TMP451HQDQWTQ1 [TI]

具有 N 因数、滤波功能和串联电阻校正的汽车类 1.7V 远程和本地温度传感器 | DQW | 8 | -40 to 125;
TMP451HQDQWTQ1
型号: TMP451HQDQWTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 N 因数、滤波功能和串联电阻校正的汽车类 1.7V 远程和本地温度传感器 | DQW | 8 | -40 to 125

温度传感 传感器 温度传感器
文件: 总40页 (文件大小:1749K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
η 因子、失调电压校正、串联电阻抵消和可编程数字滤波器TMP451-  
Q1 ±1°C 远程和本地温度传感器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
TMP451-Q1 器件是一款高精度、低功耗远程温度传感  
器监视器内置一个本地温度传感器。这类远程温度传  
感器通常采用低成本离散式 NPN PNP 晶体管或  
者基板热晶体管或二极管这些器件都是微处理器、微  
控制器或 FPGA 的组成部件。对于本地和远程传感  
温度表示方式为 12 数字编码辨率为  
0.0625°C。对于本地和远程温度传感器在典型运行  
范围内温度精度为 ±1°C最大值。此两线制串口  
SMBus 通信协议。  
– 器件温度等1-40°C 125°C 环境工作温度  
范围  
• 本地和远程二极管传感器精度±1°C  
• 本地和远程通道的分辨率0.0625°C  
1.7V 3.6V 电源和逻辑电压范围  
27µA 运行电流3µA 关断电流  
• 串联电阻抵消  
η子和偏移校正  
诸如串联电阻抵消、可编程非线性因子η 因子、  
可编程偏移、可编程温度限制和一个可编程数字滤波器  
等的高级特性被组合在一起实现了一个具有更佳准确  
度和抗扰度的稳健耐用热度监控解决方案。  
• 可编程数字滤波器  
• 二极管故障检测  
• 双线SMBus串行接口  
8 WSON (WDFN) 封装  
TMP451-Q1 器件是在各种汽车子系统中进行多位置高  
精度温度测量的理想选择。TMP451-Q1 采用可润湿侧  
WSON 封装可提供针对可焊性的视觉指示器以缩  
短自动视觉检测 (AVI) 时间。此器件的额定运行电源电  
压范围为 1.7V 3.6V额定工作温度范围为 -40°C  
125°C。  
– 具有可润湿侧翼2.50mm × 2.50mm 封装  
(DQW)  
2.00mm × 2.00mm (DQF)  
2 应用  
• 汽车信息娱乐系统  
• 电子控制单(ECU) 处理器温度监视  
• 电子控制单(TCM) 处理器温度监视  
• 电子控制单(BCM) 处理器温度监视  
LED 前灯温度控制  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TMP451-Q1  
封装  
WSON (8)  
WSON (8)  
2.00mm × 2.00mm  
2.50mm × 2.50mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
1.7V to 3.6V  
1.7V to 3.6V  
1
V+  
Processor  
or ASIC  
2
3
4
5
8
DXP  
DXN  
SCL  
SDA  
7
Built-in  
Thermal  
Transistor/  
Diode  
SMBus  
Controller  
TMP451-Q1  
THERM  
GND  
ALERT / THERM2  
6
Overtemperature  
Shutdown  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOS877  
 
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 14  
7.6 Register Map.............................................................17  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Application.................................................... 23  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 28  
11 Device and Documentation Support..........................29  
11.1 接收文档更新通知................................................... 29  
11.2 支持资源..................................................................29  
11.3 Trademarks............................................................. 29  
11.4 静电放电警告...........................................................29  
11.5 术语表..................................................................... 29  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Characteristics for 6-1 ................................6  
6.7 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
7.4 Device Functional Modes..........................................14  
Information.................................................................... 29  
4 Revision History  
Changes from Revision B (June 2019) to Revision C (April 2021)  
Page  
• 分离DQF DQW 可润湿侧翼封装................................................................................................................1  
• 添加了可润湿侧翼封装的说明.............................................................................................................................1  
Added separate Pinout for DQW wettable flanks package ................................................................................3  
Changes from Revision A (January 2019) to Revision B (June 2019)  
Page  
• 添加DQW 封装...............................................................................................................................................1  
Added DQW (WSON) package information to the Thermal Information table ...................................................4  
Changes from Revision * (October 2014) to Revision A (January 2019)  
Page  
• 将“预发DQF 可订购产品”更改为“有效”................................................................................................. 1  
Moved storage temperature to the Absolute Maximum Ratings table................................................................4  
Moved the AEC-Q100 ESD classification levels to the ESD Ratings table........................................................ 4  
Changed TMP451-Q1 SMBus Addresses table .............................................................................................. 16  
Added Receiving Notification of Documentation Updates section....................................................................29  
Added Community Resources section..............................................................................................................29  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
V+  
1
2
3
4
8
7
6
5
SCL  
D+  
D-  
SDA  
ALERT/THERM2  
GND  
THERM  
5-1. DQF Package 8-Pin WSON Top View  
1
2
3
4
8
7
V+  
D+  
SCL  
SDA  
6 ALERT/THERM  
5 GND  
D-  
THERM  
5-2. DQW with Wettable Flanks Packages 8-Pin WSON Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Interrupt or SMBus alert output. Can be configured as a second THERM output. Open-drain; requires  
pullup resistor to voltage between 1.7 V and 3.6 V.  
ALERT/ THERM2  
6
Digital output  
3
2
5
Analog input  
Analog input  
Ground  
Negative connection to remote temperature sensor.  
Positive connection to remote temperature sensor.  
Supply ground connection.  
D–  
D+  
GND  
Serial clock line for SMBus. Input; requires pullup resistor to voltage between 1.7 V and 3.6 V if driven  
by open-drain output.  
SCL  
SDA  
8
7
Digital input  
Bidirectional digital  
input-output  
Serial data line for SMBus. Open-drain; requires pullup resistor to voltage between 1.7 V and 3.6 V.  
Thermal shutdown or fan-control pin. Open-drain; requires pullup resistor to voltage between 1.7 V and  
3.6 V.  
THERM  
V+  
4
1
Digital output  
Power supply  
Positive supply voltage, 1.7 V to 3.6 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range, unless otherwise noted.(1)  
MIN  
MAX  
3.6  
UNIT  
V
Power supply  
Input voltage  
V+  
0.3  
0.3  
0.3  
0.3  
THERM, ALERT/ THERM2, SDA and SCL only  
3.6  
V
D+ only  
(V+) + 0.3  
0.3  
V
V
Donly  
Input current  
10  
mA  
°C  
°C  
°C  
Operating temperature  
127  
55  
60  
Junction temperature (TJmax)  
Storage temperature, Tstg  
150  
150  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
V(ESD)  
Electrostatic discharge  
Corner pins (1, 4, 5,  
and 8)  
V
±750  
±500  
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
Other pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.7  
NOM  
MAX  
3.6  
UNIT  
Supply voltage  
3.3  
V
TA  
Operating free-air temperature  
125  
°C  
40  
6.4 Thermal Information  
TMP451-Q1  
DQW  
THERMAL METRIC(1)  
DQF (WSON)  
UNIT  
(WSON)  
8 PINS  
128.5  
67.9  
8 PINS  
171.3  
81.4  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
137.9  
3.9  
56.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.4  
ψJT  
140  
56.5  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
 
 
 
 
 
 
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
At TA = 40°C to 125°C and V+ = 3.3 V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE ERROR  
TA = 0°C to 70°C  
±0.25  
±1  
±1  
±2  
±1  
±2  
±4  
°C  
°C  
°C  
°C  
°C  
TELOCAL  
Local temperature sensor  
TA = 40°C to 125°C  
±0.25  
±1  
TA = 0°C to 70°C, TD = 55°C to 150°C  
TA = 40°C to 100°C, TD = 55°C to 150°C  
TA = 40°C to 125°C, TD = 55°C to 150°C  
TEREMOTE Remote temperature sensor(1)  
±2  
Remote temperature sensor versus supply  
V+ = 1.7 V to 3.6 V  
±0.1  
±0.25  
°C/V  
(local or remote)  
TEMPERATURE MEASUREMENT  
Conversion time  
One-Shot mode, local and remote total  
31  
12  
34  
ms  
Bits  
Bits  
μA  
μA  
μA  
Local temperature sensor resolution  
Remote temperature sensor resolution  
Remote sensor source current, high  
Remote sensor source current, medium  
Remote sensor source current, low  
Remote transistor ideality factor  
12  
120  
45  
Series resistance 1 kmax  
7.5  
TMP451-Q1 optimized ideality factor  
1.008  
η
SMBus INTERFACE  
VIH  
VIL  
High-level input voltage  
1.4  
V
V
Low-level input voltage  
Hysteresis  
0.45  
200  
0.15  
3
mV  
mA  
V
SMBus output low sink current  
Low-level output voltage  
Logic input current  
6
VOL  
IO = 6 mA  
0.4  
1
0 V VI 3.6 V  
1  
μA  
pF  
SMBus input capacitance  
SMBus clock frequency  
SMBus timeout  
0.01  
20  
2.5  
30  
1
MHz  
ms  
μs  
25  
SCL falling edge to SDA valid time  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
At TA = 40°C to 125°C and V+ = 3.3 V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL OUTPUTS (THERM, ALERT/ THERM2)  
VOL  
IOH  
Low-level output voltage  
IO = 6 mA  
VO = V+  
0.15  
0.4  
1
V
High-level output leakage current  
μA  
POWER SUPPLY  
V(V+) Specified voltage range  
1.7  
3.6  
40  
V
0.0625 conversions per second  
27  
165  
300  
3
μA  
μA  
μA  
μA  
μA  
μA  
V
16 conversions per second  
250  
450  
8
32 conversions per second  
IQ  
Quiescent current  
Serial bus inactive, shutdown mode  
Serial bus active, ƒS = 400 kHz, shutdown mode  
Serial bus active, ƒS = 2.5 MHz, shutdown mode  
90  
350  
1.2  
POR  
Power-on reset threshold  
1.55  
(1) Tested with less than 5-effective series resistance and 100-pF differential input capacitance.  
6.6 Timing Characteristics for 6-1  
FAST MODE  
HIGH-SPEED MODE  
PARAMETER  
SCL operating frequency  
MIN  
0.001  
1300  
MAX  
MIN  
0.001  
260  
MAX  
UNIT  
MHz  
ns  
0.4  
2.5  
ƒ(SCL)  
t(BUF)  
Bus free time between STOP and START Condition  
Hold time after repeated START condition. After this period, the first clock  
is generated.  
t(HDSTA)  
600  
160  
ns  
t(SUSTA)  
t(SUSTO)  
t(HDDAT)  
t(SUDAT)  
t(LOW)  
Repeated START condition setup time  
STOP condition setup time  
Data hold time  
600  
600  
0
160  
160  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
900  
150  
Data setup time  
100  
1300  
600  
30  
SCL clock LOW period  
SCL clock HIGH period  
Data fall and rise time  
Clock fall and rise time  
260  
60  
t(HIGH)  
300  
300  
80  
40  
tF, tR SDA  
tF, tR SCL  
tR  
1000  
Rise time for SCL 100 kHz  
t(LOW)  
tR  
tF  
t(HDSTA)  
SCL  
SDA  
t(SUSTO)  
t(HDSTA)  
t(HIGH)  
t(SUSTA)  
t(SUDAT)  
t(HDDAT)  
t(BUF)  
P
S
S
P
6-1. Two-Wire Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = 25°C and V+ = 3.3 V, unless otherwise noted.  
2
2
1.5  
1
Mean  
Mean  
Mean - 4σ  
Mean + 4σ  
1.5  
1
Mean - 4σ  
Mean + 4σ  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
C001  
C002  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
6-2. Local Temperature Error vs. Temperature  
6-3. Remote Temperature Error vs. Temperature  
20  
10  
2
1.5  
1
0
-10  
-20  
-30  
-40  
0.5  
0
-0.5  
-1  
D+ to GND  
D+ to V+  
-50  
-60  
-1.5  
-2  
1
10  
100  
0
500  
1000  
1500  
2000  
2500  
3000  
C003  
C004  
Leakage Resistance (M)  
Series Resistance ()  
6-4. Remote Temperature Error vs. Leakage Resistance  
6-5. Remote Temperature Error vs. Series Resistance  
90  
0
20 mV p-p  
80  
50 mV p-p  
-5  
-10  
-15  
-20  
-25  
70  
60  
50  
40  
30  
20  
10  
0
100 mV p-p  
-10  
0
5
10  
15  
20  
0
200  
400  
600  
800  
1000  
C005  
Differential Capacitance (nF)  
C006  
Noise Frequency (MHz)  
6-6. Remote Temperature Error vs. Differential Capacitance  
6-7. Remote Temperature Error vs. Remote Channel Noise  
Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMP451-Q1  
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At TA = 25°C and V+ = 3.3 V, unless otherwise noted.  
350  
300  
250  
200  
150  
100  
50  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
C008  
C007  
Clock Frequency (kHz)  
Conversion Rate (Hz)  
6-9. Shutdown Quiescent Current vs. SCL Clock Frequency  
6-8. Quiescent Current vs. Conversion Rate  
170  
3
2.5  
2
165  
160  
155  
150  
145  
1.5  
1
0.5  
0
1.5  
2
2.5  
3
3.5  
4
1.5  
2
2.5  
3
3.5  
4
C009  
C010  
Supply Voltage (V)  
Supply Voltage (V)  
6-10. Quiescent Current vs. Supply Voltage (At Default  
6-11. Shutdown Quiescent Current vs. Supply Voltage  
Conversion Rate of 16 Conversions per Second)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TMP451-Q1 device is a digital temperature sensor that combines a local temperature measurement channel  
and a remote-junction temperature measurement channel in a single DFN-8 package. The device is two-wire-  
and SMBus-interface compatible, and is specified over a temperature range of 40°C to 125°C. The TMP451-  
Q1 device also contains multiple registers for programming and holding configuration settings, temperature  
limits, and temperature measurement results.  
7.2 Functional Block Diagram  
V+  
TMP451-Q1  
Voltage Regulator  
Register Bank  
Oscillator  
SCL  
SDA  
Serial Interface  
Control Logic  
16 x I  
6 x I  
I
ALERT/THERM2  
D+  
D-  
ADC  
THERM  
Internal  
BJT  
GND  
7.3 Feature Description  
7.3.1 Temperature Measurement Data  
The local and remote temperature sensors have a resolution of 12 bits (0.0625°C). Temperature data that result  
from conversions within the default measurement range are represented in binary form, as shown in the  
Standard Binary column of 7-1. Any temperature below 0°C results in a data value of 0 (00h). Likewise,  
temperatures above 127°C result in a value of 127 (7Fh). The device can be set to measure over an extended  
temperature range by changing bit 2 (RANGE) of configuration register from low to high. The change in  
measurement range and data format from standard binary to extended binary occurs at the next temperature  
conversion. For data captured in the extended temperature range configuration, an offset of 64 (40h) is added to  
the standard binary value, as shown in the EXTENDED BINARY column of 7-1. This configuration allows  
measurement of temperatures as low as 64°C, and as high as 191°C; however, most temperature-sensing  
diodes only measure with the range of 55°C to 150°C. Additionally, the TMP451-Q1 is specified only for  
ambient temperatures ranging from 40°C to 125°C; parameters in the Absolute Maximum Ratings table must  
be observed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMP451-Q1  
 
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7-1. Temperature Data Format (Local and Remote Temperature High Bytes)  
LOCAL AND REMOTE TEMPERATURE REGISTER  
HIGH BYTE VALUE (1°C RESOLUTION)  
TEMPERATURE  
(°C)  
STANDARD BINARY(1)  
BINARY  
EXTENDED BINARY(2)  
BINARY  
HEX  
00  
00  
00  
00  
01  
05  
0A  
19  
32  
4B  
64  
7D  
7F  
7F  
7F  
7F  
HEX  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0001  
0000 0101  
0000 1010  
0001 1001  
0011 0010  
0100 1011  
0110 0100  
0111 1101  
0111 1111  
0111 1111  
0111 1111  
0111 1111  
0000 0000  
0000 1110  
0010 0111  
0100 0000  
0100 0001  
0100 0101  
0100 1010  
0101 1001  
0111 0010  
1000 1011  
1010 0100  
1011 1101  
1011 1111  
1101 0110  
1110 1111  
1111 1111  
64  
50  
25  
0
0E  
27  
40  
1
41  
5
45  
10  
4A  
59  
25  
50  
72  
75  
8B  
A4  
BD  
BF  
D6  
EF  
FF  
100  
125  
127  
150  
175  
191  
(1) Resolution is 1°C/count. Negative values produce a read of 0°C.  
(2) Resolution is 1°C/count. All values are unsigned with a 64°C offset.  
Both local and remote temperature data use two bytes for data storage. The high byte stores the temperature  
with 1°C resolution. The second or low byte stores the decimal fraction value of the temperature and allows a  
higher measurement resolution, as shown in 7-2. The measurement resolution for both the local and the  
remote channels is 0.0625°C.  
7-2. Decimal Fraction Temperature Data Format (Local and Remote Temperature Low Bytes)  
TEMPERATURE REGISTER LOW BYTE VALUE  
(0.0625°C RESOLUTION)(1)  
TEMP  
(°C)  
STANDARD AND EXTENDED BINARY  
HEX  
00  
10  
20  
30  
40  
50  
60  
70  
80  
90  
A0  
B0  
C0  
D0  
E0  
F0  
0
0000 0000  
0001 0000  
0010 0000  
0011 0000  
0100 0000  
0101 0000  
0110 0000  
0111 0000  
1000 0000  
1001 0000  
1010 0000  
1011 0000  
1100 0000  
1101 0000  
1110 0000  
1111 0000  
0.0625  
0.1250  
0.1875  
0.2500  
0.3125  
0.3750  
0.4375  
0.5000  
0.5625  
0.6250  
0.6875  
0.7500  
0.8125  
0.8750  
0.9385  
(1) Resolution is 0.0625°C/count. All possible values are shown.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
 
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.3.1.1 Standard Binary to Decimal Temperature Data Calculation Example  
High-byte conversion (for example, 0111 0011):  
Convert the right-justified binary high byte to hexadecimal.  
From hexadecimal, multiply the first number by 160 = 1 and the second number by 161 = 16.  
The sum equals the decimal equivalent.  
0111 0011b 73h (3 × 160) + (7 × 161) = 115  
Low-byte conversion (for example, 0111 0000):  
To convert the left-justified binary low-byte to decimal, use bits 7 through 4 and ignore bits 3 through 0 because  
they do not affect the value of the number.  
0111b (0 × 1/2)1 + (1 × 1/2)2 + (1 × 1/2)3 + (1 × 1/2)4 = 0.4375  
7.3.1.2 Standard Decimal to Binary Temperature Data Calculation Example  
For positive temperatures (for example, 20°C):  
(20°C) / (1°C/count) = 20 14h 0001 0100  
Convert the number to binary code with 8-bit, right-justified format, and MSB = 0 to denote a positive sign.  
20°C is stored as 0001 0100 14h.  
For negative temperatures (for example, 20°C):  
(|20|) / (1°C/count) = 20 14h 0001 0100  
Generate the two's complement of a negative number by complementing the absolute value binary number and  
adding 1.  
20°C is stored as 1110 1100 ECh.  
7.3.2 Series Resistance Cancellation  
Series resistance cancellation automatically eliminates the temperature error caused by the resistance of the  
routing to the remote transistor or by the resistors of the optional external low-pass filter. A total of up to 1 kΩ of  
series resistance can be cancelled by the TMP451-Q1 device, eliminating the need for additional  
characterization and temperature offset correction. See 6-5, Remote Temperature Error vs. Series  
Resistance, for details on the effects of series resistance on sensed remote temperature error.  
7.3.3 Differential Input Capacitance  
The TMP451-Q1 device tolerates differential input capacitance of up to 1000 pF with minimal change in  
temperature error. The effect of capacitance on sensed remote temperature error is shown in 6-6, Remote  
Temperature Error vs. Differential Capacitance.  
7.3.4 Filtering  
Remote junction temperature sensors are usually implemented in a noisy environment. Noise is most often  
created by fast digital signals, and it can corrupt measurements. The TMP451-Q1 device has a built-in, 65-kHz  
filter on the inputs of D+ and Dto minimize the effects of noise. However, a bypass capacitor placed  
differentially across the inputs of the remote temperature sensor is recommended to make the application more  
robust against unwanted coupled signals. For this capacitor, select a value of between 100 pF and 1 nF. Some  
applications attain better overall accuracy with additional series resistance; however, this increased accuracy is  
application-specific. When series resistance is added, the total value should not be greater than 1 k. If filtering  
is required, suggested component values are 100 pF and 50 on each input; exact values are application-  
specific.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
Additionally, a digital filter is available for the remote temperature measurements to further reduce the effect of  
noise. This filter is programmable and has two levels when enabled. Level 1 performs a moving average of four  
consecutive samples. Level 2 performs a moving average of eight consecutive samples. The value stored in the  
remote temperature result register is the output of the digital filter, and the ALERT and THERM limits are  
compared to it. This provides additional immunity to noise and spikes on the ALERT and THERM outputs. The  
filter responses are shown in 7-1. The filter can be enabled or disabled by programming the desired levels in  
the digital filter register. The digital filter is disabled by default and on POR.  
Impulse Response  
Step response  
100  
90  
100  
90  
80  
70  
80  
70  
Disabled  
Disabled  
60  
50  
60  
50  
Level1  
Level2  
40  
30  
40  
30  
Level1  
Level2  
20  
10  
20  
10  
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Samples  
Samples  
7-1. Filter Response to Impulse and Step Inputs  
7.3.5 Sensor Fault  
The TMP451-Q1 device can sense a fault at the D+ input resulting from incorrect diode connection. The  
TMP451-Q1 device can also sense an open circuit. Short-circuit conditions return a value of 64°C. The  
detection circuitry consists of a voltage comparator that trips when the voltage at D+ exceeds (V+) 0.3 V  
(typical). The comparator output is continuously checked during a conversion. If a fault is detected, then OPEN  
(bit 2) in the status register is set to 1.  
When not using the remote sensor with the TMP451-Q1 device, the D+ and Dinputs must be connected  
together to prevent meaningless fault warnings.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.3.6 ALERT and THERM Functions  
The operation of the ALERT (pin 6) and THERM (pin 4) interrupts is shown in 7-2. The operation of the  
THERM (pin 4) and THERM2 (pin 6) interrupts is shown in 7-3.  
Temperature Conversion Complete  
150  
140  
130  
120  
THERM Limit  
110  
100  
THERM Limit - Hysteresis  
90  
High Temperature Limit  
80  
70  
Measured  
Temperature  
60  
50  
Time  
ALERT output  
serviced by master  
ALERT  
THERM  
7-2. ALERT and THERM Interrupt Operation  
Temperature Conversion Complete  
150  
140  
130  
120  
THERM Limit  
110  
100  
THERM Limit - Hysteresis  
90  
THERM2 Limit  
80  
70  
THERM2 Limit - Hysteresis  
Measured  
Temperature  
60  
50  
Time  
THERM2  
THERM  
7-3. THERM and THERM2 Interrupt Operation  
The hysteresis value is stored in the THERM hysteresis register. The value of the CONAL[2:0] bits in the  
consecutive ALERT register determines the number of limit violations before the ALERT pin is tripped. The  
default value is 000b and corresponds to one violation, 001b programs two consecutive violations, 011b  
programs three consecutive violations, and 111b programs four consecutive violations. This provides additional  
filtering for the ALERT pin state.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode (SD)  
The TMP451-Q1 shutdown mode enables the user to save maximum power by shutting down all device circuitry  
other than the serial interface, reducing current consumption to typically less than 3 μA; see 6-11, Shutdown  
Quiescent Current vs. Supply Voltage. Shutdown mode is enabled when the SD bit (bit 6) of the configuration  
register is high; the device shuts down after the current conversion is finished. When the SD bit is low, the device  
maintains a continuous-conversion state.  
7.5 Programming  
7.5.1 Serial Interface  
The TMP451-Q1 device operates only as a slave device on either the two-wire bus or the SMBus. Connections  
to either bus are made using the open-drain I/O lines, SDA and SCL. The SDA and SCL pins feature integrated  
spike suppression filters and Schmitt triggers to minimize the effects of input spikes and bus noise. The  
TMP451-Q1 device supports the transmission protocol for fast (1 kHz to 400 kHz) and high-speed (1 kHz to 2.5  
MHz) modes. All data bytes are transmitted MSB first.  
7.5.1.1 Bus Overview  
The TMP451-Q1 device is SMBus interface compatible. In SMBus protocol, the device that initiates the transfer  
is called a master, and the devices controlled by the master are slaves. The bus must be controlled by a master  
device that generates the serial clock (SCL), controls the bus access, and generates the start and stop  
conditions.  
To address a specific device, a start condition is initiated. A start condition is indicated by pulling the data line  
(SDA) from a high-to-low logic level while SCL is high. All slaves on the bus shift in the slave address byte, with  
the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being  
addressed responds to the master by generating an acknowledge bit and pulling SDA low.  
Data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit. During data  
transfer SDA must remain stable while SCL is high, because any change in SDA while SCL is high is interpreted  
as a control signal.  
After all data have been transferred, the master generates a stop condition. A stop condition is indicated by  
pulling SDA from low to high, while SCL is high.  
7.5.1.2 Bus Definitions  
The TMP451-Q1 device is two-wire and SMBus-compatible. 7-4 and 7-5 show the timing for various  
operations on the TMP451-Q1 device. The bus definitions are as follows:  
Bus Idle:  
Both SDA and SCL lines remain high.  
Start Data  
Transfer:  
A change in the state of the SDA line, from high to low, while the SCL line is high, defines  
a start condition. Each data transfer initiates with a start condition.  
Stop Data  
Transfer:  
A change in the state of the SDA line from low to high while the SCL line is high defines a  
stop condition. Each data transfer terminates with a repeated start or stop condition.  
Data Transfer:  
The number of data bytes transferred between a start and a stop condition is not limited  
and is determined by the master device. The receiver acknowledges data transfer.  
Acknowledge:  
Each receiving device, when addressed, is obliged to generate an acknowledge bit. A  
device that acknowledges must pull down the SDA line during the acknowledge clock  
pulse in such a way that the SDA line is stable low during the high period of the  
acknowledge clock pulse. Take setup and hold times into account. On a master receive,  
data transfer termination can be signaled by the master generating a not-acknowledge on  
the last byte that has been transmitted by the slave.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
1
9
1
9
SCL  
SDA  
¼
1
0
0
1
1
0
0(1) R/W  
P7 P6 P5 P4 P3  
P2 P1  
P0  
¼
Start By  
Master  
ACK By  
ACK By  
Device  
Device  
Frame 2 Pointer Register Byte  
Frame 1 Two-Wire Slave Address Byte  
1
9
SCL  
(Continued)  
SDA  
D7 D6 D5 D4 D3 D2 D1 D0  
(Continued)  
ACK By  
Device  
Stop By  
Master  
Frame 3 Data Byte 1  
A. Slave address 1001100 shown.  
7-4. Two-Wire Timing Diagram for Write Word Format  
1
9
1
9
¼
SCL  
SDA  
1
0
0
1
1
0
0(1)  
R/W  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
¼
Start By  
Master  
ACK By  
ACK By  
Device  
Device  
Frame 1 Two-Wire Slave Address Byte  
Frame 2 Pointer Register Byte  
1
9
1
9
SCL  
¼
(Continued)  
SDA  
0(1)  
¼
1
0
1
0
0
1
R/W  
D7  
D6  
D5  
D4 D3  
D2  
D1  
D0  
(Continued)  
Start By  
Master  
ACK By  
From  
Device  
NACK By  
Master(2)  
Device  
Frame 3 Two-Wire Slave Address Byte  
Frame 4 Data Byte 1 Read Register  
A. Slave address 1001100 shown.  
B. Master should leave SDA high to terminate a single-byte read operation.  
7-5. Two-Wire Timing Diagram for Single-Byte Read Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.5.1.3 Serial Bus Address  
To communicate with the TMP451-Q1 device, the master must first address slave devices using a slave address  
byte. The slave address byte consists of seven address bits, and a direction bit indicating the intent of executing  
a read or write operation. The TMP451-Q1 SMBus addresses are shown in 7-3. Additional factory-  
programmed device addresses are available upon request.  
7-3. TMP451-Q1 SMBus Addresses  
Orderable Part Number (DQF Package)  
SMBus Address (7-bit)  
TMP451HQDQFRQ1  
49  
4C  
4E  
TMP451AQDQFRQ1  
TMP451JQDQFRQ1  
7.5.1.4 Read and Write Operations  
Accessing a particular register on the TMP451-Q1 device is accomplished by writing the appropriate value to the  
pointer register. The value for the pointer register is the first byte transferred after the slave address byte with the  
R/ W bit low. Every write operation to the TMP451-Q1 device requires a value for the pointer register (see 图  
7-4).  
When reading from the TMP451-Q1 device the last value stored in the pointer register by a write operation is  
used to determine which register is read by a read operation. To change which register is read for a read  
operation, a new value must be written to the pointer register. This transaction is accomplished by issuing a  
slave address byte with the R/ W bit low, followed by the pointer register byte; no additional data are required.  
The master can then generate a start condition and send the slave address byte with the R/ W bit high to initiate  
the read command; see 7-5 for details of this sequence.  
If repeated reads from the same register are desired, it is not necessary to continually send the pointer register  
bytes, because the TMP451-Q1 retains the pointer register value until it is changed by the next write operation.  
The register bytes are sent MSB first, followed by the LSB.  
Read operations should be terminated by issuing a not-acknowledge command at the end of the last byte to be  
read. For single-byte operation, the master must leave the SDA line high during the acknowledge time of the first  
byte that is read from the slave.  
7.5.1.5 Timeout Function  
If the SMBus timeout function is enabled, the TMP451-Q1 device resets the serial interface if either SCL or SDA  
are held low for 25 ms (typical) between a start and stop condition. If the TMP451-Q1 device is holding the bus  
low, the device releases the bus and waits for a start condition. To avoid activating the timeout function,  
maintaining a communication speed of at least 1 kHz for the SCL operating frequency is necessary. The SMBTO  
bit (bit 7) of the consecutive ALERT register controls the timeout enable. Setting the SMBTO bit to a value of 0  
(default) disables the timeout. Setting the SMBTO bit to a value of 1 enables the function.  
7.5.1.6 High-Speed Mode  
For the two-wire bus to operate at frequencies above 1 MHz, the master device must issue a high-speed mode  
(Hs-mode) master code (0000 1xxx) as the first byte after a start condition to switch the bus to high-speed  
operation. The TMP451-Q1 device does not acknowledge this byte, but switches the input filters on SDA and  
SCL and the output filter on SDA to operate in Hs-mode, allowing transfers at up to 2.5 MHz. After the Hs-mode  
master code has been issued, the master transmits a two-wire slave address to initiate a data transfer operation.  
The bus continues to operate in Hs-mode until a stop condition occurs on the bus. Upon receiving the stop  
condition, the TMP451-Q1 device switches the input and output filters back to fast mode operation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.6 Register Map  
7-4. Register Map  
BIT DESCRIPTION  
POINTER READ POINTER WRITE  
(HEX)  
(HEX)  
POR (HEX)  
7
6
5
4
3
2
1
0
REGISTER DESCRIPTION  
Local temperature (high byte)  
Remote temperature (high byte)  
Status register  
00  
N/A  
00  
00  
LT11  
RT11  
BUSY  
LT10  
RT10  
LHIGH  
LT9  
LT8  
LT7  
LT6  
LT5  
LT4  
01  
N/A  
RT9  
LLOW  
RT8  
RT7  
RT6  
OPEN  
RT5  
RT4  
02  
N/A  
N/A  
RHIGH  
RLOW  
RTHRM  
LTHRM  
ALERT/  
THERM2  
03  
09  
00  
MASK1  
SD  
0
0
RANGE  
0
0
Configuration register  
04  
05  
06  
07  
08  
N/A  
10  
11  
0A  
0B  
0C  
0D  
0E  
0F  
N/A  
11  
08  
55  
00  
55  
00  
N/A  
00  
00  
00  
00  
00  
00  
6E  
6E  
0A  
01  
00  
00  
55  
0
0
0
0
CR3  
LTHL7  
LTLL7  
RTHL7  
RTLL7  
X
CR2  
LTHL6  
LTLL6  
RTHL6  
RTLL6  
X
CR1  
LTHL5  
LTLL5  
RTHL5  
RTLL5  
X
CR0  
LTHL4  
LTLL4  
RTHL4  
RTLL4  
X
Conversion rate register  
LTHL11  
LTLL11  
RTHL11  
RTLL11  
X
LTHL10  
LTLL10  
RTHL10  
RTLL10  
X
LTHL9  
LTLL9  
RTHL9  
RTLL9  
X
LTHL8  
LTLL8  
RTHL8  
RTLL8  
X
Local temperature high limit  
Local temperature low limit  
Remote temperature high limit (high byte)  
Remote temperature low limit (high byte)  
One-shot start(1)  
RT3  
RT2  
RT1  
RT0  
0
0
0
0
Remote temperature (low byte)  
Remote temperature offset (high byte)  
Remote temperature offset (low byte)  
Remote temperature high limit (low byte)  
Remote temperature low limit (low byte)  
Local temperature (low byte)  
Remote temperature THERM limit  
Local temperature THERM limit  
THERM hysteresis  
RTOS11  
RTOS3  
RTHL3  
RTLL3  
LT3  
RTOS10  
RTOS2  
RTHL2  
RTLL2  
LT2  
RTOS9  
RTOS1  
RTHL1  
RTLL1  
LT1  
RTOS8  
RTOS0  
RTHL0  
RTLL0  
LT0  
RTOS7  
0
RTOS6  
0
RTOS5  
0
RTOS4  
0
12  
13  
14  
15  
19  
20  
21  
22  
23  
24  
FE  
12  
13  
0
0
0
0
14  
0
0
0
0
N/A  
19  
0
0
0
0
RTH11  
LTH11  
HYS11  
SMBTO  
NC7  
RTH10  
LTH10  
HYS10  
0
RTH9  
LTH9  
HYS9  
0
RTH8  
LTH8  
HYS8  
0
RTH7  
LTH7  
HYS7  
CONAL2  
NC3  
0
RTH6  
LTH6  
HYS6  
CONAL1  
NC2  
0
RTH5  
LTH5  
HYS5  
CONAL0  
NC1  
DF1  
0
RTH4  
LTH4  
HYS4  
1
20  
21  
22  
Consecutive ALERT  
23  
NC6  
NC5  
NC4  
NC0  
DF0  
1
η-factor correction  
24  
0
0
0
0
Digital filter control  
N/A  
0
1
0
1
0
1
Manufacturer ID  
(1) X = undefined. Writing any value to this register initiates a one-shot start; see the One-Shot Conversion section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMP451-Q1  
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.6.1 Register Information  
The TMP451-Q1 device contains multiple registers for holding configuration information, temperature  
measurement results, and status information. These registers are described in 7-6 and 7-4.  
7.6.1.1 Pointer Register  
7-6 shows the internal register structure of the TMP451-Q1 device. The 8-bit pointer register is used to  
address a given data register. The pointer register identifies which of the data registers should respond to a read  
or write command on the two-wire bus. This register is set with every write command. A write command must be  
issued to set the proper value in the pointer register before executing a read command. 7-4 describes the  
pointer register and the internal structure of the TMP451-Q1 registers. The power-on reset (POR) value of the  
pointer register is 00h (0000 0000b).  
Pointer Register  
Local and Remote Temperature Registers  
Status Register  
Configuration Register  
Conversion Rate Register  
SDA  
Local and Remote Temperature Limit Registers  
One-Shot Start Register  
I/O  
Control  
Interface  
Remote Temperature Offset Registers  
Local and Remote THERM Limit Registers  
THERM Hysteresis Register  
Consecutive ALERT Register  
N-factor Correction Register  
SCL  
Digital Filter Register  
Manufacturer ID Register  
7-6. Internal Register Structure  
7.6.1.2 Temperature Registers  
The TMP451-Q1 device has multiple 8-bit registers that hold temperature measurement results. The eight most  
significant bits (MSBs) of the local temperature sensor result are stored in register 00h, while the four least  
significant bits (LSBs) are stored in register 15h (the four MSBs of register 15h). The eight MSBs of the remote  
temperature sensor result are stored in register 01h, and the four LSBs are stored in register 10h (the four MSBs  
of register 10h). The four LSBs of both the local sensor and the remote sensor indicate the temperature value  
after the decimal point (for example, if the temperature result is 10.0625°C, the high byte is 0000 1010 and the  
low byte is 0001 0000). These registers are read-only and are updated by the ADC each time a temperature  
measurement is completed.  
When the full temperature value is needed, reading the MSB value first causes the LSB value to be locked (the  
ADC does not write to it) until it is read. The same thing happens upon reading the LSB value first (the MSB  
value is locked until it is read). This mechanism assures that both bytes of the read operation are from the same  
ADC conversion. This assurance remains valid only until another register is read. For proper operation, read the  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
high byte of the temperature result first. Read the low byte register in the next read command; if the LSBs are  
not needed, the register may be left unread. The power-on reset value of all temperature registers is 00h.  
7.6.1.3 Status Register  
The status register reports the state of the temperature ADC, the temperature limit comparators, and the  
connection to the remote sensor. 7-5 lists the status register bits. The status register is read-only, and is read  
by accessing pointer address 02h.  
7-5. Status Register Format  
STATUS REGISTER (READ = 02h, WRITE = N/A)  
BIT NUMBER  
BIT NAME  
BUSY  
FUNCTION  
7
6
5
4
3
2
1
0
= 1 when the ADC is converting  
LHIGH(1)  
LLOW(1)  
RHIGH(1)  
RLOW(1)  
OPEN(1)  
RTHRM  
LTHRM  
= 1 when the local high temperature limit is tripped  
= 1 when the local low temperature limit is tripped  
= 1 when the remote high temperature limit is tripped  
= 1 when the remote low temperature limit is tripped  
= 1 when the remote sensor is an open circuit  
= 1 when the remote THERM limit is tripped  
= 1 when the local THERM limit is tripped  
(1) These flags stay high until the status register is read or they are reset by a POR when pin 6 is  
configured as ALERT. Only bit 2 (OPEN) stays high until the status register is read or it is reset by a  
POR when pin 6 is configured as THERM2.  
The BUSY bit = 1 if the ADC is making a conversion. This bit is set to 0 if the ADC is not converting.  
The LHIGH and LLOW bits indicate a local sensor overtemperature or undertemperature event, respectively.  
The RHIGH and RLOW bits indicate a remote sensor overtemperature or undertemperature event, respectively.  
The OPEN bit indicates an open circuit condition on the remote sensor. When pin 6 is configured as the ALERT  
output, the five flags are NORed together. If any of the five flags are high, the ALERT interrupt latch is set and  
the ALERT output goes low. Reading the status register clears the five flags, provided that the condition that  
caused the setting of the flags is not present anymore (that is, the value of the corresponding result register is  
within the limits, or the remote sensor is connected properly and functional). The ALERT interrupt latch (and the  
ALERT pin correspondingly) is not reset by reading the status register. The reset is done by the master reading  
the temperature sensor device address to service the interrupt, and only if the flags have been reset and the  
condition that caused them to be set is not present.  
The RTHRM and LTHRM flags are set when the corresponding temperature exceeds the programmed THERM  
limit. They are reset automatically when the temperature returns to within the limits. The THERM output goes low  
in the case of overtemperature on either the local or the remote channel, and goes high as soon as the  
measurements are within the limits again. The THERM hysteresis register (21h) allows hysteresis to be added  
so that the flag resets and the output goes high when the temperature returns to or goes below the limit value  
minus the hysteresis value.  
When pin 6 is configured as THERM2, only the high limits matter. The LHIGH and RHIGH flags are set if the  
respective temperatures exceed the limit values, and the pin goes low to indicate the event. The LLOW and  
RLOW flags have no effect on THERM2, and the output behaves the same way when configured as THERM.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.6.1.4 Configuration Register  
The configuration register sets the temperature range, the ALERT/ THERM modes, and controls the shutdown  
mode. The configuration register is set by writing to pointer address 09h, and read by reading from pointer  
address 03h. 7-6 summarizes the bits of configuration register.  
7-6. Configuration Register Bit Descriptions  
CONFIGURATION REGISTER (READ = 03h, WRITE = 09h, POR = 00h)  
BIT NUMBER  
NAME  
FUNCTION  
POWER-ON RESET VALUE  
0 = ALERT Enabled  
1 = ALERT Masked  
7
MASK1  
0
0 = Run  
1 = Shut down  
6
SD  
0
0 = ALERT  
1 = THERM2  
5
ALERT/ THERM2  
Reserved  
0
0
0
0
4:3  
2
0 = 0°C to +127°C  
1 = 64°C to +191°C  
RANGE  
1:0  
Reserved  
MASK1 (bit 7) of the configuration register masks the ALERT output. If MASK1 is 0 (default), the ALERT output  
is enabled. If MASK1 is set to 1, the ALERT output is disabled. This configuration applies only if the value of  
ALERT/ THERM2 (bit 5) is 0 (that is, pin 6 is configured as the ALERT output). If pin 6 is configured as the  
THERM2 output, the value of the MASK1 bit has no effect.  
The shutdown bit (SD, bit 6) enables or disables the temperature-measurement circuitry. If SD = 0 (default), the  
TMP451-Q1 device converts continuously at the rate set in the conversion rate register. When SD is set to 1, the  
TMP451-Q1 device stops converting when the current conversion sequence is complete and enters a shutdown  
mode. When SD is set to 0 again, the TMP451-Q1 resumes continuous conversions. When SD = 1, a single  
conversion can be started by writing to the one-shot start register. See the One-Shot Start Register section for  
more information.  
ALERT/ THERM2 (bit 5) sets the configuration of pin 6. If the ALERT/ THERM2 bit is 0 (default), then pin 6 is  
configured as the ALERT output; if it is set to 1, then pin 6 is configured as the THERM2 output.  
The temperature range is set by configuring RANGE (bit 2) of the configuration register. Setting this bit low  
(default) configures the TMP451-Q1 device for the standard measurement range (0°C to 127°C); temperature  
conversions are stored in the standard binary format. Setting bit 2 high configures the TMP451-Q1 device for the  
extended measurement range (64°C to 191°C); temperature conversions are stored in the extended binary  
format (see 7-1).  
The remaining bits of the configuration register are reserved and must always be set to 0. The power-on reset  
value for this register is 00h.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7.6.1.5 Conversion Rate Register  
The conversion rate register (read address 04h, write address 0Ah) controls the rate at which temperature  
conversions are performed. This register adjusts the idle time between conversions but not the conversion time  
itself, thereby allowing the TMP451-Q1 power dissipation to be balanced with the temperature register update  
rate. 7-7 lists the conversion rate options and corresponding time between conversions. The default value of  
the register is 08h, which gives a default rate of 16 conversions per second.  
7-7. Conversion Rate  
VALUE  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
CONVERSIONS PER SECOND  
TIME (SECONDS)  
0.0625  
16  
0.125  
8
0.25  
4
0.5  
2
1
1
0.5  
2
4
0.25  
8
16 (default)  
32  
0.125  
0.0625 (default)  
0.03125  
7.6.1.6 One-Shot Start Register  
When the TMP451-Q1 device is in shutdown mode (SD = 1 in the configuration register), a single conversion is  
started by writing any value to the one-shot start register, pointer address 0Fh. This write operation starts one  
conversion and comparison cycle on both the local and the remote sensors. The TMP451-Q1 device returns to  
shutdown mode when the cycle completes. The value of the data sent in the write command is irrelevant and is  
not stored by the TMP451-Q1 device.  
7.6.1.7 η-Factor Correction Register  
The TMP451-Q1 device allows for a different η-factor value to be used for converting remote channel  
measurements to temperature. The remote channel uses sequential current excitation to extract a differential  
VBE voltage measurement to determine the temperature of the remote transistor. 方程式 1 shows this voltage  
and temperature.  
hkT  
I2  
I1  
VBE2 - VBE1  
=
ln  
q
(1)  
The value ηin 方程1 is a characteristic of the particular transistor used for the remote channel. The power-on  
reset value for the TMP451-Q1 device is η = 1.008. The value in the η-factor correction register may be used  
to adjust the effective η-factor according to 方程2 and 方程3.  
«
÷
1.008 ì 2088  
2088 + NADJUST  
eff  
=
(2)  
«
÷
1.008 ì 2088  
NADJUST  
=
- 2088  
eff  
(3)  
The η-factor correction value must be stored in twos complement format, yielding an effective data range from  
128 to 127. The η-factor correction value is written to and read from pointer address 23h. The register power-  
on reset value is 00h, thus having no effect unless a different value is written to it.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMP451-Q1  
 
 
 
 
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
7-8. η-Factor Range  
NADJUST  
BINARY  
0111 1111  
0000 1010  
0000 1000  
0000 0110  
0000 0100  
0000 0010  
0000 0001  
0000 0000  
1111 1111  
1111 1110  
1111 1100  
1111 1010  
1111 1000  
1111 0110  
1000 0000  
HEX  
7F  
0A  
08  
DECIMAL  
η
127  
10  
0.950198  
1.003195  
1.004152  
1.005111  
1.006072  
1.007035  
1.007517  
1.008  
8
06  
6
04  
4
02  
2
01  
1
00  
0
FF  
FE  
FC  
FA  
F8  
F6  
80  
1.008483  
1.008967  
1.009935  
1.010905  
1.011877  
1.012851  
1.073837  
1  
2  
4  
6  
8  
10  
128  
7.6.1.8 Offset Register  
The offset register allows the TMP451-Q1 device to store any system offset compensation value that might be  
observed from precision calibration. The value in the register is stored in the same format as the temperature  
result, and is added to the remote temperature result upon every conversion. Combined with the η-factor  
correction, this function allows for very accurate system calibration over the entire temperature range.  
7.6.1.9 General Call Reset  
The TMP451-Q1 device supports reset using the two-wire general call address 00h (0000 0000b). The TMP451-  
Q1 device acknowledges the general call address and responds to the second byte. If the second byte is 06h  
(0000 0110b), the TMP451-Q1 device executes a software reset. This software reset restores the power-on  
reset state to all TMP451-Q1 registers, and it aborts any conversion in progress. The TMP451-Q1 device takes  
no action in response to other values in the second byte.  
7.6.1.10 Identification Register  
The TMP451-Q1 device allows for the two-wire bus controller to query the device for manufacturer and device  
IDs to enable software identification of the device at the particular two-wire bus address. The manufacturer ID is  
obtained by reading from pointer address FEh. The TMP451-Q1 device reads 55h for the manufacturer code.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TMP451-Q1 device requires only a transistor connected between the D+ and Dpins for remote  
temperature measurement. Tie the D+ pin to GND if the remote channel is not used and only the local  
temperature is measured. The SDA, ALERT, and THERM pins (and SCL, if driven by an open-drain output)  
require pullup resistors as part of the communication bus. A 0.1-µF power-supply decoupling capacitor is  
recommended for local bypassing. 8-1 shows the typical configuration for the TMP451-Q1 device.  
8.2 Typical Application  
(2)  
RS  
1.7V to 3.6V  
0.1µF  
1.7V to 3.6V  
(3)  
CDIFF  
(2)  
RS  
10k  
(typ)  
10kꢀ  
(typ)  
10kꢀ  
(typ)  
10kꢀ  
(typ)  
Diode-connected configuration(1)  
Series Resistance  
(2)  
1
V+  
RS  
2
3
4
5
8
7
DXP  
DXN  
SCL  
SDA  
(3)  
CDIFF  
(2)  
RS  
SMBus  
Controller  
TMP451-Q1  
THERM  
GND  
Transistor-connected configuration(1)  
ALERT / THERM2  
6
Overtemperature Shutdown  
A. Diode-connected configuration provides better settling time. Transistor-connected configuration provides better series resistance  
cancellation.  
B. RS (optional) should be < 1 kin most applications. Selection of RS depends on application; see the Filtering section.  
C. CDIFF (optional) should be < 1000 pF in most applications. Selection of CDIFF depends on application; see the Filtering section and 图  
6-6, Remote Temperature Error vs. Differential Capacitance.  
8-1. TMP451-Q1 Basic Connections Using a Discrete Remote Transistor  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMP451-Q1  
 
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
1.7V to 3.6V  
1.7V to 3.6V  
1
V+  
Processor  
2
3
4
5
8
7
or ASIC  
DXP  
DXN  
SCL  
SDA  
Built-in  
Thermal  
Transistor/  
Diode  
SMBus  
Controller  
TMP451-Q1  
THERM  
GND  
ALERT / THERM2  
6
Overtemperature  
Shutdown  
8-2. TMP451-Q1 Basic Connections Using a Processor Built-In Remote Transistor  
8.2.1 Design Requirements  
The TMP451-Q1 device is designed to be used with either discrete transistors or substrate transistors built into  
processor chips and ASICs. Either NPN or PNP transistors can be used, as long as the base-emitter junction is  
used as the remote temperature sense. NPN transistors must be diode-connected. PNP transistors can either be  
transistor- or diode-connected (see 8-1).  
Errors in remote temperature sensor readings are typically the consequence of the ideality factor and current  
excitation used by the TMP451-Q1 device versus the manufacturer-specified operating current for a given  
transistor. Some manufacturers specify a high-level and low-level current for the temperature-sensing substrate  
transistors. The TMP451-Q1 device uses 7.5 μA for ILOW and 120 μA for IHIGH  
.
The ideality factor (η) is a measured characteristic of a remote temperature sensor diode as compared to an  
ideal diode. The TMP451-Q1 allows for different η-factor values; see the η-Factor Correction Register section.  
The ideality factor for the TMP451-Q1 device is trimmed to be 1.008. For transistors that have an ideality factor  
that does not match the TMP451-Q1, 方程4 can be used to calculate the temperature error.  
备注  
For the equation to be used correctly, actual temperature (°C) must be converted to Kelvin (K).  
h - 1.008  
TERR  
=
´ (273.15 + T(°C))  
1.008  
(4)  
where  
TERR = error in the TMP451-Q1 device because η1.008  
η= ideality factor of remote temperature sensor  
T(°C) = actual temperature  
Degree delta is the same for °C and K.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
For η= 1.004 and T(°C) = 100°C:  
1.004 -1.008  
æ
ö
TERR  
=
´ 273.15 +100°C  
ç
÷
1.008  
è
ø
TERR = 1.48°C  
(5)  
If a discrete transistor is used as the remote temperature sensor with the TMP451-Q1, the best accuracy can be  
achieved by selecting the transistor according to the following criteria:  
1. Base-emitter voltage > 0.25 V at 7.5 μA, at the highest sensed temperature.  
2. Base-emitter voltage < 0.95 V at 120 μA, at the lowest sensed temperature.  
3. Base resistance < 100 .  
4. Tight control of VBE characteristics indicated by small variations in hFE (that is, 50 to 150).  
Based on this criteria, two recommended small-signal transistors are the 2N3904 (NPN) or 2N3906 (PNP).  
8.2.2 Detailed Design Procedure  
The local temperature sensor inside the TMP451-Q1 device monitors the ambient air around the device. The  
thermal time constant for the TMP451-Q1 device is approximately two seconds. This constant implies that if the  
ambient air changes quickly by 100°C, it would take the TMP451-Q1 device about 10 seconds (that is, five  
thermal time constants) to settle to within 1°C of the final value. In most applications, the TMP451-Q1 package is  
in electrical, and therefore thermal, contact with the printed circuit board (PCB), as well as subjected to forced  
airflow. The accuracy of the measured temperature directly depends on how accurately the PCB and forced  
airflow temperatures represent the temperature that the TMP451-Q1 is measuring. Additionally, the internal  
power dissipation of the TMP451-Q1 can cause the temperature to rise above the ambient or PCB temperature.  
The internal power dissipated as a result of exciting the remote temperature sensor is negligible because of the  
small currents used. For a 3.3-V supply and maximum conversion rate of 16 conversions per second, the  
TMP451-Q1 device dissipates 0.54 mW (PDIQ = 3.3 V × 165 μA). A θJA of 171.3°C/W causes the junction  
temperature to rise approximately 0.09°C above the ambient.  
The temperature measurement accuracy of the TMP451-Q1 device depends on the remote and/or local  
temperature sensor being at the same temperature as the system point being monitored. Clearly, if the  
temperature sensor is not in good thermal contact with the part of the system being monitored, then there will be  
a delay in the response of the sensor to a temperature change in the system. For remote temperature-sensing  
applications using a substrate transistor (or a small, SOT23 transistor) placed close to the device being  
monitored, this delay is usually not a concern.  
8.2.3 Application Curves  
The following curves show the performance capabilities of the TMP451-Q1 device. 8-3 shows the accuracy  
performance in an oil-bath temperature drift of a population of 16 standard 2N3906 transistors measured in a  
diode-connected configuration. 8-4 shows the typical step response to a submerging of a sensor in an oil bath  
with temperature of 100°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMP451-Q1  
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
2
1.5  
1
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
Mean  
Mean - 6S  
Mean + 6S  
0.5  
0
-0.5  
-1  
-1.5  
-2  
œ1 0  
1
2
3
4
5
6
7
8
9 1011121314151617181920  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Time (s)  
C007  
Remote Diode Temperature (èC)  
D001  
8-4. Temperature Step Response  
8-3. TMP451-Q1 Remote Diode Temperature  
Drift (Diode-Connected 2N3906)  
9 Power Supply Recommendations  
The TMP451-Q1 device operates with a power supply range of 1.7 V to 3.6 V. The device is optimized for  
operation at 3.3-V supply but can measure temperature accurately in the full supply range.  
A power-supply bypass capacitor is recommended. Place this capacitor as close as possible to the supply and  
ground pins of the device. A typical value for this supply bypass capacitor is 0.1 μF. Applications with noisy or  
high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Remote temperature sensing on the TMP451-Q1 device measures very small voltages using very low currents;  
therefore, noise at the device inputs must be minimized. Most applications using the TMP451-Q1 have high  
digital content, with several clocks and logic level transitions creating a noisy environment. Layout should adhere  
to the following guidelines:  
1. Place the TMP451-Q1 device as close to the remote junction sensor as possible.  
2. Route the D+ and Dtraces next to each other and shield them from adjacent signals through the use of  
ground guard traces; see 10-1. If a multilayer PCB is used, bury these traces between ground or V+  
planes to shield them from extrinsic noise sources. 5 mil (0.127 mm) PCB traces are recommended.  
3. Minimize additional thermocouple junctions caused by copper-to-solder connections. If these junctions are  
used, make the same number and approximate locations of copper-to-solder connections in both the D+ and  
Dconnections to cancel any thermocouple effects.  
4. Use a 0.1μF local bypass capacitor directly between the V+ and GND of the TMP451-Q1 device. For  
optimum measurement performance, minimize filter capacitance between D+ and Dto 1000 pF or less .  
This capacitance includes any cable capacitance between the remote temperature sensor and the TMP451-  
Q1 device.  
5. If the connection between the remote temperature sensor and the TMP451-Q1 device is less than 8-in  
(20,32 cm) long, use a twisted-wire pair connection. For lengths greater than 8 in, use a twisted, shielded  
pair with the shield grounded as close to the TMP451-Q1 device as possible. Leave the remote sensor  
connection end of the shield wire open to avoid ground loops and 60-Hz pickup.  
6. Thoroughly clean and remove all flux residue in and around the pins of the TMP451-Q1 device to avoid  
temperature offset readings as a result of leakage paths between D+ and GND, or between D+ and V+.  
V+  
D+  
Ground or V+ layer  
on bottom and/or  
top, if possible.  
D-  
GND  
Use minimum 5-mil (0.127 mm) traces with 5-mil spacing.  
10-1. Suggested PCB Layer Cross-Section  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMP451-Q1  
 
 
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
10.2 Layout Example  
VIA to Power or Ground Plane  
VIA to Internal Layer  
Ground Plane  
Pull-Up Resistors  
Supply Voltage  
Supply Bypass  
Capacitor  
1
2
3
4
8
7
6
5
V+  
D+  
SCL  
SDA  
RS  
RS  
CDIFF  
ALERT /  
THERM2  
D-  
Thermal  
Shutdown  
GND  
THERM  
Serial Bus Traces  
10-2. TMP451-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMP451-Q1  
 
TMP451-Q1  
ZHCSCV4C OCTOBER 2014 REVISED APRIL 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
SMBusis a trademark of Intel Corporation.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMP451-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMP451AQDQFRQ1  
TMP451AQDQFTQ1  
TMP451AQDQWRQ1  
TMP451AQDQWTQ1  
TMP451HQDQFRQ1  
TMP451HQDQFTQ1  
TMP451HQDQWRQ1  
TMP451HQDQWTQ1  
TMP451JQDQFRQ1  
TMP451JQDQFTQ1  
TMP451JQDQWRQ1  
TMP451JQDQWTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DQF  
DQF  
DQW  
DQW  
DQF  
DQF  
DQW  
DQW  
DQF  
DQF  
DQW  
DQW  
8
8
8
8
8
8
8
8
8
8
8
8
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
250 RoHS & Green  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DAIQ  
DAIQ  
1A  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
1A  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
250 RoHS & Green  
1RUG  
1RUG  
1H  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
1H  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
250 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
3000 RoHS & Green  
250 RoHS & Green  
1RVG  
1RVG  
1J  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
1J  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMP451AQDQFRQ1  
TMP451AQDQFRQ1  
TMP451AQDQFTQ1  
TMP451AQDQFTQ1  
TMP451HQDQFRQ1  
TMP451HQDQFRQ1  
TMP451HQDQFTQ1  
TMP451HQDQFTQ1  
TMP451JQDQFRQ1  
TMP451JQDQFRQ1  
TMP451JQDQFTQ1  
TMP451JQDQFTQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
8
8
8
8
8
8
8
8
8
8
8
8
3000  
3000  
250  
179.0  
178.0  
178.0  
180.0  
178.0  
180.0  
178.0  
180.0  
178.0  
180.0  
180.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.2  
2.3  
2.3  
2.2  
2.3  
2.2  
2.3  
2.2  
2.3  
2.2  
2.2  
2.3  
2.2  
2.3  
2.3  
2.2  
2.3  
2.2  
2.3  
2.2  
2.3  
2.2  
2.2  
2.3  
1.2  
1.15  
1.15  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
3000  
3000  
250  
1.15  
1.2  
1.15  
1.2  
250  
3000  
3000  
250  
1.15  
1.2  
1.2  
250  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMP451AQDQFRQ1  
TMP451AQDQFRQ1  
TMP451AQDQFTQ1  
TMP451AQDQFTQ1  
TMP451HQDQFRQ1  
TMP451HQDQFRQ1  
TMP451HQDQFTQ1  
TMP451HQDQFTQ1  
TMP451JQDQFRQ1  
TMP451JQDQFRQ1  
TMP451JQDQFTQ1  
TMP451JQDQFTQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
DQF  
8
8
8
8
8
8
8
8
8
8
8
8
3000  
3000  
250  
200.0  
205.0  
205.0  
200.0  
205.0  
200.0  
205.0  
200.0  
205.0  
200.0  
200.0  
205.0  
183.0  
200.0  
200.0  
183.0  
200.0  
183.0  
200.0  
183.0  
200.0  
183.0  
183.0  
200.0  
25.0  
33.0  
33.0  
25.0  
33.0  
25.0  
33.0  
25.0  
33.0  
25.0  
25.0  
33.0  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DQF0008A  
WSON - 0.8 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
SYMM  
(0.2) TYP  
4
5
SYMM  
2X 1.5  
6X 0.5  
8
1
0.3  
8X  
0.2  
0.1  
0.05  
0.7  
0.5  
C A B  
PIN 1 ID  
0.6  
0.4  
7X  
4220563/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQF0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SEE SOLDER MASK  
DETAIL  
SYMM  
(0.8)  
8
8X (0.25)  
1
SYMM  
6X (0.5)  
(R0.05) TYP  
4
5
7X (0.7)  
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220563/A 03/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQF0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
8X (0.25)  
1
8
SYMM  
6X (0.5)  
(R0.05) TYP  
5
4
SYMM  
(1.7)  
7X (0.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4220563/A 03/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DQW0008A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
2.1  
1.9  
0.1 MIN  
(0.05)  
SECTION A-A  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
SYMM  
0.00  
4
5
2X  
SYMM  
1.5  
A
A
6X  
0.5  
1
8
0.3  
0.2  
0.1  
0.05  
8X  
0.85  
0.65  
PIN 1 ID  
8X  
C A B  
C
4224433/A 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQW0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.95)  
8X (0.25)  
1
8
SYMM  
6X (0.5)  
4
5
SYMM  
(1.95)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224433/A 07/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQW0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.95)  
8X (0.25)  
1
8
SYMM  
6X (0.5)  
5
4
SYMM  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4224433/A 07/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMP451JQDQFRQ1

具有 N 因数、滤波功能和串联电阻校正的汽车类 1.7V 远程和本地温度传感器 | DQF | 8 | -40 to 125
TI

TMP451JQDQFTQ1

具有 N 因数、滤波功能和串联电阻校正的汽车类 1.7V 远程和本地温度传感器 | DQF | 8 | -40 to 125
TI

TMP451JQDQWRQ1

具有 N 因数、滤波功能和串联电阻校正的汽车类 1.7V 远程和本地温度传感器 | DQW | 8 | -40 to 125
TI

TMP451JQDQWTQ1

具有 N 因数、滤波功能和串联电阻校正的汽车类 1.7V 远程和本地温度传感器 | DQW | 8 | -40 to 125
TI

TMP461

具有引脚可编程总线地址的高精度远程和本地温度传感器
TI

TMP461-SP

耐辐射加固保障 (RHA)、高精度远程和本地温度传感器
TI

TMP461AIRUNR-S

具有引脚可编程总线地址的高精度远程和本地温度传感器 | RUN | 10 | -40 to 125
TI

TMP461AIRUNT-S

具有引脚可编程总线地址的高精度远程和本地温度传感器 | RUN | 10 | -40 to 125
TI

TMP461HKU/EM

耐辐射加固保障 (RHA)、高精度远程和本地温度传感器 | HKU | 10 | 25 to 25
TI

TMP464

5 通道(4 条远程通道和 1 条本地通道)高精度远程和本地温度传感器
TI

TMP464AIRGTR

5 通道(4 条远程通道和 1 条本地通道)高精度远程和本地温度传感器 | RGT | 16 | -40 to 125
TI

TMP464AIRGTT

5 通道(4 条远程通道和 1 条本地通道)高精度远程和本地温度传感器 | RGT | 16 | -40 to 125
TI