TLV6703QDSERQ1 [TI]

具有集成基准的汽车类 18V 比较器 | DSE | 6 | -40 to 125;
TLV6703QDSERQ1
型号: TLV6703QDSERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成基准的汽车类 18V 比较器 | DSE | 6 | -40 to 125

比较器
文件: 总23页 (文件大小:1665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
400mV 基准电压TLV6703-Q1 汽车微功耗、18V 比较器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
TLV6703-Q1 是一款高电压比较器工作电压范围为  
1.8V 18VTLV6703-Q1 具有一个内部基准电压为  
400mV 的高精度比较器和一个额定电压为 18V 的开漏  
输出用于实现精确的电压检测。可以使用外部电阻设  
置监视电压。  
– 器件温度等140°C 125°C 环境工作温  
度范围  
– 器HBM ESD 分类等H2  
– 器CDM ESD 分类等C6  
• 宽电源电压范围1.8 V 18V  
• 可调节阈值400mV  
• 高阈值精度:  
25°C 时最高0.5%  
– 在工作温度范围内最大值1.0%  
• 低静态电流5.5µA典型值)  
• 开漏输出  
SENSE 引脚上的电压下降至低于 (VIT) OUT  
引脚被驱动至低电平而当电压返回到对应阈值 (VIT+  
)
之上时OUT 引脚变为高电平。TLV6703-Q1 中的比  
较器具有拒绝短暂干扰的内置迟滞确保稳定的输出运  
不会引起误触发。  
TLV6703-Q1 采用无引线 WSON-6 封装额定工作结  
温范围40°C +125°C。  
• 内部迟滞5.5mV典型值)  
• 温度范围40°C +125°C  
• 封装无引线WSON-6  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TLV6703-Q1  
封装  
WSON (6)  
1.50mm × 1.50mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
紧急呼(eCall)  
汽车音响主机  
仪表组  
车载充电(OBC) 和无线充电器  
401  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
VMON  
0.01 F  
400.6  
400.2  
VPULLUP  
Up to 18 V  
VDD  
399.8  
399.4  
399  
R1  
RP  
SENSE  
OUT  
R2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
上升输入阈值电(VIT+) 与温度间的关系  
VIT  
+
GND  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDA1  
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 14  
9.3 Dos and Don'ts..........................................................15  
10 Power-Supply Recommendations............................. 16  
11 Layout...........................................................................17  
11.1 Layout Guidelines................................................... 17  
11.2 Layout Example...................................................... 17  
12 Device and Documentation Support..........................18  
12.1 Device Support....................................................... 18  
12.2 Receiving Notification of Documentation Updates..18  
12.3 支持资源..................................................................18  
12.4 Trademarks.............................................................18  
12.5 静电放电警告.......................................................... 18  
12.6 术语表..................................................................... 18  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................7  
7.7 Switching Characteristics............................................7  
7.8 Timing Diagrams ........................................................7  
7.9 Typical Characteristics................................................8  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
Information.................................................................... 18  
4 Revision History  
DATE  
REVISION  
NOTES  
November 2020  
*
Initial release.  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
5 Device Comparison Table  
5-1. TLV67xx Integrated Comparator Family  
OPERATING  
VOLTAGE RANGE  
THRESHOLD ACCURACY OVER  
TEMPERATURE  
PART NUMBER  
CONFIGURATION  
TLV6700  
TLV6700-Q1  
TLV6703  
Window  
Window  
1.8 V to 18 V  
1.8 V to 18 V  
1.8 V to 18 V  
1.8 V to 18 V  
1.8 V to 36 V  
1.8 V to 36 V  
1%  
1%  
Non-Inverting Single Channel  
Non-Inverting Single Channel  
Window  
1%  
TLV6703-Q1  
TLV6710  
1%  
0.75%  
0.75%  
TLV6713  
Non-Inverting Single Channel  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV6703-Q1  
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
GND  
VDD  
1
2
6
5
4
OUT  
GND  
GND  
3
SENSE  
6-1. DSE Package, 6-Pin WSON, Top View  
6-1. Pin Functions  
DESCRIPTION  
PIN  
I/O  
O
NAME  
GND  
DSE  
1,3,5  
Connect all three pins to ground.  
SENSE comparator open-drain output. OUT is driven low when the voltage at this comparator  
is below (VIT-). The output goes high when the sense voltage returns above the respective  
threshold (VIT+).  
OUT  
6
This pin is connected to the voltage to be monitored with the use of an external resistor  
SENSE  
VDD  
4
2
I
I
divider. When the voltage at this pin drops below the threshold voltage (VIT-), OUT is driven  
low.  
Supply voltage input. Connect a 1.8-V to 18-V supply to VDD to power the device. Good  
analog design practice is to place a 0.1-µF ceramic capacitor close to this pin.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
MAX  
20  
UNIT  
VDD  
Voltage(2)  
OUT  
20  
V
SENSE  
7
Current  
OUT (output sink current)  
Operating junction, TJ  
Storage, Tstg  
40  
mA  
°C  
125  
150  
40  
65  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages are with respect to network ground pin.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002, all pins(1)  
Charged device model (CDM), per AEC Q100-002, all pins  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shal be in accordance with ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX UNIT  
VDD  
VI  
Supply voltage  
Input voltage  
Output voltage  
18  
6.5  
18  
V
V
V
SENSE  
OUT  
VO  
0
7.4 Thermal Information  
DSE (WSON)  
6 PADS  
194.9  
THERMAL METRIC (1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
128.9  
153.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.9  
ψJT  
157.4  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor an IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV6703-Q1  
 
 
 
 
 
 
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics  
Over the operating temperature range of TJ = 40°C to +125°C, and 1.8 V < VDD < 18 V (unless otherwise noted).  
Typical values are at TJ = 25°C and VDD = 5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
400  
MAX UNIT  
V(POR) Power-on reset voltage (1)  
VOLmax = 0.2 V, output sink current = 15 µA  
VDD = 1.8V and 18 V, TJ = 25°C  
0.8  
402.5  
404  
397.5  
400  
12  
V
398  
396  
VIT+  
Positive-going input threshold voltage  
mV  
VDD = 1.8V and 18 V, TJ = 40°C to 125°C  
VDD = 1.8V and 18 V, TJ = 25°C  
391.6  
387  
394.5  
VIT–  
Negative-going input threshold voltage  
mV  
VDD = 1.8V and 18 V, TJ = 40°C to 125°C  
Vhys  
I(SENSE) Input current (at the SENSE pin)  
5.5  
1
mV  
nA  
Hysteresis voltage (hys = VIT+ VIT–  
)
VDD = 1.8 V and 18 V, VI = 6.5 V  
VDD = 1.8 V, output sink current = 3 mA  
VDD = 5 V, output sink current = 5 mA  
VDD = 1.8 V and 18 V, VO = VDD  
VDD = 1.8 V, VO = 18 V  
VDD = 1.8 V, no load  
25  
25  
250  
250  
300  
300  
11  
VOL  
Low-level output voltage  
mV  
nA  
Ilkg(OD) Open-drain output leakage-current  
5.5  
6
VDD = 5 V  
13  
IDD  
Supply current  
µA  
V
VDD = 12 V  
6
13  
VDD = 18 V  
7
13  
UVLO Undervoltage lockout (2)  
VDD falling  
1.3  
1.7  
(1) The lowest supply voltage (VDD) at which output is active; tr(VDD) > 15 µs/V. Below V(POR), the output cannot be determined.  
(2) When VDD falls below UVLO, OUT is driven low. The output cannot be determined below V(POR)  
.
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
7.6 Timing Requirements  
over operating temperature range (unless otherwise noted)  
MIN  
NOM MAX UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see 7-1  
tpd(HL)  
High-to-low propagation delay (1)  
18  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VOH = 0.9 × VDD, VOL = 400 mV,  
see 7-1  
tpd(LH)  
td(start)  
Low-to-high propagation delay (1)  
Start-up delay (2)  
29  
µs  
µs  
150  
(1) High-to-low and low-to-high refers to the transition at the input pin (SENSE).  
(2) During power on, VDD must exceed 1.8 V for at least 150 µs before the output is in a correct state.  
7.7 Switching Characteristics  
over operating temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
tr  
tf  
Output rise time  
2.2  
µs  
VDD = 5 V, 10-mV input overdrive,  
RP = 10 kΩ, VO = (0.1 to 0.9) × VDD  
Output fall time  
0.22  
µs  
7.8 Timing Diagrams  
VDD  
SENSE  
OUT  
V(POR)  
VIT+  
VITœ  
VHYS  
tpd(LH)  
tpd(HL)  
tpd(LH)  
t d(start)  
7-1. Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV6703-Q1  
 
 
 
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
7.9 Typical Characteristics  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
10  
9
401  
400.6  
400.2  
399.8  
399.4  
399  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
8
7
6
5
4
3
2
1
0
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +125°C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
0
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
18  
7-3. Rising Input Threshold Voltage (VIT+) vs Temperature  
7-2. Supply Current (IDD) vs Supply Voltage (VDD  
)
9
25  
VDD = 1.8 V  
VDD = 18 V  
23  
21  
19  
17  
15  
13  
11  
9
8
7
6
5
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
4
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
7-4. Hysteresis (Vhys) vs Temperature  
7-5. Propagation Delay vs Temperature (High-to-Low  
Transition at Sense)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
16  
14  
12  
10  
8
6
4
2
VDD = 1.8 V  
VDD = 18 V  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
2.5  
4
5.5  
7
8.5  
10  
Positive-Going Input Threshold Overdrive (%)  
11.5  
13  
14.5  
SENSE = negative spike below VIT–  
7-6. Propagation Delay vs Temperature (Low-to-High  
7-7. Minimum Pulse Width vs Threshold Overdrive Voltage  
Transition at Sense)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
7.9 Typical Characteristics (continued)  
at TJ = 25°C and VDD = 5 V (unless otherwise noted)  
12  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
10  
8
6
4
600  
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +125°C  
400  
2
0
200  
0
0
4
8
12  
16  
Output Sink Current (mA)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Output Sink Current (mA)  
20  
24  
28  
32  
36  
40  
7-8. Supply Current (IDD) vs Output Sink Current  
7-9. Output Voltage Low (VOL) vs Output Sink Current (–  
40°C)  
2000  
2000  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
1800  
1800  
1600  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
0
4
8
12  
16  
Output Sink Current (mA)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Output Sink Current (mA)  
20  
24  
28  
32  
36  
40  
7-10. Output Voltage Low (VOL) vs Output Sink Current (0°C) 7-11. Output Voltage Low (VOL) vs Output Sink Current (25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
VDD = 1.8 V  
VDD = 5 V  
VDD = 18 V  
600  
600  
400  
400  
200  
200  
0
0
0
4
8
12  
16  
Output Sink Current (mA)  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
Output Sink Current (mA)  
20  
24  
28  
32  
36  
40  
7-12. Output Voltage Low (VOL) vs Output Sink Current (85°C)  
7-13. Output Voltage Low (VOL) vs Output Sink Current  
(125°C)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV6703-Q1  
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLV6703-Q1 provides precision voltage detection. The TLV6703-Q1 is a wide-supply voltage range (1.8 V to  
18 V) comparator with a high-accuracy rising input threshold of 400 mV (1% over temperature) and built-in  
hysteresis. The output is also rated to 18 V, independant of supply voltage, and can sink up to 40 mA.  
The TLV6703-Q1 asserts the output signal, as shown in 8-1. To monitor any voltage above 0.4 V, set the input  
using an external resistor divider network. Each input pin has very low input leakage current, allowing the use of  
large resistor dividers without sacrificing system accuracy. Broad voltage thresholds are supported that enable  
the device for use in a wide array of applications.  
8-1. TLV6703-Q1 Truth Table  
CONDITION  
SENSE > VIT+  
SENSE < VIT–  
OUTPUT  
OUT high  
OUT low  
OUTPUT STATE  
Output high impedance  
Output sinking  
8.2 Functional Block Diagram  
VDD  
SENSE  
OUT  
VIT+  
GND  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Input Pin (SENSE)  
The TLV6703-Q1 comparator has two inputs: one external input, and one input internally connected to the  
internal 400mV reference. The comparator rising threshold is trimmed to be equal to the reference voltage (400  
mV). The comparator also has a built-in falling hysteresis that makes the device less sensitive to supply-rail  
noise and provides stable operation.  
The comparator input (SENSE) is able to swing from ground to 6.5 V, regardless of the device supply voltage.  
Although not required in most cases, to reduce sensitivity to transients and layout parasitics for extremely noisy  
applications, place a 1-nF to 10-nF bypass capacitor at the comparator input.  
OUT is driven to logic low when the input SENSE voltage drops below (VIT-). When the voltage exceeds VIT+, the  
output (OUT) goes to a high-impedance state; see 7-1 .  
8.3.2 Output Pin (OUT)  
In a typical TLV6703-Q1 application, the output is connected to a GPIO input of the processor (such as a digital  
signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-  
specific integrated circuit [ASIC]).  
The TLV6703-Q1 device provides an open-drain output (OUT). Use a pullup resistor to hold this line high when  
the output goes to high impedance (not asserted). To connect the output to another device at the correct  
interface-voltage level, connect a pullup resistor to the proper voltage rail. The TLV6703-Q1 output can be pulled  
up to 18 V, independent of the device supply voltage.  
8-1 and the 8.3.1 section describe how the output is asserted or deasserted. See for a 7-1 timing  
diagram that describes the relationship between threshold voltage and the respective output.  
8.3.3 Immunity to Input-Pin Voltage Transients  
The TLV6703-Q1 is relatively immune to short voltage transient spikes on the sense pin. Sensitivity to transients  
depends on both transient duration and amplitude; see 7-7, Minimum Pulse Width vs Threshold Overdrive  
Voltage.  
8.4 Device Functional Modes  
8.4.1 Normal Operation (VDD > UVLO)  
When the voltage on VDD is greater than 1.8 V for at least 150 µs, the OUT signal correspond to the voltage on  
SENSE as listed in 8-1.  
8.4.2 Undervoltage Lockout (V(POR) < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage, and greater than the power-on reset voltage,  
V(POR), the OUT signal is asserted regardless of the voltage on SENSE.  
8.4.3 Power-On Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the asserted output to GND  
(V(POR)), SENSE is in a high-impedance state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV6703-Q1  
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TLV6703-Q1 device is a wide-supply voltage comparator that operates over a VDD range of 1.8 V to  
18 V. The device has a high-accuracy comparator with an internal 400-mV reference and an open-drain output  
rated to 18 V for precision voltage detection. The device can be used as a voltage monitor. The monitored  
voltage are set with the use of external resistors.  
9.1.1 VPULLUP to a Voltage Other Than VDD  
The output is often tied to VDD through a resistor. However, some applications may require the output to be  
pulled up to a higher or lower voltage than VDD to correctly interface with the reset and enable pins of other  
devices.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
GND  
9-1. Interfacing to a Voltage Other Than VDD  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
9.1.2 Monitoring VDD  
Many applications monitor the same rail that is powering VDD. In these applications the resistor divider is simply  
connected to the VDD rail.  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
R2  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
GND  
9-2. Monitoring the Same Voltage as VDD  
9.1.3 Monitoring a Voltage Other Than VDD  
Some applications monitor rails other than the one that is powering VDD. In these types of applications the  
resistor divider used to set the desired threshold is connected to the rail that is being monitored.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
VDD  
RP  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
GND  
NOTE: The input can monitor a voltage greater than maximum VDD with the use of an external resistor divider network.  
9-3. Monitoring a Voltage Other Than VDD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV6703-Q1  
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
9.2 Typical Application  
The TLV6703-Q1 device is a wide-supply voltage comparator that operates over a VDD range of 1.8 to 18 V. The  
monitored voltage is set with the use of external resistors, so the device can be used either as a precision  
voltage monitor.  
VMON  
1.8 V to 18 V  
0.01 F  
VPULLUP  
Up to 18 V  
R1  
2.21 M  
RP  
VDD  
49.9 kΩ  
To a reset or enable  
input of the system.  
SENSE  
OUT  
R2  
83.5 kΩ  
GND  
9-4. Wide VIN Voltage Monitor  
9.2.1 Design Requirements  
For this design example, use the values summarized in 9-1 as the input parameters.  
9-1. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
12-V nominal rail with maximum falling  
threshold of 10%  
Monitored voltage  
VMON(UV)= 10.99 V (8.33%)  
9.2.2 Detailed Design Procedure  
9.2.2.1 Resistor Divider Selection  
The resistor divider values and target threshold voltage can be calculated by using 方程式 1 to determine  
VMON(UV)  
.
R1  
R2  
VMON(UV) = 1 +  
× V  
IT-  
÷
«
(1)  
where  
R1 and R2 are the resistor values for the resistor divider on the SENSEx pins  
VMON(UV) is the target voltage at which an undervoltage condition is detected  
Choose RTOTAL ( = R1 + R2) so that the current through the divider is approximately 100 times higher than the  
input current at the SENSE pin. The resistors can have high values to minimize current consumption as a result  
of low input bias current without adding significant error to the resistive divider. For details on sizing input  
resistors, refer to application report SLVA450, Optimizing Resistor Dividers at a Comparator Input, available for  
download from www.ti.com.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
9.2.2.2 Pullup Resistor Selection  
To ensure the proper voltage level, the pullup resistor value is selected by ensuring that the pullup voltage  
divided by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated  
by verifying that the pullup voltage minus the output-leakage current (Ilkg(OD)) multiplied by the resistor is greater  
than the desired logic-high voltage. These values are specified in the 7.5.  
Use 方程2 to calculate the value of the pullup resistor.  
(VHI - VPU)  
VPU  
IO  
³ RPU  
³
Ilkg(OD)  
(2)  
9.2.2.3 Input Supply Capacitor  
Although an input capacitor is not required for stability, for good analog design practice, connect a 0.1-μF low  
equivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be  
necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power  
source.  
9.2.2.4 Sense Capacitor  
Although not required in most cases, for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor  
from the comparator input (SENSE) to the GND pin for good analog design practice. This capacitor placement  
reduces device sensitivity to transients.  
9.2.3 Application Curves  
401  
VDD = 1.8 V  
VDD = 5 V  
VDD = 12 V  
VDD = 18 V  
400.6  
400.2  
399.8  
399.4  
399  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
9-5. Rising Input Threshold Voltage (VIT+) vs Temperature  
9.3 Dos and Don'ts  
Do connect a 0.1-µF decoupling capacitor from VDD to GND for best system performance.  
If the monitored rail is noisy, do connect a decoupling capacitor from the comparator input (sense) to GND.  
Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input  
current of the comparator without also accounting for the effect to the accuracy.  
Don't use a pullup resistor that is too small, because the larger current sunk by the output then exceeds the  
desired low-level output voltage (VOL).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV6703-Q1  
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
10 Power-Supply Recommendations  
These devices operate from an input voltage supply range between 1.8 V and 18 V.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Placing a 0.1-µF capacitor close to the VDD pin to reduce the input impedance to the device is good analog  
design practice.  
11.2 Layout Example  
Pullup  
Voltage  
RP1  
Output  
Flag  
6
5
1
CVDD  
Input  
Supply  
2
3
4
R1  
R2  
Monitored  
Voltage  
11-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV6703-Q1  
 
 
 
TLV6703-Q1  
ZHCSMR5 NOVEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
The DIP Adapter Evaluation Module allows conversion of the SOT-23-6 package to a standard DIP-6 pinout for  
ease of prototyping and bench evaluation.  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV6703-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV6703QDSERQ1  
ACTIVE  
WSON  
DSE  
6
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
K7  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV6703QDSERQ1  
WSON  
DSE  
6
3000  
180.0  
8.4  
1.8  
1.8  
1.0  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DSE  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TLV6703QDSERQ1  
6
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLV6710

采用集成基准的低功耗高电压窗口比较器
TI

TLV6710DDCR

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125
TI

TLV6710DDCT

采用集成基准的低功耗高电压窗口比较器

| DDC | 6 | -40 to 125
TI

TLV6713

具有集成基准电压的 36V 比较器
TI

TLV6713DDCR

具有集成基准电压的 36V 比较器 | DDC | 6 | -40 to 125
TI

TLV6713DDCT

具有集成基准电压的 36V 比较器 | DDC | 6 | -40 to 125
TI

TLV6741

单路、5.5V、10MHz、低噪声 (4.6nV/√Hz) 运算放大器
TI

TLV6741DCKR

Single, 5.5-V, 10-MHz, low noise (4.6-nV/√Hz) operational amplifier | DCK | 5 | -40 to 125
TI

TLV6741DCKT

Single, 5.5-V, 10-MHz, low noise (4.6-nV/√Hz) operational amplifier | DCK | 5 | -40 to 125
TI

TLV6741_V04

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI

TLV6741_V05

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI

TLV6741_V06

TLV6741, TLV6742, TLV6744 10-MHz, Low Broadband Noise, RRO, Operational Amplifier
TI