TLVM13630RDHR [TI]

高密度 3V 至 36V 输入、1V 至 6V 输出、3A 降压电源模块 | RDH | 30 | -40 to 125;
TLVM13630RDHR
型号: TLVM13630RDHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高密度 3V 至 36V 输入、1V 至 6V 输出、3A 降压电源模块 | RDH | 30 | -40 to 125

电源电路
文件: 总42页 (文件大小:3768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
TLVM13630 高密度、3V 36V 输入、1V 6V 输出、3A 电源模块采用增强型  
HotRod™ QFN 封装  
1 特性  
3 说明  
• 多功能同步降压直流/直流模块  
TLVM13630 步降压电源模块是一款高度集成的  
36V3A /流解决方案成了多个功率  
MOSFET、一个屏蔽式电感器和多个无源器件并采  
用增强型 HotRodQFN 装。该模块的 VIN 和  
VOUT 引脚位于封装的边角处可优化输入和输出电  
容器在布局中的放置。模块下方具有四个较大的散热焊  
可在制造过程中实现简单布局和轻松处理。  
– 集MOSFET、电感器和控制器  
3 V 36 V 的宽输入电压范围  
– 可调节输出电压范围1V 6V在整个温度  
范围具1% 的设定点精度  
4mm × 6mm × 1.8mm 超模压塑料封装  
– –40°C 125°C 结温范围  
– 可200kHz 2.2MHz 范围内调节频率  
负输出电压应用功能  
TLVM13630 具有 1V 6V 的输出电压旨在快速、  
轻松实现小尺寸 PCB EMI 设计。总体解决方案仅  
需四个外部元件并且省去了设计流程中的磁性和补偿  
元件选择过程。  
• 在整个负载范围内具有超高效率  
12VIN5VOUT1MHz 时峰值效率93%  
– 具有用于提升效率的外部偏置选项  
– 关断时的静态电流0.6µA典型值)  
3A 负载下的典型压降0.4V  
尽管针对空间受限型应用采用了简易的小尺寸设计,  
TLVM13630 模块提供了许多特性可实现稳健的性  
具有迟滞功能的精密使能端可实现输入电压 UVLO  
调节、集成 VCC、自举和输入电容器以提高可靠性和  
密度、全负载电流范围内恒定开关频率以提高负载瞬态  
性能、 负输出电压能力以用于反相应用、以及  
PGOOD 指示器可实现时序控制、故障保护和输出电压  
监控。  
• 超低的传导和辐EMI 信号  
– 具有双输入路径和集成电容器的低噪声封装可降  
低开关振铃  
– 恒定频FPWM 运行模式  
– 符CISPR 11 32 B 类发射要求  
• 适用于可扩展电源  
TLVM1362036V2A引脚兼容  
• 固有保护特性可实现稳健设计  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
– 精密使能输入和漏极开PGOOD 指示器用  
于时序、控制VIN UVLO)  
– 断续模式过流保护  
TLVM13630  
B0QFN (30)  
4.0mm × 6.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 具有迟滞功能的热关断保护  
• 使TLVM13630 并借WEBENCH® Power  
空白  
Designer 创建定制设计方案  
2 应用  
测试和测量以及航天和国防  
工厂自动化和控制  
降压反相降压/升压电源  
100  
95  
90  
85  
80  
75  
VIN = 3 V...36 V  
VIN  
CIN  
PGND  
TLVM13630  
VOUT = 5 V  
VOUT = 5 V  
fSW = 1 MHz  
70  
VLDOIN  
EN  
IOUT(max) = 3 A  
65  
VOUT  
60  
PG  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
RFBT  
55  
50  
COUT  
VCC  
RT  
FB  
0.0  
0.5  
1.0  
1.5  
Output Current (A)  
2.0  
2.5  
3.0  
RFBB  
CVCC  
RRT  
AGND  
典型效率VOUT = 5V, FSW = 1MHz)  
* VOUT enters dropout  
if VIN < 5.4 V  
典型电路原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFT6  
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................22  
8 Applications and Implementation................................23  
8.1 Application Information............................................. 23  
8.2 Typical Applications.................................................. 23  
9 Power Supply Recommendations................................33  
10 Layout...........................................................................34  
10.1 Layout Guidelines................................................... 34  
10.2 Layout Example...................................................... 34  
11 Device and Documentation Support..........................35  
11.1 Device Support........................................................35  
11.2 Documentation Support.......................................... 36  
11.3 接收文档更新通知................................................... 36  
11.4 支持资源..................................................................36  
11.5 Trademarks............................................................. 36  
11.6 Electrostatic Discharge Caution..............................36  
11.7 术语表..................................................................... 36  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 System Characteristics............................................... 9  
6.7 Typical Characteristics..............................................10  
6.8 Typical Characteristics: VIN = 12 V............................11  
6.9 Typical Characteristics: VIN = 24 V........................... 12  
6.10 Typical Characteristics: VIN = 36 V......................... 13  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
Information.................................................................... 37  
4 Revision History  
Changes from Revision * (March 2021) to Revision A (January 2022)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
Device Comparison Table  
DEVICE  
ORDERABLE PART  
MODE  
SPREAD  
SPECTRUM  
OUTPUT  
VOLTAGE  
EXTERNAL  
SYNC  
JUNCTION  
TEMPERATURE  
NUMBER  
TLVM13630  
TLVM13630RDHR  
FPWM  
No  
Adjustable  
No  
40°C to 125°C  
5 Pin Configuration and Functions  
RT  
1
2
21 DNC  
20 DNC  
27  
AGND  
EN  
VIN  
VIN  
3
4
5
6
19 VIN  
18 VIN  
17 PGND  
28  
PGND  
PGND  
PGND  
29  
PGND  
16 PGND  
15 VOUT  
14 VOUT  
VOUT  
VOUT  
7
8
30  
VOUT  
5-1. 30-Pin QFN, RDH Package (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Frequency setting pin. This analog pin is used to set the switching frequency between 200 kHz and  
2.2 MHz by placing an external resistor from this pin to AGND. Do not leave open or connect to  
ground.  
1
RT  
I
I
Precision enable input pin. High = on, low = off. Can be connected to VIN. Precision enable allows  
the pin to be used as an adjustable UVLO. Place an external voltage divider between this pin, AGND,  
and VIN to create an external UVLO.  
2
EN  
VIN  
Input supply voltage. Connect the input supply to these pins. Connect input capacitors between these  
pins and PGND in close proximity to the device. Refer to 10.2 for input capacitor placement  
example.  
3, 4, 18, 19  
P
G
Power ground. This is the return current path for the power stage of the device. Connect this pad to  
the input supply return, the load return, and the capacitors associated with the VIN and VOUT pins.  
See 10.2 for a recommended layout.  
5, 6, 16, 17,  
28, 29  
PGND  
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the  
output load and connect external output capacitors between these pins and PGND.  
7-10, 12–  
15, 30  
VOUT  
SW  
P
O
Switch node. Do not place any external component on this pin or connect to any signal. The amount  
of copper placed on these pins must be kept to a minimum to prevent issues with noise and EMI.  
11  
Do Not Connect. Do not connect these pins to ground, to another DNC pin, or to any other voltage.  
These pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.  
20,21  
DNC  
Optional LDO supply input. Connect to VOUT or to other voltage rail to improve efficiency. Connect  
an optional high quality 0.1-μF to 1-μF capacitor from this pin to ground for improved noise  
immunity. Do not connect to a voltage above 12 V or to a voltage greater than VIN. If unused, connect  
this pin to ground..  
22  
VLDOIN  
P
Internal LDO output. Used as supply to internal control circuits. Do not connect to any external loads.  
Connect a high-quality 1-μF ceramic capacitor from this pin to PGND.  
23  
VCC  
O
G
Analog ground. Zero voltage reference for internal references and logic. All electrical parameters are  
measured with respect to this pin. This pin must be connected to PGND at a single point. See 节  
10.2 for a recommended layout.  
24, 27  
AGND  
Feedback input. For the adjustable output version, connect the mid-point of the feedback resistor  
divider to this pin. Connect the upper resistor (RFBT) of the feedback divider to VOUT at the desired  
point of regulation. Connect the lower resistor (RFBB) of the feedback divider to AGND. When  
connecting with feedback resistor divider, keep this FB trace short and as small as possible to avoid  
noise coupling. See 10.2 for a feedback resistor placement.  
25  
26  
FB  
I
Power-good monitor. Open-drain output that asserts low if the feedback voltage is not within the  
specified window thresholds. A 10-kΩto 100-kΩpullup resistor is required to a suitable pullup  
voltage. If not used, this pin can be left open or connected to PGND.  
PG  
O
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Limits apply over TJ = 40°C to 125°C (unless otherwise noted). (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0
MAX  
40  
UNIT  
V
VIN to AGND, PGND  
VLDOIN to AGND, PGND  
EN to AGND, PGND  
16  
V
40  
V
Input voltage  
RT to AGND, PGND  
FB to AGND, PGND  
PG to AGND, PGND  
PGND to AGND  
5.5  
16  
V
V
20  
V
2
V
1  
VCC to AGND, PGND  
SW to AGND, PGND(2)  
VOUT to AGND, PGND  
PG  
5.5  
40  
V
0.3  
0.3  
0.3  
Output voltage  
V
6
V
Input current  
10  
mA  
°C  
°C  
°C  
°C  
TJ  
Junction temperature  
Ambient temperature  
Storage temperature  
125  
105  
150  
260  
3
40  
40  
55  
TA  
Tstg  
Peak reflow case temperature  
Maximum number of reflows allowed  
Mechanical shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
1500  
20  
G
G
Mechanical vibration  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) A voltage of 2 V below PGND and 2 V above VIN can appear on this pin for 200 ns with a duty cycle of 0.01%.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 (2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLVM13630  
 
 
 
 
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
Limits apply over TJ = 40°C to 125°C (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
V
Input voltage  
Input voltage  
Output voltage  
Output current  
Frequency  
Input current  
Output voltage  
TJ  
VIN (Input voltage range after start-up)  
3
36  
12  
VLDOIN  
V
VOUT(1)  
1
0
6
V
IOUT(2)  
3
A
FSW set by RT  
200  
2200  
2
kHz  
mA  
V
PG  
PG  
0
40  
40  
16  
Operating junction temperature  
Operating ambient temperature  
125  
105  
°C  
°C  
TA  
(1) Under no conditions should the output voltage be allowed to fall below 0 V.  
(2) Maximum continuous DC current may be derated when operating with high switching frequency, high ambient temperature, or both.  
Refer to the Typical Characteristics section for details.  
6.4 Thermal Information  
TLVM13630  
THERMAL METRIC(1)  
RDH (QFN)  
30 PINS  
29.1  
UNIT  
RθJA  
RθJA  
ψJT  
Junction-to-ambient thermal resistance (TPSM63603 EVM)  
Junction-to-ambient thermal resistance(2)  
°C/W  
°C/W  
°C/W  
°C/W  
33.5  
Junction-to-top characterization parameter(3)  
Junction-to-board characterization parameter(4)  
4.1  
21.5  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 64-mm x 83-mm four-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow and PCB copper area reduces RθJA. For more information see the Layout  
section.  
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
 
 
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
Limits apply over TJ = 40°C to 125°C, VIN = 24 V, VOUT = 3.3 V, VLDOIN = 5 V, FSW = 800 kHz (unless otherwise noted).  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE  
Needed to start up (over IOUT range)  
Once operating (over IOUT range)  
3.95  
3
36  
36  
V
V
VIN  
Input operating voltage range  
VIN_HYS  
IQ_VIN  
Hysteresis(1)  
1.0  
4
V
Input operating quiescent current (non-switching)  
VIN shutdown quiescent current  
TA = 25°C, VEN = 3.3 V, VFB = 1.5 V  
VEN = 0 V, TA = 25°C  
µA  
µA  
ISDN_VIN  
ENABLE  
VEN_RISE  
VEN_FALL  
VEN_HYS  
VEN_WAKE  
IEN  
3
EN voltage rising threshold  
EN voltage falling threshold  
EN voltage hysteresis  
1.161  
1.263  
0.91  
1.365  
0.404  
V
V
0.275  
0.4  
0.353  
V
EN wake-up threshold  
V
Input current into EN (non-switching)  
EN HIGH to start of switching delay(1)  
VEN = 3.3 V, VFB = 1.5 V  
1.65  
0.7  
µA  
ms  
tEN  
INTERNAL LDO VCC  
3.3  
3.1  
3.6  
3.6  
1.1  
V
V
V
V
V
3.4 V VLDOIN 12.5 V  
VLDOIN = 3.1 V, non-switching  
VLDOIN < 3.1 V(1)  
VCC  
Internal LDO VCC output voltage  
VCC_UVLO  
VCC UVLO rising threshold  
VIN < 3.6 V(2)  
VCC_UVLO_HYS VCC UVLO hysteresis(2)  
Hysteresis below VCC_UVLO  
Input current into the VLDOIN pin (non-switching,  
IVLDOIN  
VEN = 3.3 V, VFB = 1.5 V  
25  
31.2  
6
µA  
maximum at TA = 125)(3)  
FEEDBACK  
VOUT  
Adjustable output voltage range  
Feedback voltage  
Over the IOUT range  
TA = 25°C, IOUT = 0 A  
1
V
V
VFB  
1.0  
Over the VIN range, VOUT = 1 V, IOUT = 0  
A, FSW = 200 kHz  
VFB_ACC  
VFB  
Feedback voltage accuracy  
Load regulation  
+1%  
1%  
0.1%  
0.1%  
10  
TA = 25°C, 0 A IOUT 3 A  
TA = 25°C, IOUT = 0 A, 4.0 V VIN 36  
V
VFB  
Line regulation  
IFB  
Input current into the FB pin  
VFB = 1.0 V  
nA  
CURRENT  
IOUT  
Output current  
TA = 25°C  
0
3.0  
A
A
A
A
A
IOCL  
Output overcurrent (DC) limit threshold  
High-side switch current limit  
Low-side switch current limit  
Negative current limit  
4.9  
6.2  
3.4  
3  
IL_HS  
Duty cycle approaches 0%  
5.6  
2.9  
6.8  
3.8  
IL_LS  
IL_NEG  
Ratio of FB voltage to in-regulation FB voltage to  
enter hiccup  
VHICCUP  
tW  
Not during soft start  
40%  
80  
Short circuit wait time ("hiccup" time before soft start)  
ms  
(1)  
SOFT START  
tSS  
Time from first SW pulse to VREF at 90%  
3.5  
9.5  
5
7
ms  
ms  
VIN 4.2 V  
VIN 4.2 V  
Time from first SW pulse to release of FPWM lockout  
if output not in regulation(1)  
tSS2  
13  
17  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over TJ = 40°C to 125°C, VIN = 24 V, VOUT = 3.3 V, VLDOIN = 5 V, FSW = 800 kHz (unless otherwise noted).  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD  
PGOV  
% of VOUT setting  
105%  
92%  
107%  
94%  
110%  
PG upper threshold rising  
PGUV  
% of VOUT setting  
96.5%  
PG lower threshold falling  
PGHYS  
PG upper threshold hysteresis (rising and falling)  
Input voltage for valid PG output  
Low level PG function output voltage  
% of VOUT setting  
1.3%  
VIN_PG_VALID  
VPG_LOW  
1.0  
1.5  
V
V
46-μA pullup, VEN = 0 V  
2-mA pullup to the PG pin, VEN = 3.3 V  
0.4  
2.5  
Input current into PG pin when open-drain output is  
high  
IPG  
IOV  
VPG = 3.3 V  
10  
nA  
Pulldown current at the SW node under overvoltage  
condition  
0.5  
mA  
tPG_FLT_RISE  
tPG_FLT_FALL  
Delay time to PG high signal  
2.0  
ms  
µs  
Glitch filter time constant for PG function  
120  
SWITCHING FREQUENCY  
fSW_RANGE Switching frequency range by RT or SYNC  
fSW_RT1  
200  
180  
2200  
220  
kHz  
kHz  
kHz  
Default switching frequency by RT  
Default switching frequency by RT  
200  
RRT = 66.5 k  
fSW_RT2  
1980  
2200  
2420  
VIN = 12 V, RRT = 5.76 kΩ  
SYNCHRONIZATION  
tB  
Blanking of EN after rising or falling edges(1)  
4
28  
µs  
ns  
Enable sync signal hold time after edge for  
edge recognition(1)  
tSYNC_EDGE  
POWER STAGE  
VBOOT_UVLO  
100  
Voltage on CBOOT pin compared to SW which will  
turn off the high-side switch  
2.1  
V
tON_MIN  
tON_MAX  
tOFF_MIN  
Minimum ON pulse width(1)  
Maximum ON pulse width(1)  
Minimum OFF pulse width  
VOUT = 1 V, IOUT = 1 A  
VIN = 4 V, IOUT = 1 A  
Temperature rising  
55  
9
70  
85  
ns  
µs  
ns  
65  
THERMAL SHUTDOWN  
TSDN  
Thermal shutdown threshold (1)  
Thermal shutdown hysteresis (1)  
158  
168  
10  
180  
°C  
°C  
THYST  
(1) Parameter specified by design, statistical analysis and production testing of correlated parameters. Not production tested.  
(2) Production tested with VIN = 3 V  
(3) This is the current used by the device while not switching, open loop, with FB pulled to +5% of nominal. It does not represent the total  
input current to the system while regulating. For additional information, reference the System Characteristics and the Input Supply  
Current section.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.6 System Characteristics  
The following specifications apply only to the typical applications circuit, with nominal component values. Specifications in the  
typical (TYP) column apply to TJ = 25°C only. These specifications are not ensured by production testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
Input supply current when in  
regulation  
VIN = 24 V, VOUT = 3.3 V, VEN = VIN, VVLDOIN = VOUT, FSW = 800 kHz,  
IOUT = 0 A  
IIN  
10  
mA  
OUTPUT VOLTAGE  
VFB  
VFB  
Load regulation  
VOUT = 3.3 V, VIN = 24 V, IOUT = 0.1 A to full load  
VOUT = 3.3 V, VIN = 4 V to 36 V, IOUT = 3 A  
1
6
mV  
mV  
Line regulation  
Load transient  
VOUT = 3.3 V, VIN = 24 V, IOUT = 1 A to 2.5 A at 2 A/μs,  
COUT(derated) = 49 μF  
VOUT  
50  
mV  
EFFICIENCY  
VOUT = 3.3 V, VIN = 12 V, IOUT = 2.5 A, VLDOIN = VOUT, FSW = 800 kHz  
VOUT = 3.3 V, VIN = 24 V, IOUT = 2.5 A, VLDOIN = VOUT, FSW = 800 kHz  
VOUT = 5 V, VIN = 24 V, IOUT = 2.5 A, VLDOIN = VOUT, FSW = 1 MHz  
VOUT = 5 V, VIN = 36 V, IOUT = 2.5 A, VLDOIN = VOUT, FSW = 1 MHz  
VOUT = 12 V, VIN = 24 V, IOUT = 1.5 A, VLDOIN = VOUT, FSW = 2 MHz  
89.5%  
87.5%  
91%  
Efficiency  
η
88.1%  
94.1%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
VIN = 24 V, unless otherwise specified.  
1.01  
1.005  
1
4
TJ = -40C  
TJ = 25C  
TJ = 125C  
3
2
1
0
0.995  
0.99  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
0
6
12  
18  
24  
30  
36  
Input Voltage (V)  
VEN = 0 V  
6-2. Feedback Voltage  
6-1. Shutdown Supply Current  
70  
70  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
0
High-side MOSFET  
Low-side MOSFET  
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
Frequency (kHz)  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
6-3. Switching Frequency Set by RT Resistor  
6-4. High-Side and Low-Side MOSFET RDS(on)  
1.4  
115  
110  
105  
100  
95  
1.2  
1
0.8  
0.6  
90  
0.4  
OV Tripping  
OV Recovery  
UV Recovery  
UV Tripping  
VEN Rising  
VEN Falling  
VEN_WAKE Rising  
VEN_WAKE Falling  
85  
0.2  
80  
-50  
0
-50  
-25  
0
25  
50  
75  
100 125  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
6-6. Power-Good (PG) Thresholds  
6-5. Enable Thresholds  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.8 Typical Characteristics: VIN = 12 V  
Refer to 8.2 for circuit designs.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VOUT, FSW  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
2.5 V, 750 kHz  
1.8 V, 600 kHz  
VOUT, FSW  
50  
45  
40  
35  
30  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
2.5 V, 750 kHz  
1.8 V, 600 kHz  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
VLDOIN = VOUT  
VLDOIN = VOUT  
6-7. Efficiency  
6-8. Power Dissipation  
115  
105  
95  
22  
VOUT, FSW  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
2.5 V, 750 kHz  
1.8 V, 600 kHz  
20  
18  
16  
14  
12  
10  
8
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
6
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
COUT = 2 × 47-µF ceramic, 25-V, 1206 case size  
6-10. Safe Operating Area  
VOUT = 1.8 V, FSW = 600 kHz  
6-9. Output Voltage Ripple  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
45  
Airflow  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
35  
25  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
6-11. Safe Operating Area  
6-12. Safe Operating Area  
VOUT = 3.3 V, FSW = 800 kHz  
VOUT = 5.0 V, FSW = 1 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.9 Typical Characteristics: VIN = 24 V  
Refer to 8.2 for circuit designs.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT, FSW  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
2.5 V, 750 kHz  
VOUT, FSW  
45  
40  
35  
30  
5 V, 1.0 MHz  
3.3 V, 800 kHz  
2.5 V, 750 kHz  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
VLDOIN = VOUT  
VLDOIN = VOUT  
6-13. Efficiency  
6-14. Power Dissipation  
115  
105  
95  
35  
VOUT, FSW  
32  
29  
26  
23  
20  
17  
14  
11  
8
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
2.5 V, 750 kHz  
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
COUT = 2 × 47-µF ceramic, 25-V, 1206 case size  
6-16. Safe Operating Area  
VOUT = 3.3 V, FSW = 800 kHz  
6-15. Output Voltage Ripple  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
6-17. Safe Operating Area  
VOUT = 5.0 V, FSW = 1 MHz  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
6.10 Typical Characteristics: VIN = 36 V  
Refer to 8.2 for circuit designs.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
VOUT, FSW  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
VOUT, FSW  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
40  
35  
30  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
VLDOIN = VOUT  
VLDOIN = VOUT  
6-18. Efficiency  
6-19. Power Dissipation  
115  
105  
95  
40  
VOUT, FSW  
5.0 V, 1.0 MHz  
3.3 V, 800 kHz  
36  
32  
28  
24  
20  
16  
12  
8
85  
75  
65  
55  
45  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
35  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
COUT = 2 × 47-µF ceramic, 25-V, 1206 case size  
6-21. Safe Operating Area  
VOUT = 3.3 V, FSW = 800 kHz  
6-20. Output Voltage Ripple  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
Device soldered to a 64-mm × 83-mm, 4-layer PCB  
6-22. Safe Operating Area  
VOUT = 5.0 V, FSW = 1 MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLVM13630 is an easy-to-use, synchronous buck, DC-DC power module that operates from a 3-V to 36-V  
supply voltage. The device is intended for step-down conversions from 5-V, 12-V, and 24-V supply rails. With an  
integrated power controller, inductor, and MOSFETs, the TLVM13630 delivers up to 3-A DC load current, with  
high efficiency and ultra-low input quiescent current, in a very small solution size. Although designed for simple  
implementation, this device offers flexibility to optimize its usage according to the target application. Control-loop  
compensation is not required, reducing design time and external component count.  
With a programmable switching frequency from 200 kHz to 2.2 MHz using its RT pin, the TLVM13630  
incorporates specific features to improve EMI performance in noise-sensitive applications:  
An optimized package and pinout design enables a shielded switch-node layout that mitigates radiated EMI  
Parallel input and output paths with symmetrical capacitor layouts minimize parasitic inductance, switch-  
voltage ringing, and radiated field coupling  
Clock synchronization and FPWM mode enable constant switching frequency across the load current range  
Integrated power MOSFETs with enhanced gate drive control enable low-noise PWM switching  
Adjustable switch-node slew rate, which allows optimization of EMI at higher frequency harmonics  
The TLVM13630 module also includes inherent protection features for robust system requirements:  
An open-drain PGOOD indicator for power-rail sequencing and fault reporting  
Precision enable input with hysteresis, providing  
Programmable line undervoltage lockout (UVLO)  
Remote ON/OFF capability  
Internally fixed output-voltage soft start with monotonic startup into prebiased loads  
Hiccup-mode overcurrent protection with cycle-by-cycle peak and valley current limits  
Thermal shutdown with automatic recovery.  
These features enable a flexible and easy-to-use platform for a wide range of applications. The pin arrangement  
is designed for simple layout, requiring few external components. See 10 for layout example.  
7.2 Functional Block Diagram  
VLDOIN  
VCC  
Optional  
external bias  
(from VOUT)  
RT  
LDO bias  
subregulator  
VIN  
Oscillator  
RRT  
CVCC  
UVLO  
VIN = 3 V to 36 V  
OTP  
VIN  
RENT  
Shutdown  
logic  
Precision  
enable for  
VIN UVLO  
EN  
PG  
Enable  
logic  
RENB  
OCP  
PGOOD  
indicator  
PGOOD  
logic  
CIN  
SW  
Power  
stage  
and  
control  
logic  
2.2 µH  
VOUT = 1 V to 6 V  
IOUT(max) = 3 A  
COUT  
RFBT  
VOUT  
FB  
To VOUT  
sense point  
UVLO  
OTP  
OCP  
EN  
Soft start  
+
RFBB  
Comp  
VREF  
PGND  
AGND  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Input Voltage Range  
With a steady-state input voltage range from 3 V to 36 V, the TLVM13630 module is intended for step-down  
conversions from typical 12-V, 24-V, and 28-V input supply rails. The schematic circuit in 7-1 shows all the  
necessary components to implement a TLVM13630-based buck regulator using a single input supply.  
VIN = 3 to 36 V  
Precision  
Enable UVLO  
VIN  
VIN  
CIN1  
CIN2  
PGND  
PGND  
RENT  
TLVM13630  
Optional  
external bias  
VOUT = 1 to 6 V  
IOUT(max) = 3 A  
EN  
VLDOIN  
VCC  
VOUT  
VOUT  
RENB  
CVCC  
COUT  
RPG  
RFBT  
PG  
RT  
PGOOD  
indicator  
FB  
RRT  
RFBB  
AGND  
PGND  
7-1. TLVM13630 Schematic Diagram with Input Voltage Operating Range of 3 V to 36 V  
Take extra care to make sure that the voltage at the VIN pins of the module does not exceed the absolute  
maximum voltage rating of 40 V during line or load transient events. Voltage ringing at the VIN pins that exceeds  
the absolute maximum ratings can damage the IC.  
7.3.2 Adjustable Output Voltage (FB)  
The TLVM13630 has an adjustable output voltage range of 1 V to 6 V. Setting the output voltage requires two  
resistors, RFBT and RFBB (see 7-2). Connect RFBT between VOUT, at the regulation point, and the FB pin.  
Connect RFBB between the FB pin and AGND (pin 10). The recommended value of RFBB is 10 kΩ. The value for  
RFBT can be calculated using 方程式 1. 7-1 lists the standard resistor values for several output voltages and  
the recommended switching frequency. The minimum required output capacitance for each output voltage is also  
included in 7-1. The capacitance values listed represent the effective capacitance, taking into account the  
effects of DC bias and temperature variation.  
(1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLVM13630  
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
VOUT  
RFBT  
FB  
RFBB  
10 kΩ  
AGND  
7-2. FB Resistor Divider  
7-1. Standard RFBT Values, Recommended FSW and Minimum COUT  
RECOMMENDED  
FSW (kHz)  
COUT(MIN) (µF)  
(EFFECTIVE)  
RECOMMENDED  
FSW (kHz)  
COUT(MIN) (µF)  
(EFFECTIVE)  
RFBT (kΩ) (1)  
RFBT (kΩ) (1)  
VOUT (V)  
VOUT (V)  
1.0  
1.2  
1.5  
1.8  
2.0  
Short  
2
400  
500  
500  
600  
600  
300  
200  
160  
120  
100  
2.5  
3.0  
3.3  
5.0  
6.0  
15  
750  
750  
65  
50  
40  
25  
22  
20  
4.99  
8.06  
10  
23.2  
40.2  
49.9  
800  
1000  
1000  
(1) RFBB = 10 kΩ.  
Note that higher feedback resistances consume less DC current, which is mandatory if light-load efficiency is  
critical. However, RFBT larger than 1 MΩ is not recommended as the feedback path becomes more susceptible  
to noise. High feedback resistance generally requires more careful layout of the feedback path. It is important to  
keep the feedback trace as short as possible while keeping the feedback trace away from the noisy area of the  
PCB. For more layout recommendations, see 10.  
7.3.3 Input Capacitors  
Input capacitors are necessary to limit the input ripple voltage to the module due to switching-frequency AC  
currents. TI recommends using ceramic capacitors to provide low impedance and high RMS current rating over a  
wide temperature range. 方程式 2 gives the input capacitor RMS current. The highest input capacitor RMS  
current occurs at D = 0.5, at which point the RMS current rating of the capacitors should be greater than half the  
output current.  
DIL2  
12  
DIOUT2 1-D +  
÷
÷
ICIN,rms  
=
(
)
«
(2)  
where  
D = VOUT / VIN = the module duty cycle  
Ideally, the DC and AC components of input current to the buck stage are provided by the input voltage source  
and the input capacitors, respectively. Neglecting inductor ripple current, the input capacitors source current of  
amplitude (IOUT IIN) during the D interval and sink IIN during the 1 D interval. Thus, the input capacitors  
conduct a square-wave current of peak-to-peak amplitude equal to the output current. The resultant capacitive  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
component of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, 方程  
3 gives the peak-to-peak ripple voltage amplitude:  
IOUT D 1- D  
(
)
+ IOUT RESR  
DV  
=
IN  
FSW CIN  
(3)  
(4)  
方程4 gives the input capacitance required for a particular load current:  
D1-D I  
(
)
OUT  
CIN  
í
FSW ∂ DVIN -RESR IOUT  
(
)
where  
• ΔVIN is the input voltage ripple specification.  
The TLVM13630 requires a minimum of 2 × 4.7 µF of ceramic type input capacitance. Only use high-quality  
ceramic type capacitors with sufficient voltage and temperature rating. The ceramic input capacitors provide a  
low impedance source to the converter in addition to supplying the ripple current and isolating switching noise  
from other circuits. Additional capacitance can be required for applications with transient load requirements. The  
voltage rating of input capacitors must be greater than the maximum input voltage. To compensate for the  
derating of ceramic capacitors, TI recommends a voltage rating of twice the maximum input voltage or placing  
multiple capacitors in parallel. 7-2 includes a preferred list of capacitors by vendor.  
7-2. Recommended Input Capacitors  
CAPACITOR CHARACTERISTICS  
VENDOR(1)  
DIELECTRIC  
PART NUMBER  
CASE SIZE  
CAPACITANCE (2)  
(µF)  
VOLTAGE RATING (V)  
TDK  
X7R  
X7R  
X7R  
X7S  
C3216X7R1H475K160AC  
GRM31CR71H475KA12L  
CGA6P3X7R1H475K250AB  
GCM31CC71H475KA03L  
1206  
1206  
1210  
1206  
50  
50  
50  
50  
4.7  
4.7  
4.7  
4.7  
Murata  
TDK  
Murata  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table. See the Third-Party Products Disclaimer.  
(2) Nameplate capacitance values (the effective values are lower based on the applied DC voltage and temperature).  
7.3.4 Output Capacitors  
7-1 lists the TLVM13630 minimum amount of required output capacitance. The effects of DC bias and  
temperature variation must be considered when using ceramic capacitance. For ceramic capacitors, the package  
size, voltage rating, and dielectric material contribute to differences between the standard rated value and the  
actual effective value of the capacitance.  
When adding additional capacitance above COUT(MIN), the capacitance can be ceramic type, low-ESR polymer  
type, or a combination of the two. See 7-3 for a preferred list of output capacitors by vendor.  
7-3. Recommended Output Capacitors  
CAPACITOR CHARACTERISTICS  
TEMPERATURE  
COEFFICIENT  
VENDOR(1)  
TDK  
PART NUMBER  
CASE SIZE  
VOLTAGE (V)  
CAPACITANCE(2) (µF)  
X7R  
X7R  
X7R  
X7S  
X6S  
X7R  
CGA5L1X7R1C106K160AC  
GCM31CR71C106KA64L  
C3216X7R1E106K160AB  
GCJ31CC71E106KA15L  
GRM31CC81E226K  
1206  
1206  
1206  
1206  
1206  
1210  
16  
16  
25  
25  
25  
25  
10  
10  
10  
10  
22  
22  
Murata  
TDK  
Murata  
Murata  
Murata  
GRM32ER71E226M  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table. See the Third-Party Products Disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLVM13630  
 
 
 
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
(2) Nameplate capacitance values (the effective values are lower based on the applied DC voltage and temperature).  
7.3.5 Switching Frequency (RT)  
The switching frequency range of the TLVM13630 is 200 kHz to 2.2 MHz. The switching frequency can easily be  
set by connecting a resistor (RRT) between the RT pin and AGND. Use 方程式 5 to calculate the RRT value for a  
desired frequency or simply select from 7-4. Note that a resistor value outside of the recommended range can  
cause the device to shut down. This prevents unintended operation if RT pin is shorted to ground or left open.  
Do not apply a pulsed signal to this pin to force synchronization.  
The switching frequency must be selected based on the output voltage setting of the device. See 7-4 for RRT  
resistor values and the allowable output voltage range for a given switching frequency for common input  
voltages.  
(5)  
7-4. Switching Frequency Versus Output Voltage (IOUT = A)  
VIN = 5 V  
VIN = 12 V  
VIN = 24 V  
VIN = 36 V  
RRT  
(kΩ)  
FSW (kHz)  
VOUT RANGE (V)  
VOUT RANGE (V)  
VOUT RANGE (V)  
VOUT RANGE (V)  
MIN  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
MAX  
2.0  
3.0  
3.5  
3.5  
3.0  
3.0  
3.0  
3.0  
3.0  
2.5  
2.5  
MIN  
1.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
MAX  
2.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
MIN  
1.0  
1.0  
1.5  
1.5  
2.0  
2.5  
3.0  
3.0  
3.5  
4.0  
4.5  
MAX  
1.5  
3.3  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
MIN  
1.0  
1.2  
1.8  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-
MAX  
1.5  
3.0  
5.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
-
200  
400  
66.5  
33.2  
22.1  
16.5  
13.0  
10.7  
9.09  
8.06  
6.98  
6.34  
5.626  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
7.3.6 Output ON/OFF Enable (EN) and VIN UVLO  
The EN pin provides precision ON and OFF control for the TLVM13630. Once the EN/SYNC pin voltage exceeds  
the threshold voltage and VIN is above the minimum turn-on threshold, the device starts operation. The simplest  
way to enable the TLVM13630 is to connect EN directly to VIN. This allows the TLVM13630 to start up when VIN  
is within its valid operating range. However, many applications benefit from the employment of an enable divider  
network as shown in 7-3, which establishes a precision input undervoltage lockout (UVLO). This can be used  
for sequencing, to prevent re-triggering the device when used with long input cables, or to reduce the occurrence  
of deep discharge of a battery power source. An external logic signal can also be used to drive the enable input  
to toggle the output on and off and for system sequencing or protection.  
VIN  
VIN  
RENT  
EN  
RENB  
AGND  
7-3. VIN UVLO Using the EN Pin  
RENB can be calculated using 方程6.  
(6)  
where  
A typical value for RENT is 100 kΩ.  
VEN is 1.263 V (typical).  
VIN(ON) is the desired start-up input voltage.  
7.3.7 Power Good Monitor (PG)  
The TLVM13630 provides a PGOOD signal to indicate when the output voltage is within regulation. Use the  
PGOOD signal for output monitoring, fault protection, or start-up sequencing of downstream converters. The  
PGOOD pin voltage goes low when the feedback voltage is outside of the PGOOD thresholds. This occurs  
during the following:  
While the device is disabled  
In current limit  
In thermal shutdown  
During normal start-up, when the output voltage has not reach its regulation value  
A glitch filter prevents false flag operation for short excursions (<120 µs typical) of the output voltage, such as  
during line and load transients.  
PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater than 20 V. The typical  
range of pullup resistance is 10 kto 100 k. When EN is pulled low, the flag output is also forced low. With EN  
low, power good remains valid as long as the input voltage is above 1 V (typical). Use the PG signal for start-up  
sequencing of downstream regulators, as shown in 7-4, or for fault protection and output monitoring.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLVM13630  
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
VIN(on) = 13.9 V  
VIN(off) = 10 V  
VOUT2 = 3.3 V  
VOUT1 = 5 V  
RUV1  
1 M  
RFB3  
PG 13  
PG 13  
RPG  
RFB1  
40.2 k  
23.2 k  
100 k  
14  
EN  
14  
EN  
RUV2  
FB  
10  
FB  
10  
1 V  
1 V  
100 k  
RFB4  
10 k  
RFB2  
10 k  
Regulator #1  
Regulator #2  
Start-up based on  
input voltage UVLO  
Sequential start-up  
based on PG  
7-4. TLVM13630 Sequencing Implementation Using PG and EN  
7.3.8 Internal LDO, VCC Output, and VLDOIN Input  
The TLVM13630 has an internal LDO to power internal circuitry. The VCC pin is the output of the internal LDO.  
This pin must not be used to power external circuitry. Connect a high-quality, 1-μF capacitor from this pin to  
AGND, close to the device pins. Do not load the VCC pin or short it to ground.  
The VLDOIN pin is an optional input to the internal LDO. Connect an optional high quality 0.1-µF to 1-µF  
capacitor from this pin to ground for improved noise immunity.  
The LDO generates the VCC voltage from one of the two inputs: VIN or the VLDOIN input. When VLDOIN is tied  
to ground or below 3.1 V, the LDO is powered from VIN. When VLDOIN is tied to a voltage higher than 3.1 V, the  
LDO input is powered from VLDOIN. VLDOIN voltage must be lower than both VIN and 12.5 V.  
The VLDOIN input is designed to reduce the LDO power loss. The LDO power loss is:  
PLDO-LOSS = ILDO × (VIN_LDO VVCC  
)
(7)  
The higher the difference between the input and output voltages of the LDO, the more loss occurs to supply the  
same LDO output current. The VLDOIN input provides an option to supply the LDO with a lower voltage than  
VIN, to reduce the difference of the input and output voltages of the LDO and reduce power loss. For example, if  
the LDO current is 10 mA at a certain frequency with VIN = 24 V and VOUT = 5 V. The LDO loss with VLDOIN tied  
to ground is equal to 10 mA × (24 V 3.3 V) = 207 mW, while the loss with VLDOIN tied to VOUT (5 V) is equal  
to 10 mA × (5 V 3.3 V) = 17 mW.  
The efficiency improvement is more significant at light and mid loads because the LDO loss is a higher  
percentage of the total loss. The improvement is more significant with higher switching frequency because the  
LDO current is higher at higher switching frequency. The improvement is more significant when VIN » VOUT  
because the voltage difference is higher.  
7-5 shows typical efficiency waveforms with VLDOIN powered by different input voltages.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
VLDOIN  
3.3V  
5V  
GND  
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
VIN = 24 V  
VOUT = 5 V  
FSW = 1 MHz  
ILDO = 10 mA  
7-5. Efficiency improvements with VLDOIN (VOUT = 5 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
7.3.9 Overcurrent Protection (OCP)  
The TLVM13630 is protected from overcurrent conditions using cycle-by-cycle current limiting of the peak  
inductor current. The current is compared every switching cycle to the current limit threshold. During an  
overcurrent condition, the output voltage decreases.  
The TLVM13630 employs hiccup overcurrent protection if there is an extreme overload. In hiccup mode, the  
regulator is shut down and kept off for 80 ms (typical) before the TLVM13630 tries to start again. If an  
overcurrent or short-circuit fault condition still exists, hiccup repeats until the fault condition is removed. Hiccup  
mode reduces power dissipation under severe overcurrent conditions, and prevents overheating and potential  
damage to the device. Once the fault is removed, the module automatically recovers and returns to normal  
operation.  
7.3.10 Thermal Shutdown  
Thermal shutdown is an integrated self-protection used to limit junction temperature and prevent damage related  
to overheating. Thermal shutdown turns off the device when the junction temperature exceeds 168°C (typical) to  
prevent further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
TLVM13630 attempts to restart when the junction temperature falls to 158°C (typical).  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN/SYNC pin provides ON and OFF control for the TLVM13630. When VEN is below approximately 0.4 V,  
the device is in shutdown mode. Both the internal LDO and the switching regulator are off. The input quiescent  
current in shutdown mode drops to 0.6 µA (typical). The TLVM13630 also employs internal undervoltage  
protection. If the input voltage is below its UV threshold, the regulator remains off.  
7.4.2 Standby Mode  
The internal LDO has a lower enable threshold than the regulator itself. When VEN is above 1.1 V (maximum)  
and below the precision enable threshold of 1.263 V (typical), the internal LDO is on and regulating. The  
precision enable circuitry is turned on once the internal VCC is above its UVLO threshold. The switching action  
and voltage regulation are not enabled until VEN/SYNC rises above the precision enable threshold.  
7.4.3 Active Mode  
The TLVM13630 is in active mode when VIN and VEN are above their relevant thresholds and no fault conditions  
are present. The simplest way to enable the operation is to connect the EN pin to VIN, which allows self start-up  
when the applied input voltage exceeds the minimum start-up voltage.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8 Applications and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TLVM13630 only requires a few external components to convert from a wide range of supply voltages to a  
fixed output voltage. The following section describes the design procedure to configure the TLVM13630 power  
module. To expedite and streamline the design process, WEBENCH® online software is available to generate  
complete designs, leveraging iterative design procedures and access to comprehensive component databases.  
As mentioned previously, the TLVM13630 also integrates several optional features to meet system design  
requirements, including the following:  
Precision enable with hysteresis  
External adjustable UVLO  
Adjustable SW node slew rate  
Power-good indicator  
The following application circuit detailed shows the TLVM13630 configuration options suitable for several  
application use cases.  
8.2 Typical Applications  
The following are sample typical applications along with design procedure for the implemenation of TLVM13630.  
8.2.1 Design 1: 3-A Synchronous Buck Regulator for Industrial Applications  
8-1 shows the schematic diagram of a 5-V, 3-A buck regulator with a switching frequency of 1 MHz. The  
nominal input voltage for the sample design is 24 V. A resistor RRT of 13 kΩ sets the free-running switching  
frequency at 1 MHz. An optional SYNC input signal allows adjustment of the switching frequency for this specific  
application.  
VIN = 24 V  
VIN(on) = 6 V  
VIN(off) = 4.3 V  
VIN  
VIN  
CIN1  
4.7  
CIN2  
4.7  
F
F
PGND  
PGND  
RENT  
374 k  
TLVM13630  
Optional  
external bias  
VOUT = 5 V  
IOUT(max) = 3 A  
EN  
VLDOIN  
VCC  
VOUT  
VOUT  
RENB  
CVCC  
1
100 k  
COUT  
RPG  
F
2 47  
F
100 k  
RFBT  
40.2 k  
PG  
RT  
PGOOD  
indicator  
FB  
RRT  
13 k  
RFBB  
10 k  
AGND  
PGND  
8-1. Circuit Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLVM13630  
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters and follow the design  
procedures in 8.2.1.2.  
8-1. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
Input voltage  
24 V  
Output voltage  
5 V  
Output current  
0 A to 3 A  
1 MHz  
Switching Frequency  
8-2 gives the selected buck module power-stage components with availability from multiple vendors. This  
design uses an all-ceramic output capacitor implementation.  
8-2. List of Materials for Application Circuit 1  
REFERENCE  
DESIGNATOR  
QTY  
SPECIFICATION  
MANUFACTURER(1)  
PART NUMBER  
Taiyo Yuden  
TDK  
UMK325B7475KN-TR  
CGA6P3X7R1H475K250AB  
GRM31CC72A475KE11L  
GRM32ER71A476ME15L  
1210ZC476MAT2A  
4.7 µF, 50 V, X7R, 1210, ceramic  
CIN1, CIN2  
2
4.7 µF, 100 V, X7S, 1206, ceramic  
47 µF, 10 V, X7R, 1210, ceramic  
Murata  
Murata  
COUT1, COUT2  
2
AVX  
1 µF, 16 V, X7R, 0603, ceramic  
Murata  
GCM188R71C105KA64J  
EMK105BJ105KVHF  
CVCC  
U1  
1
1
1 µF, 16 V, X5R, 0402, ceramic  
Taiyo Yuden  
Texas Instruments  
TLVM13630 36-V, 3-A synchronous buck module  
TLVM13630RDLR  
(1) See the Third-Party Products Disclaimer.  
More generally, the TLVM13630 module is designed to operate with a wide range of external components and  
system parameters. However, the integrated loop compensation is optimized for a certain range of output  
capacitance.  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM63603 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Output Voltage Setpoint  
The output voltage of the TLVM13630 device is externally adjustable using a resistor divider. The recommended  
value of RFBB is 10 kΩ. The value for RFBB can be selected from 7-1 or calculated using 方程8:  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
(8)  
For the desired output voltage of 5 V, the formula yields a value of 40.2 kΩ. Choose the closest available  
standard value of 40.2 kΩfor RFBT  
.
8.2.1.2.3 Switching Frequency Selection  
The recommended switching frequency for standard output voltages can be found in 7-1. For a 5-V output,  
the recommended switching frequency is 1 MHz. To set the switching frequency to 1 MHz, connect a 13.0-kΩ  
resistor between the RT pin and AGND.  
8.2.1.2.4 Input Capacitor Selection  
The TLVM13630 requires a minimum input capacitance of 2 × 4.7-µF ceramic type. High-quality ceramic type  
capacitors with sufficient voltage and temperature rating are required. The voltage rating of input capacitors must  
be greater than the maximum input voltage.  
For this design, select two 4.7-µF, 50-V, 1210 case size, ceramic capacitors.  
8.2.1.2.5 Output Capacitor Selection  
For a 5-V output, the TLVM13630 requires a minimum of 25 µF of effective output capacitance for proper  
operation (see 7-1). High-quality ceramic type capacitors with sufficient voltage and temperature rating are  
required. Additional output capacitance can be added to reduce ripple voltage or for applications with transient  
load requirements.  
For this design example, select two 47-µF, 10-V, 1210 case size, ceramic capacitors, which have a total effective  
capacitance of approximately 48 µF at 5 V.  
8.2.1.2.6 Other Connections  
Connect VLDOIN to VOUT to improve efficiency.  
Place a 1-µF capacitor between the VCC pin and PGND, located near to the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.1.3 Application Curves  
Unless otherwise indicated, VIN = 24 V, VOUT = 5 V, IOUT = 3 A, and FSW = 1 MHz.  
VIN (20 V/DIV)  
VIN (20 V/DIV)  
EN (5 V/DIV)  
VOUT (5 V/DIV)  
PG (5 V/DIV)  
EN (5 V/DIV)  
VOUT (5 V/DIV)  
PG (5 V/DIV)  
2 ms/DIV  
500 µs/DIV  
VIN = 24 V  
VOUT = 5 V  
VIN = 24 V  
VOUT = 5 V  
8-3. Shutdown Waveforms  
8-2. Start-Up Waveforms  
VOUT (200 mV/DIV)  
VOUT (200 mV/DIV)  
5V  
5V  
IOUT (2 A/DIV)  
IOUT (2 A/DIV)  
50 µs/DIV  
50 µs/DIV  
VIN = 24 V  
VOUT = 5 V  
FSW = 1 MHz  
VIN = 24 V  
VOUT = 5 V  
FSW = 1 MHz  
COUT = 2 × 47µF  
COUT = 2 × 47µF  
8-4. Load Transient 0 A to 3 A, 1 A/µs  
8-5. Load Transient 1.5 A to 3 A, 1 A/µs  
VOUT (200 mV/DIV)  
VOUT (200 mV/DIV)  
3.3V  
3.3V  
IOUT (2 A/DIV)  
IOUT (2 A/DIV)  
50 µs/DIV  
50 µs/DIV  
VIN = 24 V  
VOUT = 3.3 V  
FSW = 1 MHz  
VIN = 24 V  
VOUT = 3.3 V  
F SW = 1 MHz  
COUT = 2 × 47µF  
COUT = 2 × 47µF  
8-6. Load Transient 0 A to 3 A, 1 A/µs  
8-7. Load Transient 1.5 A to 3 A, 1 A/µs  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLVM13630  
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8-9. Thermal Image VIN = 12 V, VOUT = 5 V, FSW  
=
8-8. Thermal Image VIN = 12 V, VOUT = 3.3 V, FSW  
1 MHz, IOUT = 3 A  
= 1 MHz, IOUT = 3 A  
8-10. Thermal Image VIN = 24 V, VOUT = 3.3 V, FSW  
8-11. Thermal Image VIN = 24 V, VOUT = 5 V, FSW  
=
= 1 MHz, IOUT = 3 A  
1 MHz, IOUT = 3 A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLVM13630  
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.2 Design 2: Inverting Buck-Boost Regulator with a 5-V Output  
8-12 shows the schematic diagram of a 5-V inverting buck-boost regulator with a switching frequency of 1  
MHz. The input voltage range for the sample design is 12 V to 24 V.  
VIN+  
VIN  
VIN  
CIN3  
VIN(on) = 8.9 V  
VIN = 12 V to 24 V  
VIN–  
CIN1  
4.7  
CIN2  
4.7  
10  
F
F
F
PGND  
PGND  
RENT  
604 k  
–VOUT  
–VOUT  
TLVM13630  
Optional  
external bias  
EN  
VLDOIN  
VCC  
VOUT  
VOUT  
RENB  
CVCC  
1
100 k  
COUT  
F
VOUT = –5 V  
IOUT(max) = –2 A  
2 47  
F
RFBT  
40.2 k  
VOUT–  
PG  
RT  
Optional  
Schottky  
Diode  
FB  
–VOUT  
RRT  
13 k  
RFBB  
10 k  
AGND  
PGND  
–VOUT  
8-12. Circuit Schematic  
8.2.2.1 Design Requirements  
For this design example, use the parameters listed in 8-3 as the input parameters and follow the design  
procedures in 8.2.2.2.  
8-3. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
12 to 24 V  
5 V  
Input voltage  
Output voltage  
Output current  
0 A to 2 A  
1 MHz  
Switching frequency  
8-4 gives the selected module power-stage components with availability from multiple vendors. This design  
uses an all-ceramic output capacitor implementation.  
8-4. List of Materials for Application Circuit 2  
REFERENCE  
DESIGNATOR  
QTY  
SPECIFICATION  
MANUFACTURER(1)  
PART NUMBER  
Taiyo Yuden  
TDK  
UMK325B7475KN-TR  
CGA6P3X7R1H475K250AB  
GCM31CC71H475KA03K  
GRM32ER71A476ME15L  
1210ZC476MAT2A  
4.7 µF, 50 V, X7R, 1210, ceramic  
CIN1, CIN2, CIN3  
3
4.7 µF, 50 V, X7S, 1206, ceramic  
47 µF, 10 V, X7R, 1210, ceramic  
Murata  
Murata  
COUT1, COUT2  
2
AVX  
CVCC  
U1  
1
1
1 µF, 16 V, X7R, 0603, ceramic  
Murata  
GCM188R71C105KA64J  
TLVM13630RDLR  
TLVM13630 36-V, 3-A synchronous buck module  
Texas Instruments  
More generally, the TLVM13630 module is designed to operate with a wide range of external components and  
system parameters. However, the integrated loop compensation is optimized for a certain range of output  
capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Output Voltage Setpoint  
The output voltage of the TLVM13630 device is externally adjustable using a resistor divider. The recommended  
value of RFBB is 10 kΩ. Calculate the value for RFBT using 方程9:  
(9)  
For the desired output voltage of 5 V, enter the absolute value of 5 V for the VOUT in 方程式 9. The formula  
yields a value of 40.2 kΩ. Choose the closest available standard value of 40.2 kΩfor RFBT  
.
8.2.2.2.2 IBB Maximum Output Current  
The achievable output current with an IBB topology using the TLVM13630 is IOUT(max) = ILDC(max) × (1 D),  
where ILDC(max) = 3 A is the rated current of the module and D = |VOUT| / (VIN + |VOUT|) is the module duty cycle.  
Therefore in the case of VIN = 12 V and the VOUT = 5 V, the maximum output current is 2.1 A.  
8.2.2.2.3 Switching Frequency Selection  
To set the switching frequency to 1 MHz, connect a 13.0-kΩ resistor between the RT pin and AGND pins of the  
module based on 方程5.  
8.2.2.2.4 Input Capacitor Selection  
The TLVM13630 requires a minimum input capacitance of 2 × 4.7-µF ceramic type between the VIN pins and  
PGND pins as close as possible to the module. High-quality ceramic type capacitors with sufficient voltage and  
temperature rating are required. In the inverting buck-boost configuration the maximum voltage between VIN and  
PGND pin of the module is equal to VIN + |VOUT|.  
For this design, two 4.7-µF, 50-V, 1210 case size, ceramic capacitors are selected.  
8.2.2.2.5 Output Capacitor Selection  
The TLVM13630 requires a minimum of 25 µF of effective output capacitance for proper operation. High-quality  
ceramic type capacitors with sufficient voltage and temperature rating are required. Additional output  
capacitance can be added to reduce ripple voltage or for applications with transient load requirements.  
For this design example, a two 47-µF, 10-V, 1210 case size, ceramic capacitors are used which have a total  
effective capacitance of approximately 48 µF at 5 V.  
8.2.2.2.6 Other Connections  
Place a 1-µF capacitor between the VCC pin and PGND, located near to the device.  
The right-half-plane zero of an IBB topology is at its lowest frequency at minimum input voltage. However, it does  
not appear at low frequency for a 5 V output and thus has minimal effect on the loop response for this  
application.  
In the inverting buck-boost configuration, the input capacitor CIN and output capacitor COUT can formed an AC  
capacitive divider during a fast VIN transient or hot-plugged event at the input. This event will resulted in a  
positive voltage spike at the output that may disturb the load. In this case, an optional Schottky diode may be  
installed between VOUT and GND as shown in 8-12 to clamp the output spike.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLVM13630  
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.2.3 Application Curves  
Unless otherwise indicated, VIN = 12 V, VOUT = 5 V, and FSW = 1 MHz.  
95  
90  
85  
80  
75  
70  
65  
60  
5.1  
5.098  
5.096  
5.094  
5.092  
5.09  
VIN = 12 V  
VIN = 18 V  
VIN = 24 V  
VIN = 12 V  
VIN = 18 V  
VIN = 24 V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Load Current (A)  
Load Current (A)  
8-13. Efficiency Curves  
8-14. Load Regulation  
VOUT (200 mV/DIV)  
VOUT (100 mV/DIV)  
-5V  
0A  
-5V  
0A  
IOUT (1 A/DIV)  
200 µs/DIV  
IOUT (1 A/DIV)  
200 µs/DIV  
VIN = 12 V  
FSW = 1 MHz  
COUT = 2 × 47 µF  
VIN = 12 V  
FSW = 1 MHz  
COUT = 2 × 47 µF  
VOUT = 5 V  
VOUT = 5 V  
8-15. Load Transient 0.5 A to 1.5 A, 1 A/µs  
8-16. Load Transient 0 A to 2 A, 1 A/µs  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLVM13630  
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8.2.2.3.1 EMI  
The TLVM13630 is compliant with EN55011 radiated emissions. 8-17, 8-18, and 8-19 show typical  
examples of radiated emission plots for the TPSM63603 which is in the same family of parts. The graphs include  
the plots of the antenna in the horizontal and vertical positions.  
8.2.2.3.1.1 EMI Plots  
EMI plots were measured using the standard TPSM63603EVM.  
8-17. Radiated Emissions 24-V Input, 5-V Output, 3-A Load  
8-18. Radiated Emissions 24-V Input, 5-V Output, 3-A Load, Spread Spectrum  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLVM13630  
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
8-19. Radiated Emissions 24-V Input, 3.3-V Output, 3-A Load  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The TLVM13630 buck module is designed to operate over a wide input voltage range of 3 V to 36 V. The  
characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended  
Operating Conditions in this data sheet. In addition, the input supply must be capable of delivering the required  
input current to the loaded regulator circuit. Estimate the average input current with 方程10.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
(10)  
where  
η= efficiency  
If the module is connected to an input supply through long wires or PCB traces with a large impedance, take  
special care to achieve stable performance. The parasitic inductance and resistance of the input cables can  
have an adverse affect on module operation. More specifically, the parasitic inductance in combination with the  
low-ESR ceramic input capacitors form an underdamped resonant circuit, possibly resulting in instability, voltage  
transients, or both, each time the input supply is cycled ON and OFF. The parasitic resistance causes the input  
voltage to dip during a load transient. If the module is operating close to the minimum input voltage, this dip can  
cause false UVLO triggering and a system reset.  
The best way to solve such issues is to reduce the distance from the input supply to the module and use an  
electrolytic input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitor helps  
damp the input resonant circuit and reduce any overshoot or undershoot at the input. A capacitance in the range  
of 47 μF to 100 μF is usually sufficient to provide input parallel damping and helps hold the input voltage  
steady during large load transients. A typical ESR of 0.1 Ω to 0.4 Ω provides enough damping for most input  
circuit configurations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TLVM13630  
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. Use the following guidelines to design a PCB with the best power conversion performance, optimal  
thermal performance, and minimal generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 10-1 and 10-2  
show a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high-frequency noise.  
Locate additional output capacitors between the ceramic capacitors and the load.  
Connect AGND to PGND at a single point.  
Place RFBT and RFBB as close as possible to the FB pin.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Example  
10-2. Typical Top-Layer  
10-1. Typical Top-Layer Layout  
10.2.1 Package Specifications  
10-1. Package Specifications Table  
TPSM63603  
VALUE  
UNIT  
Weight  
123  
mg  
Flammability  
Meets UL 94 V-0  
MTBF calculated reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
84  
MHrs  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
With an input operating voltage from 3 V to 36 V and rated output current from 2 A to 6 A, the  
TLVM13620/30/40/60 family of synchronous buck power modules specified in 11-1 provides flexibility,  
scalability and optimized solution size for a range of applications. These modules enable DC/DC solutions with  
high density, low EMI and increased flexibility. Available EMI mitigation features include RBOOT-configured  
switch-node slew rate control, fixed switching frequency, and integrated input bypass capacitors. All modules are  
rated for an ambient temperature up to 105°C.  
11-1. Synchronous Buck DC/DC Power Module Family  
DC/DC MODULE  
TLVM13620  
TLVM13630  
TLVM13640  
TLVM13660  
RATED IOUT PACKAGE  
DIMENSIONS  
FEATURES  
EMI MITIGATION  
2 A  
B0QFN (30)  
3 A  
4.0 × 6.0 × 1.8 mm  
Integrated BOOT capacitor  
RT adjustable FSW  
precision enable  
,
4 A  
Integrated input, VCC and  
BOOT capacitors  
B3QFN (20)  
6 A  
5.0 × 5.5 × 4.0 mm  
For development support see the following:  
TLVM13630 Quickstart Calculator  
TLVM13630 Simulation Models  
For TI's reference design library, visit the TI Reference Design library.  
For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center.  
To design a low-EMI power supply, review TI's comprehensive EMI Training Series.  
To design an inverting buck-boost (IBB) regulator, visit DC/DC inverting buck-boost modules.  
TI Reference Designs:  
Multiple Output Power Solution For Kintex 7 Application  
Arria V Power Reference Design  
Altera Cyclone V SoC Power Supply Reference Design  
Space-optimized DC/DC Inverting Power Module Reference Design With Minimal BOM Count  
3- To 11.5-VIN, 5-VOUT, 1.5-A Inverting Power Module Reference Design For Small, Low-noise Systems  
Technical Articles:  
Powering Medical Imaging Applications With DC/DC Buck Converters  
How To Create A Programmable Output Inverting Buck-boost Regulator  
To view a related device of this product, see the LM61460 36-V, 6-A synchronous buck converter.  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM63603 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TLVM13630  
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Innovative DC/DC Power Modules selection guide  
Texas Instruments, Enabling Small, Cool and Quiet Power Modules with Enhanced HotRod™ QFN Package  
Technology white paper  
Texas Instruments, Benefits and Trade-offs of Various Power-Module Package Options white paper  
Texas Instruments, Simplify Low EMI Design with Power Modules white paper  
Texas Instruments, Power Modules for Lab Instrumentation white paper  
Texas Instruments, An Engineer's Guide To EMI In DC/DC Regulators e-book  
Texas Instruments, Soldering Considerations for Power Modules application report  
Texas Instruments, Practical Thermal Design With DC/DC Power Modules application report  
Texas Instruments, Using New Thermal Metrics application report  
Texas Instruments, AN-2020 Thermal Design By Insight, Not Hindsight application report  
Texas Instruments, Using the TPSM53602/3/4 for Negative Output Inverting Buck-Boost Applications  
application report  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TLVM13630  
 
 
 
 
 
 
TLVM13630  
ZHCSLL8B MAY 2021 REVISED JANUARY 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TLVM13630  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLVM13630RDHR  
ACTIVE  
B0QFN  
RDH  
30  
3000  
RoHS Exempt  
& Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
13630  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RDH0030A  
B0QFN - 1.9 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
6.1  
5.9  
1.9  
1.7  
C
SEATING PLANE  
0.08 C  
0.01  
0.00  
2X 1.6 0.1  
SYMM  
0.675  
0.575  
2X 1.25 0.1  
4X  
0.6  
0.4  
(0.125) TYP  
2X 0.74 0.1  
1.925 0.1  
0.8  
0.7  
(0.2) TYP  
10X  
4X  
8
2X 2.425  
14  
30  
2X 1.775  
2X 1.125  
2X 0.475  
2X 1 0.1  
29  
28  
0.6 0.1  
0.000 PKG  
2X 0.325  
2X 0.975  
0.6 0.1  
0.75  
12X  
0.55  
27  
2X 1.775  
1.925 0.1  
2X 2.425  
PIN 1 ID  
21  
0.3  
0.2  
1
22X  
26  
0.1  
C A B  
(0.15)  
TYP  
0.05  
C
12X 0.5  
2X 3  
4226150/B 01/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RDH0030A  
B0QFN - 1.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.55)  
2X (1.6)  
2X (1.25)  
SYMM  
4X (0.5)  
2X (0.5)  
26  
4X (0.825)  
4X (0.95)  
1
2X (2.425)  
21  
2X (0.74)  
2X (1)  
27  
1.925  
2X (1.775)  
2X (0.975)  
2X (0.325)  
28  
29  
2X (0.6)  
0.000 PKG  
(5.7)  
2X (0.475)  
2X (1.125)  
2X (1.775)  
2X (2.425)  
2X (0.6)  
12X (0.85)  
1.925  
30  
4X (0.05)  
8
4X (0.625)  
10X (0.7)  
14  
(
0.2) TYP  
(R0.05) TYP  
30X (0.25)  
2X (3)  
12X (0.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
EDGE  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK DETAILS  
4226150/B 01/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RDH0030A  
B0QFN - 1.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.55)  
2X (1.47)  
2X (1.17)  
4X (0.5)  
SYMM  
4X (0.825)  
26  
4X (0.95)  
1
2X (0.74)  
21  
2.425  
1.775  
27  
(1.925)  
(0.6)  
2X (0.95)  
0.975  
0.325  
28  
29  
0.000 PKG  
(5.7)  
0.475  
1.125  
1.775  
2.425  
(0.6)  
12X (0.85)  
(1.925)  
30  
4X (0.05)  
8
4X (0.625)  
10X (0.7)  
14  
(R0.05) TYP  
30X (0.25)  
2X (3)  
12X (0.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 27 & 30:  
94% PRINTED SOLDER COVERAGE BY AREA  
EXPOSED PAD 28 & 29  
87% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4226150/B 01/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLVM13640

采用 5mm x 5.5mm 增强型 HotRod™ QFN 封装的 36V 输入、1V 至 6V 输出、4A 降压电源模块
TI

TLVM13640RDLR

采用 5mm x 5.5mm 增强型 HotRod™ QFN 封装的 36V 输入、1V 至 6V 输出、4A 降压电源模块 | RDL | 20 | -40 to 125
TI

TLVM13660

采用 5mm x 5.5mm 增强型 HotRod™ QFN 封装的 36V 输入、1V 至 6V 输出、6A 降压电源模块
TI

TLVM13660RDLR

采用 5mm x 5.5mm 增强型 HotRod™ QFN 封装的 36V 输入、1V 至 6V 输出、6A 降压电源模块 | RDL | 20 | -40 to 125
TI

TLVM23615

3-36V 输入 1-6V 输出 1.5A 同步降压电源模块
TI

TLVM23615RDNR

3-36V 输入 1-6V 输出 1.5A 同步降压电源模块

| RDN | 11 | -40 to 125
TI

TLVM23625

3-36V 输入 1-6V 输出 2.5A 同步降压电源模块
TI

TLVM23625RDNR

3-36V 输入 1-6V 输出 2.5A 同步降压电源模块 | RDN | 11 | -40 to 125
TI

TLVP420

Tinted clear package
VISHAY

TLVP4200

LED Display,
VISHAY

TLVP4200

Single Color LED, Pure Green, Tinted Nondiffused, 3mm,
TEMIC

TLVP4200-AS21

Visible LED
VISHAY