TMAG5111C4AQDBVRQ1 [TI]

TMAG511x-Q1 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch;
TMAG5111C4AQDBVRQ1
型号: TMAG5111C4AQDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMAG511x-Q1 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch

文件: 总42页 (文件大小:2566K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
TMAG511x-Q1 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch  
1 Features  
3 Description  
AEC-Q100 qualified with the following results:  
– Device temperature grade 1: –40 °C to 125 °C  
ambient operating temperature range  
– Device HBM ESD classification Level H3A  
– Device CDM ESD classification Level C6  
2D sensing with planar and vertical hall sensors  
Inherent quadrature independent of magnet  
alignment or magnet pole pitch  
The TMAG5110-Q1 and TMAG5111-Q1 are  
2-dimensional, dual Hall-effect latches operating from  
a 2.5 V to 38 V power supply. Designed for high-  
speed and high-temperature motor applications, these  
devices are optimized for applications leveraging  
rotating magnets. Integrating two sensors and two  
separate signal chains the TMAG511x-Q1 offers  
two independent digital outputs giving speed and  
direction calculation (TMAG5111-Q1) or giving directly  
the digital output of each independent latches  
(TMAG5110-Q1). This high level of integration allow  
the use of a single TMAG511x-Q1 device instead of  
two separate latches.  
Two functional options available:  
– TMAG5110-Q1: independent 2D outputs  
– TMAG5111-Q1: speed and direction outputs  
Ultra-high magnetic sensitivity:  
– TMAG511xx2-Q1: ±1.4 mT (typical)  
– TMAG511xx4-Q1: ±3 mT (typical)  
Fast 40-kHz sensing bandwidth  
2.5-V to 38-V operating VCC range  
Open-drain output (10 mA sink)  
Wide ambient operating temperature range:  
– –40 °C to +125 °C  
Protection features  
– Reverse supply protection (up to –20 V)  
– Device survives up to 40-V  
– Output short-circuit protection  
The device is offered in a standard 3 mT operating  
point, as well as a high-sensitivity 1.4 mT operating  
point. The higher magnetic sensitivity provides  
flexibility in low-cost magnet selection and mechanical  
component placement. The TMAG511x-Q1 is also  
available in three 2-axis combination options (X-Y,  
Z-X, Z-Y) to allow flexible placement of the sensor  
relative to the magnet.  
The device performs consistently across a wide  
ambient temperature range of –40 °C to +125 °C.  
– Output current limitation  
Device Information  
PART NUMBER  
TMAG5110-Q1  
TMAG5111-Q1  
PACKAGE(1)  
BODY SIZE (NOM)  
2 Applications  
Incremental rotary encoding  
Linear speed and direction control  
Roof and trunk motor control  
Window and door motor control  
Angular position detection  
– Knob control (radio and climate control)  
Electronic power steering  
– Fluid measurement  
SOT-23 (5)  
2.9 mm × 1.6 mm  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
Change of  
Voltage  
Direction  
OUT1  
Angular speed and direction  
TMAG5110  
Electric pumps  
Fans  
OUT2  
– Wheel and motor speed  
Time  
Voltage  
Change of  
Direction  
PULSE  
DIR  
TMAG5111  
Time  
Device Axis Polarities  
Device Outputs  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................5  
7.5 Electrical Characteristics ............................................6  
7.6 Magnetic Characteristics ............................................6  
7.7 Typical Characteristics................................................7  
8 Detailed Description......................................................21  
8.1 Overview...................................................................21  
8.2 Functional Block Diagram.........................................21  
8.3 Feature Description...................................................21  
8.4 Device Functional Modes..........................................30  
9 Application and Implementation..................................31  
