TLIN2024ARGYRQ1 [TI]

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器 | RGY | 24 | -40 to 125;
TLIN2024ARGYRQ1
型号: TLIN2024ARGYRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器 | RGY | 24 | -40 to 125

文件: 总37页 (文件大小:2691K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
TLIN2024A-Q1 具有显性状态超时的  
四路本地互连网(LIN) 收发器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q1001 标准  
• 符LIN 2.0LIN 2.1LIN 2.2LIN2.2A 和  
ISO/DIS 179874 电气物理(EPL) 规格标准  
• 符SAE J2602-1 面向汽车应用LIN 网络标准  
提供功能安全  
车身电子装置和照明  
混合动力电动汽车和动力总成系统  
信息娱乐系统与仪表组  
电器  
3 说明  
可帮助进行功能安全系统设计的文档  
• 支12V 24V 电池应用  
LIN 传输数据速率高20kbps  
LIN 接收数据速率高100kbps  
• 宽工作电源电压范围4 V 48 V  
• 睡眠模式超低电流消耗支持以下类型的唤醒事  
:  
TLIN2024A-Q1 器件是一款四路本地互连网络 (LIN) 物  
理层收发器集成了唤醒和保护功能符合 LIN 2.0、  
LIN 2.1LIN 2.2LIN 2.2A ISO/DIS 179874 标  
准。LIN 是一根单线制双向总线通常用于低速车载网  
数据传输速率高达 20kbpsTLIN2024A-Q1 旨在  
12V 24V 应用提供支持具有更宽的工作电压范  
围和额外的总线故障保护。该器件具有两个独立的双路  
LIN 收发器模块。VSUP1/2 可控制独立的双路收发器模  
块。  
LIN 总线  
– 通EN 引脚实现本地唤醒  
• 集45kΩLIN 上拉电阻器  
LIN 总线RXD 输出上实现上电和断电无干扰  
运行  
TLIN2024A-Q1 接收器支持高达 100kbps 的数据速  
从而更快速地执行内联编程。该器件通过使用可降  
低电磁发射 (EME) 的限流波形整形驱动器TXD 输  
入上的 LIN 协议数据流转化为 LIN 总线信号。接收器  
将数据流转化为逻辑电平信号此信号通过开漏 RXD  
引脚发送到微处理器。睡眠模式可实现超低电流消耗,  
该模式允许通LIN 总线EN 引脚实现唤醒。  
• 保护特性:  
±60V LIN 总线容错  
VSUP 欠压保护  
TXD 显性超(DTO) 保护  
– 热关断保护  
– 系统级未供电节点或接地断开失效防护。  
3.5mm × 5.5mm VQFN 封装提高了自动光学检测  
(AOI) 能力  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TLIN2024A-Q1  
VQFN (24)  
3.50mm × 5.50mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
空白  
Node 1  
Commander  
Node 2  
Node 3  
Node n  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
LIN  
LIN  
LIN  
LIN  
Controller  
Controller  
Controller  
Controller  
TLIN2024A  
TLIN1022A  
TLIN1029A  
TLIN1029A  
LIN Bus  
LIN Bus  
LIN Bus  
LIN Bus  
24V - VBAT  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFM7  
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
Table of Contents  
9.1 Overview...................................................................19  
9.2 Functional Block Diagram.........................................20  
9.3 Feature Description...................................................20  
9.4 Device Functional Modes..........................................24  
10 Application and Implementation Disclaimer.............26  
10.1 Application Information........................................... 26  
10.2 Typical Application.................................................. 26  
10.3 Power Supply Recommendations...........................28  
10.4 Layout..................................................................... 28  
11 Device and Documentation Support..........................30  
11.1 Documentation Support.......................................... 30  
11.2 接收文档更新通知................................................... 30  
11.3 支持资源..................................................................30  
11.4 Trademarks............................................................. 30  
11.5 术语表..................................................................... 30  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 ESD Ratings - IEC...................................................... 4  
7.4 Thermal Information....................................................5  
7.5 Recommended Operating Conditions.........................5  
7.6 Electrical Characteristics.............................................6  
7.7 Duty Cycle Characteristics..........................................8  
7.8 Switching Characteristics..........................................10  
8 Parameter Measurement Information.......................... 11  
9 Detailed Description......................................................19  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
June 2022  
*
Initial release  
5 说明)  
TLIN2024A-Q1 集成了适用LIN 响应者节点应用的电阻器还集成ESD 保护和故障保护功能有助于减少应  
用中的外部元件数量。一旦发生接地漂移或电源电压断开该器件可防止反馈电流LIN 流向电源输入。器件还  
包含欠压保护、过热关断保护和接地失效保护功能。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
EN1  
TXD1  
RXD2  
EN2  
2
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
NC  
3
LIN1  
VSUP1  
LIN2  
GND1  
NC  
4
5
Thermal  
Pad  
TXD2  
RXD3  
EN3  
6
7
8
LIN3  
VSUP2  
LIN4  
GND2  
TXD3  
RXD4  
EN4  
9
10  
11  
6-1. RGY Package, 24-Pin RGY (VQFN)  
(Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
RXD1  
EN1  
NO.  
1
O
Channel 1 RXD Output (open-drain) interface reporting state of LIN1 bus voltage  
Channel 1 Enable Input  
2
I
TXD1  
RXD2  
EN2  
3
I
Channel 1 TXD input interface to control state of LIN output  
Channel 2 RXD Output (open-drain) interface reporting state of LIN2 bus voltage  
Channel 2 Enable Input  
4
O
5
I
TXD2  
RXD3  
EN3  
6
I
Channel 2 TXD input interface to control state of LIN2 output  
Channel 3 RXD Output (open-drain) interface reporting state of LIN3 bus voltage  
Channel 3 Enable Input  
7
O
8
I
TXD3  
RXD4  
EN4  
9
I
O
Channel 3 TXD input interface to control state of LIN3 output  
Channel 4 RXD Output (open-drain) interface reporting state of LIN4 bus voltage  
Channel 4 Enable Input  
10  
11  
I
TXD4  
GND2  
LIN4  
12  
I
Channel 4 TXD input interface to control state of LIN4 output  
Ground pin for Channels 3 and 4  
14  
G
15  
I/O  
Supply  
I/O  
G
Channel 4 LIN Bus single-wire transmitter and receiver  
VSUP2  
LIN3  
16  
Channels 3 and 4 Supply Voltage (connected to battery in series with external reverse blocking diode)  
Channel 3 LIN Bus single-wire transmitter and receiver  
17  
GND1  
LIN2  
19  
Ground pin for Channels 1 and 2  
20  
I/O  
Supply  
I/O  
Channel 2 LIN Bus single-wire transmitter and receiver  
VSUP1  
LIN1  
21  
22  
Channels 1 and 2 Supply Voltage (connected to battery in series with external reverse blocking diode)  
Channel 1 LIN Bus single-wire transmitter and receiver  
NC  
13, 18, 23, 24  
Not Connected  
Thermal Pad  
Can be connected to the PCB ground plane to improve thermal coupling  
(1) I = Input, O = Output, I/O = Input or Output, G = Ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1) (2)  
Symbol  
Parameter  
MIN  
0.3  
60  
0.3  
MAX  
60  
60  
6
UNIT  
V
VSUP  
VLIN  
Supply voltage range (ISO/DIS 17987 Param 10)  
LIN bus input voltage (ISO/DIS 17987 Param 82)  
Logic pin voltage (RXD, TXD, EN)  
Logic pin output current  
V
VLOGIC  
IO  
V
8
mA  
°C  
TJ  
Junction temperature range  
150  
55  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to ground terminal.  
7.2 ESD Ratings  
ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level 3A: TXD, RXD,  
EN Pins, per AEC Q100-002(1)  
±4000  
Human body model (HBM) classification level 3B: LIN and VSUP  
Pin with respect to ground  
±8000  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM)  
classification level C5, per AEC All pins  
Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings - IEC  
ESD and Surge Protection Ratings  
VALUE  
UNIT  
IEC 62228-2 per ISO 10605  
Contact discharge  
R = 330 Ω, C = 150 pF  
Electrostatic discharge, LIN, VSUP to  
GND(1)  
V(ESD)  
±8000  
V
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
7.3 ESD Ratings - IEC (continued)  
ESD and Surge Protection Ratings  
VALUE  
UNIT  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 1  
100  
IEC 62215-3  
24 V electrical systems (2)  
Pulse 1  
450  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
24 V electrical systems (2)  
Pulse 2  
75  
ISO 7637-2 and IEC 62228-2 per IEC  
62215-3 transients according to IBEE LIN IEC 62228-2 per IEC 62215-3  
VTRAN  
V
EMC test specifications (2) (LIN, VSUP to  
GND )  
12 V electrical systems  
Pulse 3a  
150  
-225  
100  
IEC 62215-3  
24 V electrical systems (2)  
Pulse 3a  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 3b  
IEC 62215-3  
24 V electrical systems (2)  
Pulse 3b  
225  
(1) Results given here are specific to the IEC 62228-2 Integrated circuits EMC evaluation of transceivers Part 2: LIN transceivers.  
Testing performed by OEM approved independent 3rd party, EMC report available upon request.  
(2) Verified during characterization.  
7.4 Thermal Information  
TLIN2024A  
THERMAL METRIC(1)  
RGY (QFN)  
24-PINS  
34.3  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
30.8  
13.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ΨJT  
13.3  
ΨJB  
RΘJC(bot)  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Recommended Operating Conditions  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER - DEFINITION  
MIN  
4
NOM  
MAX  
48  
UNIT  
V
VSUP1/2  
VLINx  
VLOGIC  
TA  
Supply voltage  
LIN Bus input voltage  
0
48  
V
Logic Pin Voltage (RXDx, TXDx, ENx)  
Ambient temperature range  
Thermal shutdown rising threshold  
Thermal shutdown hysteresis  
0
5.25  
125  
V
-40  
165  
°C  
°C  
°C  
TSD  
TSD(HYS)  
15  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
MAX UNIT  
7.6 Electrical Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
Power Supply  
Device is operational beyond the LIN  
defined nominal supply voltage range;  
See Figure 8-1 and Figure 8-2  
Operational supply voltage (ISO/DIS  
17987 Param 10)  
VSUP1/2  
48  
48  
V
V
Normal and Standby Modes: ramp VSUP  
while LIN signal is a 10 kHz square  
wave with 50 % duty cycle and 36V  
swing; See Figure 8-1 and Figure 8-2  
Nominal supply voltage (ISO/DIS 17987  
Param 10)  
4
VSUP1/2  
Sleep Mode  
4
48  
V
V
UVSUP  
UVHYS  
Under voltage VSUP threshold  
2.9  
3.85  
Delta hysteresis voltage for VSUP under  
voltage threshold  
0.2  
1.2  
V
Normal Mode: EN = High, bus  
dominant: total bus load where RLIN  
500 Ωand CLIN < 10 nF  
>
>
8.5  
mA  
ISUP  
Supply current (6)  
Standby Mode: EN = Low, bus  
dominant: total bus load where RLIN  
500 Ωand CLIN < 10 nF  
1.1  
3.75  
mA  
Normal Mode: EN = High, Bus  
Recessive: LIN = VSUP  
670  
20  
1600  
40  
µA  
µA  
µA  
µA  
Standby Mode: EN = Low, Bus  
Recessive LIN = VSUP  
ISUP  
Supply current (6)  
Sleep Mode: 4.0 V < VSUP < 14 V, LIN =  
VSUP, EN = 0 V, TXD and RXD Floating  
10  
20  
Sleep Mode: 14 V < VSUP < 36 V, LIN =  
VSUP, EN = 0 V, TXD and RXD floating  
30  
RXDx OUTPUT PIN (OPEN DRAIN)  
(4)  
VOL  
IOL  
Output Low voltage  
Based upon External pull up to VCC  
0.6  
5
V
Low level output current, open drain  
Leakage current, high-level  
LIN = 0 V, RXD = 0.4 V  
LIN = VSUP, RXD = 5 V  
1.5  
mA  
µA  
IILG  
0
5  
TXDx INPUT PIN  
VIL  
VIH  
Low level input voltage  
0.8  
V
V
0.3  
High level input voltage  
2
5.25  
Input threshold voltage, normal modes  
& selective wake modes  
VHYS  
50  
500  
mV  
IILG  
Low level input leakage current  
Internal pull-down resistor value  
TXD = Low  
0
5
µA  
5  
RTXD  
125  
350  
800  
kΩ  
ENx INPUT PIN  
VIL  
Low level input voltage  
High level input voltage  
Hysteresis voltage  
0.8  
5.25  
500  
5
V
V
0.3  
VIH  
2
VHYS  
IILG  
By design and characterization  
EN = Low  
50  
0
mV  
µA  
Low level input current  
Internal Pulldown resistor  
5  
REN  
125  
350  
800  
kΩ  
LINx PIN  
TXD = high, IO = 0 mA, 7 V VSUP  
48  
V
LIN recessive high-level output voltage  
VOH  
0.85  
VSUP  
(3)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
7.6 Electrical Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TXD = high, IO = 0 mA, 7 V VSUP  
18  
V
LIN recessive high-level output voltage  
VOH  
0.8  
VSUP  
(1) (2)  
LIN recessive high-level output voltage  
TXD = high, IO = 0 mA, 4 V ≤  
VSUP < 7 V  
VOH  
3
V
(3)  
VOL  
LIN dominant low-level output voltage (3)  
0.2 VSUP  
0.2 VSUP  
TXD = low, 7 V VSUP 48 V  
TXD = low, 7 V VSUP 18 V  
TXD = low, 4 V VSUP < 7 V  
TXD & RXD open, LIN = 4 V to 58 V  
LIN dominant low-level output voltage (1)  
VOL  
(2)  
VOL  
LIN dominant low-level output voltage (3)  
1.2  
58  
V
V
VSUP where impact of recessive LIN bus  
< 5% (ISO/DIS 17987 Param 11)  
VSUP_NON_OP  
0.3  
75  
Limiting current (ISO/DIS 17987 Param  
57)  
TXD = 0 V, VLIN = 48 V, RMEAS = 440 Ω,  
VSUP = 48 V, VBUSdom < 4.518 V  
IBUS_LIM  
120  
300  
mA  
mA  
µA  
Receiver leakage current, dominant  
(ISO/DIS 17987 Param 13)  
LIN = 0 V, VSUP = 24 V Driver off/  
recessive; See Figure 8-6  
IBUS_PAS_dom  
IBUS_PAS_rec1  
IBUS_PAS_rec2  
IBUS_NO_GND  
2  
Receiver leakage current, recessive  
(ISO/DIS 17987 Param 14)  
LIN > VSUP, 8 V VSUP 48 V, Driver  
off; See Figure 8-7  
20  
5
Receiver leakage current, recessive  
(ISO/DIS 17987 Param 14)  
LIN = VSUP, Driver off; See Figure 8-7  
µA  
5  
2  
Leakage current, loss of ground  
(ISO/DIS 17987 Param 60)  
GND = VSUP, 0 V VLIN < 36 V, VSUP  
24 V; Figure 8-8  
=
2
mA  
VSUP = 8 V, GND = open, VSUP = 18 V,  
GND = open  
RCommander = 1 kΩ, CL = 1 nF  
RResponder = 20 kΩ, CL = 1 nF  
LIN = dominant  
Ileak gnd(dom)  
Leakage current, loss of ground (5)  
Leakage current, loss of ground (5)  
1
mA  
1  
VSUP = 8 V, GND = open, VSUP = 18 V,  
GND = open  
RCommander = 1 kΩ, CL = 1 nF  
RResponder = 20 kΩ, CL = 1 nF  
LIN = recessive  
Ileak gnd(rec)  
-100  
100  
5
µA  
µA  
Leakage current, loss of supply  
(ISO/DIS 17987 Param 61)  
0 V VLIN 48 V, VSUP = GND;  
See; Figure 8-9  
IBUS_NO_BAT  
LIN dominant (including LIN dominant  
for wake-up); See Figure 8-4 and Figure  
8-3  
Low level input voltage (ISO/DIS 17987  
Param 62) (3)  
VBUSdom  
0.4 VSUP  
High level input voltage (ISO/DIS 17987 LIN recessive; See Figure 8-4 and  
VBUSrec  
VIH  
0.6  
0.47  
0.4  
VSUP  
0.6 VSUP  
Param 63) (3)  
Figure 8-3  
LIN recessive high-level input voltage (1)  
7 V VSUP 18 V  
(2)  
LIN dominant low-level input voltage (1)  
VIL  
0.53 VSUP  
0.525 VSUP  
0.175 VSUP  
0.175 VSUP  
7 V VSUP 18 V  
(2)  
Receiver center threshold (ISO/DIS  
17987 Param 64)  
VBUS_CNT = (VBUSdom + VBUSrec)/2 See  
Figure 8-4 and Figure 8-3  
VBUS_CNT  
VHYS  
VHYS  
0.475  
0.5  
Hysteresis voltage (ISO/DIS 17987  
Param 65)  
VHYS = (VBUSrec - VBUSdom) See Figure  
8-4 and Figure 8-3  
VHYS = VIH - VIL See Figure 8-4 and  
Figure 8-3  
Hysteresis voltage (SAE J2602)  
0.07  
0.4  
VSERIAL_DIODE Serial diode LIN termination pullup path  
0.7  
45  
1
60  
V
ISERIAL_DIODE = 10 μA  
Pullup resistor to VSUP (ISO/DIS 17987  
Param 26)  
RPU  
Normal and Standby modes  
Sleep mode, VSUP = 27 V, LIN = GND  
20  
kΩ  
µA  
IRSLEEP  
Pullup current source to VSUP  
20  
2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN2024A-Q1  
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
MAX UNIT  
7.6 Electrical Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
CLINPIN  
Capacitance of the LIN pin  
VSUP = 14 V  
25  
pF  
(1) SAE 2602 commander node load conditions: 5.5 nF/4 kΩand 899 pF/20 kΩ  
(2) SAE 2602 responder node load conditions: 5.5 nF/875 Ωand 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) RXD uses open drain output structure therefore VOL level is based upon microcontroller supply voltage VCC  
(5) Ileak gnd = (VBAT - VLIN)/RLoad  
.
(6) Values are for each VSUP pin  
7.7 Duty Cycle Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MAX) = 0.744 x VSUP THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 1 (ISO/DIS 17987 Param  
27)(3)  
D112V  
0.396  
THREC(MAX) = 0.625 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 4 V to 7 V, tBIT  
50 µs (20 kbps), D1 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
=
D112V  
Duty Cycle 1 (3) (4)  
0.396  
0.396  
THREC(MAX) = 0.744 x VSUP  
,
THDOM(MAX) = 0.581 x VSUP  
,
D1  
Duty Cycle 1 (1) (2) (4)  
VSUP = 7 V to 18 V, tBIT = 52 μs  
D1 = tBUS_rec(min)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 2 (ISO/DIS 17987 Param  
28) (3)  
D212V  
0.581  
0.581  
THREC(MIN) = 0.546 x VSUP, THDOM(MIN)  
= 0.4 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D212V  
Duty Cycle 2 (3) (4)  
50 µs (20 kbps), D2 = tBUS_rec(MAX)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
THREC(MIN) = 0.422 x VSUP  
,
THDOM(MIN) = 0.284 x VSUP  
,
D2  
Duty Cycle 2 (1) (2) (4)  
0.581  
VSUP = 7 V to 18 V, tBIT = 52 μs  
D2 = tBUS_rec(MAX)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 3 (ISO/DIS 17987 Param  
29) (3)  
D312V  
0.417  
0.417  
THREC(MAX) = 0.645 x VSUP, THDOM(MAX)  
= 0.616 x VSUP, VSUP = 4 V to 7 V, tBIT  
=
D312V  
Duty Cycle 3 (3) (4)  
96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2 x  
tBIT) (See Figure 8-10, Figure 8-11)  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 μs  
D3 = tBUS_rec(min)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
D3  
Duty Cycle 3 (1) (2) (4)  
0.417  
THREC(MIN) = 0.389 x VSUP, THDOM(MIN)  
= 0.251 x VSUP, VSUP = 7 V to 18 V, tBIT  
= 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11)  
Duty Cycle 4 (ISO/DIS 17987 Param  
30) (3)  
D412V  
0.59  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
7.7 Duty Cycle Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 4 V to 7 V, tBIT  
96 µs (10.4 kbps), D4 = tBUS_rec(MAX)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
=
D412V  
Duty Cycle 4 (3) (4)  
0.59  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 μs  
D4 = tBUS_rec(MAX)/(2 x tBIT) (See Figure  
8-10, Figure 8-11)  
D4  
Duty Cycle 4 (1) (2) (4)  
0.59  
THREC(MAX) = 0.710 x VSUP, THDOM(MAX)  
= 0.544 x VSUP, VSUP = 15 V to 36 V,  
tBIT = 50 µs (20 kbps), D1 =  
tBUS_rec(min)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11)  
Duty Cycle 1 (ISO/DIS 17987 Param  
72)  
D124V  
0.33  
THREC(MIN) = 0.446 x VSUP, THDOM(MIN)  
= 0.302 x VSUP, VSUP = 15.6 V to 36 V,  
tBIT = 50 µs (20 kbps), D2 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11)  
Duty Cycle 2 (ISO/DIS 17987 Param  
73)  
D224V  
D324V  
D424V  
0.642  
THREC(MAX) = 0.744 x VSUP, THDOM(MAX)  
= 0.581 x VSUP, VSUP = 7 V to 36 V, tBIT  
= 96 µs (10.4 kbps), D3 = tBUS_rec(min)/(2  
x tBIT) (See Figure 8-10, Figure 8-11)  
Duty Cycle 3 (ISO/DIS 17987 Param  
74)  
0.386  
THREC(MIN) = 0.422 x VSUP, THDOM(MIN)  
= 0.284 x VSUP, VSUP = 7.6 V to 36 V,  
tBIT = 96 µs (10.4 kbps), D4 =  
tBUS_rec(MAX)/(2 x tBIT) (See Figure 8-10,  
Figure 8-11)  
Duty Cycle 4 (ISO/DIS 17987 Param  
75) (4)  
0.591  
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 52 μs  
,
,
D1LB  
D2LB  
D3LB  
D4LB  
Duty cycle 1 at low battery (1) (2) (4)  
Duty cycle 2 at low battery(1) (2) (4)  
Duty cycle 3 at low battery (1) (2) (4)  
Duty cycle 4 at low battery (1) (2) (4)  
0.396  
0.396  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 52 μs  
0.581  
0.581  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 96 μs  
,
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 96 μs  
THREC(MAX) = 0.744 x VSUP  
,
Transmitter propagation delay timings  
for the duty cycle (1) (2) (4)  
Recessive to dominant  
THDOM(MAX) = 0.581 x VSUP  
7 V VSUP 18 V, tBIT = 52 μs  
tREC(MAX)_D1 - tDOM(MIN)_D1  
Tr-d max  
Td-r max  
Tr-d max  
Td-r max  
10.8  
8.4  
µs  
µs  
µs  
µs  
THREC(MAX) = 0.422 x VSUP  
,
Transmitter propagation delay timings  
for the duty cycle (1) (2) (4)  
Dominant to recessive  
THDOM(MAX) = 0.284 x VSUP  
7 V VSUP 18 V, tBIT = 52 μs  
tDOM(MAX)_D2 - tREC(MIN)_D2  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
7 V VSUP 18 V, tBIT = 96 μs  
tREC(MAX)_D3 - tDOM(MIN)_D3  
Transmitter propagation delay timings  
for the duty cycle (1) (2) (4)  
Recessive to dominant  
15.9  
17.28  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
7 V VSUP 18 V, tBIT = 96 μs  
tDOM(MAX)_D4 - tREC(MIN)_D4  
Transmitter propagation delay timings  
for the duty cycle (1) (2) (4)  
Dominant to recessive  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN2024A-Q1  
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
MAX UNIT  
7.7 Duty Cycle Characteristics (continued)  
parameters valid across -40TA 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
THREC(MAX) = 0.665 x VSUP  
,
Low battery transmitter propagation  
Tr-d max_low delay timings for the duty cycle (1) (2) (4)  
Recessive to dominant  
THDOM(MAX) = 0.499 x VSUP  
5.5 V VSUP 7 V, tBIT = 52 μs  
tREC(MAX)_low - tDOM(MIN)_low  
10.8  
8.4  
µs  
µs  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
6.1 V VSUP 7 V, tBIT = 52 μs  
tDOM(MAX)_low - tREC(MIN)_low  
Low battery transmitter propagation  
Td-r max_low delay timings for the duty cycle (1) (2) (4)  
Dominant to recessive  
(1) SAE 2602 commander node load conditions: 5.5 nF/4 kΩand 899 pF/20 kΩ  
(2) SAE 2602 responder node load conditions: 5.5 nF/875 Ωand 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) Specified by design  
7.8 Switching Characteristics  
parameters valid across -40TA 125(unless otherwise noted)  
SYMBOL  
DESCRIPTION  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Receiver rising propagation delay time  
(ISO/DIS 17987 Param 31)  
trx_pdr  
6
6
µs  
µs  
RRXD = 2.4 kΩ, CRXD = 20 pF;  
(See Figure 8-12 and Figure 8-13 )  
Receiver falling propagation delay time  
(ISO/DIS 17987 Param 31)  
trx_pdf  
Rising edge with respect to falling edge,  
Symmetry of receiver propagation delay (trx_sym = trx_pdf trx_pdr), RRXD  
=
trs_sym  
2
µs  
µs  
2  
time  
2.4 kΩ, CRXD = 20 pF; (See Figure  
8-12 and Figure 8-13 )  
LIN wake-up time (Minimum dominant  
time on LIN bus for wake-up)  
tLINBUS  
25  
100  
150  
See Figure 8-16, 9-2, and 9-3  
See 9-3  
Time to clear false wake-up prevention  
logic if LIN bus had a bus stuck  
dominant fault (recessive time on LIN  
bus to clear bus stuck dominant fault)  
tCLEAR  
8
20  
2
17  
34  
50  
80  
15  
µs  
ms  
µs  
tDST  
Dominant state time out  
Time to change from standby mode to  
normal mode or normal mode to sleep  
mode through EN pin; See Figure 8-14  
and 9-4  
tMODE_CHANGE Mode change delay time  
Time for normal mode to initialize and  
data on RXD pin to be valid; See Figure  
8-14  
tNOMINT  
Normal mode initialization time  
Power up time  
35  
µs  
Upon power up time it takes for valid  
data on RXD  
tPWR  
1.5  
ms  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
1,4,7,10  
NC 13,18,23,24  
16,21  
RXD1/2/3/4  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
5 V  
VSUP1/2  
VPS  
EN1/2/3/4  
2,5,8,11  
3,6,9,12  
15,17,20,22  
LIN1/2/3/4  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
TXD1/2/3/4  
14,19  
GND1/2  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-1. Test System: Operating Voltage Range with RX and TX Access  
Delta t = + 5 µs (tBIT = 50 µs)  
Trigger Point  
RX  
2 x tBIT = 100 µs (20 kBaud)  
8-2. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
8-3. LIN Bus Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
1,4,7,10  
NC  
RXD1/2/3/4  
EN1/2/3/4  
13,18,23,24  
16,21  
5 V  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VSUP1/2  
VPS  
2,5,8,11  
3,6,9,12  
15,17,20,22  
14,19  
LIN1/2/3/4  
GND1/2  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
TXD1/2/3/4  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-4. LIN Receiver Test with RX Access  
13,18,23,24  
1,4,7,10  
NC  
RXD1/2/3/4  
5 V  
Power Supply 1  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
16,21  
VSUP1/2  
EN1/2/3/4  
VPS1  
2,5,8,11  
3,6,9,12  
D
LIN1/2/3/4 15, 17, 20, 22  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
TXD1/2/3/4  
14,19  
VPS2  
RBUS  
GND1/2  
Measurement Tools  
O-scope:  
DMM  
8-5. VSUP_NON_OP  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
1,4,7,10  
NC 13,18,23,24  
16,21  
RXD1/2/3/4  
EN1/2/3/4  
5V  
Power Supply  
Resolution: 10 mV / 1mA  
VSUP1/2  
Accuracy: 0.2%  
VPS  
2,5, 8,11  
3,6,9,12  
RMEAS = 499  
15,17,20,22  
14,19  
LIN1/2/3/4  
GND1/2  
TXD1/2/3/4  
Measurement Tools  
O-scope:  
DMM  
8-6. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V  
1,4,7,10  
NC 13,18,23,24  
RXD1/2/3/4  
EN1/2/3/4  
Power Supply  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
5V  
VPS1  
16,21  
VSUP1/2  
2,5, 8,11  
3,6,9,12  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
1 k  
15,17,20,22  
14,19  
LIN1/2/3/4  
GND1/2  
VPS2  
TXD1/2/3/4  
VPS2 2 V/s ramp  
[8 V à 36 V]  
V Drop across resistor  
< 20 mV  
Measurement Tools  
O-scope:  
DMM  
8-7. Test Circuit for IBUS_PAS_rec  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
1,4,7,10  
NC 13,18,23,24  
16,21  
RXD1/2/3/4  
EN1/2/3/4  
Power Supply  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
5V  
VPS1  
VSUP1/2  
2,5, 8,11  
3,6,9,12  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
15,17,20,22  
14,19  
1 k  
LIN1/2/3/4  
GND1/2  
VPS2  
TXD1/2/3/4  
VPS2 2 V/s ramp  
[0 V 36 V]  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope: DMM  
8-8. Test Circuit for IBUS_NO_GND Loss of GND  
1,4,7,10  
NC 13,18,23,24  
RXD1/2/3/4  
EN1/2/3/4  
5V  
16,21  
VSUP1/2  
2,5, 8,11  
3,6,9,12  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VPS  
15,17,20,22  
14,19  
10 k  
LIN1/2/3/4  
GND1/2  
TXD1/2/3/4  
VPS2 2 V/s ramp  
[0 V 36 V]  
V Drop across resistor  
< 1V  
Measurement Tools  
O-scope: DMM  
8-9. Test Circuit for IBUS_NO_BAT Loss of Battery  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
1,4,7,10  
NC 13,18,23,24  
16,21  
RXD1/2/3/4  
EN1/2/3/4  
Power Supply  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
5V  
VPS1  
VSUP1/2  
2,5, 8,11  
3,6,9,12  
RMEAS  
Power Supply 2  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
15,17,20,22  
14,19  
LIN1/2/3/4  
GND1/2  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
VPS2  
TXD1/2/3/4  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
8-10. Test Circuit Slope Control and Duty Cycle  
TBIT  
D = 50%  
TXD (Input)  
D112: 0.744 * VSUP  
D312: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D112: 0.581 * VSUP  
D312: 0.616 * VSUP  
LIN Bus  
Signal  
D212: 0.422 * VSUP  
D412: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D212: 0.284 * VSUP  
D412: 0.251 * VSUP  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
8-11. Definition of Bus Timing Parameters  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
VCC  
2.4 k  
1,4,7,10  
NC 13,18,23,24  
16,21  
RXD1/2/3/4  
EN1/2/3/4  
5 V  
20 pF  
Power Supply  
Resolution: 10 mV / 1mA  
Accuracy: 0.2%  
VPS  
VSUP1/2  
2,5, 8,11  
3,6,9,12  
15,17,20,22  
14,19  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
LIN1/2/3/4  
GND1/2  
TXD1/2/3/4  
Jitter: < 25 ns  
Measurement Tools  
O-scope: DMM  
8-12. Propagation Delay Test Circuit  
D1: 0.744 * VSUP  
D3: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D1: 0.581 * VSUP  
D3: 0.616 * VSUP  
LIN Bus  
Signal  
D2: 0.422 * VSUP  
D4: 0.389 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D2: 0.284 * VSUP  
D4: 0.251 * VSUP  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
8-13. Propagation Delay  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
Wake Event  
tMODE_CHANGE  
EN  
tNOMINT  
tMODE_CHANGE  
Transition  
Sleep  
Standby  
Transition  
Normal  
Normal  
MODE  
Indeterminate  
Ignore  
Mirrors  
Bus  
Wake Request  
RXD = Low  
RXD  
Floating  
Indeterminate Ignore  
Mirrors Bus  
8-14. Mode Transitions  
8-15. Wake-Up Through EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
0.6 x  
VSUP  
0.6 x  
VSUP  
LINx  
0.4 x VSUP  
VSUP  
0.4 x  
VSUP  
t < tLINBUS  
tLINBUS  
TXDx  
Weak Internal Pulldown  
ENx  
Floating  
Sleep  
RXDx  
MODE  
Standby  
Normal  
8-16. Wake-Up Through LIN  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN2024A-Q1 device is a Quad Local Interconnect Network (LIN) physical layer transceiver, compliant to  
LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and ISO/DIS 179874 standards, with integrated wake-up and protection  
features. The device has two separate dual LIN transceiver blocks. VSUP1/2 provides power to the separate dual  
transceiver blocks. The LIN bus is a single wire bidirectional bus typically used for low speed in-vehicle networks  
using data rates up to 20 kbps. The device's LIN receivers work up to 100 kbps supporting in-line programming.  
The LIN protocol output data stream on the TXD in converted by the device into LIN bus signal using a current-  
limited wave shaping driver as outlined by the LIN physical layer specification. The receiver converts the data  
stream to logic level signals that are sent to the microprocessor through the open-drain RXD pin. The LIN bus  
has two states: dominant state (voltage near ground) and recessive state (voltage near battery). In the recessive  
state, the LIN bus is pulled high by the internal pull-up resistor (45 kΩ) and a series diode. No external pull-up  
components are required for responder node applications. Commander node applications require an external  
pull-up resistor (1 kΩ) plus a series diode per the LIN specification.  
The device is designed to support 12-V and 24-V applications with a wide input voltage operating range and also  
supports low-power sleep mode. The device also provides two methods to wake-up: EN pin and from the LIN  
bus.  
The TLIN2024A-Q1 integrates ESD protection and fault protection which allow for a reduction in the required  
external components in the applications. In the event of a ground shift or supply voltage disconnection, the  
device prevents back-feed current through LIN to the supply input. The device also includes undervoltage  
detection, temperature shutdown protection, and loss-of-ground protection.  
VSUP1 and GND1 supplies transceivers 1 and 2 while VSUP2 and GND2 supplies transceiver 3 and 4. The device  
is part of the LIN family that includes the TLIN2022A and TLIN2029A LIN transceivers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
VSUP1  
1
RXD1  
VSUP1/2  
Comp  
GND1  
Filter  
Wake Up  
State &  
EN1  
2
Fault Detection  
& Protection  
22 LIN1  
GND1  
21 VSUP1  
18 GND1  
DR/  
Slope  
CTL  
Dominant  
State  
Timeout  
TXD1  
3
GND1  
GND1  
GND1  
RXD2  
EN2  
4
5
6
20 LIN2  
Channel 2 is same as Channel 1  
TXD2  
VSUP2  
RXD3  
7
8
VSUP2/2  
Comp  
GND2  
Filter  
Wake Up  
State &  
EN3  
Fault Detection  
& Protection  
LIN3  
17  
GND2  
DR/  
Slope  
CTL  
Dominant  
State  
Timeout  
TXD3  
9
16 VSUP2  
14  
GND2  
GND2  
GND2  
GND2  
RXD4 10  
EN4 11  
15 LIN4  
Channel 4 is same as Channel 3  
12  
TXD4  
9.3 Feature Description  
9.3.1 LIN (Local Interconnect Network) Bus  
These high voltage input/output pins are single wire LIN bus transmitters and receivers. The LIN pins can survive  
excessive DC and transient voltages up to 60 V. Reverse currents from the LIN pins to supply (VSUP1/2) are  
minimized with blocking diodes, even in the event of a ground shift or loss of supply (VSUP1/2).  
9.3.1.1 LIN Transmitter Characteristics  
The transmitter has thresholds and AC parameters according to the LIN specification. The transmitter is a low  
side transistor with and internal current limitation and thermal shutdown. During a thermal shutdown condition,  
the transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
to VSUP1/2, so no external pull-up components are required for the LIN responder node applications. An external  
pull-up resistor and series diode to VSUP1/2 must be added when the device is used for a commander node  
application.  
9.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are proportional with the device supply pin according to the LIN  
specification.  
The receiver is capable of receiving higher data rates (> 100 kbps) than supported by LIN or SAE J2602  
specifications. This allows the TLIN2024A-Q1 to be used for high speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP1/2, so no external pull-up components  
are required for the LIN responder node applications. An external pull-up resistor (1 k) and a series diode to  
VSUP1/2 must be added when the device is used for commander node applications as per the LIN specification.  
9-1 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
Simplified Transceiver  
VLIN_Bus  
diodes in the pullup path  
RXD  
VSUP1/2  
VSUP  
VSUP/2  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 k  
45 k  
LIN 1/2/3/4  
GND1/2  
LIN  
Bus  
TXD  
350 k  
Transmitter  
with slope control  
VLIN_Dominant  
t
9-1. Commander Node Configuration with Voltage Levels  
9.3.2 TXD (Transmit Input and Output)  
TXD is the interface to the processor's LIN protocol controller or SCI/UART that is used to control the state of the  
LIN output. When TXD is low the LIN output is dominant (near ground). When TXD is high the LIN output is  
recessive (near VBattery). See 9-1. The TXD input structure is compatible with microprocessors with 3.3 V and  
5 V I/O. TXD has an internal pull-down resistor. The LIN bus is protected from being stuck dominant through a  
system failure driving TXD low through the dominant state timeout timer.  
9.3.3 RXD (Receive Output)  
RXD is the interface to the processor's LIN protocol controller or SCI/UART, which reports the state of the LIN  
bus voltage. LIN recessive (near VBattery) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage.  
This allows the device to be used with 3.3 V and 5 V I/O microprocessors. If the microprocessors RXD pin  
does not have an integrated pull-up, an external pull-up resistor to the microprocessor I/O supply voltage is  
required. In standby mode the RXD pin is driven low to indicate a wake-up request from the LIN bus.  
9.3.4 VSUP1/2 (Supply Voltage)  
VSUP1/2 are the power supply pins. VSUP1/2 is connected to the battery through and external reverse battery  
blocking diode (See 9-1). If there is a loss of power at the ECU level, the device has extremely low leakage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
from the LIN pin, which does not load the bus down. This is optimal for LIN systems in which some of the nodes  
are unpowered (ignition supplied) while the rest of the network remains powered (battery supplied).  
9.3.5 GND1/2 (Ground)  
GND1 and GND2 are the ground connections for LIN1/2 and LIN3/4 channels respectively. VSUP1 is referred to  
GND1 and VSUP2 is referred to GND2. The device can operate with a ground shift as long as the ground shift  
does not reduce VSUP1/2 below the minimum operating voltage. If there is a loss of ground at the ECU level, the  
device has a low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN systems in  
which some of the nodes are unpowered (ignition supplied) while the rest of the network remains powered  
(battery supplied).  
9.3.6 EN (Enable Input)  
EN1, EN2, EN3 and EN4 control the operational modes of the respective LIN channel. When EN1/EN2/EN3/EN4  
is high, the LIN1/LIN2/LIN3/LIN4 channel is in normal operating mode allowing a transmission path from TXD to  
LIN and from LIN to RXD. When either of the EN pins is low, the respective LIN channel is put into sleep mode  
and there is no transmission path available. The device can enter normal mode only after wake-up. EN has an  
internal pull-down resistor to ensure the device remains in low power mode even if EN floats.  
9.3.7 Protection Features  
The TLIN2024A-Q1 has several protection features.  
9.3.8 TXD Dominant Time Out (DTO)  
During normal mode, if TXD is inadvertently driven permanently low by a hardware or software application  
failure, the LIN bus is protected by the dominant state timeout timer. This timer is triggered by a falling edge on  
the TXD pin. If the low signal remains on TXD for longer than tDST, the transmitter is disabled, thus allowing the  
LIN bus to return to recessive state and communication to resume on the bus. The protection is cleared and the  
tDST timer is reset by a rising edge on TXD. The TXD pin has an internal pull-down to ensure the device fails to a  
known state if TXD is disconnected. During this fault, the transceiver remains in normal mode (assuming no  
change of state request on EN), the transmitter is disabled, the RXD pin reflects the LIN bus and the LIN bus  
pull-up termination remains on.  
9.3.9 Bus Stuck Dominant System Fault: False Wake-Up Lockout  
The TLIN2024A-Q1 contains logic to detect bus stuck dominant system faults and prevents the device from  
waking up falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus.  
If the bus is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck  
dominant, preventing excessive current use. 9-2 and 9-3 show the behavior of this protection.  
RXDx  
ENx  
LINxBus  
tLINBUS  
< tLINBUS  
< tLINBUS  
9-2. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wake-up  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
RXDx  
ENx  
tLINBUS  
tLINBUS  
tLINBUS  
LINxBus  
tCLEAR  
< tCLEAR  
9-3. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wake-up  
9.3.10 Thermal Shutdown  
The LIN transmitter is protected by limiting the current; however if the junction temperature of the device  
exceeds the thermal shutdown threshold, the device puts the LIN transmitter into the recessive state. Once the  
over temperature fault condition has been removed and the junction temperature has cooled beyond the  
hysteresis temperature, the transmitter is re-enabled, assuming the device remains in the normal operation  
mode. During this fault, the transceiver remains in normal mode (assuming no change of state request on EN),  
the transmitter is in recessive state, the RXD pin reflects the LIN bus and LIN bus pull-up termination remains  
on.  
9.3.11 Under Voltage on VSUP  
The TLIN2024A-Q1 contains a power on reset circuit to avoid false bus messages during under voltage  
conditions when VSUP1/2 is less than UVSUP1/2  
.
9.3.12 Unpowered Device and LIN Bus  
In automotive applications some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remains powered by the battery. The TLIN2024A-Q1 has a low unpowered leakage current from the bus  
so an unpowered node does not affect the network or load it down.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
9.4 Device Functional Modes  
The TLIN2024A-Q1 has three functional modes of operation, normal, sleep, and standby. The next sections  
describe these modes as well as how the device moves between the different modes. 9-4 graphically shows  
the relationship while 9-1 shows the state of pins.  
9-1. Operating Modes  
LIN BUS  
TERMINATION  
MODE  
ENx  
RXDx  
TRANSMITTER  
COMMENT  
Weak Current Pull-  
up  
Sleep  
Low  
Floating  
Off  
Wake-up event detected, waiting on  
MCU to set EN  
Standby  
Normal  
Low  
Low  
Off  
On  
45 k(typical)  
45 k(typical)  
High  
LINx Bus Data  
LINx transmission up to 20 kbps  
Unpowered System  
VSUP < UVSUP  
VSUP > UVSUP  
EN = LOW  
,
VSUP > UVSUP  
EN = High  
,
VSUP < UVSUP  
VSUP < UVSUP  
Standby Mode  
Driver: Off  
RXD: Low  
LIN termination: 45 k  
VSUP < UVSUP  
EN = High  
Normal Mode  
LIN bus wake-up  
Sleep Mode  
Driver: On  
RXD: LIN Bus Data  
LIN termination: 45 kΩ  
Driver: Off  
RXD: Floating  
LIN termination: Weak pull-up  
EN = Low  
EN = High  
9-4. Operating State Diagram  
9.4.1 Normal Mode  
The EN pin controls the mode of the channel. If the EN1/EN2/EN3/EN4 pin is high at power up, the channel  
powers up in normal mode. In normal operational mode, the receiver and transmitter are active and the LIN  
transmission up to the LIN specified maximum of 20 kbps is supported. The receiver detects the data stream on  
the LIN bus and outputs it on RXD for the LIN controller. A recessive signal on the LIN bus is a digital high and a  
dominant signal on the LIN bus is a digital low. The driver transmits input data from TXD to the LIN bus. Normal  
mode is entered as EN transitions high while the LIN channel is in sleep or standby mode for > tMODE_CHANGE  
plus tNOMINT  
.
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
9.4.2 Sleep Mode  
Sleep Mode is the power saving mode for the TLIN2024A-Q1. Even with extremely low current consumption in  
this mode, the LIN channel can still wake-up from LIN bus through a wake-up signal or if EN is set high for >  
tMODE_CHANGE. The LIN bus is filtered to prevent false wake-up events. The wake-up events must be active for  
the respective time periods (tLINBUS).  
The sleep mode is entered by setting EN low for longer than tMODE_CHANGE  
.
While the device is in sleep mode, the following conditions exist.  
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short circuited to ground). However, the weak current pull-up is active to prevent false wake-up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
EN input and LIN wake-up receiver are active.  
9.4.3 Standby Mode  
If the device powers up with any of the ENx pins held low, the corresponding LINx channel is in standby mode.  
Standby mode is also entered whenever a wake-up event occurs through the LIN bus while the device is in  
sleep mode. The LIN bus responder termination circuit is turned on when standby mode is entered. Standby  
mode is signaled through a low level on RXD. See Standby Mode Application Note for more application  
information.  
When EN is set high for longer than tMODE_CHANGE while the device is in standby mode the device returns to  
normal mode and the normal transmission paths from TXD to LIN bus and LIN bus to RXD are enabled.  
9.4.4 Wake-Up Events  
There are two ways to wake-up from sleep mode:  
Remote wake-up initiated by the falling edge of a recessive (high) to dominant (low) state transition on LIN  
bus where the dominant state is be held for tLINBUS filter time. After this tLINBUS filter time has been met and a  
rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up event,  
eliminating false wake-ups from disturbances on the LIN bus or if the bus is shorted to ground.  
Local wake-up through EN being set high for longer than tMODE_CHANGE  
.
9.4.4.1 Wake-Up Request (RXD)  
When the TLIN2024A-Q1 encounters a wake-up event from the LIN bus, RXD goes low and the channel  
transitions to standby mode until EN is reasserted high and the channel enters normal mode. Once the channel  
enters normal mode the RXD pin releases the wake-up request signal and the RXD pin then reflects the receiver  
output from the LIN bus.  
9.4.4.2 Mode Transitions  
When the TLIN2024A-Q1 is transitioning between modes the device needs the time, tMODE_CHANGE, to allow the  
change to fully propagate from the EN pin through the device into the new state. When transitioning from sleep  
or standby mode to normal mode the transition time is the sum of tMODE_CHANGE and tNOMINT  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
10 Application and Implementation Disclaimer  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TLIN2024A-Q1 can be used as both a responder device and a commander device in a LIN network. The  
device comes with the ability to support both remote wake-up request and local wake-up request.  
10.2 Typical Application  
The device comes with an integrated 45 kpull-up resistor and series diode for responder node applications.  
For commander node applications, an external 1 kpull-up resistor with series blocking diode can be used.  
Typical LIN Bus shows the device being used in both commander and responder applications.  
VSUP  
24 V - VBAT  
VREG  
VSUP  
Commander  
Node  
VDD  
VDD  
Pullup  
VSUP2  
VSUP1  
EN1  
EN2  
16 21  
VDD  
2
5
I/O  
I/O  
1 k  
LIN1  
MCU  
VDD I/O  
22  
20  
MCU w/o  
pullup(2)  
220 pF  
LIN2  
1
3
RXD1  
TXD1  
VDD I/O  
MCU w/o  
pullup(2)  
220 pF  
4
6
RXD2  
TXD2  
LIN Controller  
Or  
VDD I/O  
TLIN2024A  
SCI/UART(1)  
MCU w/o  
pullup(2)  
LIN3  
17  
15  
7
9
RXD3  
TXD3  
220 pF  
VDD I/O  
MCU w/o  
pullup(2)  
LIN4  
10  
12  
RXD4  
TXD4  
220 pF  
EN3  
EN4  
8
I/O  
I/O  
11  
GND  
14  
19  
(1) If RXD on MCU, or LIN transceiver, has an internal pull-up, then an external pull-up resistor is not required.  
(2) If RXD on MCU, or LIN transceiver, does not have an internal pull-up, then an external pull-up resistor is required.  
(3) Commander node applications require an external 1 k pull-up resistor and serial diode.  
(4) Decoupling capacitor values are system dependent but usually have 100 nF, 1 μF and 10 μF  
10-1. Typical LIN Bus  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
The RXD output structure is an open-drain output stage. This allows the TLIN2024A-Q1 to be used with 3.3 V  
and 5 V I/O microprocessors. If the RXD pin of the microprocessor does not have an integrated pull-up, an  
external pull-up resistor to the microprocessor I/O supply voltage is required.  
The VSUP1/2 pins of the device should be decoupled with a 100 nF capacitor as close to the supply pin on the  
device as possible. The system should include additional decoupling on the VSUP line as needed per the  
application requirements.  
10.2.1.1 Detailed Design Procedures  
10.2.1.2 Normal Mode Application Note  
When using the TLIN2024A-Q1 in systems which are monitoring the RXD pin for a wake-up request, special  
care should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition  
period between states as the receivers are switched. The application software should not look for an edge on the  
RXD pin indicating a wake-up request until tMODE_CHANGE when going from sleep or standby to normal mode.  
This is shown in Mode Transitions  
10.2.1.3 Standby Mode Application Note  
If the TLIN2024A-Q1 detects an under voltage on VSUP1/2, the RXD pin transitions low and would signal to the  
software that the device is in standby mode and should be returned to sleep mode for the lowest power state.  
10.2.1.4 TXD Dominant State Timeout Application Note  
The maximum dominant TXD time allowed by the TXD dominant state time out limits the minimum possible data  
rate of the device. The LIN protocol has different constraints for commander and responder applications thus  
there are different maximum consecutive dominant bits for each application case and thus different minimum  
data rates.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN2024A-Q1  
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
10.2.2 Application Curves  
10-2 and 10-3 show the propagation delay from the TXD pin to the LIN pin for both dominant to recessive  
and recessive to dominant edges. Waveforms are for 1 channel of the device configured in commander mode  
with external pull-up resistor (1 kΩ) and 680 pF bus capacitance.  
10-2. Dominant to Recessive Propagation  
10-3. Recessive to Dominant Propagation  
10.3 Power Supply Recommendations  
The TLIN2024A-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 4 V  
to 48 V. A 100 nF decoupling capacitor should be placed as close to the VSUP1/2 pin of the device as possible. It  
is good practice for some applications with noisier supplies to include 1 µF and 10 µF decoupling capacitor.  
10.4 Layout  
In order for the PCB design to be successful, start with the design of the protection and filtering circuitry.  
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high  
frequency layout techniques must be applied during PCB design. Placement at the connector also prevents  
these noisy events from propagating further into the PCB and system.  
10.4.1 Layout Guidelines  
Pins 1, 4, 7 and 10 (RXD1/2/3/4): The pins are open drain outputs and require an external pull-up resistor in  
the range of 1 kand 10 kto function properly. If the microprocessor paired with the transceiver does not  
have an integrated pull-up, an external resistor should be placed between RXD and the regulated voltage  
supply for the microprocessor.  
Pins 2, 5, 8 and 11 (EN1/2/3/4): EN is an input pin that is used to place the device in a low power sleep  
mode. If this feature is not used the pin should be pulled high to the regulated voltage supply of the  
microprocessor through a series resistor, values between 1 kand 10 k. Additionally, a series resistor may  
be placed on the pinto limit current on the digital lines in the case of an over voltage fault.  
Pin 13, 18, 23 and 24 (NC): Not Connected  
Pins 3, 6, 9 and 12 (TXD1/2/3/4): The TXD pins are the transmitter input signals to the device from the  
microprocessor. A series resistor can be placed to limit the input current to the device in the case of an  
overvoltage on this pin. A capacitor to ground can be placed close to the input pin of the device to filter noise.  
Pin 14, 19 (GND2/1): This is the ground connection for the device. This pin should be tied to the ground  
plane through a short trace with the use of two vias to limit total return inductance.  
Pins 22, 20, 17 and 15 (LIN1/2/3/4): This pin connects to the LIN bus. For responder node applications a  
220 pF capacitor to ground is implemented. For commander node applications and additional series resistor  
and blocking diode should be placed between the LIN pin and the VSUP1/2 pin.  
Pin 21, 160 (VSUP1/2): This is the supply pin for the device. A 100 nF decoupling capacitor should be placed  
as close to the device as possible.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
备注  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
10.4.2 Layout Example  
VDD  
RXD1  
VSUP1  
Onlyneededfor  
theCommander  
node  
VDD  
R3  
R2  
EN1  
NC  
EN1  
2
23  
GND  
C1  
R4  
GND  
TXD1  
VDD  
TXD1  
LIN1  
22  
LIN1  
LIN2  
3
VSUP1  
RXD2  
VSUP1  
D1  
RXD2  
4
GND  
21  
C6  
Onlyneededfor  
theCommander  
node  
VDD  
R7  
R6  
C2  
R8  
EN2  
LIN2  
EN2  
5
20  
GND  
TXD2  
6
VSUP2  
GND1  
19  
TXD2  
GND  
GND  
Onlyneededfor  
theCommander  
node  
Thermal Pad  
RXD3  
7
NC  
RXD3  
18  
GND  
VDD  
R11  
R10  
EN3  
LIN3  
17  
LIN3  
LIN4  
EN3  
8
VSUP2  
C3  
GND  
TXD3  
VSUP2  
D5  
TXD3  
R12  
9
GND  
C9  
16  
Onlyneededfor  
theCommander  
node  
RXD4  
LIN4  
15  
10  
RXD4  
VDD  
R15  
R14  
EN4  
GND2  
EN4  
11  
14  
GND  
GND  
C4  
GND  
TXD4  
R16  
10-4. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN2024A-Q1  
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
This device will conform to the following LIN standards. The core of what is needed is covered within this system  
spec, however reference should be made to these standards and any discrepancies pointed out and discussed.  
This document should provide all the basics of what is needed.  
11.1.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
ISO/DIS 17987-1: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and use  
case definition  
ISO/DIS 17987-4: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer (EPL)  
specification 12V/24V  
SAE J2602-1: LIN Network for Vehicle Applications  
EMC requirements:  
SAE J2962-1  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1: Definitions  
and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz - Part 4:  
Direct RF power injection method  
IEC 6100-4-2  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO/DIS 17987-7: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer (EPL)  
conformance test specification  
SAE J2602-2: LIN Network for Vehicle Applications Conformance Test  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN2024A-Q1  
 
 
 
 
 
 
TLIN2024A-Q1  
ZHCSNE4 JUNE 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN2024A-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN2024ARGYRQ1  
ACTIVE  
VQFN  
RGY  
24  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
TL2024A  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RGY 24  
5.5 x 3.5 mm, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4203539-5/J  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGY0024E  
PLASTIC QUAD FLATPACK-NO LEAD  
A
3.6  
3.4  
B
0.1 MIN  
PIN 1 INDEX AREA  
5.6  
5.4  
(0.13)  
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.1±0.1  
2X 1.5  
(0.2) TYP  
12  
13  
18X 0.5  
11  
14  
(0.16)  
A
A
SYMM  
25  
2X  
4.1±0.1  
4.5  
EXPOSED  
THERMAL PAD  
23  
2
0.3  
24X  
0.2  
24  
1
PIN 1 ID  
(OPTIONAL)  
SYMM  
24X  
0.1  
C A B  
C
0.05  
0.5  
0.3  
4225182/A 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGY0024E  
PLASTIC QUAD FLATPACK-NO LEAD  
(3.3)  
(2.1)  
2X (1.5)  
24X (0.6)  
24X (0.25)  
1
24  
2
23  
18X (0.5)  
(Ø0.2) VIA  
TYP  
SYMM  
2X  
25  
(4.1)  
(5.3)  
(4.5)  
(0.68)  
(1.12)  
11  
14  
(R0.05) TYP  
13  
12  
(0.8)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225182/A 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGY0024E  
PLASTIC QUAD FLATPACK-NO LEAD  
(3.3)  
2X (1.5)  
24X (0.6)  
24X (0.25)  
1
24  
2
23  
25  
18X (0.5)  
METAL  
TYP  
SYMM  
2X  
(5.3)  
(4.5)  
(1.36)  
6X (1.16)  
(R0.05) TYP  
11  
14  
13  
12  
6X (0.94)  
(0.57)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
76% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4225182/A 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLIN2027-Q1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2027DRBRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2027DRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2029A-Q1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2029A-Q1_V01

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2029ADRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2029ADRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2029AMDRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN2441-Q1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN24413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN24413DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLIN24415DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI