TLV841SADL01YBHR [TI]

具有可调节释放延迟功能且采用 Wafer Chip-Scale Package 封装的超低压纳瓦级功率监控器 | YBH | 4 | -40 to 125;
TLV841SADL01YBHR
型号: TLV841SADL01YBHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节释放延迟功能且采用 Wafer Chip-Scale Package 封装的超低压纳瓦级功率监控器 | YBH | 4 | -40 to 125

监控
文件: 总34页 (文件大小:1890K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV841  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
WCSP 封装TLV841 小型纳米功率电压监控器  
1 特性  
3 说明  
旨在实现高性能  
TLV841 是一款微功耗精密电压监控器阈值精度为  
±0.5%采用超小型 DSBGA 封装。TLV841 可提供三  
种引脚排列系列SMC),解决方案总尺寸非常  
可提供许多独特选项。监控电压轨或按钮信号时,  
内置迟滞及固定或可编程 (TLV841C) 复位延时可防止  
发出错误复位信号。在 TLV841S 的低电平有效输出  
通过在 SENSE RESET 引脚之间添加外部电阻  
增加电压阈值迟滞TLV841 具有精度高、功耗  
低、特性出色、外形紧凑等优点可为个人和消费类产  
品等各种电池供电应用提供理想解决方案。  
• 纳米静态电流125nA典型值)  
• 高阈值精度±0.5%典型值)  
• 内置精密迟(VHYS)5%典型值)  
适用于多种应用:  
• 工作电压范围0.7V 5.5V  
• 可调节阈值电压0.505 V典型值)  
• 固定电(VIT-)0.8 V 4.9 V步长0.1 V)  
• 独SENSE (TLV841S)  
• 低电平有效手动复(MR) (TLV841M)  
TLV841 的按钮监控S/M 系列)  
• 复位延时时(tD)可基于电容器编(TLV841C)  
– 下限延时时间40μA典型值),无电容器  
• 复位延时时(tD)固定延时时间选项TLV841M  
TLV841S)  
40μs2ms10ms30ms50ms80ms、  
100ms150ms200ms  
• 温度范围40°C +125°C  
通过单独的 VDD SENSE (TLV841S) 引脚可实现  
高可靠性系统所需的冗余。SENSE 已从 VDD 去耦,  
能监控除 VDD 的轨电压可用作按钮输入。  
SENSE 引脚的高阻抗输入支持使用可选的外部电阻  
器。TLV841S 无需外部电容器即可提供固定复位延时  
计时选项。CT 引脚悬空时TLV841C 支持包括下限  
延时的可编程复位延时时间。TLV841M 提供单独的手  
动复位 (MR) 引脚可通过外部信号强制创造复位条  
也可用作按钮输入。TLV841M 可设置为 VDD 和  
MR 引脚监控从而创建简易双通道监控器解决方案。  
TLV841 的工作温度范围-40°C +125°C (TA)。  
多输出拓扑、封装类型:  
TLV841xxDL开漏低电平有(RESET)  
TLV841xxPL推挽低电平有(RESET)  
TLV841xxDH开漏高电平有(RESET)  
TLV841xxPH推挽高电平有(RESET)  
• 封装0.73mm x 0.73mm DSBGA  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
TLV841  
DSBGA (4)  
0.73mm × 0.73mm  
(1) 如需了解封装详细信息请参阅数据表末尾的机械制图附录。  
2 应用  
包括可穿戴设备和助听设备在内的个人电子产品  
家庭影院和娱乐系统  
电子销售终端  
电网基础设施  
数据中心和企业级计算  
0.7 V to 5.5 V  
1
-40oC  
25oC  
125oC  
0.8  
0.6  
0.4  
0.2  
0
IN LDO  
OUT  
*Rpu  
VDD  
VDD  
Microcontroller  
SENSE RESET  
RESET  
TLV841SADL01  
GND  
0
0.5  
1
1.5  
2
2.5  
3 3.5 4 4.5 5 5.5  
*Rpu only for TLV841xxDx  
VDD (V)  
典型电源电流  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFO5  
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
Table of Contents  
8.4 Device Functional Modes..........................................19  
9 Application and Implementation..................................20  
9.1 Application Information............................................. 20  
9.2 Typical Application.................................................... 20  
10 Power Supply Recommendations..............................23  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 Device Nomenclature..............................................25  
12.2 Documentation Support.......................................... 26  
12.3 接收文档更新通知................................................... 26  
12.4 支持资源..................................................................26  
12.5 Trademarks.............................................................26  
12.6 静电放电警告.......................................................... 26  
12.7 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................7  
7.6 Timing Requirements .................................................9  
7.7 Timing Diagrams ......................................................10  
7.8 Typical Characteristics..............................................12  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................13  
8.3 Feature Description...................................................13  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2021) to Revision D (January 2023)  
Page  
Removed Table 12-2.........................................................................................................................................25  
Changes from Revision B (May 2021) to Revision C (June 2021)  
Page  
• 器件RTM........................................................................................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
5 Device Comparison  
5-1 shows the device naming nomenclature to compare the different device variants. See 12-1 for a more  
detailed explanation. Please contact Texas Instruments for availability of variant options.  
TLV 841 X X XX XX XXX  
Feature Op on  
S: SENSE pin  
C: Capacitor delay (CT) B: 2 ms  
M: Manual reset (MR) C: 10 ms  
Delay Op on  
A: 40 µs  
Output Type  
DL: Open-drain,  
ac ve-low  
PL: Push-pull,  
ac ve-low  
DH: Open-drain,  
ac ve-high  
PH: Push-pull,  
ac ve-high  
Package  
YBH: DSBGA (4-pin)  
Detect Voltage Threshold  
01: 0.505V  
08: 0.8V  
...  
D: 30 ms  
E: 50 ms  
F: 80 ms  
G: 100 ms  
H: 150 ms  
I: 200 ms  
49: 4.9V  
5-1. Device Naming Nomenclature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLV841  
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
6 Pin Configuration and Functions  
VDD  
A2  
VDD  
A2  
RESET / RESET  
A1  
RESET / RESET  
A1  
SENSE  
B1  
GND  
B2  
CT  
B1  
GND  
B2  
6-1. YBH 4-Pin DSBGA Package  
6-2. YBH 4-Pin DSBGA Package  
(TLV841S)  
Top View  
(TLV841C)  
Top View  
VDD  
A2  
RESET / RESET  
A1  
MR  
B1  
GND  
B2  
6-3. YBH 4-Pin DSBGA Package  
(TLV841M)  
Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
PIN NO. TLV841S TLV841C TLV841M  
Active-Low Output Reset Signal for TLV841xxxL: This pin is driven logic low  
when VDD and SENSE voltage falls below the negative voltage threshold (VIT-) or  
when the MR voltage falls below the logic low threshold. RESET remains logic low  
(asserted) until MR is above the logic high threshold or for the duration of the delay  
time period (tD) after VDD or SENSE voltage rises above VIT- + VHYS  
A1  
RESET  
RESET  
RESET  
O
Active-High Output Reset Signal for TLV841xxxH: This pin is driven logic high  
when VDD or SENSE voltage falls below the negative voltage threshold (VIT-) or  
when the MR voltage falls below the logic low threshold. RESET remains logic high  
(asserted) until MR is above the logic high threshold or for the duration of the delay  
time period (tD) after VDD or SENSE voltage rises above VIT- + VHYS  
A1  
A2  
RESET  
VDD  
RESET  
VDD  
RESET  
VDD  
O
I
Input Supply Voltage: The VDD pin connects to the power supply to power the  
device. TLV841C and TLV841M monitor VDD voltage. TLV841S monitors SENSE  
only. Good analog design practice recommends placing a minimum 0.1 µF ceramic  
capacitor as near as possible to the VDD pin.  
SENSE pin: This pin is connected to the voltage to be monitored. When the voltage  
on SENSE falls below the negative threshold voltage VIT-, reset asserts. When the  
voltage on SENSE rises above the positive threshold voltage (VIT- + VHYS), reset  
deasserts. For noisy applications, placing a 10 nF to 100 nF ceramic capacitor close  
to this pin may be needed for optimum performance.  
B1  
B1  
SENSE  
_
_
_
_
I
I
Capacitor Time Delay Pin: The CT pin offers a user-programmable reset deassert  
delay time. Connect an external capacitor on this pin to adjust time delay. When not  
in use leave pin floating for the smallest fixed time delay.  
CT  
Manual Reset: Pull this pin to a logic low to assert a reset signal in the RESET  
output pin (RESET signal for DL and PL option). After MR pin is left floating or pulls  
to logic high, the RESET output deasserts to the nominal state after the reset delay  
time (tD)expires. If unused, the pin can be left floating or connected to VDD.  
B1  
B2  
_
_
MR  
I
GND  
GND  
GND  
_
Ground  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
MAX  
UNIT  
Voltage  
Voltage  
VDD, SENSE (TLV841S)  
6
V
0.3  
CT (TLV841C), MR (TLV841M), RESET  
(TLV841xxPx), RESET (TLV841xxPx)  
VDD+0.3 (3)  
0.3  
0.3  
V
RESET (TLV841xxDx), RESET (TLV841xxDx)  
RESET, RESET  
6
±20  
125  
150  
Current  
mA  
°C  
Temperature(2)  
Operating ambient temperature, TA  
Storage, Tstg  
40  
65  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
(3) The absolute maximum rating is (VDD + 0.3) V or 6 V, whichever is smaller  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
± 750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.7  
0.85  
1
NOM  
MAX  
5.5  
5.5  
5.5  
5.5  
VDD  
VDD  
5.5  
5
UNIT  
VDD (TLV841C, TLV841M)  
VDD (TLV841S)  
VDD (TLV841xxPH)  
Voltage  
SENSE  
0
V
MR (1), CT  
0
RESET(TLV841xxPL), RESET (TLV841xxPH)  
RESET(TLV841xxDL), RESET (TLV841xxDH)  
RESET, RESET  
0
0
Current  
TA  
mA  
°C  
5  
40  
0
Operating free air temperature  
CT pin capacitor range  
125  
10  
CCT  
µF  
(1) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR. MR pin voltage should not be  
higher than VDD.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLV841  
 
 
 
 
 
 
 
 
 
 
TLV841  
www.ti.com.cn  
UNIT  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7.4 Thermal Information  
TLV841  
YBH (WCSP)  
4 PINS  
180.8  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
1.8  
58.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJT  
58.0  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7.5 Electrical Characteristics  
At VDDMIN VDD 5.5 V, CT = MR = Open, RESET/RESET pull-up resistor Rpull-up (3) = 100 kΩto VDD, output reset load  
CLOAD = 10 pF and over the operating free-air temperature range 40to 125, unless otherwise noted. Typical values  
are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
COMMON PARAMETERS  
Negative-going input threshold for  
TLV841Sxxx01 ADJ version  
VADJ-VIT–  
0.505  
V
Negative-going input threshold range  
Fixed threshold version (1)  
VIT–  
0.8  
4.9  
2.5  
V
VIT= 0.505 V (TLV841Sxx01) or 0.8 V to 1.7 V  
(Fixed threshold)  
-2.5  
±0.5  
VIT_ACC Negative-going input threshold accuracy  
%
VIT= 1.8 V to 4.9 V (Fixed threshold)  
VIT= 0.505 V and 0.8 V  
-2  
3
±0.5  
5
2
8
7
VHYS  
Hysteresis on VITpin  
%
VIT= 0.9 V to 4.9 V  
3
5
VOL(MAX) = 300 mV  
TLV841xxxLxx  
700  
900  
IRESET(Sink) = 15 µA  
VPOR  
Power on reset voltage (2)  
mV  
VOH(MIN) = 0.8VDD  
TLV841xxxHxx  
IRESET(Source) = 15 µA  
VDD = 0.85 V  
IRESET(Sink) = 15 µA  
IRESET(Sink) = 15 µA  
300 mV  
VDD = 3.3 V  
VOL  
Low level output voltage  
IRESET(Sink) = 2 mA  
IRESET(Sink) = 2 mA  
300 mV  
VDD = 5.5 V  
IRESET(Sink) = 2 mA  
IRESET(Sink) = 2 mA  
300 mV  
VDD = 1 V  
IRESET(Source) = 15 µA  
IRESET(Source) = 15 µA  
0.8VDD  
0.8VDD  
0.8VDD  
V
V
V
VDD = 1.8 V  
IRESET(Source) = 500 µA  
IRESET(Source) = 500 µA  
VOH  
High level output voltage  
VDD 3.3 V  
IRESET(Source) = 2 mA  
IRESET(Source) = 2 mA  
10  
10  
100  
nA  
TA = 40to 85℃  
Ilkg(OD)  
Open-Drain output leakage current  
Supply current into Supply current  
VDD = VPULLUP = 5.5 V  
350  
VDD = 5.5 V  
VIT= 1.9 V to 4.9 V  
IDD  
0.125  
1
µA  
VDD pin  
into VDD pin  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLV841  
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7.5 Electrical Characteristics (continued)  
At VDDMIN VDD 5.5 V, CT = MR = Open, RESET/RESET pull-up resistor Rpull-up (3) = 100 kΩto VDD, output reset load  
CLOAD = 10 pF and over the operating free-air temperature range 40to 125, unless otherwise noted. Typical values  
are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TLV841S  
Current into SENSE pin, fixed threshold VDD = VSENSE = 5.5 V  
0.025  
0.025  
0.1  
µA  
variant  
VIT= 0.8 V to 4.9 V  
ISENSE  
VDD = VSENSE = 5.5 V  
VIT= 0.505 V  
Current into SENSE pin, ADJ variant  
0.05  
TLV841M  
VMR_L  
VMR_H  
RMR  
Manual reset logic low input  
0.3VDD  
V
V
Manual reset logic high input  
0.7VDD  
410  
Manual reset internal pull-up resistance  
100  
500  
kΩ  
TLV841C  
RCT  
CT pin internal resistance  
590  
kΩ  
(1) VIT- threshold voltage range from 0.8 V to 4.9 V (for DL, PL, DH) and 1 V to 4.9 V (for PH) in 100 mV steps, for released versions see  
Device Voltage Thresholds table.  
(2) VPOR is the minimum VDD voltage level for a controlled output state.  
(3) Pull up resistance applicable for open drain variants  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7.6 Timing Requirements  
At VDDMIN VDD 5.5 V, CT = MR = Open, RESET pull-up resistor Rpull-up = 100 kΩto VDD, output load is CLOAD = 10 pF  
and over the operating free-air temperature range 40°C to 125°C, unless otherwise noted. Typical values are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation detect delay for VDD falling  
below VIT–  
VDD = (VIT+ + 10%) to (VIT10%) (2)  
tP_HL  
30  
50  
µs  
CT pin = Open or NC  
CT pin = 10 nF  
CT pin = 1 µF  
Variant A (3)  
40  
6.2  
619  
40  
80  
µs  
ms  
ms  
µs  
tD  
Reset time delay (TLV841C variant)  
80  
Variant B (3)  
2
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
µs  
Variant C (3)  
10  
Variant D (3)  
30  
Reset time delay (TLV841S and TLV841M  
variant) (5)  
tD  
Variant E (3)  
50  
Variant F (3)  
80  
Variant G (3)  
100  
150  
200  
10  
Variant H (3)  
Variant I (3)  
tGI_VITGlitch immunity VIT–  
tSTRT  
Startup Delay (1)  
tMR_RES Propagation delay from MR low to reset  
5% VIToverdrive (4)  
300  
µs  
VDD = 3.3 V, MR < VMR_L  
tP_HL  
tD  
µs  
VDD = 3.3 V,  
MR = VMR_L to VMR_H  
tMR_tD  
Delay from release MR to deassert reset  
ms  
µs  
tMR_PW Glitch immunity MR pin  
10  
(1) When VDD starts from less than the specified minimum VDD and then exceeds VPOR, reset is release after the startup delay (tSTRT).  
For TLV841C variants a capacitor at CT pin will add tD delay to tSTRT time  
(2) tP_HL measured from threhold trip point (VIT) to VOL for active low variants and VOH for active high variants.  
(3) Refer device nomenclature table for variant description. VDD transition from VIT10% to VIT+ + 10% for TLV841M and TLV841C;  
V
SENSE transition from VIT10% to VIT+ + 10% for TLV841S  
(4) Overdrive % = [(VDD/ VIT) 1] × 100% for TLV841M and TLV841C; Overdrive % = [(VSENSE/ VIT) 1] × 100% for TLV841S  
(5) Specified by design and characterization  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLV841  
 
