshold  
0.2  
1
V
Normal Mode: EN = high, bus dominant:  
total bus load where RLIN > 500 Ω and  
CLIN < 10 nF  
5
mA  
ISUP  
Supply current  
Standby Mode: EN = low, bus dominant:  
total bus load where RLIN > 500 Ω and  
CLIN < 10 nF  
1
2.1  
mA  
Normal Mode: EN = high, bus recessive  
300  
10  
8
650  
30  
µA  
µA  
µA  
µA  
(LIN = VSUP  
Standby Mode: EN = low, bus recessive  
(LIN = VSUP  
)
)
ISUP  
Supply current  
Sleep Mode: 4.0 V < VSUP ≤ 14 V, LIN =  
VSUP, EN = 0 V, TXD and RXD floating  
12  
Sleep Mode: 14 V < VSUP ≤ 36 V, LIN =  
VSUP, EN = 0 V, TXD and RXD floating  
20  
TSD  
Thermal shutdown  
165  
TSD(HYS)  
Thermal shutdown hysteresis  
15  
RXD Output Pin (Open Drain)  
VOL Output low voltage  
(4)  
Based upon external pull-up to VCC  
0.6  
V
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN1029A-Q1  
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7.6 Electrical Characteristics (continued)  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
–5  
TYP  
MAX UNIT  
IOL  
Low level output current, open drain  
Leakage current, high-level  
LIN = 0 V, RXD = 0.4 V  
LIN = VSUP, RXD = 5 V  
mA  
µA  
IILG  
0
5
TXD Input Pin  
VIL  
Low level input voltage  
–0.3  
2
0.8  
5.25  
5
V
V
VIH  
High level input voltage  
IILG  
Low level input leakage current  
Internal pull-down resistor value  
TXD = low  
–5  
0
µA  
kΩ  
RTXD  
LIN PIN  
125  
350  
800  
LIN recessive high-level output voltage TXD = high, IO = 0 mA, 7 V ≤ VSUP ≤ 36  
VOH  
VOH  
0.85  
0.8  
3
VSUP  
VSUP  
V
(3)  
V
LIN recessive high-level output voltage TXD = high, IO = 0 mA, 7 V ≤ VSUP ≤ 18  
(1) (2)  
V
LIN recessive high-level output voltage TXD = high, IO = 0 mA, 4 V ≤ VSUP < 7  
VOH  
(3)  
V
VOL  
LIN dominant low-level output voltage (3) TXD = low, 7 V ≤ VSUP ≤ 36 V  
LIN dominant low-level output voltage (1)  
0.2 VSUP  
0.2 VSUP  
VOL  
TXD = low, 7 V ≤ VSUP ≤ 18 V  
(2)  
VOL  
LIN dominant low-level output voltage (3) TXD = low, 4 V ≤ VSUP < 7 V  
1.2  
45  
V
V
VSUP where impact of recessive LIN  
TXD & RXD open LIN = 4 V to 45 V  
bus < 5% (ISO/DIS 17987 Param 11)  
VSUP_NON_OP  
–0.3  
40  
Limiting current (ISO/DIS 17987 Param  
TXD = 0 V, VLIN = 18 V, VSUP = 18 V  
12)  
IBUS_LIM  
90  
200  
mA  
mA  
µA  
Receiver leakage current, dominant  
(ISO/DIS 17987 Param 13)  
LIN = 0 V, VSUP = 12 V Driver off/  
recessive Figure 8-6  
IBUS_PAS_dom  
IBUS_PAS_rec1  
IBUS_PAS_rec2  
IBUS_NO_GND  
–1  
Receiver leakage current, recessive  
(ISO/DIS 17987 Param 14)  
LIN > VSUP, 4 V ≤ VSUP ≤ 36 V Driver  
off; Figure 8-7  
20  
5
Receiver leakage current, recessive  
(ISO/DIS 17987 Param 14)  
LIN = VSUP, Driver off; Figure 8-7  
–5  
–1  
µA  
Leakage current, loss of ground  
(ISO/DIS 17987 Param 15)  
GND = VSUP, VSUP = 18 V, RMeas = 1  
kΩ, 0 V < VLIN < 18 V; Figure 8-8  
1
mA  
VSUP = 8 V, GND = open, VSUP = 18 V,  
GND = open  
RLeader = 1 kΩ, CL = 1 nF  
RFollower = 20 kΩ, CL = 1 nF  
LIN = dominant  
Ileak gnd(dom)  
Leakage current, loss of ground (5)  
Leakage current, loss of ground (5)  
-1  
1
mA  
VSUP = 8 V, GND = open, VSUP = 18 V,  
GND = open  
RLeader = 1 kΩ, CL = 1 nF  
RFollower = 20 kΩ, CL = 1 nF  
LIN = recessive  
Ileak gnd(rec)  
-100  
100  
5
µA  
µA  
Leakage current, loss of supply  
(ISO/DIS 17987 Param 16)  
IBUS_NO_BAT  
VBUSdom  
VBUSrec  
LIN = 18 V, VSUP = GND; Figure 8-9  
Low level input voltage (ISO/DIS 17987 LIN dominant (including LIN dominant  
Param 17) (3)  
for wake up) See Figure 8-4, Figure 8-3  
0.4 VSUP  
VSUP  
High level input voltage (ISO/DIS 17987 LIN recessive See Figure 8-4, Figure  
0.6  
Param 18) (3)  
8-3  
LIN recessive high-level input voltage (1)  
VIH  
7 V ≤ VSUP ≤ 18 V  
0.47  
0.4  
0.6 VSUP  
0.53 VSUP  
0.525 VSUP  
(2)  
VIL  
LIN dominant low-level input voltge (1) (2) 7 V ≤ VSUP ≤ 18 V  
Receiver center threshold (ISO/DIS  
17987 Param 19)  
VBUS_CNT = (VBUSrec + VBUSdom)/2 See  
Figure 8-4, Figure 8-3  
VBUS_CNT  
0.475  
0.5  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7.6 Electrical Characteristics (continued)  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Hysteresis voltage (ISO/DIS 17987  
Param 20)  
VHYS = (VBUSrec - VBUSdom) See Figure  
8-4, Figure 8-3  
VHYS  
0.175 VSUP  
VHYS = VIH - VIL See Figure 8-4, Figure  
8-3  
VHYS  
Hysteresis voltage (SAE J2602)  
0.07  
0.4  
0.175 VSUP  
Serial diode LIN termination pull-up  
path  
VSERIAL_DIODE  
ISERIAL_DIODE = 10 μA  
0.7  
45  
1
V
RPU  
Internal pull-up resistor to VSUP  
Pull-up current source to VSUP  
Capacitance of the LIN pin  
Normal and standby modes  
Sleep mode, VSUP = 14 V, LIN = GND  
VSUP = 14 V  
20  
60  
–2  
25  
kΩ  
µA  
pF  
IRSLEEP  
CLINPIN  
EN Input Pin  
VIL  
–20  
Low level input voltage  
High level input voltage  
Hysteresis voltage  
–0.3  
2
0.8  
5.25  
500  
5
V
V
VIH  
VIT  
By design and characterization  
EN = low  
50  
0
mV  
µA  
kΩ  
IILG  
Low level input current  
Internal pull-down resistor  
–5  
REN  
125  
350  
800  
(1) SAE 2602 leader node load conditions: 5.5 nF/4 kΩ and 899 pF/20 kΩ  
(2) SAE 2602 follower node load conditions: 5.5 nF/875 Ω and 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) RXD uses open drain output structure therefore VOL level is based upon microcontroller supply voltage VCC  
(5) Ileak gnd = (VBAT - VLIN)/RLoad  
.
7.7 Duty Cycle Characteristics  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MAX) = 0.744 x VSUP THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 1 (ISO/DIS 17987 Param  
27) (3)  
D112V  
0.396  
THREC(MAX) = 0.625 x VSUP, THDOM(MAX)  
Duty Cycle 1 (ISO/DIS 17987 Param  
27) (3)  
= 0.581 x VSUP, VSUP = 4 V to 7 V, tBIT  
50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
=
D112V  
0.396  
0.396  
THREC(MAX) = 0.744 x VSUP  
,
THDOM(MAX) = 0.581 x VSUP  
,
D1  
Duty cycle 1 (1) (2)  
VSUP = 7 V to 18 V, tBIT = 52 μs  
D1 = tBUS_rec(min)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 2 (ISO/DIS 17987 Param  
28) (3)  
D212V  
0.581  
0.581  
THREC(MIN) = 0.546 x VSUP, THDOM(MIN)  
= 0.4 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D212V  
Duty Cycle 2 (3)  
50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
THREC(MIN) = 0.422 x VSUP  
,
THDOM(MIN) = 0.284 x VSUP  
,
D2  
Duty Cycle 2 (1) (2)  
VSUP = 7 V to 18 V, tBIT = 52 μs  
D2 = tBUS_rec(MAX)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
0.581  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN1029A-Q1  
 
 
 
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7.7 Duty Cycle Characteristics (continued)  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 3 (ISO/DIS 17987 Param  
29) (3)  
D312V  
0.417  
THREC(MAX) = 0.645 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 4 V to 7 V, tBIT  
96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
=
D312V  
Duty Cycle 3 (3)  
0.417  
0.417  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 μs  
D3 = tBUS_rec(min)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
D3  
Duty Cycle 3 (1) (2)  
THREC(MIN) = 0.389 x VSUP, THDOM(MIN)  
= 0.251 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11)  
Duty Cycle 4 (ISO/DIS 17987 Param  
30) (3)  
D412V  
D412V  
D4  
0.59  
0.59  
0.59  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
Duty Cycle 4 (3)  
96 µs (10.4 kbps), D4 = tBUS_rec(MAX)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 μs  
D4 = tBUS_rec(MAX)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
Duty Cycle 4 (1) (2)  
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 52 μs  
,
,
D1LB  
D2LB  
D3LB  
D4LB  
Duty cycle 1 at low battery (1) (2)  
Duty cycle 2 at low battery (1) (2)  
Duty cycle 3 at low battery (1) (2)  
Duty cycle 4 at low battery (1) (2)  
0.396  
0.396  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 52 μs  
0.581  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 96 μs  
,
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 96 μs  
0.581  
10.8  
Transmitter propagation delay timings  
for  
THREC(MAX) = 0.744 x VSUP,  
THDOM(MAX) = 0.581 x VSUP  
7 V ≤ VSUP ≤ 18 V, tBIT = 52 μs  
tREC(MAX)_D1 - tDOM(MIN)_D1  
Tr-d max  
Td-r max  
Tr-d max  
Td-r max  
µs  
µs  
µs  
µs  
the duty cycle(1) (2)  
Recessive to dominant  
Transmitter propagation delay timings  
for  
THREC(MAX) = 0.422 x VSUP,  
THDOM(MAX) = 0.284 x VSUP  
7 V ≤ VSUP ≤ 18 V, tBIT = 52 μs  
tDOM(MAX)_D2 - tREC(MIN)_D2  
8.4  
15.9  
the duty cycle(1) (2)  
Dominant to recessive  
Transmitter propagation delay timings  
for  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
7 V ≤ VSUP ≤ 18 V, tBIT = 96 μs  
tREC(MAX)_D3 - tDOM(MIN)_D3  
the duty cycle(1) (2)  
Recessive to dominant  
Transmitter propagation delay timings  
for  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
7 V ≤ VSUP ≤ 18 V, tBIT = 96 μs  
tDOM(MAX)_D4 - tREC(MIN)_D4  
17.28  
the duty cycle(1) (2)  
Dominant to recessive  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7.7 Duty Cycle Characteristics (continued)  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Low battery transmitter propagation  
delay  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
5.5 V ≤ VSUP ≤ 7 V, tBIT = 52 μs  
tREC(MAX)_low - tDOM(MIN)_low  
Tr-d max_low  
Td-r max_low  
10.8  
8.4  
µs  
µs  
timings for the duty cycle(1) (2)  
Recessive to dominant  
Low battery transmitter propagation  
delay  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
6.1 V ≤ VSUP ≤ 7 V, tBIT = 52 μs  
tDOM(MAX)_low - tREC(MIN)_low  
timings for the duty cycle(1) (2)  
Dominant to recessive  
(1) SAE 2602 leader node load conditions: 5.5 nF/4 kΩ and 899 pF/20 kΩ  
(2) SAE 2602 follower node load conditions: 5.5 nF/875 Ω and 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
7.8 Switching Characteristics  
parameters valid across -40≤ TA ≤ 125(unless otherwise noted)  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Receiver rising/falling propagation delay RRXD = 2.4 kΩ, CRXD = 20 pF  
trx_pdr, trx_pdf  
6
µs  
µs  
µs  
time (ISO/DIS 17987 Param 31)  
(See Figure 8-12 and Figure 8-13 )  
Rising edge with respect to falling edge,  
(trx_sym = trx_pdf – trx_pdr), RRXD  
2.4 kΩ, CRXD = 20 pF (See Figure 8-12  
and Figure 8-13 )  
Symmetry of receiver propagation delay  
time Receiver rising propagation delay  
time  
=
trs_sym  
–2  
25  
2
LIN wakeup time (Minimum dominant  
time on LIN bus for wakeup)  
See Figure 8-16, Figure 9-2, and Figure  
9-3  
tLINBUS  
65  
150  
Time to clear false wakeup prevention  
logic if LIN bus had a bus stuck  
dominant fault (recessive time on LIN  
bus to clear bus stuck dominant fault)  
tCLEAR  
See Figure 9-3  
8
20  
2
25  
45  
50  
80  
15  
µs  
ms  
µs  
tDST  
Dominant state time out  
Time to change from standby mode to  
normal mode or normal mode to sleep  
mode through EN pin: (See Figure 8-14  
and Figure 9-4)  
tMODE_CHANGE Mode change delay time  
Time for normal mode to initialize and  
data on RXD pin to be valid. See Figure  
8-14  
tNOMINT  
Normal mode initialization time  
Power up time  
35  
µs  
Upon power up time it takes for valid  
data on RXD  
tPWR  
1.5  
ms  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN1029A-Q1  
 
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
7.9 Typical Characteristics  
40  
35  
30  
25  
20  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1
-55°C  
25°C  
125°C  
-55°C  
25°C  
125°C  
0.8  
0.6  
0
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
Figure 7-1. VOH vs VSUP and Temperature  
Figure 7-2. VOL vs VSUP and Temperature  
2.5  
2.25  
2
500  
450  
400  
350  
1.75  
1.5  
1.25  
1
-55°C  
25°C  
125°C  
-55°C  
25°C  
125°C  
300  
250  
200  
150  
0.75  
0.5  
0.25  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
Figure 7-3. Dominant ISUP vs VSUP and Temperature  
Figure 7-4. Recessive ISUP vs VSUP and  
Temperature  
1
13  
12  
11  
10  
9
0.8  
0.6  
-55°C  
25°C  
125°C  
-55°C  
25°C  
125°C  
0.4  
8
7
0.2  
6
0
5
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply voltage (V)  
20  
25  
30  
35  
40  
Figure 7-5. Standby Dominant ISUP vs VSUP and  
Temperature  
Figure 7-6. Standby Recessive ISUP vs VSUP and  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
13  
12  
11  
10  
9
-55°C  
25°C  
125°C  
8
7
6
5
0
5
10  
15  
20  
25  
Supply voltage (V)  
30  
35  
40  
Figure 7-7. Sleep Current vs VSUP and Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN1029A-Q1  
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
8 Parameter Measurement Information  
1
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
2
VSUP  
VPS  
EN  
NC  
3
4
6
Pulse Generator  
tR/tF Square Wave: < 20 ns  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
TXD  
5
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-1. Test System: Operating Voltage Range with RX and TX Access: Parameters 9, 10  
Delta t = + 5 µs  
Trigger Point  
(tBIT = 50 µs)  
RX  
2 x tBIT = 100 µs (20 kBaud)  
Figure 8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
Figure 8-3. LIN Bus Input Signal  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
1
2
3
4
8
7
NC  
RXD  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
VSUP  
VPS  
EN  
NC  
6
Pulse Generator  
tR/tF Square Wave: < 20 ns  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
TXD  
5
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-4. LIN Receiver Test with RX access Param 17, 18, 19, 20  
1
8
7
NC  
RXD  
EN  
Power Supply 1  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
2
VSUP  
VPS1  
D
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
6
5
3
4
NC  
LIN  
VPS2  
TXD  
RBUS  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-5. VSUP_NON_OP Param 11  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
1
RXD  
8
7
NC  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
2
3
VSUP  
VPS  
EN  
NC  
RMEAS = 499  
6
LIN  
5
4
TXD  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-6. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V, Param 13  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1
2
8
7
NC  
RXD  
EN  
VPS1  
VSUP  
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VPS2  
1 k  
6
3
4
NC  
LIN  
VPS2 2 V/s ramp  
[8 V 36 V]  
5
TXD  
GND  
V Drop across resistor  
< 20 mV  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-7. Test Circuit for IBUS_PAS_rec Param 14  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1
2
8
7
NC  
RXD  
EN  
5 V  
VPS1  
VSUP  
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VPS2  
1 k  
6
5
3
4
NC  
LIN  
VPS2 2 V/s ramp  
[0 V 36 V]  
TXD  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-8. Test Circuit for IBUS_NO_GND Loss of GND  
8
1
2
NC  
RXD  
EN  
5 V  
7
VSUP  
Power Supply 2  
Resolution: 10mV/ 1mA  
10 k  
6
3
4
Accuracy: 0.2%  
VPS  
NC  
LIN  
VPS 2 V/s ramp  
[0 V 36 V]  
5
TXD  
GND  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-9. Test Circuit for IBUS_NO_BAT Loss of Battery  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
1
2
8
7
RXD  
NC  
5 V  
Power Supply 1  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
VSUP  
EN  
NC  
VPS1  
RMEAS  
6
3
4
Power Supply 2  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
LIN  
Pulse Generator  
tR/tF Square Wave: < 20 ns  
5
:
VPS2  
TXD  
GND  
:
tR/tF Triangle Wave: < 40ns  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-10. Test Circuit Slope Control and Duty Cycle Param 27, 28, 29, 30  
TBIT  
D = 50%  
TXD (Input)  
D112: 0.744 * VSUP  
D312: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D112: 0.581 * VSUP  
D312: 0.616 * VSUP  
LIN Bus  
Signal  
D212: 0.422 * VSUP  
D412: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D212: 0.284 * VSUP  
D412: 0.251 * VSUP  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
Figure 8-11. Definition of Bus Timing Parameters  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
VCC  
2.4 k  
1
2
8
7
RXD  
EN  
NC  
Power Supply  
Resolution: 10mV/1mA  
Accuracy: 0.2%  
5 V  
20 pF  
VSUP  
VPS  
6
3
4
Pulse Generator  
tR/tF Square Wave: < 20 ns  
NC  
LIN  
:
:
tR/tF Triangle Wave: < 40ns  
5
TXD  
GND  
Frequency: 20 ppm  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-12. Propagation Delay Test Circuit; Param 31, 32  
D1: 0.744 * VSUP  
D3: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D1: 0.581 * VSUP  
D3: 0.616 * VSUP  
LIN Bus  
Signal  
D2: 0.422 * VSUP  
D4: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D2: 0.284 * VSUP  
D4: 0.251 * VSUP  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
Figure 8-13. Propagation Delay  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
Wake Event  
tMODE_CHANGE  
EN  
tMODE_CHANGE  
tNOMINT  
Transition  
Sleep  
Standby  
Transition  
Normal  
Normal  
MODE  
Indetermin  
ate Ignore  
Mirrors  
Bus  
Wake Request  
RXD = Low  
RXD  
Floating  
Indeterminate Ignore  
Mirrors Bus  
Figure 8-14. Mode Transitions  
EN  
Weak Internal Pulldown  
TXD  
Weak Internal Pulldown  
VSUP  
LIN  
RXD  
Floating  
Sleep  
MODE  
Normal  
Figure 8-15. Wakeup Through EN  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
0.6 x VSUP  
LIN  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
Weak Internal Pulldown  
EN  
Floating  
Sleep  
RXD  
MODE  
Standby  
Normal  
Figure 8-16. Wakeup through LIN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The TLIN1029A-Q1 is a Local Interconnect Network (LIN) physical layer transceiver, compliant with LIN 2.0, LIN  
2.1, LIN 2.2, LIN 2.2A and ISO/DIS 17987–4 standards, with integrated wake-up and protection features. The  
LIN bus is a single-wire bidirectional bus typically used for low speed in-vehicle networks. The device transmitter  
supports data rates from 2.4-kbps to 20-kbps and the receiver works up to 100 kbps supporting in-line  
programming. The LIN protocol data stream on the TXD input is converted by the TLIN1029A-Q1 into a LIN bus  
signal using a current-limited wave-shaping driver as outlined by the LIN physical layer specification. The  
receiver converts the data stream to logic-level signals that are sent to the microprocessor through the open-  
drain RXD pin. The LIN bus has two states: dominant state (voltage near ground) and recessive state (voltage  
near battery). In the recessive state, the LIN bus is pulled high by the internal pull-up resistor (45 kΩ) and a  
series diode. No external pull-up components are required for responder node applications. commander node  
applications require an external pull-up resistor (1 kΩ) plus a series diode per the LIN specification.  
The device is designed to support 12-V applications with a wide input voltage operating range and also supports  
low-power sleep mode. The device also provides two methods to wake up: EN pin and from the LIN bus.  
The TLIN1029A-Q1 integrates ESD protection and fault protection which allow for a reduction in the required  
external components in the applications. In the event of a ground shift or supply voltage disconnection, the  
device prevents back-feed current through LIN to the supply input. The device also includes undervoltage  
detection, temperature shutdown protection, and loss-of-ground protection.  
9.2 Functional Block Diagram  
NC  
RXD  
VSUP/2  
VSUP  
Comp  
45 kΩ  
Filter  
EN  
NC  
Wake Up  
State & Control  
350 k  
Fault Detection  
& Protection  
LIN  
DR/ Slope CTL  
TXD  
350 kꢀ  
GND  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
9.3 Feature Description  
9.3.1 LIN (Local Interconnect Network) Bus  
This high voltage input/output pin is a single-wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 45 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter has thresholds and AC parameters according to the LIN specification. The transmitter is a low-  
side transistor with internal current limitation and thermal shutdown. During a thermal shut-down condition, the  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
VSUP, so no external pull-up components are required for the LIN responder node applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander node application.  
9.3.1.2 LIN Receiver Characteristics  
The receiver’s characteristic thresholds are proportional to the device supply pin in accordance to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAEJ2602  
specifications. This allows the TLIN1029A-Q1 to be used for high speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1 kΩ) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification.  
Figure 9-1 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
diodes in the pullup path  
Simplified Transceiver  
VSUP/2  
VLIN_Bus  
RXD  
VSUP  
VSUP  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 kΩ  
45 kΩ  
LIN  
Bus  
LIN  
TXD  
350 kΩ  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
Copyright © 2017, Texas Instruments Incorporated  
Figure 9-1. Commander Node Configuration with Voltage Levels  
9.3.2 TXD (Transmit Input and Output)  
TXD is the interface to the MCU’s LIN protocol controller or SCI and UART that is used to control the state of the  
LIN output. When TXD is low the LIN output is dominant (near ground). When TXD is high the LIN output is  
recessive (near VBattery). See Figure 9-1. The TXD input structure is compatible with microcontrollers with 3.3 V  
and 5 V I/O.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
9.3.3 RXD (Receive Output)  
RXD is the interface to the MCU’s LIN protocol controller or SCI and UART, which reports the state of the LIN  
bus voltage. LIN recessive (near VBattery) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage.  
This allows the device to be used with 3.3 V and 5 V I/O microcontrollers. If the microcontroller’s RXD pin does  
not have an integrated pull-up, an external pull-up resistor to the microcontroller I/O supply voltage is required. In  
standby mode the RXD pin is driven low to indicate a wake up request from the LIN bus.  
9.3.4 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse-blocking diode  
(Figure 9-1). If there is a loss of power at the ECU level, the device has extremely low leakage from the LIN pin,  
which does not load the bus down. This is optimal for LIN systems in which some of the nodes are unpowered  
(ignition supplied) while the rest of the network remains powered (battery supplied).  
9.3.5 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage, as well as ensuring the input and output  
voltages are within their appropriate thresholds. If there is a loss of ground at the ECU level, the device has  
extremely low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems in  
which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.6 EN (Enable Input)  
EN controls the operational modes of the device. When EN is high the device is in normal operating mode  
allowing a transmission path from TXD to LIN and from LIN to RXD. When EN is low the device is put into sleep  
mode and there are no transmission paths available. The device can enter normal mode only after wake up. EN  
has an internal pull-down resistor to ensure the device remains in low-power mode even if EN floats.  
9.3.7 Protection Features  
The TLIN1029A-Q1 has several protection features that will now be described.  
9.3.8 TXD Dominant Time Out (DTO)  
During normal mode, if TXD is inadvertently driven permanently low by a hardware or software application  
failure, the LIN bus is protected by the dominant state timeout timer. This timer is triggered by a falling edge on  
the TXD pin. If the low signal remains on TXD for longer than tDST, the transmitter is disabled, thus allowing the  
LIN bus to return to recessive state and communication to resume on the bus. The protection is cleared and the  
tDST timer is reset by a rising edge on TXD. The TXD pin has an internal pull-down to ensure the device fails to a  
known state if TXD is disconnected. During this fault, the transceiver remains in normal mode (assuming no  
change of stated request on EN), the transmitter is disabled, the RXD pin reflects the LIN bus and the LIN bus  
pull-up termination remains on.  
9.3.9 Bus Stuck Dominant System Fault: False Wake Up Lockout  
The TLIN1029A-Q1 contains logic to detect bus stuck dominant system faults and prevents the device from  
waking up falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus.  
If the bus is dominant, the wake-up logic is locked out until a valid recessive on the bus “clears” the bus stuck  
dominant, preventing excessive current consumption. Figure 9-2 and Figure 9-3 show the behavior of this  
protection.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
RXD  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
Figure 9-2. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wakeup  
RXD  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
Figure 9-3. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wakeup  
9.3.10 Thermal Shutdown  
The LIN transmitter is protected by current limiting circuitry; however, if the junction temperature of the device  
exceeds the thermal shutdown threshold, the device puts the LIN transmitter into the recessive state. Once the  
over-temperature fault condition has been removed and the junction temperature has cooled beyond the  
hysteresis temperature, the transmitter is re-enabled, assuming the device remained in the normal operation  
mode. During this fault, the transceiver remains in normal mode (assuming no change of state request on EN),  
the transmitter is in recessive state, the RXD pin reflects the LIN bus and LIN bus pull-up termination remains  
on.  
9.3.11 Under Voltage on VSUP  
The TLIN1029A-Q1 contains a power-on reset circuit to avoid false bus messages during under voltage  
conditions when VSUP is less than UVSUP  
.
9.3.12 Unpowered Device and LIN Bus  
In automotive applications some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remain powered by the battery. The TLIN1029A-Q1 has extremely low unpowered leakage current from  
the bus so an unpowered node does not affect the network or load it down.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
9.4 Device Functional Modes  
The TLIN1029A-Q1 has three functional modes of operation: normal, sleep, and standby. The next sections will  
describe these modes as well as how the device moves between the different modes. Figure 9-4 graphically  
shows the relationship while Table 9-1 shows the state of pins.  
Table 9-1. Operating Modes  
LIN BUS  
TERMINATION  
MODE  
Sleep  
EN  
Low  
Low  
RXD  
Floating  
Low  
TRANSMITTER  
COMMENT  
Weak current pull-up  
Off  
Off  
Wake-up event detected,  
waiting on MCU to set EN  
Standby  
45 kΩ (typical)  
45 kΩ (typical)  
LIN bus  
data  
Normal  
High  
On  
LIN transmission up to 20 kbps  
Unpowered System  
VSUP < UVSUP  
VSUP < UVSUP  
VSUP > UVSUP  
EN = Low  
VSUP < UVSUP  
VSUP > UVSUP  
EN = High  
VSUP < UVSUP  
Standby Mode  
Driver: Off  
RXD: Low  
Termination: 45 k  
EN = High  
LIN Bus Wake up  
Normal Mode  
Sleep Mode  
Driver: On  
RXD: LIN Bus Data  
Termination: 45 kΩ  
Driver: Off  
RXD: Floating  
Termination: Weak pull-up  
EN = Low  
EN = High  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9-4. Operating State Diagram  
9.4.1 Normal Mode  
If the EN pin is high at power up, the device will power up in normal mode. If the EN pin is low, it will power up in  
standby mode. The EN pin controls the mode of the device. In normal operational mode the receiver and  
transmitter are active and the LIN transmission up to the LIN specified maximum of 20 kbps is supported. The  
receiver detects the data stream on the LIN bus and outputs it on RXD for the LIN controller. A recessive signal  
on the LIN bus is a logic high and a dominant signal on the LIN bus is a logic low. The driver transmits input data  
from TXD to the LIN bus. Normal mode is entered as EN transitions high while the TLIN1029A-Q1 is in sleep or  
standby mode for > tMODE_CHANGE plus tNOMINT  
.
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
9.4.2 Sleep Mode  
Sleep mode is the power saving mode for the TLIN1029A-Q1. Sleep mode is only entered when the EN pin is  
low and from normal mode. Even with extremely low current consumption in this mode, the TLIN1029A-Q1 can  
still wake up from LIN bus through a wake-up signal or if EN is set high for ≥ tMODE_CHANGE. The LIN bus is  
filtered to prevent false wake up events. The wake-up events must be active for the respective time periods  
(tLINBUS).  
The sleep mode is entered by setting EN low for longer than tMODE_CHANGE  
While the device is in sleep mode, the following conditions exist:  
.
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short circuited to ground). However, the weak current pull-up is active to prevent false wake up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
EN input and LIN wake up receiver are active.  
9.4.3 Standby Mode  
This mode is entered whenever a wake up event occurs through LIN bus while the device is in sleep mode. The  
LIN bus responder mode termination circuit is turned on when standby mode is entered. Standby mode is  
signaled through a low level on RXD. See Section 10.2.2.2 for more application information.  
When EN is set high for longer than tMODE_CHANGE while the device is in standby mode, the device returns to  
normal mode. The normal transmission paths from TXD to LIN bus and LIN bus to RXD are enabled.  
9.4.4 Wake Up Events  
There are two ways to wake up from sleep mode:  
Remote wake up initiated by the falling edge of a recessive (high) to dominant (low) state transition on LIN  
bus where the dominant state is be held for tLINBUS filter time. After this tLINBUS filter time has been met and a  
rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake up event,  
eliminating false wake ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake up through EN being set high for longer than tMODE_CHANGE  
.
9.4.4.1 Wake Up Request (RXD)  
When the TLIN1029A-Q1 encounters a wake up event from the LIN bus, RXD goes low and the device  
transitions to standby mode until EN is reasserted high and the device enters normal mode. Once the device  
enters normal mode, the RXD pin releases the wake up request signal and the RXD pin then reflects the  
receiver output from the LIN bus.  
9.4.4.2 Mode Transitions  
When the TLIN1029A-Q1 is transitioning from normal to sleep or standby modes the device needs the time  
tMODE_CHANGE to allow the change to fully propagate from the EN pin through the device into the new state.  
When transitioning from sleep or standby to normal mode the device needs tMODE_CHANGE plus tNOMINT  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN1029A-Q1  
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
10 Application Information Disclaimer  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TLIN1029A-Q1 can be used as both a responder node device and a commander node device in a LIN  
network. The device comes with the ability to support both remote wake up request and local wake up request.  
10.2 Typical Application  
The device integrates a 45 kΩ pull-up resistor and series diode for responder node applications. For commander  
applications an external 1 kΩ pull-up resistor with series blocking diode can be used. Figure 10-1 shows the  
device being used in both commander mode and responder mode applications.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
VSUP  
COMMANDER  
NODE  
VREG  
VSUP  
VDD  
VDD  
VSUP  
NC  
8
NC  
3
EN  
I/O  
2
7
VDD  
Commander  
Node  
MCU w/o  
pullup(2)  
Pullup(3)  
VDD I/O  
1 kΩ  
MCU  
LIN  
TLIN1029A-Q1  
6
LIN Controller  
Or  
1
4
220 pF  
RXD  
TXD  
SCU/UART(1)  
GND  
5
VSUP  
RESPONDER  
NODE  
VREG  
VSUP  
VDD  
VDD  
VSUP  
NC  
8
NC  
3
EN  
7
I/O  
2
VDD  
MCU w/o  
pullup(2)  
VDD I/O  
LIN  
MCU  
TLIN1029A-Q1  
6
LIN Controller  
Or  
1
4
220 pF  
RXD  
TXD  
SCU/UART(1)  
GND  
5
A. If RXD on MCU on LIN responder node has internal pullup; no external pullup resistor is needed.  
B. If RXD on MCU or LIN responder node does not have an internal pullup requires external pullup resistor.  
C. Commander node applications require and external 1 kΩ pullup resistor and serial diode.  
D. Decoupling capacitor values on VSUP are system dependent but usually have 100 nF, 1 µF and ≥ 10 µF.  
Figure 10-1. Typical LIN Bus  
10.2.1 Design Requirements  
The RXD output structure is an open-drain output stage. This allows the TLIN1029A-Q1 to be used with 3.3- V  
and 5-V I/O processor. If the RXD pin of the processor does not have an integrated pull-up, an external pull-up  
resistor to the processor I/O supply voltage is required. The select external pull-up resistor value should be  
between 1 kΩ to 10 kΩ, depending on supply used (See IOL in electrical characteristics). The VSUP pin of the  
device should be decoupled with a 100-nF capacitor by placing it close to the VSUP supply pin. The system  
should include additional decoupling on the VSUP line as needed per the application requirements.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
10.2.2 Detailed Design Procedures  
10.2.2.1 Normal Mode Application Note  
When using the TLIN1029A-Q1 in systems which are monitoring the RXD pin for a wake up request, special  
care should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition  
period between states as the receivers are switched. The application software should not look for an edge on the  
RXD pin indicating a wake up request until tMODE_CHANGE. This is shown in Figure 8-14  
10.2.2.2 Standby Mode Application Note  
If the TLIN1029A-Q1 detects an under voltage on VSUP the RXD pin transitions low and would signal to the  
software that the TLIN1029A-Q1 is in standby mode and should be returned to sleep mode for the lowest power  
state.  
10.2.3 Application Curves  
The below figures show the propagation delay from the TXD pin to the LIN pin for both dominant to recessive  
and recessive to dominant edges. Device was configured in commander mode with external pull-up resistor (1  
kΩ) and 680 pF bus capacitance.  
Figure 10-2. Recessive to Dominant Propagation  
Figure 10-3. Dominant to Recessive Propagation  
11 Power Supply Recommendations  
The TLIN1029A-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 4 V  
to 36 V. A 100 nF decoupling capacitor should be placed as close to the VSUP pin of the device as possible. It is  
good practice for some applications with noisier supplies to include 1 µF and 10 µF decoupling capacitor, as  
well.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
12 Layout  
In order for your PCB design to be successful, start with design of the protection and filtering circuitry. Because  
ESD transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high frequency layout  
techniques must be applied during PCB design. Placement at the connector also prevents these noisy events  
from propagating further into the PCB and system.  
12.1 Layout Guidelines  
Pin 1 (RXD): The pin is an open-drain output and requires an external pull-up resistor in the range of 1 kΩ to  
10 kΩ to function properly. Note that the minimum value will depend on the VIO supply used. See IOL in  
electrical specifications. If the microprocessor paired with the transceiver does not have an integrated pull-up,  
an external resistor should be placed between RXD and the regulated voltage supply for the microprocessor.  
Pin 2 (EN): EN is an input pin that is used to place the device in a low-power sleep mode. If this feature is not  
used the pin should be pulled high to the regulated voltage supply of the microprocessor through a series  
resistor between 1 kΩ and 10 kΩ. Additionally, a series resistor may be placed on the pin to limit current on  
the digital lines in the case of an over voltage fault.  
Pin 3 (NC): Not Connected.  
Pin 4 (TXD): The TXD pin is used to transmit the input signal from the microcontroller. A series resistor can  
be placed to limit the input current to the device in the case of an over-voltage on this pin. A capacitor to  
ground can be placed close to the input pin of the device to filter noise.  
Pin 5 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 6 (LIN): This pin connects to the LIN bus. For responder mode applications a 220 pF capacitor to ground  
is implemented. For commander mode applications an additional series resistor and blocking diode should be  
placed between the LIN pin and the VSUP pin. See Figure 10-1.  
Pin 7 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed as close  
to the device as possible.  
Pin 8 (NC): Not Connected.  
Note  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN1029A-Q1  
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
12.2 Layout Example  
VDD  
RXD  
1
2
NC  
8
7
RXD  
U1  
VDD  
VSUP  
R2  
EN  
EN  
VSUP  
C3  
GND  
D1  
LIN  
Only needed for  
the commander  
node  
3
5
6
NC  
LIN  
GND  
GND  
GND  
5
TXD  
GND  
TXD  
R6  
GND  
Figure 12-1. Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
– ISO/DIS 17987-1.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and  
use case definition  
– ISO/DIS 17987-4.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
– SAEJ2602-1: LIN Network for Vehicle Applications  
– LIN Specifications LIN 2.0, LIN 2.1, LIN 2.2 and LIN 2.2A  
EMC requirements:  
– SAEJ2962-1: Communication Transceivers Qualification Requirements - LIN  
– ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
– ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
– ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
– ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
– IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
– IEC 61000-4-2  
– IEC 61967-4  
– CISPR25  
Conformance Test requirements:  
– ISO/DIS 17987-7.2: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer  
(EPL) conformance test specification  
– SAEJ2602-2: LIN Network for Vehicle Applications Conformance Test  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN1029A-Q1  
 
 
 
 
 
TLIN1029A-Q1  
SLLSFK8 – DECEMBER 2020  
www.ti.com  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN1029A-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN1029ADRBRQ1  
ACTIVE  
SON  
DRB  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
(TL029, TL029A)  
TLIN1029ADRQ1  
PREVIEW  
ACTIVE  
SOIC  
SON  
D
8
8
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
(TL029, TL029A)  
(TL029, TL029A)  
TLIN1029AMDRBRQ1  
DRB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Feb-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLIN1029ADRBRQ1  
TLIN1029AMDRBRQ1  
SON  
SON  
DRB  
DRB  
8
8
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Feb-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLIN1029ADRBRQ1  
TLIN1029AMDRBRQ1  
SON  
SON  
DRB  
DRB  
8
8
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TLIN1029AMDRBRQ1

TLIN1029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN1039-Q1

具有显性状态超时故障保护功能的局域互联网络 (LIN) 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN1039DDFRQ1

具有显性状态超时故障保护功能的局域互联网络 (LIN) 收发器 | DDF | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN1431-Q1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN14313RGYRQ1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN14315RGYRQ1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN1441-Q1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN14413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN14413DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN14415DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN14415DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2021A-Q1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI