TLV171QDBVRQ1 [TI]

适用于成本敏感型应用的汽车级、单路、36V、3MHz、低功耗运算放大器 | DBV | 5 | -40 to 125;
TLV171QDBVRQ1
型号: TLV171QDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于成本敏感型应用的汽车级、单路、36V、3MHz、低功耗运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总33页 (文件大小:1302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
TLVx171-Q1 36-V, Single-Supply, General-Purpose  
Operational Amplifier for Cost-Sensitive Automotive Systems  
1 Features  
2 Applications  
1
Qualified for Automotive Applications  
Automotive  
AEC-Q100 Test Guidance With the Following  
Results:  
ADAS  
Body Electronics  
Lighting  
Device Temperature Grade 1:  
–40°C to +125°C Ambient Operating  
Temperature  
Current Sensing  
Power Train  
Device HBM ESD Classification Level:  
Level 3A for TLV171-Q1 and TLV2171-Q1  
Level 2 for TLV4171-Q1  
3 Description  
The TLVx171-Q1 family of devices is a 36-V,  
single-supply, low-noise operational amplifier (op  
amp) with the ability to operate on supplies ranging  
from 4.5 V (± 2.25 V) to 36 V (±18 V). This series is  
available in multiple packages and offers low offset,  
drift, and low quiescent current. The single, dual, and  
quad versions all have identical specifications for  
maximum design flexibility.  
Device CDM ESD Classification Level  
Level C4A for TLV171-Q1  
Level C6 for TLV2171-Q1and TLV4171-Q1  
Supply Range:  
Single-Supply: 4.5 V to 36 V  
Dual-Supply ±2.25 V to ±18 V  
Device Information(1)  
Low Noise: 16 nV/Hz at 1 kHz  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
5.00 mm × 4.40 mm  
Low Offset Drift: ±1 µV/°C (Typical)  
Input Range Includes Negative Supply  
TLV171-Q1  
SOT-23 (5)  
SOIC (8)  
Input Range Operates to Positive Supply With  
Reduced Performance  
TLV2171-Q1  
TLV4171-Q1  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
Rail-to-Rail Output  
Gain Bandwidth: 3 MHz  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Low Quiescent Current: 525 µA per Amplifier  
Common-Mode Rejection: 120 dB (Typical)  
Low Input Bias Current: 10 pA  
Offset Voltage vs Power Supply  
Offset Voltage vs Common-Mode Voltage: VSUPPLY  
= ±18 V  
1000  
350  
VSUPPLY  
= 2ꢀ25 V ꢁt 18 V  
10 Typical Uniꢁs Shtwn  
10 Typical Units Shown  
800  
250  
150  
50  
600  
400  
200  
0
-50  
-200  
-400  
-600  
-150  
-250  
-350  
-800  
VCM = -18.1 V  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
-1000  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
VSUPPLY (V)  
VCM (V)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
Table of Contents  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Description (continued)......................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information: TLV171-Q1 ............................. 8  
6.5 Thermal Information: TLV2171-Q1 ........................... 8  
6.6 Thermal Information: TLV4171-Q1 ........................... 8  
6.7 Electrical Characteristics........................................... 9  
6.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 24  
11 Device and Documentation Support ................. 24  
11.1 Documentation Support ........................................ 24  
11.2 Related Links ........................................................ 24  
11.3 Community Resource............................................ 25  
11.4 Trademarks........................................................... 25  
11.5 Electrostatic Discharge Caution............................ 25  
11.6 Glossary................................................................ 25  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 25  
Table 1. Revision History  
DATE  
REVISION  
NOTES  
April 2017  
SBOS858  
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
4 Description (continued)  
Unlike most op amps, which are specified at only one supply voltage, the TLVx171-Q1 family of devices is  
specified from 4.5 V to 36 V. Input signals beyond the supply rails do not cause phase reversal.  
The TLVx171-Q1 family of devices is stable with capacitive loads up to 300 pF. The input can operate 100 mV  
below the negative rail and within 2 V of the top rail during normal operation. The device can operate with full  
rail-to-rail input 100 mV beyond the top rail, but with reduced performance within 2 V of the top rail.  
The TLVx171-Q1 op amp family is specified from –40°C to +125°C.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
5 Pin Configuration and Functions  
TLV171-Q1 DBV Package  
5-Pin SOT-23  
Top View  
V+  
OUT  
1
2
3
5
4
V-  
-IN  
+IN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN  
NO.  
3
I
Noninverting input  
Inverting input  
Output  
–IN  
4
I
OUT  
V+  
1
O
5
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
2
4
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
TLV2171-Q1 D or DGK Packages  
8-Pin SOIC or VSSOP  
Top View  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT B  
–IN B  
+IN B  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
–IN A  
–IN B  
OUT A  
OUT B  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Inverting input, channel A  
Inverting input, channel B  
Output, channel A  
5
2
I
6
I
1
O
O
7
Output, channel B  
8
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
4
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
TLV4171-Q1 D and PW Packages  
14-Pin SOIC and TSSOP  
Top View  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
OUT C  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
+IN A  
+IN B  
+IN C  
+IN D  
–IN A  
–IN B  
–IN C  
–IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
NO.  
3
I
I
Noninverting input, channel A  
Noninverting input, channel B  
Noninverting input, channel C  
Noninverting input, channel D  
Inverting input, channel A  
Inverting input, channel B  
Inverting input, channel C  
Inverting input, channel D  
Output, channel A  
5
10  
12  
2
I
I
I
6
I
9
I
13  
1
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
4
Output, channel D  
Positive (highest) power supply  
Negative (lowest) power supply  
V–  
11  
6
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Supply voltage, VS  
Voltage  
Signal input terminals  
Current  
(V–) – 0.5  
(V+) + 0.5  
±10  
V
mA  
Output short circuit(2)  
Continuous  
Junction temperature, TJ  
Latch-up per JESD78D  
Storage temperature, Tstg  
150  
150  
°C  
°C  
Class 1  
–65  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
UNIT  
TLV171-Q1 IN DBV PACKAGE  
V(ESD) Electrostatic discharge  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±4000  
±500  
V
TLV2171-Q1 IN D AND DGK PACKAGES  
Human body model (HBM), per AEC Q100-002(1)  
±4000  
±1000  
V(ESD)  
Electrostatic discharge  
V
V
Charged device model (CDM), per AEC Q100-011  
TLV4171-Q1 IN D AND PW PACKAGES  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±1000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5 (±2.25)  
–40  
NOM  
MAX  
36 (±18)  
125  
UNIT  
Supply voltage (V+ – V–)  
V
Specified operating temperature  
°C  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
6.4 Thermal Information: TLV171-Q1  
TLV171-Q1  
DBV (SOT-23)  
5 PINS  
277.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
193.3  
121.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
51.8  
ψJB  
109.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Thermal Information: TLV2171-Q1  
TLV2171-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
116.1  
69.8  
DGK (VSSOP)  
8 PINS  
186.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
78  
56.6  
107.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
22.5  
15.6  
ψJB  
56.1  
106.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Thermal Information: TLV4171-Q1  
TLV4171-Q1  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
93.2  
PW (TSSOP)  
14 PINS  
106.9  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
51.8  
24.4  
49.4  
59.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
13.5  
0.6  
ψJB  
42.2  
54.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
6.7 Electrical Characteristics  
at TA = 25°C, VS = 4.5 V to 36 V, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
OFFSET VOLTAGE  
VOS Input offset voltage  
Input offset voltage over temperature TA = –40°C to 125°C  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.75  
±2.7  
±3  
mV  
mV  
dVOS/d Input offset voltage drift  
TA = –40°C to 125°C  
VS = 4.5 V to 36 V  
1
µV/°C  
dB  
T
(over temperature)  
Input offset voltage over temperature  
vs power supply  
PSRR  
90  
120  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
Electrical Characteristics (continued)  
at TA = 25°C, VS = 4.5 V to 36 V, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
±10  
±4  
pA  
pA  
IOS  
NOISE  
Input voltage noise  
f = 0.1 Hz to 10 Hz  
3
27  
16  
µVPP  
f = 100 Hz  
f = 1 kHz  
nV/Hz  
nV/Hz  
en  
Input voltage noise density  
INPUT VOLTAGE  
VCM  
Common-mode voltage range(1)  
(V–) – 0.1  
90  
(V+) – 2  
V
VS = ±2.25 V  
(V–) – 0.1 V < VCM < (V+) – 2 V  
120  
120  
dB  
Common-mode rejection ratio (over  
temperature)  
CMRR  
VS = ±18 V  
(V–) – 0.1 V < VCM < (V+) – 2 V  
94  
dB  
INPUT IMPEDANCE  
Differential  
100 || 3  
6 || 3  
MΩ || pF  
1012Ω || pF  
Common-mode  
OPEN-LOOP GAIN  
Open-loop voltage gain (over  
VS = 4.5 V to 36 V  
(V–) + 0.35 V < VO < (V+) – 0.35 V  
AOL  
94  
130  
dB  
temperature)  
FREQUENCY RESPONSE  
GBP  
SR  
Gain bandwidth product  
3
MHz  
V/µs  
Slew rate  
G = 1  
1.5  
To 0.1%, VS = ±18 V  
G = 1, 10-V step  
6
µs  
tS  
Settling time  
To 0.01% (12 bit), VS = ±18 V  
G = 1, 10-V step  
10  
2
µs  
µs  
Overload recovery time  
V±IN × Gain > VS  
G = 1, f = 1 kHz  
VO = 3 VRMS  
THD+N Total harmonic distortion + noise  
0.0002%  
OUTPUT  
Voltage output swing from rail (over  
temperature)  
RL = 10 kΩ  
AOL 110 dB  
VO  
(V–) + 0.35  
(V+) – 0.35  
V
Sourcing  
Sinking  
25  
ISC  
Short-circuit current  
mA  
–37  
CLOAD  
RO  
Capacitive load drive  
See Typical Characteristics  
pF  
Open-loop output resistance  
f = 1 MHz, IO = 0 A  
150  
Ω
POWER SUPPLY  
VS  
IQ  
Specified voltage range  
Quiescent current per amplifier  
TA = –40°C to 125°C  
4.5  
36  
V
IO = 0 A, TA = –40°C to 125°C  
525  
695  
µA  
(1) The input range can be extended beyond (V+) – 2 V up to V+ at reduced performance. See Typical Characteristics and Detailed  
Description for additional information.  
10  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
6.8 Typical Characteristics  
VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF (unless otherwise noted)  
Table 2. Characteristic Performance Measurements  
DESCRIPTION  
Offset Voltage Production Distribution  
Offset Voltage vs Common-Mode Voltage  
Offset Voltage vs Common-Mode Voltage (Upper Stage)  
Input Bias Current vs Temperature  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 5  
Output Voltage Swing vs Output Current (Maximum Supply)  
CMRR and PSRR vs Frequency (Referred-to Input)  
0.1Hz to 10Hz Noise  
Figure 6  
Figure 7  
Figure 8  
Input Voltage Noise Spectral Density vs Frequency  
Quiescent Current vs Supply Voltage  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15,  
Figure 17  
Figure 18, Figure 19  
Figure 20, Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Open-Loop Gain and Phase vs Frequency  
Closed-Loop Gain vs Frequency  
Open-Loop Gain vs Temperature  
Open-Loop Output Impedance vs Frequency  
Small-Signal Overshoot vs Capacitive Load (100-mV Output Step)  
No Phase Reversal  
Small-Signal Step Response (100 mV)  
Large-Signal Step Response  
Large-Signal Settling Time (10-V Positive Step)  
Large-Signal Settling Time (10-V Negative Step)  
Short-Circuit Current vs Temperature  
Maximum Output Voltage vs Frequency  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
6.8.1 Typical Characteristics  
16  
1000  
800  
Distribution Taken From 3500 Amplifiers  
10 Typical Units Shown  
14  
12  
10  
8
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
6
4
2
VCM = -18.1 V  
-15 -10  
0
-20  
-5  
0
5
10  
15  
20  
VCM (V)  
Offset Voltage (mV)  
Figure 2. Offset Voltage vs Common-Mode Voltage:  
VSUPPLY (V) = ±18 V  
Figure 1. Offset Voltage Production Distribution  
10000  
8000  
6000  
4000  
2000  
0
350  
250  
150  
50  
10 Typical Units Shown  
VSUPPLY  
= 2ꢀ25 V ꢁt 18 V  
10 Typical Uniꢁs Shtwn  
-50  
-2000  
-4000  
-6000  
-8000  
-10000  
Normal  
Operation  
-150  
-250  
-350  
VCM = 18.1 V  
15.5  
16  
16.5  
17  
17.5  
18  
18.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
VCM (V)  
VSUPPLY (V)  
Figure 3. Offset Voltage vs Common-Mode Voltage:  
VSUPPLY (V) = ±18 V  
Figure 4. Offset Voltage vs Power Supply  
(Upper Stage)  
10000  
18  
17  
16  
IB+  
IB-  
1000  
100  
10  
1
IB  
IOS  
15  
14.5  
-14.5  
-15  
-40°C  
+25°C  
+85°C  
+125°C  
IOS  
-16  
-17  
-18  
0
-40 -25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
Temperature (°C)  
Output Current (mA)  
Figure 5. Input Bias Current vs Temperature  
Figure 6. Output Voltage Swing vs Output Current  
(Maximum Supply)  
12  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
Typical Characteristics (continued)  
140  
120  
100  
80  
60  
40  
+PSRR  
20  
0
-PSRR  
CMRR  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Time (1s/div)  
Figure 7. CMRR and PSRR vs Frequency  
(Referred-to Input)  
Figure 8. 0.1- to 10-Hz Noise  
0.6  
0.55  
0.5  
1000  
100  
10  
0.45  
0.4  
0.35  
0.3  
Specified Supply-Voltage Range  
0.25  
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
1
10  
100  
1k  
10k  
100k  
1M  
Supply Voltage (V)  
Frequency (Hz)  
Figure 9. Input Voltage Noise Spectral Density vs  
Frequency  
Figure 10. Quiescent Current vs Supply Voltage  
180  
135  
90  
180  
25  
20  
15  
10  
5
Gain  
135  
90  
45  
0
Phase  
0
45  
-5  
-10  
-15  
-20  
G = 10  
G = 1  
0
G = -1  
-45  
-45  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Figure 11. Open-Loop Gain and Phase vs Frequency  
Figure 12. Closed-Loop Gain vs Frequency  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
Typical Characteristics (continued)  
3
1M  
100k  
10k  
1k  
5 Typical Units Shown  
VS = 2.7 V  
VS = 4 V  
2.5  
2
VS = 36 V  
1.5  
1
100  
10  
0.5  
0
1
1m  
-40 -25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
Figure 13. Open-Loop Gain vs Temperature  
Figure 14. Open-Loop Output Impedance vs Frequency  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
ROUT = 0 Ω  
45  
ROUT = 25 Ω  
40  
ROUT = 50 Ω  
35  
30  
25  
20  
G = 1  
18  
V
RF = 10 kΩ  
18 V  
RI = 10 kΩ  
G = -1  
ROUT = 0 Ω  
ROUT = 25 Ω  
ROUT = 50 Ω  
15  
10  
5
ROUT  
TLV171-Q1  
ROUT  
RL  
CL  
-18  
V
TLV171-Q1  
-18 V  
CL  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
RL = 10 kΩ  
Figure 15. Noninverting Small-Signal Overshoot vs  
Capacitive Load  
Figure 16. Inverting Small-Signal Overshoot vs Capacitive  
Load  
(100-mV Output Step)  
(100-mV Output Step)  
18 V  
G = 1  
18 V  
TLV171-Q1  
TLV171-Q1  
Output  
-18 V  
RL  
CL  
-18 V  
37 VPP  
Sine Wave  
18ꢀ5 V)  
(
Output  
Time (100ms/div)  
Time (1ms/div)  
RL = 10 kΩ  
CL = 100 pF  
Figure 17. No Phase Reversal  
Figure 18. Small-Signal Step Response (100 mV)  
14  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
Typical Characteristics (continued)  
RI = 2 kΩ RF = 2 kΩ  
18 V  
TLV171-Q1  
CL  
-18 V  
G = -1  
Time (20 ms/div)  
Time (5ms/div)  
CL = 100 pF  
G = 1  
RL = 10 kΩ  
CL = 100 pF  
Figure 19. Small-Signal Step Response (100 mV)  
Figure 20. Large-Signal Step Response  
10  
8
6
4
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
-10  
( 1ꢀ2ꢁSB ꢂ 0.024%)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Time (4ms/div)  
Time (ms)  
G = –1  
RL = 10 kΩ  
CL = 100 pF  
G = –1  
Figure 22. Large-Signal Settling Time (10-V Positive Step)  
Figure 21. Large-Signal Step Response  
10  
8
50  
45  
40  
6
4
35  
30  
25  
20  
15  
10  
5
ISC, Sink  
12-Bit Settling  
2
0
-2  
-4  
-6  
-8  
ISC, Source  
( 1ꢀ2ꢁSB ꢂ 0.024%)  
-10  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
-40  
-25  
0
25  
50  
75  
100  
125  
Time (ms)  
Temperature (°C)  
G = –1  
Figure 23. Large-Signal Settling Time (10-V Negative Step)  
Figure 24. Short-Circuit Current vs Temperature  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
Typical Characteristics (continued)  
15  
VS  
=
15 V  
12.5  
10  
Maximum output voltage without  
slew-rate induced distortion.  
7.5  
VS  
= 5 V  
5
2.5  
0
10k  
100k  
Frequency (Hz)  
1M  
10M  
Figure 25. Maximum Output Voltage vs Frequency  
16  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
7 Detailed Description  
7.1 Overview  
The TLVx171-Q1 family of operational amplifiers provides high overall performance, making them ideal for many  
general-purpose applications. The excellent offset drift of only 1 µV/°C (typical) provides excellent stability over  
the entire temperature range. In addition, the device offers very good overall performance with high CMRR,  
PSRR, AOL, and superior THD.  
7.2 Functional Block Diagram  
TLVx171-Q1  
+
PCH  
FF Stage  
œ
Ca  
Cb  
+
+IN  
+
+
PCH  
Input Stage  
2nd Stage  
OUT  
Output  
Stage  
œ
œIN  
œ
œ
+
NCH  
Input Stage  
œ
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Operating Characteristics  
The TLVx171-Q1 family of devices is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V). Many of the  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are shown in Typical Characteristics.  
7.3.2 Phase-Reversal Protection  
The TLVx171-Q1 family of devices has an internal phase-reversal protection. Many op amps exhibit a phase  
reversal when the input is driven beyond the linear common-mode range. This condition is most often  
encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range,  
causing the output to reverse into the opposite rail. The input of the TLVx171-Q1 family of devices prevents  
phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail.  
Figure 26 shows this performance.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
Feature Description (continued)  
18 V  
TLV171-Q1  
Output  
-18 V  
37 VPP  
Sine Wave  
18ꢀ5 V)  
(
Output  
Time (100ms/div)  
Figure 26. No Phase Reversal  
7.3.3 Capacitive Load and Stability  
The dynamic characteristics of the TLVx171-Q1 family of devices are optimized for commonly encountered  
operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase  
margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be  
isolated from the output. The simplest way to achieve this isolation is to add a small resistor (for example, ROUT  
equal to 50 Ω) in series with the output. Figure 27 and Figure 28 shows small-signal overshoot versus capacitive  
load for several values of ROUT. For details of analysis techniques and application circuits, see Applications  
Bulletin AB-028, available for download from TI.com.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
ROUT = 0 Ω  
ROUT = 25 Ω  
ROUT = 50 Ω  
G = 1  
18  
V
RF = 10 kΩ  
18 V  
RI = 10 kΩ  
G = -1  
ROUT = 0 Ω  
ROUT = 25 Ω  
ROUT = 50 Ω  
ROUT  
TLV171-Q1  
ROUT  
RL  
CL  
-18  
V
TLV171-Q1  
-18 V  
CL  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
0
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load (pF)  
RL = 10 kΩ  
Figure 27. Small-Signal Overshoot versus Capacitive Load  
(100-mV Output Step)  
Figure 28. Small-Signal Overshoot versus Capacitive Load  
(100-mV Output Step)  
18  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
7.4 Device Functional Modes  
7.4.1 Common-Mode Voltage Range  
The input common-mode voltage range of the TLVx171-Q1 family of devices extends 100 mV below the negative  
rail and within 2 V of the top rail for normal operation.  
This device can operate with full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within  
2 V of the top rail. The typical performance in this range is listed in Table 3.  
Table 3. Typical Performance Range  
PARAMETER  
Input common-mode voltage  
Offset voltage  
MIN  
TYP  
MAX  
UNIT  
V
(V+) – 2  
(V+) + 0.1  
7
mV  
Offset voltage vs temperature  
Common-mode rejection  
Open-loop gain  
12  
65  
60  
0.7  
0.7  
30  
µV/°C  
dB  
dB  
GBW  
MHz  
V/µs  
nV/Hz  
Slew rate  
Noise at f = 1kHz  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLV171-Q1 operational amplifier family provides high overall performance, making the device ideal for many  
general-purpose applications. The excellent offset drift of only 1 µV/°C provides excellent stability over the entire  
temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and  
AOL. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling  
capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate.  
8.1.1 Electrical Overstress  
Designers often ask questions about the capability of an op amp to withstand electrical overstress. These  
questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin.  
Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA as stated in Absolute Maximum Ratings. Figure 29 shows how a series input resistor can be added to the  
input to limit the input current. The added resistor contributes thermal noise at the amplifier input and its value  
must be kept to a minimum in noise-sensitive applications.  
V+  
IOVERLOAD  
10 mA max  
VOUT  
TLV171-Q1  
VIN  
5 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. Input Current Protection  
An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-  
current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to  
provide a current path around the operational amplifier core to prevent it from being damaged. The energy  
absorbed by the protection circuitry is then dissipated as heat.  
When the operational amplifier connects into a circuit, the ESD protection components are intended to remain  
inactive and not become involved in the application circuit operation. However, circumstances may arise where  
an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that  
some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow  
occurs through ESD cells and rarely involves the absorption device.  
If the ability of the supply to absorb this current is uncertain, external zener diodes may be added to the supply  
pins. The zener voltage must be selected such that the diode does not turn on during normal operation.  
However, the zener voltage must be low enough so that the zener diode conducts if the supply pin begins to rise  
above the safe operating supply voltage level.  
20  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
8.2 Typical Application  
8.2.1 Capacitive Load Drive Solution Using an Isolation Resistor  
The TLVx171-Q1 device can be used capacitive loads such as cable shields, reference buffers, MOSFET gates,  
and diodes. The circuit uses an isolation resistor (RISO) to stabilize the output of an op amp. RISO modifies the  
open loop gain of the system to ensure the circuit has sufficient phase margin.  
+VS  
VOUT  
RISO  
+
CLOAD  
+
VIN  
-VS  
œ
Figure 30. Unity-Gain Buffer with RISO Stability Compensation  
8.2.1.1 Design Requirements  
The design requirements are:  
Supply voltage: 30 V (±15 V)  
Capacitive loads: 100 pF, 1000 pF, 0.01 μF, 0.1 μF, and 1 μF  
Phase margin: 45° and 60°  
8.2.1.2 Detailed Design Procedure  
Figure 31 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the  
circuit in Figure 31. Not shown in Figure 31 is the open-loop output resistance of the op amp, Ro.  
1 + CLOAD × RISO × s  
T(s) =  
1 + R + R  
× C  
× s  
(
)
o
ISO  
LOAD  
(1)  
The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro +  
RISO) and CLOAD. Components RISO and CLOAD determine the frequency of the zero (fz). A stable system is  
obtained by selecting RISO such that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20  
dB/decade. Figure 31 shows the concept. The 1/β curve for a unity-gain buffer is 0 dB.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
Typical Application (continued)  
120  
100  
80  
60  
40  
20  
0
AOL  
1
fp  
=
2 ì Œ ì  
R
+ Ro ì C  
ISO LOAD  
(
)
40 dB  
1
fz  
=
2 ì Œ ì RISO ì CLOAD  
1 dec  
1/  
20 dB  
dec  
ROC =  
100M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 31. Unity-Gain Amplifier with RISO Compensation  
ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially  
the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a  
measurement of overshoot percentage and AC gain peaking of the circuit using a function generator,  
oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 4  
lists the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For more  
details on this design and other alternative devices that can be used in place of the TLVx171-Q1, see Capacitive  
Load Drive Solution using an Isolation Resistor.  
Table 4. Phase Margin versus Overshoot and AC Gain Peaking  
PHASE MARGIN  
OVERSHOOT  
23.3%  
AC GAIN PEAKING  
2.35 dB  
45°  
60°  
8.8%  
0.28 dB  
8.2.1.3 Application Curve  
The TLVx171-Q1 series meets the supply voltage requirements of 30 V. The TLVx171-Q1 device was tested for  
various capacitive loads and RISO was adjusted to achieve an overshoot corresponding to Table 4. Figure 32  
shows the test results.  
10000  
45è Phase Margin  
60è Phase Margin  
1000  
100  
10  
1
0.01  
0.1  
1
10  
100  
1000  
Capacitive Load (nF)  
D001  
Figure 32. RISO vs CLOAD  
22  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
9 Power Supply Recommendations  
The TLV171-Q1 family of devices is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many  
specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to  
operating voltage or temperature are presented in Typical Characteristics.  
CAUTION  
Supply voltages larger than 40 V can permanently damage the device; see the  
Absolute Maximum Ratings table.  
Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For detailed information on bypass capacitor placement, see Layout.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp  
itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground  
planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically  
separate digital and analog grounds paying attention to the flow of the ground current. See Circuit Board  
Layout Techniques for detailed information.  
In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as  
possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace  
perpendicular as opposed to in parallel with the noisy trace.  
Place the external components as close to the device as possible. As shown in Figure 33, keeping RF  
and RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly  
reduce leakage currents from nearby traces that are at different potentials.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
 
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
SBOS858 APRIL 2017  
www.ti.com  
10.2 Layout Example  
Place components close  
to device and to each  
other to reduce parasitic  
errors  
Run the input traces  
as far away from  
the supply lines  
as possible  
VS+  
RF  
N/C  
N/C  
Use a low-ESR,  
ceramic bypass  
capacitor  
RG  
GND  
œIN  
+IN  
Vœ  
V+  
OUTPUT  
N/C  
VIN  
GND  
GND  
VSœ  
VOUT  
Ground (GND) plane on another layer  
Use low-ESR,  
ceramic bypass  
capacitor  
Copyright © 2017, Texas Instruments Incorporated  
Figure 33. Operational Amplifier Board Layout for Noninverting Configuration  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Applications Bulletin AB-028 (SBOA015)  
Capacitive Load Drive Solution using an Isolation Resistor (TIDU032)  
Circuit Board Layout Techniques (SLOA089)  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 5. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TLV171-Q1  
TLV2171-Q1  
TLV4171-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
24  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
TLV171-Q1, TLV2171-Q1, TLV4171-Q1  
www.ti.com  
SBOS858 APRIL 2017  
11.3 Community Resource  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TLV171-Q1 TLV2171-Q1 TLV4171-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV171QDBVRQ1  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
1CJT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV171-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Catalog: TLV171  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV171QDBVRQ1  
SOT-23  
DBV  
5
3000  
180.0  
8.4  
3.23  
3.17  
1.37  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TLV171QDBVRQ1  
5
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TLV172

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器
TI

TLV172IDBVR

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DBV | 5 | -40 to 125
TI

TLV172IDBVT

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DBV | 5 | -40 to 125
TI

TLV172IDCKR

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DCK | 5 | -40 to 125
TI

TLV172IDCKT

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | DCK | 5 | -40 to 125
TI

TLV172IDR

适用于成本敏感型应用的单路、36V、10MHz、低功耗运算放大器 | D | 8 | -40 to 125
TI

TLV1805

具有推挽输出和关断模式的高电压比较器
TI

TLV1805-Q1

具有推挽输出和关断模式的汽车级高电压比较器
TI

TLV1805DBVR

具有推挽输出和关断模式的高电压比较器 | DBV | 6 | -40 to 125
TI

TLV1805QDBVRQ1

具有推挽输出和关断模式的汽车级高电压比较器 | DBV | 6 | -40 to 125
TI

TLV1811

具有推挽输出的单通道、微功耗高压比较器
TI

TLV1811-Q1

具有失效防护功能的汽车级、40V、低功耗、推挽、单路比较器
TI