 
 
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7.7 Timing Diagrams  
VDD(MIN)  
VPOR  
VDD  
SENSE  
RESET  
VIT- + VHYS  
VIT-  
t
STRT + tD  
`
tD_HL  
tD  
Unde ned  
A. Open-Drain timing diagram assumes the RESET pin is connected via an external pull-up resistor to VDD.  
Unde ned  
7-1. Timing Diagram for TLV841SxxL (SENSE) Active Low Output  
[Open-Drain and Push-Pull Output Topology]  
VDD  
VDD(MIN)  
VPOR  
VIT- + VHYS  
VIT-  
SENSE  
tD-HL  
t
STRT + tD  
tD  
RESET  
Unde ned  
A. Open-Drain timing diagram assumes the RESET pin is connected via an external pull-up resistor to VDD.  
Unde ned  
7-2. Timing Diagram for TLV841SxxH (SENSE) Active High Output  
[Open-Drain and Push-Pull Output Topology]  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
VIT- + VHYS  
VIT-  
VDD(MIN)  
VPOR  
VDD  
t
STRT + tD  
tD_HL  
tD  
tD_HL  
tD  
RESET  
Unde ned  
Unde ned  
A. Open-Drain timing diagram assumes the RESET / RESET pin is connected via an external pull-up resistor to VDD.  
B. tD (no cap) is included in tSTRT time delay. If tD delay is programmed by an external capacitor connected to CT pin then tD programmed  
time will be added to the startup time, VDD slew rate = 1 V / µs.  
C. Be advised that the VDD falling slew rate is (slew rate > 1 V / µs) and resulting RESETin what is shown above figure. The RESET  
behavior would be similar to 7-1 if the slew rate was much slower or if VDD decay time is larger than the prop delay (tD_HL).  
7-3. Timing Diagram for TLV841CxxL (CT) Active Low Output  
[Open-Drain and Push-Pull Output Topology]  
VIT+  
VHYS  
VIT-  
VIT+  
VHYS  
VIT-  
VDD  
tP_HL  
tD  
tMR_tD  
RESET  
(2)  
tMR_RES  
VMR_H  
VMR_L  
MR  
(1)  
tMR_PW  
(1) MR pulse width too small to assert RESET  
(2) MR voltage not low enough to assert RESET  
Time  
A. Open-Drain timing diagram assumes the RESET / RESET pin is connected via an external pull-up resistor to VDD.  
7-4. Timing Diagram for TLV841MxxL Active Low Output (MR)  
[Open-Drain and Push-Pull Output Topology]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLV841  
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
7.8 Typical Characteristics  
Typical characteristics show the typical performance of the TLV841 device. Test conditions are TA = 25°C,  
VDD = 3.3 V, Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
1
0.8  
0.6  
0.4  
0.2  
0
50  
40  
30  
20  
10  
0
-40oC  
25oC  
125oC  
-40oC  
25oC  
125oC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
VSENSE (V)  
3
3.5  
4
4.5 5 5.5  
VDD (V)  
7-5. Supply Current vs Supply Voltage for  
7-6. SENSE Current vs VSENSE  
TLV841S  
2
VIT- = 0.505 V  
1.2  
0.4  
-0.4  
-1.2  
-2  
-50  
-10  
30  
70  
110  
150  
(°C) Temperature  
7-8. SENSE Glitch Immunity (VIT-) vs Overdrive  
7-7. VIT- Accuracy vs Temperature  
22  
20  
18  
16  
14  
12  
VIT- = 0.505 V  
-50  
-10  
30  
70  
110  
150  
(°C) Temperature  
7-10. VOL vs IOL  
7-9. SENSE Delay (tD_HL) vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8 Detailed Description  
8.1 Overview  
The TLV841 is a family of very small, accurate, nano-quiescent current voltage supervisors with fixed threshold  
voltages. TLV841S features a separate SENSE pin for adjustable voltage threshold without losing accuracy,  
TLV841C features a programable reset time delay using external capacitor, and TLV841M features an active-low  
manual reset (MR). The TLV841 family provide ±0.5% typical monitor threshold accuracy with hysteresis and  
glitch immunity.  
The adjustable variant of TLV841S has an internal reference voltage of 0.505 V and can be used to accurately  
monitor any voltage above 0.505 V within the recommended operating conditions. In addition to the adjustable  
threshold variant, fixed negative threshold voltages (VIT-) can be factory set from 0.8 V to 4.9 V in 100 mV steps.  
TLV841 is available in a very small (0.73 mm x 0.73 mm) 4-pin BGA package.  
8.2 Functional Block Diagram  
VDD  
VDD  
RMR  
Push-pull  
(TLV841xxPx)  
VDD  
MR  
(TLV841M)  
RESET  
LOGIC  
TIMER  
RESET (TLV841xxxL)  
RESET (TLV841xxxH)  
SENSE  
(TLV841S)  
+
ADJ  
TLV841S  
VDD  
GND  
Reference  
VDD  
Fixed  
(TLV841M,  
RCT  
TLV841C)  
CT  
(TLV841C)  
GND  
8.3 Feature Description  
8.3.1 Input Voltage (VDD)  
For TLV841C and TLV841M, the VDD pin is monitored by the internal comparator to indicate when VDD falls  
below the fixed threshold voltage. For TLV841S, the SENSE pin is monitored by the internal comparator. VDD  
also functions as the supply for the internal bandgap, internal regulator, state machine, buffers and other control  
logic blocks. Good design practice involve placing a 0.1 μF to 1 μF bypass capacitor at VDD input for noisy  
applications to ensure enough charge is available for the device to power up correctly.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLV841  
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8.3.1.1 VDD Hysteresis  
The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD  
(TLV841C, TLV841M) pin falls below VIT- the output reset is asserted. When the monitored voltage goes above  
VIT- plus hysteresis (VHYS) the output reset is deasserted after tD delay.  
Hystersis Width  
Hystersis Width  
RESET  
RESET  
VIT-  
VIT-  
VIT+  
VIT+  
VDD  
VDD  
8-1. Hysteresis Diagram  
8.3.1.2 VDD Transient Immunity  
The TLV841 is immune to quick voltage transients or excursion on VDD. Sensitivity to transients depends on  
both pulse duration (tGI_VIT-), specified in 7.6, and overdrive. Overdrive is defined by how much VDD deviates  
from the specified threshold. Threshold overdrive is calculated as a percent of the threshold in question, as  
shown in 方程1.  
Overdrive = | ((VDD / VIT-) 1) × 100% |  
(1)  
VDD  
VIT+  
VIT-  
Overdrive  
Pulse  
Duration  
8-2. Overdrive vs Pulse Duration  
8.3.2 SENSE Input (TLV841S)  
The SENSE input can vary from 0 V to 5.5 V, regardless of the device supply voltage used. The SENSE pin is  
used to monitor a critical voltage rail or push-button input. If the voltage on this pin drops below VIT-, then  
RESET/RESET is asserted. When the voltage on the SENSE pin rises above the positive threshold voltage  
VIT- + VHYS, RESET/RESET deasserts after the user-defined RESET/RESET delay time. The internal  
comparator has built-in hysteresis to ensure well-defined RESET/RESET assertions and deassertions even  
when there are small changes on the voltage rail being monitored.  
The TLV841 device is relatively immune to short transients on the SENSE pin. Glitch immunity (tGI_V ), specified  
IT-  
in 7.6, is dependent on threshold overdrive, as illustrated in 7-8. Although not required in most cases, for  
noisy applications, good analog design practice is to place a 10 nF to 100 nF bypass capacitor at the SENSE  
input to reduce sensitivity to transient voltages on the monitored signal.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8.3.2.1 SENSE Hysteresis  
The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the  
SENSE (TLV841S) pin falls below VIT- the output reset is asserted. When the monitored voltage goes above VIT-  
plus hysteresis (VHYS) the output reset is deasserted after tD delay.  
Hystersis Width  
Hystersis Width  
RESET  
RESET  
VIT-  
VIT+  
VIT+  
VSENSE  
VIT-  
VSENSE  
8-3. Hysteresis Diagram  
8.3.2.2 Immunity to SENSE Pin Voltage Transients  
The TLV841S is immune to short voltage transient spikes or excursion on the SENSE pin. To further improve the  
noise immunity on the SENSE pin, placing a 10 nF to 100 nF capacitor between the SENSE pin and GND can  
reduce the sensitivity to sensitivity to transient voltages on the monitored signal.  
Sensitivity to transients depends on both transient duration and overdrive (amplitude) on the transient voltage.  
Overdrive is defined by how much VSENSE exceeds the specified threshold and is important to know because the  
smaller the overdrive, the slower the resonse of the output. Threshold overdrive is calculated as a percent of the  
threshold in question, as shown in 方程2.  
Overdrive = | ((VSENSE / VIT-) 1) × 100% |  
(2)  
VSENSE  
VIT- + VHYS  
VIT-  
Overdrive  
Pulse  
Duration  
8-4. Overdrive vs Pulse Duration  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8.3.3 User-Programmable Reset Time Delay for TLV841C only  
The reset time delay can be set to a typical value of 40 µs by leaving the CT pin floating, or a maximum value of  
approximately 6.2 seconds by connecting 10 µF delay capacitor. The reset time delay (tD) can be programmed  
by connecting a capacitor no larger than 10 µF between the CT pin and GND.  
The relationship between external capacitor (CCT_EXT (typ)) in µF at CT pin and the time delay (tD (typ)) in seconds  
is given by 方程3.  
tD (typ) = -ln (0.29) x RCT (typ) x CCT_EXT (typ) + tD (no cap, typ)  
(3)  
(4)  
(5)  
方程3 is simplified to 方程4 by plugging RCT (typ) and tD (no cap, typ) given in 7.5 and 7.6:  
tD (typ) = 618937 x CCT_EXT (typ) + 40 µs  
方程5 solves for external capacitor value CCT_EXT in units of µF where tD (typ) is in units of seconds  
CCT_EXT = (tD (typ) - 40 µs) ÷ 618937  
The reset delay varies according to three variables: the external capacitor CCT_EXT, CT pin internal resistance  
R
CT provided in 7.5, and a constant. The maximum variance due to the constant is show in 方程6:  
tD (max) = -ln (0.25) x RCT (max) x CCT_EXT (max) + tD (no cap, max)  
(6)  
The recommended maximum delay capacitor for the TLV841C is limited to 10 μF as this ensures enough time  
for the capacitor to fully discharge when a voltage fault occurs. Also, having a too large of a capacitor value can  
cause very slow charge up (rise times) and system noise can cause the the internal circuit to trip earlier or later  
near the threshold. This leads to variation in time delay where it can make the delay accuracy worse in the  
presence of system noise.  
When a voltage fault occurs, the previously charged up capacitor discharges and if the monitored voltage returns  
from the fault condition before the delay capacitor discharges completely, the delay will be shorter than  
expected. The capacitor will begin charging from a voltage above zero and resulting in shorter than expected  
time delay. A larger delay capacitor can be used so long as the capacitor has enough time to fully discharge  
during the duration of the voltage fault. The amount of time required to discharge the delay capacitor relative to  
the reset delay rises as VDD fault undervoltage increases as shown in 8-5. From the graph below, to ensure  
the CCT_EXT capacitor is fully discharged, the time period or duration of the voltage fault needs to be greater than  
10% of the programmed reset time delay.  
55  
25°C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.6  
0.8  
1
1.2  
1.4  
VDD Fault Underoltage (V)  
1.6  
1.8  
2
CTR_  
8-5. CCT_EXT Discharge Time During Fault Condition (CCT_EXT = 1 µF)  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8.3.4 Manual Reset (MR) Input for TLV841M only  
The manual reset (MR) input allows a processor GPIO or other logic circuits to initiate a reset. A logic low on MR  
with pulse duration longer than tMR_RES will causes reset output to assert. After MR returns to a logic high  
(VMR_H) and VDD is above VIT+, reset is deasserted after the user programmed reset time delay (tD) expires.  
If MR is not controlled externally, then MR can be left disconnected. If the logic signal controlling MR is less than  
VDD, then additional current flows from VDD into MR internally. For minimum current consumption, drive MR to  
either VDD or GND. VMR should not be higher than VDD voltage.  
VIT+  
VHYS  
VIT-  
VIT+  
VHYS  
VIT-  
VDD  
tP_HL  
tD  
tMR_tD  
RESET  
(2)  
tMR_RES  
VMR_H  
VMR_L  
MR  
(1)  
tMR_PW  
(1) MR pulse width too small to assert RESET  
(2) MR voltage not low enough to assert RESET  
Time  
8-6. Timing Diagram MR and RESET (TLV841M)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLV841  
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8.3.5 Output Logic  
8.3.5.1 RESET Output, Active-Low  
RESET (Active-Low) applies to TLV841xxDL (Open-Drain) and TLV841xxPL (Push-Pull) hence the "L" in the  
device name. RESET remains high (deasserted) as long as VDD/SENSE is above the negative threshold (VIT-)  
and the MR pin is floating or above VMR_H. If VDD/SENSE falls below the negative threshold (VIT-) or if MR is  
driven low, then RESET is asserted.  
When MR is again logic high or floating and VDD/SENSE rise above VIT+ (VIT- + VHYS), the delay circuit will hold  
RESET low for the specified reset time delay (tD). When the reset time delay has elapsed, the RESET pin goes  
back to logic high voltage VOH  
.
The TLV841xxDL (Open-Drain) version, denoted with "D" in the device name, requires an external pull-up  
resistor to hold RESET pin high. Connect the external pull-up resistor to the desired pull-up voltage source and  
RESET can be pulled up to any voltage up to 5.5 V independent of the VDD voltage. To ensure proper voltage  
levels, give some consideration when choosing the external pull-up resistor values. The external pull-up resistor  
value determines the actual VOL, the output capacitive loading, and the output leakage current (Ilkg(OD)).  
The Push-Pull variant (TLV841xxPL), denoted with "P" in the device name, does not require an external pull-up  
resistor  
8.3.5.2 RESET Output, Active-High  
RESET (active-high), denoted with no bar above the pin label, applies only to TLV841xxDH (open-drain) and  
TLV841xxPH (push-pull) active-high version, hence the "H" in the device name. RESET remains low  
(deasserted) as long as VDD/SENSE is above the threshold (VIT-) and the manual reset signal ( MR) is floating  
or above VMR_H. If VDD/SENSE falls below the negative threshold (VIT-) or if MR is driven low, then RESET is  
asserted driving the RESET pin to high voltage VOH  
.
When MR is again logic high or floating and VDD/SENSE is above VIT+ (VIT- + VHYS) the delay circuit will hold  
RESET high for the specified reset time delay (tD). When the reset time delay has elapsed, the RESET pin goes  
back to low voltage VOL  
The TLV841xxDH (Open-Drain) version, denoted with "D" in the device name, requires an external pull-up  
resistor to hold RESET pin high. Connect the external pull-up resistor to the desired pull-up voltage source and  
RESET can be pulled up to any voltage up to 5.5 V independent of the VDD voltage. To ensure proper voltage  
levels, give some consideration when choosing the external pull-up resistor values. The external pull-up resistor  
value determines the actual VOL, the output capacitive loading, and the output leakage current (Ilkg(OD)).  
The Push-Pull variant (TLV841xxPH), denoted with "P" in the device name, does not require an external pull-up  
resistor  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLV841  
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
8.4 Device Functional Modes  
8-1 and 8-2 summarizes the various functional modes of the device. Logic high is represented by "H" and  
logic low is represented by "L".  
8-1. Truth Table for TLV841S  
RESET  
(ACTIVE-HIGH)  
RESET  
(ACTIVE-LOW)  
VDD  
SENSE  
VDD < VPOR  
VPOR < VDD < VDD(MIN)  
VDD VDD(MIN)  
Undefined  
Undefined  
(1)  
H
H
L
L
L
VSENSE< VIT-  
VSENSE > VIT- + VHYS  
H
VDD VDD(MIN)  
(1) When VDD falls below VDD(MIN), undervoltage-lockout (UVLO) takes effect and RESET is held logic low (RESET is held logic high) until  
VDD falls below VPOR at which the RESET/RESET output is undefined.  
8-2. Truth Table for TLV841M  
RESET  
(ACTIVE-HIGH)  
RESET  
(ACTIVE-LOW)  
VDD  
MR  
VDD < VPOR  
VPOR < VDD < VIT-  
VDD VIT-  
Undefined  
Undefined  
L
H
H
L
L
L
H
H
H
VDD VIT-  
Floating  
L
VDD VIT-  
8.4.1 Normal Operation (VDD > VPOR  
)
When VDD is greater than VPOR, the reset signal is determined by the voltage on the VDD pin with respect to the  
trip point (VIT-)  
MR high: The reset signal corresponds to VDD with respect to the threshold voltage.  
MR low: In this mode, the reset is asserted regardless of the threshold voltage.  
8.4.2 Below Power-On-Reset (VDD < VPOR  
)
When the voltage on VDD is lower than VPOR, the device does not have enough bias voltage to internally pull the  
asserted output low or high and reset voltage level is undefined.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLV841  
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The following sections describe in detail how to properly use this device, depending on the requirements of the  
final application.  
9.2 Typical Application  
Design 1: Adjustable Voltage Supervisor with Push-Button Functionality  
A typical application for the TLV841S is voltage rail monitoring with push-button functionality. In this design  
application, the TLV841SADL01 is being used to monitor a 3.3 V power rail and will trigger a reset when the  
voltage drops below 2.90 V or when the push-button is pressed. The reset output connects to an MCU for  
system resetting or servicing the push-button.  
3.3V  
0.1 µF  
R1  
Rpull-up  
47.5 k  
30.1 k  
VDD  
SENSE  
TLV841SADL01  
GND  
RESET  
Push-button  
input  
R2  
10k  
0.1µF  
9-1. Design 1 - Adjustable Voltage Supervisor with Push-Button Functionality Circuit  
9.2.1 Design Requirements  
The design requirements, described in 9-1, for this design has a defined reset threshold voltage of 2.90 V, a  
reset delay of 40 μs and an output current no larger than 150 µA.  
9-1. Design Requirements  
PARAMETER  
Reset Asserting  
DESIGN REQUIREMENTS  
DESIGN RESULTS  
Reset needs to assert when under the reset  
Reset asserted when under the reset condition of a  
condition of a button press or VDD 2.90 V.  
button pressed or VDD 2.90 V.  
Reset Asserting Timing  
Output Current  
Reset output needs to assert when the reset  
conditions are met for 20 μs, and needs to de-  
assert after 40 μs of no reset conditions.  
Reset output asserted when the reset conditions  
were met for 26.4 μs and deasserted after 46.8 μs  
of no reset conditions.  
The output current must not exceed 150 µA.  
The output current was 110 µA under the reset  
condition.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
9.2.2 Detailed Design Procedure  
The TLV841SADL01 can monitor any voltage above 0.505 V using an external voltage divider. This device has a  
negative going input threshold voltage of 0.505 V; however, the design needs to assert a reset when VDD drops  
below 2.90 V. By using a resistor divider (R1 = 47.5 kΩ, R2 = 10 kΩ) the negative going threshold voltage  
becomes 2.90 V. The device's positive going voltage threshold is VIT- + VHYS. The typical VHYS is 25 mV. This in  
combination with the resistor divider makes the design's positive going threshold voltage equal to 3.05 V. If VDD  
falls below 2.90 V, RESET will assert. If VDD rises above 3.05 V, RESET will deassert. See 9-2 for a timing  
diagram detailing the voltage levels and reset assertion/deassertion conditions.  
3.3 V  
VIT- + VHYS = 3.05V  
VIT- = 2.90V  
Push-bu on  
input  
SENSE  
tD  
tD  
tD-HL  
tD-HL  
RESET  
9-2. Design 1 Timing Diagram  
This design will also enter a reset condition when the "push-button input" is asserted. The push-button is tied to  
ground and when pressed will drop the SENSE voltage to 0 V, making the device assert a reset. As a good  
analog practice, a 0.1 µF capacitor was also placed on VDD.  
The desired reset timing conditions are sense propagation delay time (tP_HL of 25 μs (how long it takes to assert  
RESET) and a reset delay time of 40 μs (how long it takes to deassert RESET). 9-3 and 9-4 are the  
results of the described application where the measured propagation delay and reset delay time are shown  
respectively.  
For the requirement of a maximum output current, an external pull-up resistor needs to be selected so that the  
current through the external pull-up resistor exceeds no more than 150 µA. When the reset output is low, the  
voltage drop across the external pull-up resistor is equal to VDD. Ohms law is used to calculate the minimum  
resistor value. The resistor needs to be greater than 22 kin order to pull less than 150 µA in the reset asserted  
low condition. A resistor value of 30.1 kwas selected to accomplish this.  
Note that this design does not account for tolerances.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
9.2.3 Application Curves: TLV841EVM  
These application curves are taken with the TLV841SADL01 part on the TLV841EVM. Please see the TLV841  
User Guide for more information.  
RESET  
RESET  
Propaga on Detect Delay (tP_HL) = 26.4  
s
Reset Delay (tD) = 46.8 s  
VDD  
VDD  
9-4. TLV841EVM RESET Time Delay (tD)  
9-3. TLV841EVM Propagation Delay Time Delay  
(tD_HL  
)
VDD / SENSE  
RESET  
Glitch Immunity Overdrive > 5%  
Glitch Immunity VIT- (tGI_VIT-) = 10  
s
9-5. TLV841EVM SENSE Pin Glitch Immunity (tGI_VIT-  
)
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
10 Power Supply Recommendations  
These devices are designed to operate from an input supply with a voltage range between 0.7 V and 5.5 V. TI  
recommends an input supply capacitor of 0.1 μF between the VDD pin and GND pin. This device has a 6 V  
absolute maximum rating on the VDD pin. If the voltage supply providing power to VDD is susceptible to any  
large voltage transient that can exceed 6 V, additional precautions must be taken.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLV841  
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a minimum 0.1 µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected  
to the CT pin (TLV841C), then minimize parasitic capacitance on this pin so the rest time delay is not adversely  
affected.  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
greater than 0.1 µF ceramic capacitor as near as possible to the VDD pin.  
If a CCT_EXT capacitor is used (TLV841C), place the capacitor as close as possible to the CT pin. If the CT pin  
is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin to less than 5 pF.  
If a SENSE capacitor (CSENSE) is used (TLV841S), place the capacitor as close as possible to the SENSE pin  
to further improve the noise immunity on the SENSE pin. Placing a 10 nF to 100 nF capacitor between the  
SENSE pin and GND can reduce the sensitivity to sensitivity to transient voltages on the monitored signal.  
Place the pull-up resistors on RESET pin as close to the pin as possible.  
11.2 Layout Example  
The layout example in 11-1 shows how the TLV841S is laid out on a printed circuit board (PCB) for every  
device variant.  
Pull-up resistor required for Open-Drain output  
(TLV841xxDx)  
Rpull-up  
A1  
B1  
A2  
B2  
RESET (TLV841xxxL)  
RESET (TLV841xxxH)  
VDD  
CIN  
SENSE (TLV841S)  
MR (TLV841M)  
GND  
CT (TLV841C) or  
CSENSE (TLV841S)  
11-1. TLV841 Recommended Layout  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
12 Device and Documentation Support  
12.1 Device Nomenclature  
5-1 in 5 and 12-1 shows how to decode the function of the device based on its part number.  
12-1. Device Naming Convention  
DESCRIPTION  
Generic Part number  
NOMENCLATURE  
VALUE  
TLV841  
TLV841  
Feature Option  
S
C
SENSE pin option  
CT pin for programmable delay using  
external capacitor  
M
A
Manual Reset (MR) pin option  
40 µs (No internal reset time delay)  
2 ms reset time delay  
Delay Option  
B
C
10 ms reset time delay  
30 ms reset time delay  
50 ms reset time delay  
80 ms reset time delay  
100 ms reset time delay  
150 ms reset time delay  
200 ms reset time delay  
Open-Drain, Active-Low  
Push-Pull, Active-Low  
Open-Drain, Active-High  
Push-Pull, Active-High  
Example: 12 stands for 1.2 V threshold  
DSBGA (4)  
D
E
F
G
H
I
Variant code (Output Topology)  
DL  
PL  
DH  
PH  
Detect Voltage Option  
Package  
## (two characters)  
YBH  
R
Reel  
Large Reel  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLV841  
 
 
 
 
TLV841  
www.ti.com.cn  
ZHCSMZ5D APRIL 2020 REVISED JANUARY 2023  
12.2 Documentation Support  
12.2.1 Related Documentation  
The following related documents are available for download at www.ti.com:  
Optimizing Resistor Dividers at a Comparator Input, SLVA450  
Sensitivity Analysis for Power Supply Design, SLVA481  
Getting Started With TMS320C28x Digital Signal Controllers, SPRAAM0  
TLV841EVM-775 Evaluation Module User Guide, SBVU030  
C2000 Delfino Family of Microprocessors  
TMS320F2833x microcontroller, SPRS439  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLV841  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV841SADL01YBHR  
TLV841SADL41YBHR  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YBH  
YBH  
4
4
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
9
T
Samples  
Samples  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV841SADL01YBHR  
TLV841SADL41YBHR  
DSBGA  
DSBGA  
YBH  
YBH  
4
4
3000  
3000  
180.0  
180.0  
8.4  
8.4  
0.84  
0.84  
0.84  
0.84  
0.48  
0.48  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLV841SADL01YBHR  
TLV841SADL41YBHR  
DSBGA  
DSBGA  
YBH  
YBH  
4
4
3000  
3000  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YBH0004  
DSBGA - 0.4 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
C
0.4 MAX  
SEATING PLANE  
0.05 C  
0.16  
0.10  
BALL TYP  
0.4  
TYP  
B
SYMM  
D: Max = 0.761 mm, Min =0.701 mm  
E: Max = 0.761 mm, Min =0.701 mm  
0.4  
TYP  
A
1
2
0.225  
0.185  
4X  
0.015  
SYMM  
C A B  
4224051/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBH0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
4X ( 0.2)  
2
1
A
B
SYMM  
(0.4) TYP  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.2)  
METAL  
(
0.2)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224051/A 11/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBH0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
4X ( 0.21)  
1
2
A
B
SYMM  
(0.4) TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 50X  
4224051/A 11/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV841SADL41YBHR

具有可调节释放延迟功能且采用 Wafer Chip-Scale Package 封装的超低压纳瓦级功率监控器 | YBH | 4 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV853

具有低电平有效开漏复位功能的 3 引脚电压监控器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV853MDBZR

具有低电平有效开漏复位功能的 3 引脚电压监控器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV853MDBZT

具有低电平有效开漏复位功能的 3 引脚电压监控器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8541

单路、3.6V、8kHz、超低静态电流 (550nA)、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8541DBVR

Single, 3.6-V, 8-kHz, ultra-low quiescent current (550-nA), RRIO operational amplifier | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8542

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8542DR

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8542RUGR

双路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器 | RUG | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TLV8544

四路、3.6V、8kHz、超低静态电流 (500nA)、RRIO 运算放大器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI