TLV5625 [TI]

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN; 2.7 V至5.5 V低功耗双8 - BIT DIGITAL- TO- ANALOG与电源转换器的降压
TLV5625
型号: TLV5625
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
2.7 V至5.5 V低功耗双8 - BIT DIGITAL- TO- ANALOG与电源转换器的降压

转换器
文件: 总15页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
features  
applications  
Dual 8-Bit Voltage Output DAC  
Programmable Internal Reference  
Digital Servo Control Loops  
Digital Offset and Gain Adjustment  
Industrial Process Control  
Programmable Settling Time  
– 2.5 µs in Fast Mode  
– 12 µs in Slow Mode  
Machine and Motion Control Devices  
Mass Storage Devices  
Compatible With TMS320 and SPI Serial  
Ports  
D PACKAGE  
(TOP VIEW)  
Differential Nonlinearity <0.2 LSB Max  
Monotonic Over Temperature  
DIN  
SCLK  
CS  
V
DD  
OUTB  
REF  
1
2
3
4
8
7
6
5
description  
The TLV5625 is a dual 8-bit voltage output DAC  
with a flexible 3-wire serial interface. The serial  
interface is compatible with TMS320, SPI ,  
OUTA  
AGND  
QSPI , and Microwire  
serial ports. It is  
programmed with a 16-bit serial string containing  
4 control and 8 data bits.  
The resistor string output voltage is buffered by an x2 gain rail-to-rail output buffer. The buffer features a  
Class-AB output stage to improve stability and reduce settling time. The programmable settling time of the DAC  
allows the designer to optimize speed versus power dissipation.  
Implemented with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It  
is available in an 8-pin SOIC package in standard commercial and industrial temperature ranges.  
AVAILABLE OPTIONS  
PACKAGE  
T
A
SOIC  
(D)  
0°C to 70°C  
TLV5625CD  
TLV5625ID  
40°C to 85°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI and QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
functional block diagram  
REF  
AGND  
V
DD  
Power and  
Speed Control  
Power-On  
Reset  
2
x2  
OUTA  
DIN  
8-Bit  
DAC A  
Latch  
8
8
SCLK  
CS  
Serial  
Interface  
and  
8
Buffer  
Control  
8
8
8-Bit  
DAC B  
Latch  
x2  
OUTB  
Terminal Functions  
TERMINAL  
I/O/P  
DESCRIPTION  
NAME  
NO.  
5
AGND  
CS  
P
I
Ground  
3
Chip select. Digital input active low, used to enable/disable inputs.  
Digital serial data input  
DIN  
1
I
OUTA  
OUTB  
REF  
4
O
O
I
DAC A analog voltage output  
DAC B analog voltage output  
Analog reference voltage input  
Digital serial clock input  
7
6
SCLK  
2
I
V
DD  
8
P
Positive power supply  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage (V  
to AGND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
DD  
Reference input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to V  
Digital input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to V  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
Operating free-air temperature range, T : TLV5625C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLV5625I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
MIN  
4.5  
2.7  
0.55  
2
NOM  
MAX  
5.5  
3.3  
2
UNIT  
V
V
= 5 V  
= 3 V  
5
3
V
DD  
Supply voltage, V  
DD  
DD  
Power on reset, POR  
V
V
High-level digital input voltage, V  
V
DD  
V
DD  
V
DD  
V
DD  
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
= 5 V (see Note 1)  
= 3 V (see Note 1)  
IH  
Low-level digital input voltage, V  
IL  
0.8  
V
Reference voltage, V to REF terminal  
ref  
AGND  
AGND  
2
2.048  
1.024  
V
–1.5  
1.5  
V
DD  
Reference voltage, V to REF terminal  
ref  
V
V
DD  
Load resistance, R  
k  
pF  
MHz  
L
Load capacitance, C  
100  
20  
L
Clock frequency, f  
CLK  
TLV5625C  
TLV5625I  
0
70  
Operating free-air temperature, T  
°C  
A
–40  
85  
NOTE 1: Due to the x2 output buffer, a reference input voltage (V –0.4 V)/2 causes clipping of the transfer function.  
DD  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
power supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
µA  
Fast  
1.8  
2.3  
No load, All inputs = AGND or V  
DAC latch = 0x800  
,
DD  
I
Power supply current  
DD  
Slow  
0.8  
1
1
3
Power-down supply current  
Power supply rejection ratio  
Zero scale, See Note 2  
Full scale, See Note 3  
–65  
–65  
PSRR  
dB  
NOTES: 2. Power supply rejection ratio at zero scale is measured by varying V  
and is given by:  
and is given by:  
DD  
PSRR = 20 log [(E (V max) – E (V min)/V max]  
ZS DD ZS DD DD  
3. Power supply rejection ratio at full scale is measured by varying V  
DD  
PSRR = 20 log [(E (V max) – E (V min)/V max]  
DD DD DD  
G
G
static DAC specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bits  
Resolution  
8
INL  
Integral nonlinearity  
See Note 4  
See Note 5  
See Note 6  
See Note 7  
±0.3  
±0.5  
±0.2  
±12  
LSB  
DNL  
Differential nonlinearity  
±0.07  
LSB  
E
Zero-scale error (offset error at zero scale)  
TC Zero-scale-error temperature coefficient  
mV  
ZS  
ZS  
E
10  
ppm/°C  
% full  
scale V  
E
Gain error  
See Note 8  
See Note 9  
±0.5  
G
E
G
T
Gain-error temperature coefficient  
10  
ppm/°C  
C
NOTES: 4. The relative accuracy of integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output  
from the line between zero and full scale, excluding the effects of zero-code and full-scale errors.  
5. The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal  
1-LSB amplitude change of any two adjacent codes.  
6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.  
6
7. Zero-scale error temperature coefficient is given by: E  
TC = [E  
(T  
)
E
(T  
)]/2V × 10 /(T  
ref max  
– T  
).  
min  
ZS  
ZS max – ZS min  
8. Gain error is the deviation from the ideal output (2V – 1 LSB) with an output load of 10 kΩ.  
ref  
6
9. Gain temperature coefficient is given by: E  
T
[E (T ) E (T  
G max – g  
)]/2V × 10 /(T  
min ref max  
– T  
).  
min  
G
C =  
output specifications  
PARAMETER  
TEST CONDITIONS  
= 10 kΩ  
MIN  
TYP  
TYP  
MAX  
–0.4  
UNIT  
V
V
Output voltage range  
R
0
V
V
O
L
DD  
Output load regulation accuracy  
V
4.096 V, 2.048 V R = 2 kΩ  
±0.29  
% FS  
O =  
L
reference input  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
I
Input voltage range  
Input resistance  
0
DD–1.5  
R
C
10  
5
MΩ  
pF  
I
I
Input capacitance  
Fast  
1.3  
MHz  
Reference input bandwidth  
Reference feedthrough  
REF = 0.2 V + 1.024 V dc  
pp  
Slow  
525  
80  
kHz  
dB  
REF = 1 V at 1 kHz + 1.024 V dc (see Note 10)  
pp  
NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
(Continued)  
digital inputs  
PARAMETER  
High-level digital input current  
TEST CONDITIONS  
V = V  
MIN  
TYP  
MAX  
UNIT  
µA  
I
I
1
IH  
I
DD  
Low-level digital input current  
Input capacitance  
V = 0 V  
I
–1  
µA  
IL  
C
8
pF  
i
analog output dynamic performance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.5  
12  
1
MAX  
UNIT  
Fast  
Slow  
Fast  
Slow  
Fast  
Slow  
R
= 10 k,  
C
C
C
= 100 pF,  
= 100 pF,  
= 100 pF,  
L
L
L
L
t
t
Output settling time, full scale  
µs  
s(FS)  
See Note 11  
R
= 10 k,  
L
Output settling time, code to code  
µs  
s(CC)  
See Note 12  
2
3
R
= 10 k,  
L
SR  
Slew rate  
V/µs  
See Note 13  
0.5  
DIN = 0 to 1,  
FCLK = 100 kHz,  
Glitch energy  
5
nV–s  
CS = V  
DD  
SNR  
Signal-to-noise ratio  
52  
48  
54  
49  
SINAD  
THD  
Signal-to-noise + distortion  
Total harmonic distortion  
Spurious free dynamic range  
f = 102 kSPS,  
f
= 1 kHz,  
C = 100 pF  
L
s
out  
dB  
R
= 10 k,  
–50  
50  
–48  
L
SFDR  
48  
NOTES: 11. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change  
of 0x020 to 0xFDF and 0xFDF to 0x020 respectively. Not tested, assured by design.  
12. Settling time is the time for the output signal to remain within ± 0.5 LSB of the final measured value for a digital input code change  
of one count. Not tested, assured by design.  
13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% of full-scale voltage.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
digital input timing requirements  
MIN NOM  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Setup time, CS low before first negative SCLK edge  
10  
10  
25  
25  
10  
5
su(CS–CK)  
su(C16-CS)  
wH  
th  
Setup time, 16 negative SCLK edge before CS rising edge  
ns  
SCLK pulse width high  
ns  
SCLK pulse width low  
ns  
wL  
Setup time, data ready before SCLK falling edge  
Hold time, data held valid after SCLK falling edge  
ns  
su(D)  
ns  
h(D)  
timing requirements  
t
t
wL  
wH  
SCLK  
DIN  
X
X
X
1
2
3
4
5 15  
16  
t
t
su(D) h(D)  
D15  
D14  
D13  
D12  
D1  
D0  
X
t
su(C16-CS)  
t
su(CS-CK)  
CS  
Figure 1. Timing Diagram  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
vs  
vs  
LOAD CURRENT  
LOAD CURRENT  
2.050  
2.048  
2.046  
2.044  
2.042  
2.040  
2.038  
2.036  
4.105  
4.100  
4.095  
4.090  
4.085  
4.080  
4.075  
4.070  
3 V Slow Mode, SOURCE  
V
V
=3 V  
REF  
V
=5 V  
DD  
DD  
=1 V  
V
=2 V  
REF  
5 V Slow Mode, SOURCE  
Full scale  
Full scale  
3 V Fast Mode, SOURCE  
5 V Fast Mode, SOURCE  
0.00 –0.010.02–0.050.100.200.51 –1.022.05  
Load Current - mA  
0.00 –0.020.04–0.100.200.411.02 –2.054.10  
Load Current - mA  
Figure 2  
Figure 3  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
V
=3 V  
REF  
V
V
=5 V  
REF  
DD  
DD  
=1 V  
=2 V  
Zero scale  
Zero scale  
3 V Slow Mode, SINK  
5 V Slow Mode, SINK  
5 V Fast Mode, SINK  
3 V Fast Mode, SINK  
0.00 0.01 0.02 0.05 0.10 0.20 0.51 1.02 2.05  
Load Current - mA  
0.00 0.02 0.04 0.10 0.20 0.41 1.02 2.05 4.09  
Load Current - mA  
Figure 4  
Figure 5  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
V
V
=3 V  
REF  
DD  
=1 V  
Full scale  
Fast Mode  
Fast Mode  
V
V
=5 V  
REF  
DD  
=2 V  
Full scale  
Slow Mode  
Slow Mode  
–40.0020.00 0.00 20.00 40.00 60.00 80.00 100.00120.00  
–40.0020.00 0.00 20.00 40.00 60.00 80.00 100.00120.00  
T
A
- Free-Air Temperature - C  
T
A
- Free-Air Temperature - C  
Figure 6  
Figure 7  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
0.00  
–10.00  
–20.00  
–30.00  
–40.00  
–50.00  
–60.00  
–70.00  
–80.00  
–90.00  
0.00  
–10.00  
–20.00  
–30.00  
–40.00  
–50.00  
–60.00  
–70.00  
–80.00  
–90.00  
V
= 1 V + 1 V  
Sinewave,  
V
= 1 V + 1 V  
Sinewave,  
P/P  
REF  
P/P  
REF  
Output Full Scale  
Output Full Scale  
3 V Slow Mode  
3 V Fast Mode  
5 V Slow Mode  
5 V Fast Mode  
1
10  
100  
1
10  
100  
f - Frequency - kHz  
f - Frequency - kHz  
Figure 8  
Figure 9  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
255  
64  
128  
192  
Digital Output Code  
Figure 10  
INTEGRAL NONLINEARITY  
vs  
DIGITAL OUTPUT CODE  
0.5  
0.4  
0.3  
0.2  
0.1  
–0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
255  
64  
128  
192  
Digital Output Code  
Figure 11  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
general function  
The TLV5625 is a dual 8-bit, single-supply DAC, based on a resistor-string architecture. It consists of a serial  
interface, a speed and power-down control logic, a resistor string, and a rail-to-rail output buffer.  
The output voltage (full scale determined by the reference) is given by:  
CODE  
2 REF  
[V]  
0x1000  
WhereREFisthereferencevoltageandCODEisthedigitalinputvalueintherange0x000to0xFF0. Apower-on  
reset initially puts the internal latches to a defined state (all bits zero).  
serial interface  
A falling edge of CS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling  
edges of SCLK. After 16 bits have been transferred or CS rises, the content of the shift register is moved to the  
target latches (DAC A, DAC B, BUFFER, CONTROL), depending on the control bits within the data word.  
Figure 2 shows examples of how to connect the TLV5625 to TMS320, SPI , and Microwire .  
TMS320  
DSP  
TLV5625  
SPI  
TLV5625  
CS  
DIN  
Microwire  
I/O  
TLV5625  
CS  
DIN  
CS  
FSX  
DX  
I/O  
MOSI  
SCK  
DIN  
SO  
SK  
CLKX  
SCLK  
SCLK  
SCLK  
Figure 12. Three-Wire Interface  
Notes on SPI and Microwire : Before the controller starts the data transfer, the software has to generate a  
falling edge on the pin connected to CS. If the word width is 8 bits (SPI and Microwire ) two write operations  
must be performed to program the TLV5625. After the write operation(s), the holding registers or the control  
th  
register are updated automatically on the 16 positive clock edge.  
serial clock frequency and update rate  
The maximum serial clock frequency is given by:  
1
f
20 MHz  
sclkmax  
t
t
wlmin  
whmin  
The maximum update rate is:  
1
f
1.25 MHz  
updatemax  
16 t  
t
wlmin  
whmin  
Note that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the  
TLV5625 should also be considered.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
data format  
The 16-bit data word for the TLV5625 consists of two parts:  
Program bits (D15..D12)  
New data  
(D11..D4)  
D15  
R1  
D14  
D13  
D12  
R0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
SPD  
PWR  
MSB  
8 Data bits  
LSB  
SPD: Speed control bit  
PWR: Power control bit  
1 fast mode  
1 power down  
0 slow mode  
0 normal operation  
On power up, SPD and PWD are reset to 0 (slow mode and normal operation)  
The following table lists all possible combination of register-select bits:  
register-select bits  
R1  
0
R0  
0
REGISTER  
Write data to DAC B and BUFFER  
Write data to BUFFER  
0
1
1
0
Write data to DAC A and update DAC B with BUFFER content  
Reserved  
1
1
The meaning of the 12 data bits depends on the register. If one of the DAC registers or the BUFFER is selected,  
then the 12 data bits determine the new DAC value:  
examples of operation  
Set DAC A output, select fast mode:  
Write new DAC A value and update DAC A output:  
D15  
1
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC A output value  
The DAC A output is updated on the rising clock edge after D0 is sampled.  
Set DAC B output, select fast mode:  
Write new DAC B value to BUFFER and update DAC B output:  
D15  
0
D14  
1
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New BUFFER content and DAC B output value  
The DAC A output is updated on the rising clock edge after D0 is sampled.  
Set DAC A value, set DAC B value, update both simultaneously, select slow mode:  
1. Write data for DAC B to BUFFER:  
D15  
0
D14  
0
D13  
0
D12  
1
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC B value  
2. Write new DAC A value and update DAC A and B simultaneously:  
D15  
1
D14  
0
D13  
0
D12  
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
0
D0  
0
New DAC A value  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
examples of operation (continued)  
Both outputs are updated on the rising clock edge after D0 from the DAC A data word is sampled.  
Set power-down mode:  
D15  
X
D14  
X
D13  
1
D12  
X
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
X = Don’t care  
linearity, offset, and gain error using single ended supplies  
When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With  
a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage  
may not change with the first code, depending on the magnitude of the offset voltage.  
The output amplifier attempts to drive the output to a negative voltage. However, because the most negative  
supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.  
The output voltage then remains at zero until the input code value produces a sufficient positive output voltage  
to overcome the negative offset voltage, resulting in the transfer function shown in Figure 13.  
Output  
Voltage  
0 V  
DAC Code  
Negative  
Offset  
Figure 13. Effect of Negative Offset (Single Supply)  
This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the  
dotted line if the output buffer could drive below the ground rail.  
For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after  
offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not  
allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity  
is measured between full-scale code and the lowest code that produces a positive output voltage.  
power-supply bypassing and ground management  
Printed-circuit boards that use separate analog and digital ground planes offer the best system performance.  
Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected  
together at the low-impedance power-supply source. The best ground connection may be achieved by  
connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground  
currents are well managed and there are negligible voltage drops across the ground plane.  
A0.1-µFceramic-capacitorbypassshouldbeconnectedbetweenV andAGNDandmountedwithshortleads  
DD  
as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the  
digital power supply.  
Figure 14 shows the ground plane layout and bypassing technique.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
Analog Ground Plane  
1
2
3
4
8
7
6
5
0.1 µF  
Figure 14. Power-Supply Bypassing  
definitions of specifications and terminology  
integral nonlinearity (INL)  
The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum  
deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale  
errors.  
differential nonlinearity (DNL)  
The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the  
measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage  
changes in the same direction (or remains constant) as a change in the digital input code.  
zero-scale error (E  
)
ZS  
Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.  
gain error (E )  
G
Gain error is the error in slope of the DAC transfer function.  
signal-to-noise ratio + distortion (S/N+D)  
S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.  
spurious free dynamic range (SFDR)  
SFDR is the difference between the rms value of the output signal and the rms value of the largest spurious  
signal within a specified bandwidth. The value for SFDR is expressed in decibels.  
total harmonic distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic components to the rms value of the fundamental signal  
and is expressed in decibels.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLV5625  
2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG  
CONVERTER WITH POWER DOWN  
SLAS233A – JULY 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TLV5625CD

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625CDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625CDR

暂无描述
TI

TLV5625CDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625D

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625ID

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN 
TI

TLV5625IDG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625IDR

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5625IDRG4

2.7-V TO 5.5-V LOW-POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH POWER DOWN
TI

TLV5626

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CD

2.7 V TO 5.5 V LOW POWER DUAL 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN
TI

TLV5626CDG4

8-Bit, 1 us Dual DAC, Serial Input, Pgrmable Int. Ref., Settling Time 8-SOIC 0 to 70
TI