TLV62595 [TI]

采用 1.5mm x 1.5mm QFN 封装、具有 1% 输出精度的 2.5V 至 5.5V 输入、4A 降压转换器;
TLV62595
型号: TLV62595
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 1.5mm x 1.5mm QFN 封装、具有 1% 输出精度的 2.5V 至 5.5V 输入、4A 降压转换器

转换器
文件: 总27页 (文件大小:1815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV62595  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
1.5mm × 1.5mm QFN 封装、具1% 输出精度TLV62595 2.5V 5.5V 输  
入、4A 降压转换器  
1 特性  
3 说明  
• 效率高97%  
TLV62595 是一款高频同步降压转换器经优化具有解  
决方案尺寸紧凑和高效率两大优点。该器件集成了可提  
供高达 4A 输出电流的开关。在中等负载至重负载情况  
该转换器将以 2.2MHz 典型开关频率在脉宽调制  
(PWM) 模式下运行。在轻负载情况下该器件自动进  
入节能模式 (PSM)从而在整个负载电流范围内保持  
高效率且静态电流低10µA。  
RDS(ON) 电源开关26mΩ/25mΩ  
• 输入电压范围2.5V 5.5V  
• 可调输出电压范围0.6V 4V  
• 反馈电压精度1%整个温度范围)  
DCS-Control 拓扑  
• 可实现轻负载效率的省电模式  
100% 占空比可实现超低压降  
• 工作静态电流10μA  
• 典型开关频率2.2MHz  
• 短路保(HICCUP)  
• 有源输出放电  
• 电源正常状态输出  
• 热关断保护  
该器件基于 DCS 控制拓扑可实现快速瞬态响应。内  
部基准在 -40°C 125°C 的结温范围内1% 的高  
反馈电压精度将输出电压调低至 0.6V。整个解决方案  
需要一个小型 470nH 电感器、一个 4.7μF 输入电容  
器以及三10μF 或一47μF 输出电容器。  
该器件采用 6 引脚 1.5mm × 1.5mm QFN 封装可提  
供高功率密度解决方案。  
• 使TLV62595 并借WEBENCH® Power  
Designer 创建定制设计方案  
封装信息  
封装(1)  
封装尺寸标称值)  
2 应用  
器件型号  
DMQVSON-HR,  
6)  
固态硬盘  
TLV62595  
1.50mm x 1.50mm  
便携式电子产品  
IP 网络摄像头  
PC  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
多功能打印机  
VIN  
2.5 V to 5.5 V  
TLV62595  
VIN SW  
L1  
0.47 µH  
VOUT  
1.8 V  
100  
95  
90  
85  
80  
75  
70  
C1  
4.7 µF  
C2  
3x10 µF  
C3  
120 pF  
R3  
100 k  
R1  
200 kꢀ  
EN  
VPG  
PG GND FB  
R2  
100 kꢀ  
65  
60  
55  
50  
VOUT = 0.6V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
典型应用原理图  
100m  
1m  
10m  
Load (A)  
100m  
1
4
D007  
VIN = 5V 时的效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDR2  
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
Table of Contents  
7.4 Device Functional Modes............................................9  
8 Application and Implementation..................................10  
8.1 Application Information............................................. 10  
8.2 Typical Application.................................................... 10  
8.3 Power Supply Recommendations.............................17  
8.4 Layout....................................................................... 17  
9 Device and Documentation Support............................19  
9.1 Device Support......................................................... 19  
9.2 Documentation Support............................................ 19  
9.3 接收文档更新通知..................................................... 19  
9.4 支持资源....................................................................19  
9.5 Trademarks...............................................................19  
9.6 静电放电警告............................................................ 19  
9.7 术语表....................................................................... 20  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 电气特性......................................................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................7  
7.1 Overview.....................................................................7  
7.2 Functional Block Diagram...........................................7  
7.3 Feature Description.....................................................8  
Information.................................................................... 20  
4 Revision History  
Changes from Revision * (December 2020) to Revision A (January 2023)  
Page  
Updated ESD Ratings.........................................................................................................................................6  
Removed duplicate table in Output Filter Design section................................................................................. 11  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV62595  
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
5 Pin Configuration and Functions  
FB  
3
2
1
4
5
6
GND  
PG  
EN  
SW  
VIN  
5-1. 6-Pin VSON-HR DMQ Package (Bottom View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Device enable pin. To enable the device, this pin must be pulled high. Pulling this pin low  
disables the device. Do not leave floating.  
EN  
1
I
O
I
Power-good open-drain output pin. The pullup resistor can be connected to voltages up to  
5.5 V. If unused, leave this pin floating.  
PG  
FB  
2
3
Feedback pin. For the fixed output voltage versions, this pin must be connected to the  
output.  
GND  
SW  
4
5
6
Ground pin  
PWR  
PWR  
Switch pin of the power stage  
Input voltage pin  
VIN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV62595  
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
1  
MAX  
6
UNIT  
V
Pin voltage(2)  
Pin voltage(2)  
Pin voltage(2)  
Pin voltage(2)  
Temperature  
Temperature  
VIN, FB, EN, PG  
SW (DC)  
VIN + 0.3  
VIN + 0.3  
10  
V
SW (DC, in current limit)  
SW (AC, less than 10ns)(3)  
Operating Junction, TJ  
Storage, TSTG  
V
2.5  
40  
150  
°C  
°C  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the network ground terminal  
(3) While switching  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ABSI/ESDA/JEDEC  
JS-002(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
2.5  
0.6  
0
NOM  
MAX  
5.5  
4.0  
4
UNIT  
VIN  
Input voltage range  
V
V
VOUT  
IOUT  
VPG  
Output voltage range  
Output curent range  
A
Pull-up resistor voltage  
Sink current at PG pin  
Operating junction temperature  
5.5  
1
V
ISINK_PG  
TJ  
mA  
°C  
125  
40  
6.4 Thermal Information  
TLV62595  
DMQ (JEDEC)  
6 PINS  
129.5  
TLV62595EVM-794  
THERMAL METRIC(1)  
DMQ (EVM)  
6 PINS  
71.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
103.9  
n/a  
33.1  
n/a  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.8  
3.9  
YJB  
33.1  
38.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV62595  
 
 
 
 
 
 
 
 
 
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
6.5 电气特性  
TJ = 25°C VIN = 5V除非另有说明。  
最小  
参数  
测试条件  
典型值 最大值  
单位  
电源  
IQ  
10  
µA  
µA  
V
EN = 高电平无负载器件未开关  
静态电流  
ISD  
0.05  
EN = 低电平TJ = -4085℃  
关断电流  
2.1  
2.2  
160  
150  
20  
2.3  
VIN 下降  
VIN 上升  
TJ 上升  
TJ 下降  
欠压锁定阈值  
VUVLO  
mV  
°C  
°C  
欠压锁定迟滞  
热关断阈值  
TJSD  
热关断迟滞  
逻辑接EN  
VIH  
1.0  
V
V
VIN = 2.5 V 5.5 V  
VIN = 2.5 V 5.5 V  
高电平阈值电压  
VIL  
0.4  
低电平阈值电压  
软启动电源正常  
tSS  
1.75  
96  
ms  
%
%
%
%
V
EN 高电平VOUT 标称值95% 的时间  
VPG 上升VFB VFB 标称值为基准  
VPG 下降VFB VFB 标称值为基准  
VPG 上升VFB VFB 标称值为基准  
VPG 下降VFB VFB 标称值为基准  
Isink = 1 mA  
软启动时间  
电源正常下限阈值  
92  
VPG  
105  
110  
电源正常上限阈值  
VPG,OL  
IPG,LKG  
0.4  
低电平输出电压  
VPG = 5.0 V  
0.01  
100  
20  
µA  
PG 引脚的输入漏电流  
PG 上升沿  
PG 下降沿  
tPG,DLY  
µs  
电源正常抗尖峰脉冲延迟  
输出  
PWM 模式2.5V VIN 5.5VTJ = -40°C 至  
125°C  
VFB  
594  
600  
606  
mV  
反馈调节电压  
IFB,LKG  
IDIS  
VFB = 0.6V  
0.01  
400  
0.1  
µA  
mA  
%/A  
可调输出电压的反馈输入漏电流  
输出放电电流  
VSW = 0.4VEN = 低电平  
IOUT = 0.5A 3AVOUT = 1.8V  
负载调整率  
电源开关  
26  
25  
FET 导通电阻  
FET 导通电阻  
FET 开关电流限制DC  
PWM 开关频率  
mΩ  
mΩ  
A
RDS(on)  
ILIM  
fSW  
4.8  
5.6  
2.2  
IOUT = 1AVOUT = 1.8V  
MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV62595  
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
6.6 Typical Characteristics  
70.0  
60.0  
50.0  
40.0  
30.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
20.0  
TJ = 0 °C  
TJ = 25 °C  
TJ = 0 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
10.0  
TJ = 85 °C  
TJ = 125 °C  
0.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D010  
D011  
6-1. High-Side FET On-Resistance  
6-2. Low-Side FET On-Resistance  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
8.0  
6.0  
4.0  
2.0  
0.0  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D000  
D001  
6-3. Shutdown Current  
6-4. Quiescent Current  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TJ = 0 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
0
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D012  
6-5. Output Discharge Current  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV62595  
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
7 Detailed Description  
7.1 Overview  
The TLV62595 are synchronous step-down converters based on the DCS-Control topology with an adaptive  
constant on-time control and a stabilized switching frequency. The devices operate in PWM (pulse width  
modulation) mode for medium to heavy loads and in PSM (power save mode) at light load conditions, keeping  
the output voltage ripple small. The nominal switching frequency is about 2.2 MHz with a small and controlled  
variation over the input voltage range. As the load current decreases, the converter enters PSM, reducing the  
switching frequency to keep efficiency high over the entire load current range. Since combining both PWM and  
PSM within a single building block, the transition between modes is seamless and without effect on the output  
voltage. The devices offer both excellent dc voltage and fast load transient regulation, combined with a very low  
output voltage ripple.  
7.2 Functional Block Diagram  
PG  
Control Logic  
EN  
VFB  
VREF  
Thermal  
Shutdown  
Soft-Start  
UVLO  
VFB  
VIN  
VSW  
FB  
VIN  
Ramp  
Peak Current Detect  
EA  
VREF  
HICCUP  
Comp  
VSW  
Modulator  
SW  
Gate Drive  
Ton  
Output  
Discharge  
VIN  
VSW  
Zero Current Detect  
0.6 V  
Or  
Fixed Output Voltages  
VREF  
GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV62595  
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
7.3 Feature Description  
7.3.1 Pulse Width Modulation (PWM) Operation  
At load currents larger than half the inductor ripple current, the device operates in pulse width modulation in  
continuous conduction mode (CCM). The PWM operation is based on an adaptive constant on-time control with  
stabilized switching frequency. To achieve a stable switching frequency in a steady state condition, the on-time is  
calculated as:  
VOUT  
TON  
=
× 450ns  
V
IN  
(1)  
7.3.2 Power Save Mode (PSM) Operation  
To maintain high efficiency at light loads, the device enters power save mode (PSM) at the boundary to  
discontinuous conduction mode (DCM). This happens when the output current becomes smaller than half of the  
ripple current of the inductor. The device operates now with a fixed on-time and the switching frequency further  
decreases proportionally to the load current. It can be calculated as:  
2×IOUT  
fPSM  
=
V
V -V  
é
ù
TO2N  
×
IN  
IN  
OUT  
ê
ú
VOUT  
L
ë
û
(2)  
In PSM, the output voltage rises slightly above the nominal target, which can be minimized using larger output  
capacitance. At duty cycles larger than 90%, the device may not enter PSM. The device maintains output  
regulation in PWM mode.  
7.3.3 Minimum Duty Cycle and 100% Mode Operation  
There is no limitation for small duty cycles, because even at very low duty cycles, the switching frequency is  
reduced as needed to always ensure a proper regulation.  
If the output voltage level comes close to the input voltage, the device enters 100% mode. While the high-side  
switch is constantly turned on, the low-side switch is switched off. The difference between VIN and VOUT is  
determined by the voltage drop across the high-side FET and the dc resistance of the inductor. The minimum  
VIN that is needed to maintain a specific VOUT value is estimated as:  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
(3)  
where  
VIN,MIN = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
7.3.4 Soft Start  
About 250 μs after EN goes high, the internal soft-start circuitry controls the output voltage during start-up. This  
avoids excessive inrush current and ensures a controlled output voltage ramp. It also prevents unwanted voltage  
drops from high-impedance power sources or batteries. The TLV62595 can start into a pre-biased output.  
7.3.5 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from drawing excessive current in case of externally-caused  
overcurrent or short circuit condition. Due to an internal propagation delay (typically 60 ns), the actual ac peak  
current can exceed the static current limit during that time.  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV62595  
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
If the current limit threshold is reached, the device delivers its maximum output current. Detecting this condition  
for 32 switching cycles (about 13 μs), the device turns off the high-side MOSFET for about 100 μs which  
allows the inductor current to decrease through the low-side MOSFET body diode and then restart again with a  
soft start cycle. As long as the overload condition is present, the device hiccups that way, limiting the output  
power.  
7.3.6 Undervoltage Lockout  
The undervoltage lockout (UVLO) function prevents misoperation of the device, if the input voltage drops below  
the UVLO threshold. It is set to about 2.2 V with a hysteresis of typically 160 mV.  
7.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 150°C  
(typical), the device goes in thermal shutdown with a hysteresis of typically 20°C. After the TJ has decreased  
enough, the device resumes normal operation.  
7.4 Device Functional Modes  
7.4.1 Enable, Disable and Output Discharge  
The device starts operation, when Enable (EN) is set High. The input threshold levels are typically 0.9 V for  
rising and 0.7 V for falling signals. Do not leave EN floating. Shutdown is forced if EN is pulled low with a  
shutdown current of typically 50 nA. During shutdown, the internal power MOSFETs as well as the entire control  
circuitry, are turned off and the output voltage is actively discharged through the SW pin by a current sink.  
Therefore VIN must remain present for the discharge to function.  
7.4.2 Power Good  
The TLV62595 has a built-in power good (PG) function. The PG pin goes high impedance, when the output  
voltage has reached its nominal value. Otherwise, including when disabled, in UVLO or in thermal shutdown, PG  
is low (see 7-1). The PG function is formed with a window comparator, which has an upper and lower voltage  
threshold. The PG pin is an open-drain output and is specified to sink up to 1 mA. The power good output  
requires a pullup resistor connecting to any voltage rail less than 5.5 V.  
The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters.  
Leave the PG pin unconnected when not used. The PG rising edge has a 100-µs blanking time and the PG  
falling edge has a deglitch delay of 20 µs.  
7-1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB 0.576 V  
EN = High, VFB 0.552 V  
EN = High, VFB 0.63 V  
EN = High, VFB 0.66 V  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.7 V < VIN < VUVLO  
VIN < 0.7 V  
Power Supply Removal  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV62595  
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
8.2 Typical Application  
VIN  
2.5 V to 5.5 V  
TLV62595  
VIN SW  
L1  
0.47 µH  
VOUT  
1.8 V  
C1  
4.7 µF  
C2  
3x10 µF  
C3  
120 pF  
R3  
100 k  
R1  
200 kꢀ  
EN  
VPG  
PG GND FB  
R2  
100 kꢀ  
8-1. Typical Application of TLV62595  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage, TLV62595  
Output voltage  
EXAMPLE VALUE  
2.5 V to 5.5 V  
1.8 V  
< 20 mV  
4 A  
Output ripple voltage  
Maximum output current, TLV62595  
8-2 lists the components used for the example.  
8-2. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
C1  
C2  
C3  
L1  
4.7 µF, Ceramic capacitor, 6.3 V, X7R, size 0603, JMK107BB7475MA  
Taiyo Yuden  
Murata  
Std  
3 × 10 µF, Ceramic capacitor, 10 V, X7R, size 0603, GRM188Z71A106MA73D  
120 pF, Ceramic capacitor, 50 V, size 0402  
0.47 µH, Power Inductor, XFL4015-471MEB  
Coilcraft  
Std  
R1  
R2  
R3  
Depending on the output voltage, 1%, size 0402  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0402  
Std  
Std  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0402  
1. See the Third-Party Products Disclaimer.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV62595  
 
 
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62595 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to 方程4:  
«
VOUT  
VFB  
V
OUT  
R1= R2ì  
-1 = R2ì  
-1  
÷
÷
«
0.6V  
(4)  
R2 must not be higher than 100 kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity. 方程式 5 shows how to compute the value of the feedforward capacitor for a given R2 value. For the  
recommended 100 k value for R2, a 120-pF feedforward capacitor is used.  
12µ  
C3 =  
R2  
(5)  
For the fixed output voltage versions, connect the FB pin to the output. R1, R2, and C3 are not needed. The  
fixed output voltage devices have an internal feedforward capacitor.  
8.2.2.3 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, 8-3 outlines  
possible inductor and capacitor value combinations for most applications. Checked cells represent combinations  
that are proven for stability by simulation and lab test. Further combinations must be checked for each individual  
application.  
8-3. Matrix of Output Capacitor and Inductor Combinations, TLV62595  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
22  
3 x 10  
47  
100  
0.33  
0.47  
1.0  
(1)  
+
+
+
(1) This LC combination is the standard value and recommended for most applications.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and 30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and 35%.  
8.2.2.4 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, 方程6 is given.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV62595  
 
 
 
 
 
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
(6)  
where  
IOUT,MAX = Maximum output current  
• ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
TI recommends to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size must also be taken into account when selecting an appropriate  
inductor. 8-4 lists recommended inductors.  
8-4. List of Recommended Inductors  
MAX. DC  
RESISTANCE [mΩ]  
INDUCTANCE CURRENT RATING DIMENSIONS [L x W x  
MFR PART NUMBER(1)  
[µH]  
[A]  
4.8  
4.6  
4.8  
4.8  
5.1  
5.2  
6.6  
8.0  
6.8  
H mm]  
2.0 × 1.6 × 1.0  
2.0 × 1.2 × 1.0  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
4.0 × 4.0 × 1.6  
3.5 × 3.2 × 2.0  
4.5 × 4 × 1.8  
32  
25  
HTEN20161T-R47MDR, Cyntec  
HTEH20121T-R47MSR, Cyntec  
DFE201610E - R47M, MuRata  
DFE201210S - R47M, MuRata  
TFM201610ALM-R47MTAA, TDK  
TFM201610ALC-R47MTAA, TDK  
XFL4015-471ME, Coilcraft  
32  
32  
0.47  
34  
25  
8.36  
10.85  
11.2  
XEL3520-471ME, Coilcraft  
WE-LHMI-744373240047, Würth  
(1) See Third-party Products Disclaimer.  
8.2.2.5 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converters which helps to provide stable  
operation. A low-ESR multilayer ceramic capacitor is recommended for best filtering and must be placed  
between VIN and GND as close as possible to those pins. For most applications, a minimum effective input  
capacitance of 3 µF must be present, though a larger value reduces input current ripple.  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
using X7R or X5R dielectrics. Considering the DC-bias derating the capacitance, the minimum effective output  
capacitance is 20 µF for TLV62595.  
A feedforward capacitor is required for the adjustable version, as described in 8.2.2.2. This capacitor is not  
required for the fixed output voltage versions.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV62595  
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
8.2.3 Application Curves  
VIN = 5.0 V, VOUT = 1.8 V, TA = 25°C, BOM = 8-2, unless otherwise noted.  
0.612  
0.609  
0.606  
0.603  
0.6  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
0.597  
0.594  
0.591  
0.588  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D021  
D002  
VOUT = 0.6 V  
VOUT = 0.6 V  
8-3. Load Regulation  
8-2. Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
1.212  
1.209  
1.206  
1.203  
1.2  
1.197  
1.194  
1.191  
1.188  
VIN = 2.4 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D031  
D003  
VOUT = 1.2 V  
VOUT = 1.2 V  
8-5. Load Regulation  
8-4. Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.818  
1.812  
1.806  
1.8  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
1.794  
1.788  
1.782  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D041  
D004  
VOUT = 1.8 V  
VOUT = 1.8 V  
8-7. Load Regulation  
8-6. Efficiency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV62595  
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
100  
95  
90  
85  
80  
75  
70  
2.525  
2.515  
2.505  
2.495  
2.485  
2.475  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
65  
60  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D061  
D006  
VOUT = 2.5 V  
VOUT = 2.5 V  
8-9. Load Regulation  
8-8. Efficiency  
100  
95  
90  
85  
80  
75  
70  
3.340  
3.320  
3.300  
3.280  
3.260  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D051  
D005  
VOUT = 3.3 V  
VOUT = 3.3 V  
8-11. Load Regulation  
8-10. Efficiency  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
VOUT = 0.6V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.6V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
500  
500  
250  
250  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
Load (A)  
2.5  
3.0  
3.5  
4.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D013  
D014  
VIN = 3.3 V  
IOUT = 1.0 A  
8-12. Switching Frequency  
8-13. Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV62595  
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
5
5
4
3
2
1
0
4
3
2
1
0
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 5.0 V  
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
D020  
D015  
VOUT = 1.2 V  
VOUT = 1.8 V  
θJA= 71.4 °C/W  
θJA= 71.4 °C/W  
8-14. Thermal Derating  
8-15. Thermal Derating  
5
5
4
3
2
1
0
4
3
2
1
0
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 5.0 V  
55 65  
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
45  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
D017  
D016  
VOUT = 2.5 V  
VOUT = 3.3 V  
θJA= 71.4 °C/W  
θJA= 71.4 °C/W  
8-16. Thermal Derating  
8-17. Thermal Derating  
IOUT = 1.0 A  
IOUT = 0.1 A  
8-18. PWM Operation  
8-19. PSM Operation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV62595  
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
Load = 0.6 Ω  
8-21. Startup with No Load  
8-20. Start-up with Load  
Load = 1.8 Ω  
8-23. Disable, Active Output Discharge at No  
8-22. Disable, Active Output Discharge  
Load  
IOUT = 0.05 A to 1A  
IOUT = 1 A to 2 A  
8-24. Load Transient  
8-25. Load Transient  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV62595  
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
VPG  
VPG  
5V/DIV  
5V/DIV  
ICOIL  
ICOIL  
2A/DIV  
2A/DIV  
VOUT  
VOUT  
1V/DIV  
1V/DIV  
Time - 200s/DIV  
Time - 2s/DIV  
D018  
D019  
IOUT = 1 A  
IOUT = 1 A  
8-26. HICCUP Short Circuit Protection  
8-27. HICCUP Short Circuit Protection (Zoom In)  
8.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
8.4 Layout  
8.4.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device. See  
8-28 for the recommended PCB layout.  
The input/output capacitors and the inductor must be placed as close as possible to the IC. This keeps the  
power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the GND pin to avoid a ground  
potential shift.  
The sense traces connected to FB is a signal trace. Special care must be taken to avoid noise being induced.  
Keep these traces away from SW nodes. The connection of the output voltage trace for the FB resistors must  
be made at the output capacitor.  
Refer to 8-28 for an example of component placement, routing and thermal design.  
8.4.2 Layout Example  
L1  
VOUT  
VIN  
C2  
C1  
Solution size = 31mm2  
R2  
R1  
GND  
C3  
8-28. PCB Layout Recommendation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV62595  
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
8.4.2.1 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
Thermal Information provides the thermal metric of the device on the EVM after considering the PCB design of  
real applications. The big copper planes connecting to the pads of the IC on the PCB improve the thermal  
performance of the device. For more details on how to use the thermal parameters, see the Thermal  
Characteristics application notes, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB  
Designs and Semiconductor and IC Package Thermal Metrics.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV62595  
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.1.2 Development Support  
9.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TLV62595 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application note  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV62595  
 
 
 
 
 
 
 
 
 
TLV62595  
www.ti.com.cn  
ZHCSKS8A DECEMBER 2020 REVISED JANUARY 2023  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV62595  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV62595DMQR  
ACTIVE  
VSON-HR  
DMQ  
6
3000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
-40 to 125  
IM  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV62595DMQR  
VSON-  
HR  
DMQ  
6
3000  
180.0  
8.4  
1.75  
1.75  
1.0  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSON-HR DMQ  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TLV62595DMQR  
6
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DMQ0006A  
VSON - 1 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
PIN 1 INDEX AREA  
1.55  
1.45  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
(0.2) MIN  
(0.2) TYP  
0.05  
0.00  
0.5  
3X  
0.3  
3
4
4X 0.5  
2X  
1
6
1
0.3  
3X  
0.25  
0.15  
3X  
0.2  
0.9  
3X  
0.1  
C A B  
C
0.1  
C A B  
C
0.7  
0.05  
0.05  
4222645/D 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMQ0006A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
3X (1)  
3X (0.6)  
3X (0.2)  
SYMM  
1
6
3X (0.25)  
4X (0.5)  
4
3
(R0.05) TYP  
(0.65)  
(0.45)  
PKG  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222645/D 05/2022  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMQ0006A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
3X  
EXPOSED METAL  
3X (0.85)  
3X (0.6)  
3X (0.25)  
3X (0.2)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
SOLDER MASK  
OPENING  
TYP  
(0.65)  
(0.525)  
METAL UNDER  
SOLDER MASK  
TYP  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PADS 4, 5 & 6:  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222645/D 05/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV62595DMQR

采用 1.5mm x 1.5mm QFN 封装、具有 1% 输出精度的 2.5V 至 5.5V 输入、4A 降压转换器 | DMQ | 6 | -40 to 125
TI

TLV627432

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器
TI

TLV627432YFPR

具有超低静态电流的 2.15V 至 5.5V、400mA 高效降压转换器 | YFP | 8 | -40 to 85
TI

TLV6700

采用集成基准的低功耗窗口比较器
TI

TLV6700-Q1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference
TI

TLV6700DDCR

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125
TI

TLV6700DDCT

采用集成基准的低功耗窗口比较器 | DDC | 6 | -40 to 125
TI

TLV6700DSER

采用集成基准的低功耗窗口比较器 | DSE | 6 | -40 to 125
TI

TLV6700QDDCRQ1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference
TI

TLV6700QDSERQ1

TLV6700-Q1 Micropower, 18-V Window Comparator With 400-mV Reference
TI

TLV6703

具有集成基准电压的 18V 比较器
TI

TLV6703-Q1

具有集成基准的汽车类 18V 比较器
TI