9.1 Application Information............................................. 31  
9.2 Typical Applications.................................................. 31  
10 Power Supply Recommendations..............................33  
11 Layout...........................................................................33  
11.1 Layout Guidelines................................................... 33  
11.2 Layout Example...................................................... 33  
12 Device and Documentation Support..........................34  
12.1 Receiving Notification of Documentation Updates..34  
12.2 Support Resources................................................. 34  
12.3 Trademarks.............................................................34  
12.4 Electrostatic Discharge Caution..............................34  
12.5 Glossary..................................................................34  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 34  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (July 2021) to Revision A (September 2021)  
Page  
Removed the preview notes from the Device Comparison table........................................................................3  
Added operating supply current for the TMAG511xx4-Q1..................................................................................6  
Added graphs to the Typical Characteristics section.......................................................................................... 7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
5 Device Comparison  
Table 5-1. Device Comparison  
SENSITIVITY  
(BOP TYP)  
AXIS OF  
SENSITIVITY  
DEVICE  
DEVICE OPTION  
OUT1  
OUT2  
A2  
A4  
B2  
B4  
C2  
C4  
A2  
A4  
B2  
B4  
C2  
C4  
1.4 mT  
3 mT  
XY  
ZX  
ZY  
XY  
ZX  
ZY  
X
Y
1.4 mT  
3 mT  
TMAG5110-Q1  
Z
Z
X
Y
1.4 mT  
3 mT  
1.4 mT  
3 mT  
1.4 mT  
3 mT  
TMAG5111-Q1  
Speed  
Direction  
1.4 mT  
3 mT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
6 Pin Configuration and Functions  
VCC  
GND  
NC  
1
2
3
5
OUT2  
OUT1  
4
Not to scale  
Figure 6-1. DBV Package 5-Pin SOT-23 Top View  
Table 6-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
2.5-V to 38-V power supply. Connect a ceramic capacitor with a value of at least 0.01 µF  
between VCC and ground.  
1
VCC  
Power supply  
2
3
GND  
NC  
Ground  
Ground reference.  
Not internally connected. Connection to the ground pin is recommended.  
Open-drain output 1.  
For TMAG5110A-Q1: X axis.  
For TMAG5110B-Q1: Z axis.  
For TMAG5110C-Q1: Z axis.  
For TMAG5111-Q1: Speed.  
4
5
OUT1  
OUT2  
Output  
Output  
Open-drain output 2.  
For TMAG5110A-Q1: Y axis.  
For TMAG5110B-Q1: X axis.  
For TMAG5110C-Q1: Y axis.  
For TMAG5111-Q1: Direction.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCC  
–20  
40  
V
Power Supply Voltage  
Output Pin Voltage  
Voltage ramp rate (VCC < 5V)  
Voltage ramp rate (VCC > 5V)  
VOUT1, VOUT2  
Unlimited  
0
V/µs  
2
40  
GND – 0.5  
V
mA  
T
Output pin reverse current during reverse supply condition  
Magnetic flux density,BMAX  
0
100  
Unlimited  
–40  
Junction temperature, TJ  
Storage temperature, Tstg  
Junction temperature, TJ  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1) HBM ESD Classification  
Level 2  
±2000  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4A  
± 500  
V
(1) AECQ 100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX  
UNIT  
V
VCC  
VO  
Power supply voltage  
38  
38  
Output pin voltage (OUT1, OUT2)  
Output pin current sink (OUT1, OUT2)(1)  
Ambient temperature  
V
ISINK  
TA  
0
10  
mA  
°C  
–40  
125  
(1) Power dissipation and thermal limits must be observed  
7.4 Thermal Information  
TMAG5110  
DBV (SOT-23)  
5 PINS  
166.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
86.0  
37.6  
°C/W  
°C/W  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.1  
ΨJB  
37.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
 
 
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
Operating supply current for  
TMAG511xx2-Q1  
VCC = 2.5 V to 38 V, TA = –40°C to  
125°C  
ICC  
ICC  
6
6
8
mA  
mA  
Operating supply current for  
TMAG511xx4-Q1  
VCC = 2.5 V to 38 V, TA = –40°C to  
125°C  
8.5  
IRCC  
tON  
Reverse-battery current  
Power-on-time  
VCC = –20 V  
–100  
0
µA  
µs  
52.5  
OUTPUT  
VOL  
IOH  
Low-level output voltage  
Output leakage current  
Output short-circuit current  
Propagation delay time  
Output rise time  
IOL= 10mA  
VCC= 5V  
0.5  
1
V
0.1  
65  
µA  
mA  
ISC  
110  
tPD  
Change in BOP or BRP to change in output  
RL= 1kΩ, CL= 50pF  
12.5  
0.2  
tR  
µs  
tF  
Output fall time  
RL= 1kΩ, CL= 50pF  
0.2  
FREQUENCY RESPONSE  
fCHOP  
fBW  
Chopping frequency  
Signal bandwidth  
320  
40  
kHz  
kHz  
7.6 Magnetic Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TMAG5110x2-Q1  
BOP(1), BOP(2)  
BRP(1), BRP(2)  
BHYS(1), BHYS(2)  
BSYM(1), BSYM(2)  
BSYM_OP  
Magnetic field operating point  
Magnetic field release point  
Magnetic hysteresis BOP - BRP  
Symmetry  
0.2  
–2.6  
0.9  
1.4  
–1.4  
2.75  
2.6  
VCC = 2.5 V to 38 V, TA = – 40 °C to  
125 °C  
-0.2  
4.6  
2
mT  
mT  
BOP(1) + BRP(1), BOP(2) + BRP(2)  
BOP(1) - BOP(2)  
–2  
Operating point symmetry  
Release point symmetry  
–1.5  
–1.5  
1.5  
1.5  
BSYM_RP  
BRP(1) - BRP(2)  
TMAG5110x4-Q1  
BOP(1), BOP(2)  
BRP(1), BRP(2)  
BHYS(1), BHYS(2)  
BSYM(1), BSYM(2)  
BSYM_OP  
Magnetic field operating point  
Magnetic field release point  
Magnetic hysteresis BOP - BRP  
Symmetry  
0.8  
-5.3  
3
3
-3  
6
5.3  
-0.8  
9
VCC = 2.5 V to 38 V, TA = – 40 °C to  
125 °C  
mT  
mT  
BOP(1) + BRP(1), BOP(2) + BRP(2)  
BOP(1) - BOP(2)  
–2  
2
Operating point symmetry  
Release point symmetry  
–1.5  
–1.5  
1.5  
1.5  
BSYM_RP  
BRP(1) - BRP(2)  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics  
TMAG511xx2-Q1 versions  
3
2
1
0
3
2
1
0
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-1. BOP_Z Threshold vs. VCC  
Figure 7-2. BOP_Z Threshold vs. Temperature  
1
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
0
-1  
-2  
0
-1  
-2  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-3. BRP_Z Threshold vs. VCC  
Figure 7-4. BRP_Z Threshold vs. Temperature  
4
3
2
1
4
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
3
2
1
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-5. Hysteresis_Z vs. VCC  
Figure 7-6. Hysteresis_Z vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
3
3
2
1
0
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
2
1
0
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-7. BOP_X Threshold vs. VCC  
Figure 7-8. BOP_X Threshold vs. Temperature  
0
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
-1  
-2  
-3  
0
-1  
-2  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-9. BRP_X Threshold vs. VCC  
Figure 7-10. BRP_X Threshold vs. Temperature  
4
3
2
1
4
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
3
2
1
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-11. Hysteresis_X vs. VCC  
Figure 7-12. Hysteresis_X vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
3
3
2
1
0
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
2
1
0
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-13. BOP_Y Threshold vs. VCC  
Figure 7-14. BOP_Y Threshold vs. Temperature  
0
0
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
-1  
-2  
-3  
-1  
-2  
-3  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-15. BRP_Y Threshold vs. VCC  
Figure 7-16. BRP_Y Threshold vs. Temperature  
5
4
3
2
5
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
4
3
2
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-17. Hysteresis_Y vs. VCC  
Figure 7-18. Hysteresis_Y vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-19. BSYM(Z) vs. VCC  
Figure 7-20. BSYM(Z) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-21. BSYM(X) vs. VCC  
Figure 7-22. BSYM(X) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-23. BSYM(Y) vs. VCC  
Figure 7-24. BSYM(Y) vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-25. BSYM_OP(ZX) vs. VCC  
Figure 7-26. BSYM_OP(ZX) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-27. BSYM_RP(ZX) vs. VCC  
Figure 7-28. BSYM_RP(ZX) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-29. BSYM_OP(ZY) vs. VCC  
Figure 7-30. BSYM_OP(ZY) vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-31. BSYM_RP(ZY) vs. VCC  
Figure 7-32. BSYM_RP(ZY) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-33. BSYM_OP(XY) vs. VCC  
Figure 7-34. BSYM_OP(XY) vs. Temperature  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-35. BSYM_RP(XY) vs. VCC  
Figure 7-36. BSYM_RP(XY) vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
8
8
7
6
5
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 5V  
VCC = 12V  
VCC = 24V  
7
6
5
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-37. Supply Current vs. VCC  
Figure 7-38. Supply Current vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics  
TMAG511xx4-Q1 versions  
5
4
3
2
5
4
3
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
2
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-39. BOP_Z Threshold vs. VCC  
Figure 7-40. BOP_Z Threshold vs. Temperature  
-1  
-1  
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
-2  
-3  
-4  
-2  
-3  
-4  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-41. BRP_Z Threshold vs. VCC  
Figure 7-42. BRP_Z Threshold vs. Temperature  
8
7
6
5
7
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
6
5
4
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-43. Hysteresis_Z vs. VCC  
Figure 7-44. Hysteresis_Z vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
5
5
4
3
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
4
3
2
2
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-45. BOP_X Threshold vs. VCC  
Figure 7-46. BOP_X Threshold vs. Temperature  
-2  
-3  
-4  
-5  
-1  
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
-2  
-3  
-4  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-47. BRP_X Threshold vs. VCC  
Figure 7-48. BRP_X Threshold vs. Temperature  
8
7
6
5
8
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
7
6
5
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-49. Hysteresis_X vs. VCC  
Figure 7-50. Hysteresis_X vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
5
5
4
3
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
4
3
2
2
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-51. BOP_Y Threshold vs. VCC  
Figure 7-52. BOP_Y Threshold vs. Temperature  
-1  
-2  
-3  
-4  
-5  
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
-4  
-3  
-2  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-53. BRP_Y Threshold vs. VCC  
Figure 7-54. BRP_Y Threshold vs. Temperature  
7
6
5
4
8
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
7
6
5
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-55. Hysteresis_Y vs. VCC  
Figure 7-56. Hysteresis_Y vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-57. BSYM(Z) vs. VCC  
Figure 7-58. BSYM(Z) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-59. BSYM(X) vs. VCC  
Figure 7-60. BSYM(X) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-61. BSYM(Y) vs. VCC  
Figure 7-62. BSYM(Y) vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-63. BSYM_OP(ZX) vs. VCC  
Figure 7-64. BSYM_OP(ZX) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-65. BSYM_RP(ZX) vs. VCC  
Figure 7-66. BSYM_RP(ZX) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-67. BSYM_OP(ZY) vs. VCC  
Figure 7-68. BSYM_OP(ZY) vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-69. BSYM_RP(ZY) vs. VCC  
Figure 7-70. BSYM_RP(ZY) vs. Temperature  
2
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
1
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-71. BSYM_OP(XY) vs. VCC  
Figure 7-72. BSYM_OP(XY) vs. Temperature  
2
1
2
1
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
0
0
-1  
-1  
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-73. BSYM_RP(XY) vs. VCC  
Figure 7-74. BSYM_RP(XY) vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
8
8
7
6
5
TA = -40°C  
TA = 30°C  
TA = 125°C  
VCC = 2.5V  
VCC = 12V  
VCC = 24V  
7
6
5
2.5  
7.5  
12.5  
Supply Voltage (V)  
17.5  
22.5  
-40  
-10  
20  
Ambient Temperature (°C)  
50  
80  
110 125  
Figure 7-75. Supply Current vs. VCC  
Figure 7-76. Supply Current vs. Temperature  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TMAG5110-Q1 and TMAG5111-Q1 are dual chopper-stabilized Hall effect sensors with two digital latched  
outputs for rotational magnetic sensing applications. The TMAG511x-Q1 device can be powered with a supply  
voltage between 2.5 V and 38 V, and survives continuous –20 V reverse-battery conditions. The TMAG511x-Q1  
device only operates when a voltage of 2.5 V to 38 V applied to the VCC pin (with respect to the GND pin). In  
addition, the device can withstand voltages up to 40 V for transient durations.  
Alternating north and south magnetic poles are required to toggle the outputs of each Hall-effect latch.  
The device is offered in a standard 3 mT typical operating point, as well as a high-sensitivity 1.4 mT typical  
operating point. The higher magnetic sensitivity provides flexibility in low-cost magnet selection and mechanical  
component placement. The TMAG511x-Q1 is also available in three 2-axis combination options (X-Y, Z-X, Z-Y)  
to support flexible multiple installation orientations relative to the magnet.  
8.2 Functional Block Diagram  
Threshold  
selection  
Chopper  
stabilization  
LDO  
OUT 1  
OUT 2  
VCC  
Z
Amp  
Amp  
GND  
Output  
control  
X
Mux  
Y
8.3 Feature Description  
8.3.1 2D Description  
8.3.1.1 2D General Description and Advantages  
The best way to understand the advantage of a 2D dual latch hall sensor is to compare its behavior with  
others solutions used in the market. The two most common methods are: dual planar hall latch sensors or  
two single hall latch sensors. Those methods are used in applications such as rotary encoding or speed and  
direction sensing. The principle is to set two sensors apart at a certain angle such that they will sense the same  
magnetic field but with a fixed phase difference. The frequency of the signal will give the speed or incremental  
information while the phase will give the direction of rotation. For an easy read, the signals should be as close to  
a quadrature signal as possible, meaning there is a 90° phase shift between the two signals. To create those two  
signals in quadrature, the two latches must be placed at a distance of ½ pole + n pole from one another.  
The TMAG511x-Q1 can be used instead of a dual planar hall latch or two single hall latch sensors. The  
TMAG511x-Q1 has two integrated hall latch sensors spaced at a 90° angle from each other, which allows  
each sensor to detect a quadrature component of the same magnetic field. For A, B, and C device variants,  
the magnetic direction detected will be XY, ZX, and ZY, respectively. Each of those components are placed at  
90° from each other by design, therefore the output signals will also be separated with the same angle value.  
Wherever the sensor is placed to catch the right two components of the field, the output will be in quadrature  
from one another. Figure 8-1 shows the result of two different type of sensors when the devices are placed close  
to a ring magnet.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
Figure 8-1. Dual Planar Latch vs. 2D Dual Latch  
8.3.1.2 2D Magnetic Sensor Response  
The TMAG5110-Q1 has two integrated latches that update their results to the OUT1 and OUT2 pins. Each one  
of these outputs will then have a latch functionality. Figure 8-2 shows the response to different magnetic poles  
for each output.  
The TMAG5111-Q1 outputs are not directly connected to the two integrated latches. Additional processing is  
available to generate the speed and direction outputs.  
Vout  
Vout (H)  
BHYS  
Vout (L)  
B
North  
BRP  
BOP  
South  
0 mT  
Figure 8-2. Latch Functionality  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
Figure 8-3 shows the magnetic response of both the TMAG5110-Q1 and TMAG5111-Q1 to a sinusoidal field.  
The sinusoidal curves represents the evaluation of the magnetic seen by both integrated hall sensors.  
The TMAG5110-Q1 response shows both outputs reacting to this signal by going low once the field is higher  
than BOP and going high when the field is lower than BRP  
.
The TMAG5111-Q1 response shows how those two signals are processed to create a speed output and a  
direction output.  
Figure 8-3. TMAG511x-Q1 Output Behavior  
8.3.1.3 Axis Polarities  
The Figure 8-4 shows the directions from where each axes are sensitive to a south pole. This also shows that  
the opposite directions are sensitive to the north pole.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
Figure 8-4. Axis Polarities  
8.3.2 Axis Options  
8.3.2.1 Device Placed In-Plane to Magnet  
The outer edge of the magnet is the area where the magnetic field is the strongest. Placing the sensor on  
the outer edge of the magnet enables the sensor to get the best flexibility in terms of distance and sensitivity  
selection. The different figures below show how to use the different versions of the TMAG511x-Q1 in regards to  
the magnet and sensor placement.  
The options shown in Figure 8-5 and Figure  
8-6 composed of the X and Y axises enable  
the sensor to be placed in the same plane as  
the ring magnet. The sensor can be placed  
facing the magnet or on the side of the  
magnet. The part can also be turned at 180  
degrees along the Z axis.  
Figure 8-5. XY Outer Edge 1  
Figure 8-6. XY Outer Edge 2  
The options shown in Figure 8-7 and Figure  
8-8 composed of Z and X axises enable the  
sensor to be placed below the magnet, or  
facing the magnet with the front side of the  
device. The part can also be turned at 180  
degrees along the Z axis.  
Figure 8-7. ZX Outer Edge 1  
Figure 8-8. ZX Outer Edge 2  
The options shown in Figure 8-9 and Figure  
8-10 composed of Z and Y axises also  
enable the sensor to be placed below the  
magnet in a different position, as well as  
facing the ring magnet with the side of the  
device. The part can also be turned at 180  
degrees along the Z axis.  
Figure 8-9. ZY Outer Edge 1  
Figure 8-10. ZY Outer Edge 1  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
8.3.2.2 Device Placed on the Side Edge of the Magnet  
The side edge of the magnet still provides a magnetic field, but the field is much weaker than the field on the  
outer edge. Placing the sensor on the side edge minimizes the flexibility as of how far the device can be placed  
from the ring magnet. The 2 mT version enables high sensitivity, allowing the application to work as well as when  
the device is placed on the outer edge. Nevertheless this option can be helpful in application where the sensor  
has to fit within the magnet diameter.  
The options shown in Figure 8-11 and Figure  
8-12 composed of X and Y axises enable  
the sensor to be placed facing the side edge  
of the magnet. The side of the sensor can  
also be placed next to the side edge of the  
magnet. The part can also be turned at 180  
degrees along the Z axis.  
Figure 8-11. XY Side Edge 1  
Figure 8-13. ZX Side Edge 1  
Figure 8-15. ZY Side Edge 1  
Figure 8-12. XY Side Edge 2  
Figure 8-14. ZX Side Edge 2  
Figure 8-16. ZY Side Edge 1  
The options shown in Figure 8-13 and Figure  
8-14 composed of Z and X axis enable  
another way to place the sensor facing the  
side edge of the magnet. The top of the  
sensor can also be placed facing the side  
edge of the magnet. The part can also be  
turned at 180 degrees along the Z axis.  
The options shown in Figure 8-15 and Figure  
8-16 composed of Z and Y axises enable the  
placement of the sensor on the side edge of  
a magnet with the pins facing the magnet, or  
with top of the sensor facing the side edge of  
the magnet. The part can also be turned at  
180 degrees along the Z axis.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
8.3.3 Power-On Time  
Figure 8-17 shows the behavior of the device after the VCC voltage is applied and when the field is below the  
BOP threshold. Once the minimum value for VCC is reached, the TMAG5110-Q1 will take time tON to power up  
and then time tPD to update the output to a level High.  
Figure 8-18 shows the behavior of the device after the VCC voltage is applied and when the field is above the  
BOP threshold. Once the minimum value for VCC is reached, the TMAG5110-Q1 will take time tON to power up  
and then time tPD to update the output to a level High.  
For the TMAG5111-Q1 the power-on behavior is similar but OUT1 will be updated to Low during the tPD time.  
OUT2 will be updated to High during the tPD time. The output value following the power-on sequence will then  
depend on the magnet placement, the sense of rotation and the device variant.  
Supply (V)  
Supply (V)  
VCC  
VCC  
2.5V  
0V  
2.5V  
0V  
t (s)  
t (s)  
t (s)  
t (s)  
t (s)  
t (s)  
B (mT)  
B (mT)  
BOP  
BRP  
BOP  
BRP  
Output (V)  
Output (V)  
VCC  
VCC  
0V  
0V  
tON  
tPD  
tON  
tPD  
Figure 8-17. Power-On Time When B<BOP  
Supply (V)  
VCC  
2.5V  
0V  
t (s)  
B (mT)  
BOP  
BRP  
t (s)  
Output (V)  
VCC  
0V  
t (s)  
tON  
tPD  
Figure 8-18. Power-On Time When B>BOP  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
8.3.4 Propagation Delay  
The TMAG511x-Q1 samples the Hall element at a nominal sampling interval of tPD to detect the presence of a  
magnetic south pole. Between each sampling interval, the device calculates the average magnetic field applied  
to the device. As defined in Figure 8-20, if this average value crosses the BOP or BRP threshold, the device  
changes the corresponding level. Because the system, Hall sensor + magnet is by nature asynchronous, the  
propagation delay td will vary depending on when the magnetic field goes above the BOP value. As shown in  
Figure 8-19 the output delay will then depend on when the magnetic field will get higher than the BOP value. The  
first graph shows the typical case.  
The magnetic field goes above the BOP value at the moment where the output is updated. The part will then only  
need one cycle of tPD to update the output. The second graph shows a magnetic field going above the BOP value  
just right before half of the sampling period. This is the best case possible where the output will be updated in  
just half of the sampling period. Finally, the third graph shows the worst possible case where the magnetic field  
goes above the BOP value just after half of the sampling period. At the next output update, the value will still see  
a value under the threshold and will need a whole new period to update the output  
Magnetic Field  
B7  
Magnetic Field  
B7  
Magnetic Field  
B7  
B6  
B6  
B6  
B5  
B5  
B5  
BOP  
B4  
BOP  
B4  
BOP  
B4  
B3  
B2  
B1  
B3  
B2  
B1  
B3  
B2  
B1  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
Time  
Time  
Time  
Output  
Output  
Output  
VCC  
VCC  
VCC  
tPDMin  
tPDTyp  
tPDMax  
0V  
0V  
0V  
Time  
Time  
Time  
Figure 8-19. Field Sampling Timing  
Figure 8-20 shows TMAG511x-Q1 propagation delay analysis when a magnetic south pole is applied. The Hall  
element of the TMAG511x-Q1 experiences an increasing magnetic field as a magnetic south pole approaches  
near the device as well as a decreasing magnetic field as a magnetic south pole leaves away. At time t1 the  
magnetic field goes above the BOP threshold. The output will then start to move after the time tPD. As shown in  
Figure 8-20, this time will vary depending on when the sampling period is. At t2 the output start pulling to the low  
voltage value. At t3 the output is completely pulled down to the lower voltage value. The same process happen  
on the other way when the magnetic value is going under the BOP threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
Magnetic Field  
BOP  
BRP  
Time  
Output  
VCC  
0V  
t1  
t2 t3  
t4  
t5 t6  
Time  
tPD  
tPD  
tF  
tR  
Figure 8-20. Propagation Delay  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
8.3.5 Hall Element Location  
The sensing element inside the device is in the center when viewed from the top. Figure 8-21 shows the exact  
position of the sensors in regard of the package.  
62µm  
62µm  
142 µm  
45µm  
44µm  
50µm  
Z axis  
Y axis  
X axis  
Die  
0.509mm  
Figure 8-21. Hall Element Location  
8.3.6 Power Derating  
The device is specified from –40 °C to 125 °C for a voltage rating of 2.5 V to 38 V. Because the part is  
draining at its maximum a current of 17 mA the maximum voltage that can be applied will depend on what is  
the maximum ambient temperature acceptable for the application. The curve in Figure 8-22 shows the maximum  
acceptable power supply voltage versus the maximum acceptable ambient temperature.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
The Figure 8-22 can also be calculated using the following formulas:  
TJ = TA + DT  
(1)  
where  
TJ is the junction temperature  
TA is the ambient temperature  
ΔT is the difference between the junction temperature and the ambient temperature  
DT = PD ìRqJA  
(2)  
(3)  
where  
PD is the power dissipated by the part  
RθJA is the junction to ambient thermal resistance  
PD = VCCìICC  
where  
VCC is the voltage supply of the device  
ICC is the current consumption of the device  
Combining the three equations above gives Equation 4 below:  
TJ max - TA  
ICC max ìRqJA  
VCC max  
=
(4)  
This equation gives the maximum voltage the part can handle in regards of the ambient temperature.  
For example, with an the application required to work within a ambient temperature of maximum 85 °C, and  
TJmax, RθJA and ICCmax are defined in the data sheet, the maximum voltage allowed for this application is  
determined in Equation 5:  
170èC -140èC  
6.5 mA ì166.5èC / W  
VCC max  
=
= 27.72 V  
40  
35  
30  
25  
20  
15  
10  
5
VCC Max  
40  
0
20  
60  
80  
100  
120  
140  
Ambient Temperature (èC)  
D002  
Figure 8-22. Power Derating Curve  
8.4 Device Functional Modes  
The TMAG511x-Q1 device has one mode of operation that applies when the Recommended Operating  
Conditions are met.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMAG511x-Q1 is designed for rotary applications for DC motor sensors or incremental rotary encoding.  
For reliable functionality, the magnet must apply a flux density at the sensor greater than the corresponding  
maximum BOP or BRP numbers specified in the Magnetic Characteristics table. Add additional margin to account  
for mechanical tolerance, temperature effects, and magnet variation. Magnets generally produce weaker fields  
as temperature increases.  
9.2 Typical Applications  
9.2.1 Incremental Rotary Encoding Application  
VCC  
TMAG  
511x  
GPIOs  
Microcontroller  
Motor  
Driver  
GPIOs  
Motor  
GND  
Figure 9-1. Incremental Encoding  
9.2.1.1 Design Requirements  
Table 9-1 lists the use the parameters for this design.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Motor speed  
22.5 kRPM  
8
Number of magnet poles  
9.7 mm diameter × 2 mm  
thick  
Dimensions  
Magnetic material  
Ceramic 8D  
2.5 mm  
Air gap above the Hall sensors  
Radial magnetic flux density peak  
Tangential magnetic flux density peak  
±12.5 mT  
±9.5 mT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
9.2.1.2 Detailed Design Procedure  
Incremental encoders are used on knobs, wheels, motors, and flow meters to measure relative rotary movement.  
By attaching a ring magnet to the rotating component and placing the TMAG511x-Q1 nearby, the sensor will  
generate voltage pulses as the magnet turns. The TMAG511x-Q1 integrates two sensors and two signal chains.  
This means each channel can go up to the maximum speed independently from each other.  
When the magnet rotates, the TMAG5110-Q1 will generate alternate pulses on each output. One input will be  
the result of what is sensed from one specific axis, while the other output will sense from another specific axis.  
In Table 9-1, this is also referred as Radial and Tangential magnetic flux. Those two signals are the result of two  
different components of the same magnetic field resulting in the two signals being 90° from one another. Also  
called quadrature output, this type of signal is ideal to measure a rotational count as well as a change in direction  
of the ring magnet.  
The TMAG5111-Q1 directly generates the speed and direction outputs. This eliminates the need for external  
processing.  
The maximum rotational speed that can be measured is limited by the sensor bandwidth and the magnetic  
strength of the magnet.  
Generally, the bandwidth must be faster than two times the number of poles per second. In this design example,  
the maximum speed is 22500 RPM, which involves a rotation of 3000 poles per second when using an 8-pole  
magnet. The TMAG511x-Q1 sensing bandwidth is typically 40 kHz, which is more than thirteen times the pole  
frequency.  
The strength of the magnet also has an impact on how fast the magnet can turn. A weaker magnet with a  
maximum strength very close to the threshold value will limit the maximum speed by limiting the amount of time  
where this field will be higher than the BOP. The time spent above the BOP value will be longer for a magnet with  
stronger field.  
When the magnet strength is significantly higher than BOP, Equation 5 can be used to calculate the allowed  
speed.  
Bandwidth (Hz)ì 60  
Speed (RPM) Ç  
Number of poles  
(5)  
9.2.1.3 Application Curve  
Change of  
Voltage  
Direction  
OUT1  
TMAG5110  
OUT2  
Time  
Figure 9-2. TMAG5110-Q1 Output Response  
Voltage  
Change of  
Direction  
PULSE  
DIR  
TMAG5111  
Time  
Figure 9-3. TMAG5111-Q1 Output Response  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
10 Power Supply Recommendations  
The TMAG511x-Q1 is powered by 2.5-V to 38-V DC power supplies. A decoupling capacitor placed close to the  
device must be used to provide local energy with minimal inductance. TI recommends using a ceramic capacitor  
with a value of at least 0.01 µF.  
11 Layout  
11.1 Layout Guidelines  
Magnetic fields pass through most non-ferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed-circuit boards (PCBs), which makes placing the magnet on  
the opposite side of the PCB possible.  
11.2 Layout Example  
VCC  
VCC OUT1  
GND  
GND  
GND  
NC  
OUT2  
Figure 11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
TMAG5110-Q1, TMAG5111-Q1  
SLYS029A – JULY 2021 – REVISED SEPTEMBER 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMAG5110-Q1 TMAG5111-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMAG5110A2AQDBVRQ1  
TMAG5110A4AQDBVRQ1  
TMAG5110B2AQDBVRQ1  
TMAG5110B4AQDBVRQ1  
TMAG5110C2AQDBVRQ1  
TMAG5110C4AQDBVRQ1  
TMAG5111A2AQDBVRQ1  
TMAG5111A4AQDBVRQ1  
TMAG5111B2AQDBVRQ1  
TMAG5111B4AQDBVRQ1  
TMAG5111C2AQDBVRQ1  
TMAG5111C4AQDBVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Nov-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMAG5110-Q1, TMAG5111-Q1 :  
Catalog : TMAG5110, TMAG5111  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMAG5110A2AQDBVRQ1 SOT-23  
TMAG5110A4AQDBVRQ1 SOT-23  
TMAG5110B2AQDBVRQ1 SOT-23  
TMAG5110B4AQDBVRQ1 SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.3  
3.3  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
TMAG5110C2AQDBVRQ SOT-23  
1
TMAG5110C4AQDBVRQ SOT-23  
1
DBV  
5
3000  
178.0  
9.0  
3.3  
3.2  
1.4  
4.0  
8.0  
Q3  
TMAG5111A2AQDBVRQ1 SOT-23  
TMAG5111A4AQDBVRQ1 SOT-23  
TMAG5111B2AQDBVRQ1 SOT-23  
TMAG5111B4AQDBVRQ1 SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.3  
3.3  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
TMAG5111C2AQDBVRQ SOT-23  
1
TMAG5111C4AQDBVRQ SOT-23  
1
DBV  
5
3000  
178.0  
9.0  
3.3  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMAG5110A2AQDBVRQ1  
TMAG5110A4AQDBVRQ1  
TMAG5110B2AQDBVRQ1  
TMAG5110B4AQDBVRQ1  
TMAG5110C2AQDBVRQ1  
TMAG5110C4AQDBVRQ1  
TMAG5111A2AQDBVRQ1  
TMAG5111A4AQDBVRQ1  
TMAG5111B2AQDBVRQ1  
TMAG5111B4AQDBVRQ1  
TMAG5111C2AQDBVRQ1  
TMAG5111C4AQDBVRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
190.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
30.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/F 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/F 06/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/F 06/2021  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMAG5111C4AQDBVT

TMAG511x 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5115

具有低抖动(快速响应)的高速霍尔效应锁存器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5115A1CQDBZR

具有低抖动(快速响应)的高速霍尔效应锁存器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5115B1CQDBZR

具有低抖动(快速响应)的高速霍尔效应锁存器 | DBZ | 3 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG511X

TMAG511x 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG511X-Q1

TMAG511x-Q1 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG511X2D

TMAG511x 2D, Dual-Channel, High-Sensitivity, Hall-Effect Latch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5123

TMAG5123 In-Plane, High-Precision, High-Voltage, Hall-Effect Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5123-Q1

TMAG5123 In-Plane, High-Precision, High-Voltage, Hall-Effect Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5123B1CEDBZRQ1

TMAG5123-Q1 Automotive In-Plane, High-Precision, Hall-Effect Switch Sensor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5123B1CQDBZR

TMAG5123 In-Plane, High-Precision, High-Voltage, Hall-Effect Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMAG5123B1CQDBZT

TMAG5123 In-Plane, High-Precision, High-Voltage, Hall-Effect Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI