TMS320F28022PTQ [TI]

Piccolo Microcontrollers; Piccolo微处理器
TMS320F28022PTQ
型号: TMS320F28022PTQ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Piccolo Microcontrollers
Piccolo微处理器

微处理器 微控制器
文件: 总130页 (文件大小:1343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Piccolo Microcontrollers  
Check for  
Samples: TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200  
1 TMS320F2802x, TMS320F2802xx ( Piccolo™) MCUs  
1.1 Features  
123  
– Integrated Power-on and Brown-out Resets  
– Small Packaging, as Low as 38-Pin Available  
– Low Power  
• Highlights  
– High-Efficiency 32-Bit CPU ( TMS320C28x™)  
– 60-MHz, 50-MHz, and 40-MHz Devices  
– Single 3.3-V Supply  
– No Analog Support Pins  
• Clocking:  
– Integrated Power-on and Brown-out Resets  
– Two Internal Zero-pin Oscillators  
– Up to 22 Multiplexed GPIO Pins  
– Three 32-Bit CPU Timers  
– On-Chip Flash, SARAM, OTP Memory  
– Code-security Module  
– Two Internal Zero-pin Oscillators  
– On-Chip Crystal Oscillator/External Clock  
Input  
– Dynamic PLL Ratio Changes Supported  
– Watchdog Timer Module  
– Missing Clock Detection Circuitry  
– Serial Port Peripherals (SCI/SPI/I2C)  
– Enhanced Control Peripherals  
• Up to 22 Individually Programmable,  
Multiplexed GPIO Pins With Input Filtering  
• Peripheral Interrupt Expansion (PIE) Block That  
Supports All Peripheral Interrupts  
• Three 32-Bit CPU Timers  
• Independent 16-Bit Timer in Each ePWM  
Module  
Enhanced Pulse Width Modulator (ePWM)  
High-Resolution PWM (HRPWM)  
Enhanced Capture (eCAP)  
Analog-to-Digital Converter (ADC)  
On-Chip Temperature Sensor  
Comparator  
• On-Chip Memory  
– 38-Pin and 48-Pin Packages  
• High-Efficiency 32-Bit CPU ( TMS320C28x™)  
– 60 MHz (16.67-ns Cycle Time)  
– 50 MHz (20-ns Cycle Time)  
– Flash, SARAM, OTP, Boot ROM Available  
• 128-Bit Security Key/Lock  
– Protects Secure Memory Blocks  
– Prevents Firmware Reverse Engineering  
• Serial Port Peripherals  
– 40 MHz (25-ns Cycle Time)  
– 16 x 16 and 32 x 32 MAC Operations  
– 16 x 16 Dual MAC  
– Harvard Bus Architecture  
– Atomic Operations  
– One SCI (UART) Module  
– One SPI Module  
– One Inter-Integrated-Circuit (I2C) Bus  
• Advanced Emulation Features  
– Analysis and Breakpoint Functions  
– Real-Time Debug via Hardware  
• 2802x, 2802xx Packages  
– Fast Interrupt Response and Processing  
– Unified Memory Programming Model  
– Code-Efficient (in C/C++ and Assembly)  
• Low Device and System Cost:  
– Single 3.3-V Supply  
– 38-Pin DA Plastic Small-Outline Package  
(PSOP)  
– No Power Sequencing Requirement  
– 48-Pin PT Plastic Quad Flatpack (PQFP)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Piccolo, TMS320C28x, C28x, TMS320C2000, Code Composer Studio, XDS510, XDS560 are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
2
3
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2010, Texas Instruments Incorporated  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
1.2 Description  
The F2802x Piccolo™ family of microcontrollers provides the power of the C28x™ core coupled with  
highly integrated control peripherals in low pin-count devices. This family is code-compatible with previous  
C28x-based code, as well as providing a high level of analog integration.  
An internal voltage regulator allows for single rail operation. Enhancements have been made to the  
HRPWM module to allow for dual-edge control (frequency modulation). Analog comparators with internal  
10-bit references have been added and can be routed directly to control the PWM outputs. The ADC  
converts from 0 to 3.3-V fixed full scale range and supports ratio-metric VREFHI/VREFLO references. The  
ADC interface has been optimized for low overhead/latency.  
1.3 Getting Started  
This section gives a brief overview of the steps to take when first developing for a C28x device. For more  
detail on each of these steps, see the following:  
Getting Started With TMS320C28x Digital Signal Controllers (literature number SPRAAM0).  
C2000 Getting Started Website (http://www.ti.com/c2000getstarted)  
TMS320F28x MCU Development and Experimenter's Kits (http://www.ti.com/f28xkits)  
2
TMS320F2802x, TMS320F2802xx ( Piccolo™) MCUs  
Submit Documentation Feedback  
Copyright © 2008–2010, Texas Instruments Incorporated  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
1
TMS320F2802x, TMS320F2802xx ( Piccolo™)  
MCUs ...................................................... 1  
1.1 Features .............................................. 1  
1.2 Description ........................................... 2  
1.3 Getting Started ....................................... 2  
Introduction .............................................. 4  
2.1 Pin Assignments ..................................... 6  
4.7 Enhanced Capture Module (eCAP1) ............... 66  
4.8 JTAG Port .......................................... 68  
4.9 GPIO MUX .......................................... 69  
5
6
Device Support ......................................... 74  
5.1  
Device and Development Support Tool  
2
3
Nomenclature ....................................... 74  
5.2 Related Documentation ............................. 76  
5.3 Community Resources ............................. 77  
Electrical Specifications ............................. 78  
2.2 Signal Descriptions .................................. 8  
Functional Overview .................................. 13  
3.1 Block Diagram ...................................... 13  
3.2 Memory Maps ...................................... 14  
3.3 Brief Descriptions ................................... 22  
6.1 Absolute Maximum Ratings ........................ 78  
6.2 Recommended Operating Conditions .............. 78  
6.3 Electrical Characteristics ........................... 79  
6.4 Current Consumption ............................... 80  
3.4 Register Map ....................................... 30  
3.5 Device Emulation Registers ........................ 31  
3.6 Interrupts ............................................ 32  
3.7 VREG/BOR/POR ................................... 36  
3.8 System Control ..................................... 38  
6.5 Thermal Design Considerations .................... 85  
6.6  
Emulator Connection Without Signal Buffering for  
the MCU ............................................ 85  
6.7 Timing Parameter Symbology ...................... 86  
6.8  
Clock Requirements and Characteristics ........... 90  
3.9 Low-power Modes Block ........................... 46  
Peripherals .............................................. 47  
4.1 Analog Block ........................................ 47  
4
6.9 Power Sequencing ................................. 91  
6.10 General-Purpose Input/Output (GPIO) ............. 93  
6.11 Enhanced Control Peripherals .................... 100  
6.12 Detailed Descriptions .............................. 118  
6.13 Flash Timing ....................................... 119  
4.2  
Serial Peripheral Interface (SPI) Module ........... 53  
Serial Communications Interface (SCI) Module .... 56  
4.3  
4.4 Inter-Integrated Circuit (I2C) ........................ 59  
Enhanced PWM Modules (ePWM1/2/3/4) .......... 61  
4.6 High-Resolution PWM (HRPWM) .................. 65  
7
8
Revision History ...................................... 121  
Thermal/Mechanical Data .......................... 123  
4.5  
Copyright © 2008–2010, Texas Instruments Incorporated  
Contents  
3
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
2 Introduction  
Table 2-1 lists the features of the TMS320F2802x devices.  
4
Introduction  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 2-1. Hardware Features  
28027  
(60 MHz)  
28026  
(60 MHz)  
28023  
(50 MHz)  
28022  
(50 MHz)  
28021  
(40 MHz)  
28020  
(40 MHz)  
280200  
(40 MHz)  
FEATURE  
TYPE(1)  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
38-Pin DA  
PSOP  
48-Pin PT  
PQFP  
Package Type  
Instruction cycle  
16.67 ns  
16.67 ns  
20 ns  
20 ns  
25 ns  
25 ns  
25 ns  
On-chip flash (16-bit word)  
32K  
6K  
16K  
6K  
32K  
6K  
16K  
6K  
32K  
5K  
16K  
3K  
8K  
3K  
On-chip SARAM (16-bit word)  
Code security for on-chip  
flash/SARAM/OTP blocks  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Yes  
Yes  
1K  
Boot ROM (8K x 16)  
One-time programmable (OTP) ROM  
(16-bit word)  
ePWM outputs  
eCAP inputs  
Watchdog timer  
MSPS  
1
0
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
8 (ePWM1/2/3/4)  
1
Yes  
1
Yes  
1
Yes  
3
1
Yes  
3
1
Yes  
2
1
Yes  
2
Yes  
2
4.6  
4.6  
Conversion Time  
216.67 ns  
216.67 ns  
325 ns  
325 ns  
500 ns  
500 ns  
500 ns  
12-Bit ADC  
Channels  
3
7
13  
7
13  
7
13  
7
13  
7
13  
7
13  
7
13  
Temperature Sensor  
Dual Sample-and-Hold  
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
Yes  
Yes  
3
32-Bit CPU timers  
1
0
0
1
0
High-resolution ePWM Channels  
Comparators w/ Integrated DACs  
Inter-integrated circuit (I2C)  
4 (ePWM1A/2A/3A/4A)  
4 (ePWM1A/2A/3A/4A)  
4 (ePWM1A/2A/3A/4A)  
4 (ePWM1A/2A/3A/4A)  
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Serial Peripheral Interface (SPI)  
Serial Communications Interface (SCI)  
Digital (GPIO)  
I/O pins (shared)  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
20  
22  
Analog (AIO)  
6
3
6
3
6
3
6
3
6
3
6
3
6
3
External interrupts  
Supply voltage (nominal)  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
T: –40°C to 105°C  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Temperature  
S: –40°C to 125°C  
options  
Q: –40°C to 125°C(2)  
Product status(3)  
TMS  
TMS  
TMS  
TMS  
TMS  
TMS  
TMS  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the  
basic functionality of the module. These device-specific differences are listed in the TMS320x28xx, 28xxx DSP Peripheral Reference Guide (literature number SPRU566) and in the  
peripheral reference guides.  
(2) "Q" refers to Q100 qualification for automotive applications.  
(3) See Section 5.1, Device and Development Support Tool Nomenclature for descriptions of device stages. The "TMS" product status denotes a fully qualified production device.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Introduction  
5
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
2.1 Pin Assignments  
Figure 2-1 shows the 48-pin PT plastic quad flatpack (PQFP) pin assignments. Figure 2-2 shows the  
38-pin DA plastic small outline package (PSOP) pin assignments.  
GPIO2/EPWM2A 37  
GPIO3/EPWM2B/COMP2OUT 38  
GPIO4/EPWM3A 39  
24 GPIO18/SPICLKA/SCITXDA/XCLKOUT  
23 GPIO38/XCLKIN (TCK)  
22 GPIO37 (TDO)  
GPIO5/EPWM3B/ECAP1 40  
21 GPIO36 (TMS)  
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO 41  
GPIO7/EPWM4B/SCIRXDA 42  
20 GPIO35 (TDI)  
19 GPIO34/COMP2OUT  
18 ADCINB7  
VDD  
VSS  
43  
44  
17 ADCINB6/AIO14  
16 ADCINB4/COMP2B/AIO12  
15 ADCINB3  
X1 45  
X2 46  
GPIO12/TZ1/SCITXDA 47  
GPIO28/SCIRXDA/SDAA/TZ2 48  
14 ADCINB2/COMP1B/AIO10  
13 ADCINB1  
Figure 2-1. 2802x 48-Pin PT PQFP (Top View)  
6
Introduction  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
VDD  
VSS  
1
38 TEST  
2
37 GPIO0/EPWM1A  
VREGENZ  
VDDIO  
3
36 GPIO1/EPWM1B/COMP1OUT  
35 GPIO16/SPISIMOA/TZ2  
34 GPIO17/SPISOMIA/TZ3  
33 GPIO19/XCLKIN/SPISTEA/SCIRXDA/ECAP1  
32 GPIO18/SPICLKA/SCITXDA/XCLKOUT  
31 GPIO38/XCLKIN (TCK)  
30 GPIO37 (TDO)  
4
GPIO2/EPWM2A  
GPIO3/EPWM2B  
5
6
GPIO4/EPWM3A  
7
GPIO5/EPWM3B/ECAP1  
8
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO  
GPIO7/EPWM4B/SCIRXDA  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
29 GPIO36 (TMS)  
28 GPIO35 (TDI)  
VSS  
27 GPIO34  
GPIO12/TZ1/SCITXDA  
GPIO28/SCIRXDA/SDAA/TZ2  
GPIO29/SCITXDA/SCLA/TZ3  
26 ADCINB6/AIO14  
25 ADCINB4/AIO12  
24 ADCINB2/COMP1B/AIO10  
/VREFLO  
23 VSSA  
22 VDDA  
TRST  
XRS  
ADCINA6/AIO6  
ADCINA4/AIO4  
21 ADCINA0/VREFHI  
20 ADCINA2/COMP1A/AIO2  
Figure 2-2. 2802x 38-Pin DA PSOP (Top View)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Introduction  
7
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
2.2 Signal Descriptions  
Table 2-2 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at  
reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate  
functions. Some peripheral functions may not be available in all devices. See Table 2-1 for details. Inputs  
are not 5-V tolerant. All GPIO pins are I/O/Z and have an internal pullup, which can be selectively  
enabled/disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM  
pins are not enabled at reset. The pullups on other GPIO pins are enabled upon reset. The AIO pins do  
not have an internal pullup.  
NOTE: When the on-chip VREG is used, the GPIO19, GPIO34, GPIO35, GPIO36, GPIO37, and GPIO38  
pins could glitch during power up. If this is unacceptable in an application, 1.8 V could be supplied  
externally. There is no power-sequencing requirement when using an external 1.8-V supply. However, if  
the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered prior to the 1.9-V  
transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin during power  
up. To avoid this behavior, power the VDD pins prior to or simultaneously with the VDDIO pins, ensuring that  
the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.  
Table 2-2. TERMINAL FUNCTIONS(1)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN #  
DA  
PIN #  
NAME  
JTAG  
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan  
system control of the operations of the device. If this signal is not connected or driven  
low, the device operates in its functional mode, and the test reset signals are ignored.  
NOTE: TRST is an active high test pin and must be maintained low at all times during  
normal device operation. An external pulldown resistor is required on this pin. The  
value of this resistor should be based on drive strength of the debugger pods  
applicable to the design. A 2.2-kresistor generally offers adequate protection. Since  
this is application-specific, it is recommended that each target board be validated for  
proper operation of the debugger and the application. ()  
TRST  
2
16  
I
TCK  
TMS  
See GPIO38  
See GPIO36  
I
I
See GPIO38. JTAG test clock with internal pullup ()  
See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control  
input is clocked into the TAP controller on the rising edge of TCK. ()  
See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the  
selected register (instruction or data) on a rising edge of TCK. ()  
TDI  
See GPIO35  
See GPIO37  
I
See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected  
register (instruction or data) are shifted out of TDO on the falling edge of TCK.  
(8-mA drive)  
TDO  
O/Z  
FLASH  
TEST  
30  
38  
I/O  
Test Pin. Reserved for TI. Must be left unconnected.  
CLOCK  
See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the same  
frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This  
is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV  
to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to  
propogate to the pin.  
XCLKOUT  
See GPIO18  
O/Z  
See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is  
controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default  
selection. This pin feeds a clock from an external 3.3-V oscillator. In this case, the X1  
pin, if available, must be tied to GND and the on-chip crystal oscillator must be  
disabled via bit 14 in the CLKCTL register. If a crystal/resonator is used, the XCLKIN  
path must be disabled by bit 13 in the CLKCTL register.  
NOTE: Designs that use the GPIO38/TCK/XCLKIN pin to supply an external clock for  
normal device operation may need to incorporate some hooks to disable this path  
during debug using the JTAG connector. This is to prevent contention with the TCK  
signal, which is active during JTAG debug sessions. The zero-pin internal oscillators  
may be used during this time to clock the device.  
See GPIO19 and  
GPIO38  
XCLKIN  
I
(1) I = Input, O = Output, Z = High Impedance, OD = Open Drain, = Pullup, = Pulldown  
Introduction  
8
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 2-2. TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN #  
DA  
PIN #  
NAME  
On-chip crystal-oscillator input. To use this oscillator, a quartz crystal or a ceramic  
resonator must be connected across X1 and X2. In this case, the XCLKIN path must  
be disabled by bit 13 in the CLKCTL register. If this pin is not used, it must be tied to  
GND. (I)  
X1  
X2  
45  
46  
I
On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be  
connected across X1 and X2. If X2 is not used, it must be left unconnected. (O)  
O
RESET  
Device Reset (in) and Watchdog Reset (out). Piccolo devices have a built-in  
power-on-reset (POR) and brown-out-reset (BOR) circuitry. As such, no external  
circuitry is needed to generate a reset pulse. During a power-on or brown-out  
condition, this pin is driven low by the device. See Section 6.3, Electrical  
Characteristics, for thresholds of the POR/BOR block. This pin is also driven low by  
the MCU when a watchdog reset occurs. During watchdog reset, the XRS pin is driven  
low for the watchdog reset duration of 512 OSCCLK cycles. If need be, an external  
circuitry may also drive this pin to assert a device reset. In this case, it is  
recommended that this pin be driven by an open-drain device. An R-C circuit must be  
connected to this pin for noise immunity reasons. Regardless of the source, a device  
reset causes the device to terminate execution. The program counter points to the  
address contained at the location 0x3FFFC0. When reset is deactivated, execution  
begins at the location designated by the program counter. The output buffer of this pin  
is an open-drain with an internal pullup. (I/OD)  
XRS  
3
17  
I/OD  
ADC, COMPARATOR, ANALOG I/O  
ADCINA7  
6
4
I
ADC Group A, Channel 7 input  
ADCINA6  
AIO6  
I
ADC Group A, Channel 6 input  
Digital AIO 6  
18  
I/O  
ADCINA4  
COMP2A  
AIO4  
I
I
ADC Group A, Channel 4 input  
Comparator Input 2A (available in 48-pin device only)  
Digital AIO 4  
5
7
19  
I/O  
ADCINA3  
I
ADC Group A, Channel 3 input  
ADCINA2  
COMP1A  
AIO2  
I
I
ADC Group A, Channel 2 input  
Comparator Input 1A  
Digital AIO 2  
9
20  
I/O  
ADCINA1  
8
I
ADC Group A, Channel 1 input  
ADC Group A, Channel 0 input  
ADC External Reference – only used when in ADC external reference mode. See  
Section 4.1.1, ADC.  
ADCINA0  
VREFHI  
I
I
10  
21  
ADCINB7  
18  
17  
I
ADC Group B, Channel 7 input  
ADCINB6  
AIO14  
I
ADC Group B, Channel 6 input  
Digital AIO 14  
26  
I/O  
ADCINB4  
COMP2B  
AIO12  
I
I
ADC Group B, Channel 4 input  
Comparator Input 2B (available in 48-pin device only)  
Digital AIO12  
16  
15  
14  
13  
25  
I/O  
ADCINB3  
I
ADC Group B, Channel 3 input  
ADCINB2  
COMP1B  
AIO10  
I
I
ADC Group B, Channel 2 input  
Comparator Input 1B  
Digital AIO 10  
24  
I/O  
ADCINB1  
I
ADC Group B, Channel 1 input  
Copyright © 2008–2010, Texas Instruments Incorporated  
Introduction  
9
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 2-2. TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN #  
DA  
PIN #  
NAME  
CPU AND I/O POWER  
VDDA  
11  
12  
32  
22  
23  
1
Analog Power Pin. Tie with a 2.2-µF capacitor (typical) close to the pin.  
VSSA  
VREFLO  
Analog Ground Pin  
ADC Low Reference (always tied to ground)  
I
VDD  
CPU and Logic Digital Power Pins – no supply source needed when using internal  
VREG. Tie with 1.2 µF (minimum) ceramic capacitor (10% tolerance) to ground when  
using internal VREG. Higher value capacitors may be used, but could impact  
supply-rail ramp-up time.  
VDD  
43  
35  
11  
4
Digital I/O and Flash Power Pin – Single Supply source when VREG is enabled. Tie  
with a 2.2-µF capacitor (typical) close to the pin.  
VDDIO  
VSS  
VSS  
33  
44  
2
Digital Ground Pins  
12  
VOLTAGE REGULATOR CONTROL SIGNAL  
Internal VREG Enable/Disable. Pull low to enable the internal voltage regulator  
(VREG), pull high to disable VREG.  
VREGENZ  
34  
29  
3
I
(1)  
GPIO AND PERIPHERAL SIGNALS  
GPIO0  
EPWM1A  
37  
I/O/Z  
O
General purpose input/output 0  
Enhanced PWM1 Output A and HRPWM channel  
GPIO1  
EPWM1B  
28  
37  
38  
39  
40  
41  
36  
5
I/O/Z  
O
General purpose input/output 1  
Enhanced PWM1 Output B  
COMP1OUT  
GPIO2  
EPWM2A  
O
Direct output of Comparator 1  
I/O/Z  
O
General purpose input/output 2  
Enhanced PWM2 Output A and HRPWM channel  
GPIO3  
EPWM2B  
6
I/O/Z  
O
General purpose input/output 3  
Enhanced PWM2 Output B  
COMP2OUT  
GPIO4  
EPWM3A  
O
I/O/Z  
O
Direct output of Comparator 2 (available in 48-pin device only)  
General purpose input/output 4  
Enhanced PWM3 output A and HRPWM channel  
7
GPIO5  
EPWM3B  
8
I/O/Z  
O
General purpose input/output 5  
Enhanced PWM3 output B  
ECAP1  
GPIO6  
EPWM4A  
EPWMSYNCI  
EPWMSYNCO  
I/O  
I/O/Z  
O
Enhanced Capture input/output 1  
General purpose input/output 6  
Enhanced PWM4 output A and HRPWM channel  
External ePWM sync pulse input  
External ePWM sync pulse output  
9
I
O
(1) The GPIO function (shown in bold italics) is the default at reset. The peripheral signals that are listed under them are alternate functions.  
For JTAG pins that have the GPIO functionality multiplexed, the input path to the GPIO block is always valid. The output path from the  
GPIO block and the path to the JTAG block from a pin is enabled/disabled based on the condition of the TRST signal. See the  
TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts Reference Guide (literature number SPRUFN3) for details.  
10  
Introduction  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 2-2. TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN #  
DA  
PIN #  
NAME  
GPIO7  
EPWM4B  
SCIRXDA  
42  
47  
27  
26  
24  
10  
13  
35  
34  
32  
I/O/Z  
General purpose input/output 7  
Enhanced PWM4 output B  
SCI-A receive data  
O
I
GPIO12  
TZ1  
I/O/Z  
General purpose input/output 12  
Trip Zone input 1  
I
SCITXDA  
O
SCI-A transmit data  
GPIO16  
SPISIMOA  
I/O/Z  
I/O  
General purpose input/output 16  
SPI slave in, master out  
TZ2  
I
Trip Zone input 2  
GPIO17  
SPISOMIA  
I/O/Z  
I/O  
General purpose input/output 17  
SPI-A slave out, master in  
TZ3  
I
Trip zone input 3  
GPIO18  
SPICLKA  
SCITXDA  
I/O/Z  
I/O  
O
General purpose input/output 18  
SPI-A clock input/output  
SCI-A transmit  
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency,  
one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled  
by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT =  
SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV  
to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to  
propogate to the pin.  
XCLKOUT  
O/Z  
GPIO19  
25  
33  
I/O/Z  
General purpose input/output 19  
External Oscillator Input. The path from this pin to the clock block is not gated by the  
mux function of this pin. Care must be taken not to enable this path for clocking if it is  
being used for the other periperhal functions  
XCLKIN  
SPISTEA  
SCIRXDA  
ECAP1  
I/O  
SPI-A slave transmit enable input/output  
SCI-A receive  
I
I/O  
I/O/Z  
I
Enhanced Capture input/output 1  
General purpose input/output 28  
SCI receive data  
GPIO28  
SCIRXDA  
SDAA  
48  
1
14  
15  
I/OD  
I
I2C data open-drain bidirectional port  
Trip zone input 2  
TZ2  
GPIO29  
SCITXDA  
SCLA  
I/O/Z  
O
General purpose input/output 29.  
SCI transmit data  
I/OD  
I
I2C clock open-drain bidirectional port  
Trip zone input 3  
TZ3  
GPIO32  
SDAA  
31  
I/O/Z  
I/OD  
I
General purpose input/output 32  
I2C data open-drain bidirectional port  
Enhanced PWM external sync pulse input  
ADC start-of-conversion A  
EPWMSYNCI  
ADCSOCAO  
O
Copyright © 2008–2010, Texas Instruments Incorporated  
Introduction  
11  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 2-2. TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O/Z  
DESCRIPTION  
PT  
PIN #  
DA  
PIN #  
NAME  
GPIO33  
36  
I/O/Z  
I/OD  
O
General-Purpose Input/Output 33  
SCLA  
I2C clock open-drain bidirectional port  
Enhanced PWM external synch pulse output  
ADC start-of-conversion B  
EPWMSYNCO  
ADCSOCBO  
GPIO34  
COMP2OUT  
O
19  
27  
I/O/Z  
O
General-Purpose Input/Output 34  
Direct output of Comparator 2. COMP2OUT signal is not available in the DA package.  
GPIO35  
20  
21  
22  
23  
28  
29  
30  
31  
I/O/Z  
I
General-Purpose Input/Output 35  
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK  
TDI  
GPIO36  
TMS  
I/O/Z  
I
General-Purpose Input/Output 36  
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked  
into the TAP controller on the rising edge of TCK.  
GPIO37  
TDO  
I/O/Z  
O/Z  
General-Purpose Input/Output 37  
JTAG scan out, test data output (TDO). The contents of the selected register  
(instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive)  
GPIO38  
TCK  
I/O/Z  
I
General-Purpose Input/Output 38  
JTAG test clock with internal pullup  
External Oscillator Input. The path from this pin to the clock block is not gated by the  
mux function of this pin. Care must be taken to not enable this path for clocking if it is  
being used for the other functions.  
XCLKIN  
I
12  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
3 Functional Overview  
3.1 Block Diagram  
M0  
SARAM 1K x 16  
(0-wait)  
OTP 1K x 16  
Secure  
SARAM  
M1  
SARAM 1K x 16  
(0-wait)  
1K/3K/4K x 16  
(0-wait)  
Secure  
Code  
Security  
Module  
FLASH  
8K/16K/32K x 16  
Secure  
Boot-ROM  
8K x 16  
(0-wait)  
OTP/Flash  
Wrapper  
PSWD  
Memory Bus  
TRST  
TCK  
TDI  
TMS  
TDO  
COMP1OUT  
GPIO  
C28x  
32-bit CPU  
COMP2OUT  
MUX  
GPIO  
Mux  
COMP1A  
COMP1B  
COMP2A  
COMP2B  
COMP  
3 External Interrupts  
XCLKIN  
PIE  
OSC1,  
OSC2,  
Ext,  
CPU Timer 0  
X1  
X2  
AIO  
CPU Timer 1  
CPU Timer 2  
Memory Bus  
MUX  
PLL,  
LPM,  
WD  
LPM Wakeup  
XRS  
ADC  
A7:0  
B7:0  
POR/  
BOR  
VREG  
32-bit Peripheral Bus  
16-bit Peripheral Bus  
32-Bit Peripheral Bus  
ePWM  
SCI  
(4L FIFO)  
SPI  
(4L FIFO)  
I2C  
eCAP  
(4L FIFO)  
HRPWM  
From  
COMP1OUT,  
COMP2OUT  
GPIO MUX  
A. Not all peripheral pins are available at the same time due to multiplexing.  
Figure 3-1. Functional Block Diagram  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
13  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.2 Memory Maps  
In Figure 3-2, Figure 3-3, Figure 3-4, Figure 3-5, and Figure 3-6, the following apply:  
Memory blocks are not to scale.  
Peripheral Frame 0, Peripheral Frame 1 and Peripheral Frame 2 memory maps are restricted to data  
memory only. A user program cannot access these memory maps in program space.  
Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline  
order.  
Certain memory ranges are EALLOW protected against spurious writes after configuration.  
Locations 0x3D7C80 – 0x3D7CC0 contain the internal oscillator and ADC calibration routines. These  
locations are not programmable by the user.  
14  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K x 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 SARAM (4K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 9000  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K x 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Get_mode function  
Reserved  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 0000  
Reserved  
FLASH  
(32K x 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (4K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 9000  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 3-2. 28023/28027 Memory Map  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
15  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K x 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 SARAM (4K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 9000  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K x 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 4000  
Reserved  
FLASH  
(16K x 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (4K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 9000  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 3-3. 28022/28026 Memory Map  
16  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K x 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 SARAM (3K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 8C00  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K x 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 0000  
Reserved  
FLASH  
(32K x 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (3K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 8C00  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 3-4. 28021 Memory Map  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
17  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K x 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 SARAM (1K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 8400  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K x 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Get_mode function  
Reserved  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 4000  
Reserved  
FLASH  
(16K x 16, 4 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (1K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 8400  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 3-5. 28020 Memory Map  
18  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Data Space  
Prog Space  
0x00 0000  
0x00 0040  
0x00 0400  
0x00 0800  
0x00 0D00  
M0 Vector RAM (Enabled if VMAP = 0)  
M0 SARAM (1K x 16, 0-Wait)  
M1 SARAM (1K x 16, 0-Wait)  
Peripheral Frame 0  
PIE Vector - RAM  
(256 x 16)  
(Enabled if  
VMAP = 1,  
ENPIE = 1)  
Reserved  
0x00 0E00  
0x00 2000  
0x00 6000  
Peripheral Frame 0  
Reserved  
Peripheral Frame 1  
(4K x 16, Protected)  
Reserved  
0x00 7000  
0x00 8000  
Peripheral Frame 2  
(4K x 16, Protected)  
L0 SARAM (1K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x00 8400  
0x3D 7800  
0x3D 7C00  
Reserved  
User OTP (1K x 16, Secure Zone + ECSL)  
Reserved  
0x3D 7C80  
0x3D 7CC0  
Calibration Data  
Get_mode function  
Reserved  
0x3D 7CE0  
0x3D 7E80  
Calibration Data  
Reserved  
0x3D 7EB0  
0x3D 7FFF  
PARTID  
0x3D 8000  
0x3F 6000  
Reserved  
FLASH  
(8K x 16, 2 Sectors, Secure Zone + ECSL)  
0x3F 7FF8  
0x3F 8000  
128-Bit Password  
L0 SARAM (1K x 16)  
(0-Wait, Secure Zone + ECSL, Dual Mapped)  
0x3F 8400  
0x3F E000  
0x3F FFC0  
Reserved  
Boot ROM (8K x 16, 0-Wait)  
Vector (32 Vectors, Enabled if VMAP = 1)  
A. Memory locations 0x3D 7E80–0x3D 7EAF are reserved in TMX/TMP silicon.  
Figure 3-6. 280200 Memory Map  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
19  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 3-1. Addresses of Flash Sectors in F28021/28023/28027  
ADDRESS RANGE  
0x3F 0000 – 0x3F 1FFF  
0x3F 2000 – 0x3F 3FFF  
0x3F 4000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (8K x 16)  
Sector C (8K x 16)  
Sector B (8K x 16)  
Sector A (8K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 3-2. Addresses of Flash Sectors in F28020/28022/28026  
ADDRESS RANGE  
0x3F 4000 – 0x3F 4FFF  
0x3F 5000 – 0x3F 5FFF  
0x3F 6000 – 0x3F 6FFF  
0x3F 7000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector D (4K x 16)  
Sector C (4K x 16)  
Sector B (4K x 16)  
Sector A (4K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
Table 3-3. Addresses of Flash Sectors in F280200  
ADDRESS RANGE  
0x3F 6000 – 0x3F 6FFF  
0x3F 7000 – 0x3F 7F7F  
PROGRAM AND DATA SPACE  
Sector B (4K x 16)  
Sector A (4K x 16)  
Program to 0x0000 when using the  
Code Security Module  
0x3F 7F80 – 0x3F 7FF5  
0x3F 7FF6 – 0x3F 7FF7  
0x3F 7FF8 – 0x3F 7FFF  
Boot-to-Flash Entry Point  
(program branch instruction here)  
Security Password (128-Bit)  
(Do not program to all zeros)  
NOTE  
When the code-security passwords are programmed, all addresses between 0x3F 7F80  
and 0x3F 7FF5 cannot be used as program code or data. These locations must be  
programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F 7F80 through 0x3F 7FEF may  
be used for code or data. Addresses 0x3F 7FF0 – 0x3F 7FF5 are reserved for data and  
should not contain program code.  
Table 3-4 shows how to handle these memory locations.  
20  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 3-4. Impact of Using the Code Security Module  
FLASH  
ADDRESS  
CODE SECURITY ENABLED  
CODE SECURITY DISABLED  
Application code and data  
0x3F 7F80 – 0x3F 7FEF  
0x3F 7FF0 – 0x3F 7FF5  
Fill with 0x0000  
Reserved for data only  
Peripheral Frame 1 and Peripheral Frame 2 are grouped together to enable these blocks to be write/read  
peripheral block protected. The protected mode makes sure that all accesses to these blocks happen as  
written. Because of the pipeline, a write immediately followed by a read to different memory locations, will  
appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral  
applications where the user expected the write to occur first (as written). The CPU supports a block  
protection mode where a region of memory can be protected so that operations occur as written (the  
penalty is extra cycles are added to align the operations). This mode is programmable and by default, it  
protects the selected zones.  
The wait-states for the various spaces in the memory map area are listed in Table 3-5 .  
Table 3-5. Wait-states  
AREA  
WAIT-STATES (CPU)  
0-wait  
COMMENTS  
M0 and M1 SARAMs  
Peripheral Frame 0  
Peripheral Frame 1  
Fixed  
0-wait  
0-wait (writes)  
2-wait (reads)  
Cycles can be extended by peripheral generated ready.  
Back-to-back write operations to Peripheral Frame 1 registers will incur  
a 1-cycle stall (1-cycle delay).  
Peripheral Frame 2  
0-wait (writes)  
2-wait (reads)  
Fixed. Cycles cannot be extended by the peripheral.  
L0 SARAM  
OTP  
0-wait data and program  
Programmable  
Assumes no CPU conflicts  
Programmed via the Flash registers.  
1-wait is minimum number of wait states allowed.  
Programmed via the Flash registers.  
1-wait minimum  
Programmable  
FLASH  
0-wait Paged min  
1-wait Random min  
Random Paged  
FLASH Password  
Boot-ROM  
16-wait fixed  
0-wait  
Wait states of password locations are fixed.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
21  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
3.3 Brief Descriptions  
3.3.1 CPU  
www.ti.com  
The 2802x (C28x) family is a member of the TMS320C2000™ microcontroller (MCU) platform. The  
C28x-based controllers have the same 32-bit fixed-point architecture as existing C28x MCUs. It is a very  
efficient C/C++ engine, enabling users to develop not only their system control software in a high-level  
language, but also enabling development of math algorithms using C/C++. The device is as efficient at  
MCU math tasks as it is at system control tasks that typically are handled by microcontroller devices. This  
efficiency removes the need for a second processor in many systems. The 32 x 32-bit MAC 64-bit  
processing capabilities enable the controller to handle higher numerical resolution problems efficiently.  
Add to this the fast interrupt response with automatic context save of critical registers, resulting in a device  
that is capable of servicing many asynchronous events with minimal latency. The device has an  
8-level-deep protected pipeline with pipelined memory accesses. This pipelining enables it to execute at  
high speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware  
minimizes the latency for conditional discontinuities. Special store conditional operations further improve  
performance.  
3.3.2 Memory Bus (Harvard Bus Architecture)  
As with many MCU-type devices, multiple busses are used to move data between the memories and  
peripherals and the CPU. The memory bus architecture contains a program read bus, data read bus, and  
data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and  
write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable  
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the  
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and  
memories attached to the memory bus prioritize memory accesses. Generally, the priority of memory bus  
accesses can be summarized as follows:  
Highest:  
Data Writes  
(Simultaneous data and program writes cannot occur on the  
memory bus.)  
Program Writes  
(Simultaneous data and program writes cannot occur on the  
memory bus.)  
Data Reads  
Program Reads  
(Simultaneous program reads and fetches cannot occur on the  
memory bus.)  
Lowest:  
Fetches  
(Simultaneous program reads and fetches cannot occur on the  
memory bus.)  
3.3.3 Peripheral Bus  
To enable migration of peripherals between various Texas Instruments (TI) MCU family of devices, the  
devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes  
the various busses that make up the processor Memory Bus into a single bus consisting of 16 address  
lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus are  
supported. One version supports only 16-bit accesses (called peripheral frame 2). Another version  
supports both 16- and 32-bit accesses (called peripheral frame 1).  
3.3.4 Real-Time JTAG and Analysis  
The devices implement the standard IEEE 1149.1 JTAG(1) interface for in-circuit based debug.  
Additionally, the devices support real-time mode of operation allowing modification of the contents of  
memory, peripheral, and register locations while the processor is running and executing code and  
servicing interrupts. The user can also single step through non-time-critical code while enabling  
time-critical interrupts to be serviced without interference. The device implements the real-time mode in  
(1) IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture  
22  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
hardware within the CPU. This is a feature unique to the 28x family of devices, requiring no software  
monitor. Additionally, special analysis hardware is provided that allows setting of hardware breakpoint or  
data/address watch-points and generating various user-selectable break events when a match occurs.  
These devices do not support boundary scan; however, IDCODE and BYPASS features are available if  
the following considerations are taken into account. The IDCODE does not come by default. The user  
needs to go through a sequence of SHIFT IR and SHIFT DR state of JTAG to get the IDCODE. For  
BYPASS instruction, the first shifted DR value would be 1.  
3.3.5 Flash  
The F280200 device contains 8K x 16 of embedded flash memory, segregated into two 4K x 16 sectors.  
The F28021/23/27 devices contain 32K x 16 of embedded flash memory, segregated into four 8K x 16  
sectors. The F28020/22/26 devices contain 16K x 16 of embedded flash memory, segregated into four  
4K x 16 sectors. All devices also contain a single 1K x 16 of OTP memory at address range 0x3D 7800 –  
0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving other  
sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash  
algorithms that erase/program other sectors. Special memory pipelining is provided to enable the flash  
module to achieve higher performance. The flash/OTP is mapped to both program and data space;  
therefore, it can be used to execute code or store data information. Addresses 0x3F 7FF0 – 0x3F 7FF5  
are reserved for data variables and should not contain program code.  
NOTE  
The Flash and OTP wait-states can be configured by the application. This allows applications  
running at slower frequencies to configure the flash to use fewer wait-states.  
Flash effective performance can be improved by enabling the flash pipeline mode in the  
Flash options register. With this mode enabled, effective performance of linear code  
execution will be much faster than the raw performance indicated by the wait-state  
configuration alone. The exact performance gain when using the Flash pipeline mode is  
application-dependent.  
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,  
see the TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts Reference  
Guide (literature number SPRUFN3).  
3.3.6 M0, M1 SARAMs  
All devices contain these two blocks of single access memory, each 1K x 16 in size. The stack pointer  
points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x  
devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute  
code or for data variables. The partitioning is performed within the linker. The C28x device presents a  
unified memory map to the programmer. This makes for easier programming in high-level languages.  
3.3.7 L0 SARAM  
The device contains up to 4K x 16 of single-access RAM. Refer to the device-specific memory map figures  
in Section 3.2 to ascertain the exact size for a given device. This block is mapped to both program and  
data space.  
3.3.8 Boot ROM  
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell  
the bootloader software what boot mode to use on power up. The user can select to boot normally or to  
download new software from an external connection or to select boot software that is programmed in the  
internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use  
in math-related algorithms.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
23  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 3-6. Boot Mode Selection  
MODE  
GPIO37/TDO  
GPIO34/COMP2OUT  
TRST  
MODE  
3
2
1
1
0
0
x
1
0
1
0
x
0
0
0
0
1
GetMode  
Wait (see Section 3.3.9 for description)  
1
SCI  
0
Parallel IO  
Emulation Boot  
EMU  
3.3.8.1 Emulation Boot  
When the emulator is connected, the GPIO37/TDO pin cannot be used for boot mode selection. In this  
case, the boot ROM detects that an emulator is connected and uses the contents of two reserved SARAM  
locations in the PIE vector table to determine the boot mode. If the content of either location is invalid,  
then the Wait boot option is used. All boot mode options can be accessed in emulation boot.  
3.3.8.2 GetMode  
The default behavior of the GetMode option is to boot to flash. This behavior can be changed to another  
boot option by programming two locations in the OTP. If the content of either OTP location is invalid, then  
boot to flash is used. One of the following loaders can be specified: SCI, SPI, I2C, or OTP.  
3.3.8.3 Peripheral Pins Used by the Bootloader  
Table 3-7 shows which GPIO pins are used by each peripheral bootloader. Refer to the GPIO mux table  
to see if these conflict with any of the peripherals you would like to use in your application.  
Table 3-7. Peripheral Bootload Pins  
BOOTLOADER  
PERIPHERAL LOADER PINS  
SCIRXDA (GPIO28)  
SCI  
SCITXDA (GPIO29)  
Parallel Boot  
SPI  
Data (GPIO[7:0])  
28x Control (GPIO16)  
Host Control (GPIO12)  
SPISIMOA (GPIO16)  
SPISOMIA (GPIO17)  
SPICLKA (GPIO18)  
SPISTEA (GPIO19)  
I2C  
SDAA (GPIO32)(1)  
SCLA (GPIO33)(1)  
(1) GPIO pins 32 and 33 may not be available on your device package. On these devices, this bootload  
option is unavailable.  
3.3.9 Security  
The devices support high levels of security to protect the user firmware from being reverse engineered.  
The security features a 128-bit password (hardcoded for 16 wait-states), which the user programs into the  
flash. One code security module (CSM) is used to protect the flash/OTP and the L0/L1 SARAM blocks.  
The security feature prevents unauthorized users from examining the memory contents via the JTAG port,  
executing code from external memory or trying to boot-load some undesirable software that would export  
the secure memory contents. To enable access to the secure blocks, the user must write the correct  
128-bit KEY value that matches the value stored in the password locations within the Flash.  
In addition to the CSM, the emulation code security logic (ECSL) has been implemented to prevent  
unauthorized users from stepping through secure code. Any code or data access to flash, user OTP, or L0  
memory while the emulator is connected will trip the ECSL and break the emulation connection. To allow  
24  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
emulation of secure code, while maintaining the CSM protection against secure memory reads, the user  
must write the correct value into the lower 64 bits of the KEY register, which matches the value stored in  
the lower 64 bits of the password locations within the flash. Note that dummy reads of all 128 bits of the  
password in the flash must still be performed. If the lower 64 bits of the password locations are all ones  
(unprogrammed), then the KEY value does not need to match.  
When initially debugging a device with the password locations in flash programmed (i.e., secured), the  
CPU will start running and may execute an instruction that performs an access to a protected ECSL area.  
If this happens, the ECSL will trip and cause the emulator connection to be cut.  
The solution is to use the Wait boot option. This will sit in a loop around a software breakpoint to allow an  
emulator to be connected without tripping security. The user can then exit this mode once the emulator is  
connected by using one of the emulation boot options as described in the TMS320x2802x Piccolo Boot  
ROM Reference Guide (literature number SPRUFN6). Piccolo devices do not support a hardware  
wait-in-reset mode.  
NOTE  
When the code-security passwords are programmed, all addresses between 0x3F7F80  
and 0x3F7FF5 cannot be used as program code or data. These locations must be  
programmed to 0x0000.  
If the code security feature is not used, addresses 0x3F7F80 through 0x3F7FEF may be  
used for code or data. Addresses 0x3F7FF0 – 0x3F7FF5 are reserved for data and  
should not contain program code.  
The 128-bit password (at 0x3F 7FF8 – 0x3F 7FFF) must not be programmed to zeros. Doing  
so would permanently lock the device.  
Disclaimer  
Code Security Module Disclaimer  
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED  
TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY  
(EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN  
ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO  
TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR  
THIS DEVICE.  
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE  
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED  
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT  
AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS  
CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED  
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,  
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY  
OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN  
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE,  
BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR  
INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
25  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.3.10 Peripheral Interrupt Expansion (PIE) Block  
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The  
PIE block can support up to 96 peripheral interrupts. On the F2802x , 33 of the possible 96 interrupts are  
used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of  
12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a  
dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU  
on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers.  
Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in  
hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.  
3.3.11 External Interrupts (XINT1–XINT3)  
The devices support three masked external interrupts (XINT1–XINT3). Each of the interrupts can be  
selected for negative, positive, or both negative and positive edge triggering and can also be  
enabled/disabled. These interrupts also contain a 16-bit free running up counter, which is reset to zero  
when a valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt.  
There are no dedicated pins for the external interrupts. XINT1, XINT2, and XINT3 interrupts can accept  
inputs from GPIO0–GPIO31 pins.  
3.3.12 Internal Zero Pin Oscillators, Oscillator, and PLL  
The device can be clocked by either of the two internal zero-pin oscillators, an external oscillator, or by a  
crystal attached to the on-chip oscillator circuit (48-pin devices only). A PLL is provided supporting up to  
12 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to  
scale back on operating frequency if lower power operation is desired. Refer to Section 6, Electrical  
Specifications, for timing details. The PLL block can be set in bypass mode.  
3.3.13 Watchdog  
Each device contains two watchdogs: CPU-Watchdog that monitors the core and NMI-Watchdog that is a  
missing clock-detect circuit. The user software must regularly reset the CPU-watchdog counter within a  
certain time frame; otherwise, the CPU-watchdog generates a reset to the processor. The CPU-watchdog  
can be disabled if necessary. The NMI-Watchdog engages only in case of a clock failure and can either  
generate an interrupt or a device reset.  
3.3.14 Peripheral Clocking  
The clocks to each individual peripheral can be enabled/disabled to reduce power consumption when a  
peripheral is not in use. Additionally, the system clock to the serial ports (except I2C) can be scaled  
relative to the CPU clock.  
26  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
3.3.15 Low-power Modes  
The devices are full static CMOS devices. Three low-power modes are provided:  
IDLE:  
Place CPU in low-power mode. Peripheral clocks may be turned off selectively and  
only those peripherals that need to function during IDLE are left operating. An  
enabled interrupt from an active peripheral or the watchdog timer will wake the  
processor from IDLE mode.  
STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL  
functional. An external interrupt event will wake the processor and the peripherals.  
Execution begins on the next valid cycle after detection of the interrupt event  
HALT:  
This mode basically shuts down the device and places it in the lowest possible power  
consumption mode. If the internal zero-pin oscillators are used as the clock source,  
the HALT mode turns them off, by default. To keep these oscillators from shutting  
down, the INTOSCnHALTI bits in CLKCTL register may be used. The zero-pin  
oscillators may thus be used to clock the CPU-watchdog in this mode. If the on-chip  
crystal oscillator is used as the clock source, it is shut down in this mode. A reset or  
an external signal (through a GPIO pin) or the CPU-watchdog can wake the device  
from this mode.  
The CPU clock (OSCCLK) and WDCLK should be from the same clock source before attempting to put  
the device into HALT or STANDBY.  
3.3.16 Peripheral Frames 0, 1, 2 (PFn)  
The device segregates peripherals into three sections. The mapping of peripherals is as follows:  
PF0: PIE:  
Flash:  
PIE Interrupt Enable and Control Registers Plus PIE Vector Table  
Flash Waitstate Registers  
Timers:  
CSM:  
CPU-Timers 0, 1, 2 Registers  
Code Security Module KEY Registers  
ADC Result Registers  
ADC:  
PF1: GPIO:  
ePWM:  
GPIO MUX Configuration and Control Registers  
Enhanced Pulse Width Modulator Module and Registers  
Enhanced Capture Module and Registers  
eCAP:  
Comparators: Comparator Modules  
PF2: SYS:  
SCI:  
System Control Registers  
Serial Communications Interface (SCI) Control and RX/TX Registers  
Serial Port Interface (SPI) Control and RX/TX Registers  
ADC Status, Control, and Configuration Registers  
Inter-Integrated Circuit Module and Registers  
External Interrupt Registers  
SPI:  
ADC:  
I2C:  
XINT:  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
27  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.3.17 General-Purpose Input/Output (GPIO) Multiplexer  
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This  
enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins  
are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal  
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter  
unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power  
modes.  
3.3.18 32-Bit CPU-Timers (0, 1, 2)  
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock  
prescaling. The timers have a 32-bit count-down register, which generates an interrupt when the counter  
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.  
When the counter reaches zero, it is automatically reloaded with a 32-bit period value.  
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use  
and can be connected to INT13 of the CPU. CPU-Timer 2 is reserved for DSP/BIOS. It is connected to  
INT14 of the CPU. If DSP/BIOS is not being used, CPU-Timer 2 is available for general use.  
CPU-Timer 2 can be clocked by any one of the following:  
SYSCLKOUT (default)  
Internal zero-pin oscillator 1 (INTOSC1)  
Internal zero-pin oscillator 2 (INTSOC2)  
External clock source  
3.3.19 Control Peripherals  
The devices support the following peripherals that are used for embedded control and communication:  
ePWM:  
The enhanced PWM peripheral supports independent/complementary PWM  
generation, adjustable dead-band generation for leading/trailing edges,  
latched/cycle-by-cycle trip mechanism. Some of the PWM pins support the  
HRPWM high resolution duty and period features. The type 1 module found on  
2802x devices also supports increased dead-band resolution, enhanced SOC and  
interrupt generation, and advanced triggering including trip functions based on  
comparator outputs.  
eCAP:  
ADC:  
The enhanced capture peripheral uses a 32-bit time base and registers up to four  
programmable events in continuous/one-shot capture modes.  
This peripheral can also be configured to generate an auxiliary PWM signal.  
The ADC block is a 12-bit converter. It has up to 13 single-ended channels pinned  
out, depending on the device. It contains two sample-and-hold units for  
simultaneous sampling.  
Comparator: Each comparator block consists of one analog comparator along with an internal  
10-bit reference for supplying one input of the comparator.  
28  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
3.3.20 Serial Port Peripherals  
The devices support the following serial communication peripherals:  
SPI:  
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream  
of programmed length (one to sixteen bits) to be shifted into and out of the device  
at a programmable bit-transfer rate. Normally, the SPI is used for communications  
between the MCU and external peripherals or another processor. Typical  
applications include external I/O or peripheral expansion through devices such as  
shift registers, display drivers, and ADCs. Multi-device communications are  
supported by the master/slave operation of the SPI. The SPI contains a 4-level  
receive and transmit FIFO for reducing interrupt servicing overhead.  
SCI:  
I2C:  
The serial communications interface is a two-wire asynchronous serial port,  
commonly known as UART. The SCI contains a 4-level receive and transmit FIFO  
for reducing interrupt servicing overhead.  
The inter-integrated circuit (I2C) module provides an interface between a MCU  
and other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus)  
specification version 2.1 and connected by way of an I2C-bus. External  
components attached to this 2-wire serial bus can transmit/receive up to 8-bit data  
to/from the MCU through the I2C module. The I2C contains a 4-level receive and  
transmit FIFO for reducing interrupt servicing overhead.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
29  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.4 Register Map  
The devices contain three peripheral register spaces. The spaces are categorized as follows:  
Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus.  
See Table 3-8.  
Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus. See  
Table 3-9.  
Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See  
Table 3-10.  
Table 3-8. Peripheral Frame 0 Registers(1)  
NAME  
Device Emulation Registers  
System Power Control Registers  
FLASH Registers(3)  
ADDRESS RANGE  
0x00 0880 – 0x00 0984  
0x00 0985 – 0x00 0987  
0x00 0A80 – 0x00 0ADF  
0x00 0AE0 – 0x00 0AEF  
0x00 0B00 – 0x00 0B0F  
SIZE (×16)  
EALLOW PROTECTED(2)  
261  
3
Yes  
Yes  
Yes  
Yes  
No  
96  
16  
16  
Code Security Module Registers  
ADC registers  
(0 wait read only)  
CPU–TIMER0/1/2 Registers  
PIE Registers  
0x00 0C00 – 0x00 0C3F  
0x00 0CE0 – 0x00 0CFF  
0x00 0D00 – 0x00 0DFF  
64  
32  
No  
No  
No  
PIE Vector Table  
256  
(1) Registers in Frame 0 support 16-bit and 32-bit accesses.  
(2) If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction  
disables writes to prevent stray code or pointers from corrupting register contents.  
(3) The Flash Registers are also protected by the Code Security Module (CSM).  
Table 3-9. Peripheral Frame 1 Registers  
NAME  
Comparator 1 registers  
ADDRESS RANGE  
0x00 6400 – 0x00 641F  
0x00 6420 – 0x00 643F  
0x00 6800 – 0x00 683F  
0x00 6840 – 0x00 687F  
0x00 6880 – 0x00 68BF  
0x00 68C0 – 0x00 68FF  
0x00 6A00 – 0x00 6A1F  
0x00 6F80 – 0x00 6FFF  
SIZE (×16)  
EALLOW PROTECTED  
(1)  
32  
32  
64  
64  
64  
64  
32  
128  
(1)  
(1)  
(1)  
(1)  
(1)  
Comparator 2 registers  
ePWM1 + HRPWM1 registers  
ePWM2 + HRPWM2 registers  
ePWM3 + HRPWM3 registers  
ePWM4 + HRPWM4 registers  
eCAP1 registers  
No  
(1)  
GPIO registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
Table 3-10. Peripheral Frame 2 Registers  
NAME  
System Control Registers  
ADDRESS RANGE  
0x00 7010 – 0x00 702F  
0x00 7040 – 0x00 704F  
0x00 7050 – 0x00 705F  
0x00 7060 – 0x00 706F  
0x00 7070 – 0x00 707F  
0x00 7100 – 0x00 717F  
0x00 7900 – 0x00 793F  
SIZE (×16)  
EALLOW PROTECTED  
32  
16  
Yes  
No  
SPI-A Registers  
SCI-A Registers  
16  
No  
NMI Watchdog Interrupt Registers  
External Interrupt Registers  
ADC Registers  
16  
Yes  
16  
Yes  
(1)  
128  
64  
(1)  
I2C-A Registers  
(1) Some registers are EALLOW protected. See the module reference guide for more information.  
30  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
3.5 Device Emulation Registers  
These registers are used to control the protection mode of the C28x CPU and to monitor some critical  
device signals. The registers are defined in Table 3-11 .  
Table 3-11. Device Emulation Registers  
ADDRESS  
RANGE  
EALLOW  
PROTECTED  
NAME  
SIZE (x16)  
DESCRIPTION  
Device Configuration Register  
Part ID Register  
0x0880  
0x0881  
DEVICECNF  
PARTID  
2
1
Yes  
0x3D 7FFF  
TMS320F280200PT  
TMS320F280200DA  
TMS320F28027PT  
TMS320F28027DA  
TMS320F28026PT  
TMS320F28026DA  
TMS320F28023PT  
TMS320F28023DA  
TMS320F28022PT  
TMS320F28022DA  
TMS320F28021PT  
TMS320F28021DA  
TMS320F28020PT  
TMS320F28020DA  
TMS320F280200PT/DA  
TMS320F28027PT/DA  
TMS320F28026PT/DA  
TMS320F28023PT/DA  
TMS320F28022PT/DA  
TMS320F28021PT/DA  
TMS320F28020PT/DA  
0x00C1  
0x00C0  
0x00CF  
0x00CE  
0x00C7  
0x00C6  
0x00CD  
0x00CC  
0x00C5  
0x00C4  
0x00CB  
0x00CA  
0x00C3  
0x00C2  
0x00C7  
0x00CF  
0x00C7  
0x00CF  
0x00C7  
0x00CF  
0x00C7  
No  
CLASSID  
0x0882  
1
Class ID Register  
No  
No  
REVID  
0x0883  
1
Revision ID  
Register  
0x0000 - Silicon Rev. 0 - TMS  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
31  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.6 Interrupts  
Figure 3-7 shows how the various interrupt sources are multiplexed.  
Peripherals  
(SPI, SCI, ePWM, I2C,  
HRPWM, eCAP, ADC)  
WDINT  
Watchdog  
Low-Power Modes  
WAKEINT  
Sync  
LPMINT  
SYSCLKOUT  
Interrupt Control  
XINT1CR(15:0)  
XINT2CTR(15:0)  
XINT1  
XINT1  
GPIOXINT1SEL(4:0)  
XINT2SOC  
ADC  
INT1  
to  
INT12  
XINT2  
XINT2  
Interrupt Control  
XINT2CR(15:0)  
XINT3CTR(15:0)  
C28  
Core  
GPIOXINT2SEL(4:0)  
GPIO0.int  
XINT3  
TINT0  
XINT3  
GPIO  
MUX  
Interrupt Control  
XINT3CR(15:0)  
XINT3CTR(15:0)  
GPIO31.int  
GPIOXINT3SEL(4:0)  
CPU TIMER 0  
CPU TIMER 1  
CPU TIMER 2  
TINT1  
TINT2  
INT13  
INT14  
CPUTMR2CLK  
CLOCKFAIL  
NMIRS  
System Control  
(See the System  
Control section.)  
NMI interrupt with watchdog function  
(See the NMI Watchdog section.)  
NMI  
Figure 3-7. External and PIE Interrupt Sources  
32  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with  
8 interrupts per group equals 96 possible interrupts. Table 3-12 shows the interrupts used by 2802x  
devices.  
The TRAP #VectorNumber instruction transfers program control to the interrupt service routine  
corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address  
pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore,  
TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.  
When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service  
routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector  
from INT1.1, TRAP #2 fetches the vector from INT2.1, and so forth.  
IFR[12:1]  
IER[12:1]  
INTM  
INT1  
INT2  
1
CPU  
MUX  
0
INT11  
INT12  
Global  
Enable  
(Flag)  
(Enable)  
INTx.1  
INTx.2  
INTx.3  
INTx.4  
INTx.5  
From  
Peripherals  
or  
External  
Interrupts  
INTx  
MUX  
INTx.6  
INTx.7  
INTx.8  
PIEACKx  
(Enable/Flag)  
(Enable)  
(Flag)  
PIEIERx[8:1]  
PIEIFRx[8:1]  
Figure 3-8. Multiplexing of Interrupts Using the PIE Block  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
33  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 3-12. PIE MUXed Peripheral Interrupt Vector Table(1)  
INTx.8  
WAKEINT  
(LPM/WD)  
0xD4E  
Reserved  
INTx.7  
TINT0  
(TIMER 0)  
0xD4C  
Reserved  
INTx.6  
ADCINT9  
(ADC)  
0xD4A  
Reserved  
INTx.5  
XINT2  
Ext. int. 2  
0xD48  
Reserved  
INTx.4  
XINT1  
Ext. int. 1  
0xD46  
EPWM4_TZINT  
(ePWM4)  
0xD56  
EPWM4_INT  
(ePWM4)  
0xD66  
Reserved  
INTx.3  
Reserved  
INTx.2  
ADCINT2  
(ADC)  
INTx.1  
ADCINT1  
(ADC)  
INT1.y  
INT2.y  
INT3.y  
INT4.y  
INT5.y  
INT6.y  
INT7.y  
INT8.y  
INT9.y  
INT10.y  
INT11.y  
INT12.y  
0xD44  
EPWM3_TZINT  
(ePWM3)  
0xD54  
EPWM3_INT  
(ePWM3)  
0xD64  
Reserved  
0xD42  
0xD40  
EPWM2_TZINT  
(ePWM2)  
0xD52  
EPWM1_TZINT  
(ePWM1)  
0xD50  
0xD5E  
Reserved  
0xD5C  
Reserved  
0xD5A  
Reserved  
0xD58  
Reserved  
EPWM2_INT  
(ePWM2)  
0xD62  
EPWM1_INT  
(ePWM1)  
0xD60  
0xD6E  
Reserved  
0xD6C  
Reserved  
0xD6A  
Reserved  
0xD68  
Reserved  
Reserved  
ECAP1_INT  
(eCAP1)  
0xD70  
0xD7E  
Reserved  
0xD7C  
Reserved  
0xD7A  
Reserved  
0xD78  
Reserved  
0xD76  
Reserved  
0xD74  
Reserved  
0xD72  
Reserved  
Reserved  
0xD8E  
Reserved  
0xD8C  
Reserved  
0xD8A  
Reserved  
0xD88  
Reserved  
0xD86  
Reserved  
0xD84  
Reserved  
0xD82  
0xD80  
SPITXINTA  
(SPI-A)  
0xD92  
SPIRXINTA  
(SPI-A)  
0xD90  
0xD9E  
Reserved  
0xD9C  
Reserved  
0xD9A  
Reserved  
0xD98  
Reserved  
0xD96  
Reserved  
0xD94  
Reserved  
Reserved  
Reserved  
0xDAE  
Reserved  
0xDAC  
Reserved  
0xDAA  
Reserved  
0xDA8  
Reserved  
0xDA6  
Reserved  
0xDA4  
Reserved  
0xDA2  
0xDA0  
I2CINT2A  
(I2C-A)  
0xDB2  
I2CINT1A  
(I2C-A)  
0xDBE  
Reserved  
0xDBC  
Reserved  
0xDBA  
Reserved  
0xDB8  
Reserved  
0xDB6  
Reserved  
0xDB4  
Reserved  
0xDB0  
SCITXINTA  
(SCI-A)  
0xDC2  
SCIRXINTA  
(SCI-A)  
0xDC0  
0xDCE  
ADCINT8  
(ADC)  
0xDDE  
Reserved  
0xDCC  
ADCINT7  
(ADC)  
0xDDC  
Reserved  
0xDCA  
ADCINT6  
(ADC)  
0xDDA  
Reserved  
0xDC8  
ADCINT5  
(ADC)  
0xDD8  
Reserved  
0xDC6  
ADCINT4  
(ADC)  
0xDC4  
ADCINT3  
(ADC)  
0xDD4  
Reserved  
ADCINT2  
(ADC)  
ADCINT1  
(ADC)  
0xDD6  
Reserved  
0xDD2  
0xDD0  
Reserved  
Reserved  
0xDEE  
Reserved  
0xDEC  
Reserved  
0xDEA  
Reserved  
0xDE8  
Reserved  
0xDE6  
Reserved  
0xDE4  
Reserved  
0xDE2  
0xDE0  
Reserved  
XINT3  
Ext. Int. 3  
0xDF0  
0xDFE  
0xDFC  
0xDFA  
0xDF8  
0xDF6  
0xDF4  
0xDF2  
(1) Out of 96 possible interrupts, some interrupts are not used. These interrupts are reserved for future devices. These interrupts can be  
used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a  
peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.  
To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:  
No peripheral within the group is asserting interrupts.  
No peripheral interrupts are assigned to the group (e.g., PIE groups 5, 7, or 11) .  
34  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 3-13. PIE Configuration and Control Registers  
NAME  
PIECTRL  
PIEACK  
PIEIER1  
PIEIFR1  
PIEIER2  
PIEIFR2  
PIEIER3  
PIEIFR3  
PIEIER4  
PIEIFR4  
PIEIER5  
PIEIFR5  
PIEIER6  
PIEIFR6  
PIEIER7  
PIEIFR7  
PIEIER8  
PIEIFR8  
PIEIER9  
PIEIFR9  
PIEIER10  
PIEIFR10  
PIEIER11  
PIEIFR11  
PIEIER12  
PIEIFR12  
Reserved  
ADDRESS  
0x0CE0  
0x0CE1  
0x0CE2  
0x0CE3  
0x0CE4  
0x0CE5  
0x0CE6  
0x0CE7  
0x0CE8  
0x0CE9  
0x0CEA  
0x0CEB  
0x0CEC  
0x0CED  
0x0CEE  
0x0CEF  
0x0CF0  
0x0CF1  
0x0CF2  
0x0CF3  
0x0CF4  
0x0CF5  
0x0CF6  
0x0CF7  
0x0CF8  
0x0CF9  
SIZE (x16)  
DESCRIPTION(1)  
PIE, Control Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6
PIE, Acknowledge Register  
PIE, INT1 Group Enable Register  
PIE, INT1 Group Flag Register  
PIE, INT2 Group Enable Register  
PIE, INT2 Group Flag Register  
PIE, INT3 Group Enable Register  
PIE, INT3 Group Flag Register  
PIE, INT4 Group Enable Register  
PIE, INT4 Group Flag Register  
PIE, INT5 Group Enable Register  
PIE, INT5 Group Flag Register  
PIE, INT6 Group Enable Register  
PIE, INT6 Group Flag Register  
PIE, INT7 Group Enable Register  
PIE, INT7 Group Flag Register  
PIE, INT8 Group Enable Register  
PIE, INT8 Group Flag Register  
PIE, INT9 Group Enable Register  
PIE, INT9 Group Flag Register  
PIE, INT10 Group Enable Register  
PIE, INT10 Group Flag Register  
PIE, INT11 Group Enable Register  
PIE, INT11 Group Flag Register  
PIE, INT12 Group Enable Register  
PIE, INT12 Group Flag Register  
Reserved  
0x0CFA –  
0x0CFF  
(1) The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table  
is protected.  
3.6.1 External Interrupts  
Table 3-14. External Interrupt Registers  
NAME  
XINT1CR  
XINT2CR  
XINT3CR  
XINT1CTR  
XINT2CTR  
XINT3CTR  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
0x00 7070  
0x00 7071  
0x00 7072  
0x00 7078  
0x00 7079  
0x00 707A  
1
1
1
1
1
1
XINT1 configuration register  
XINT2 configuration register  
XINT3 configuration register  
XINT1 counter register  
XINT2 counter register  
XINT3 counter register  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
35  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and  
negative edge. For more information, see the TMS320x2802x/TMS320F2802xx Piccolo System Control  
and Interrupts Reference Guide (literature number SPRUFN3).  
3.7 VREG/BOR/POR  
Although the core and I/O circuitry operate on two different voltages, these devices have an on-chip  
voltage regulator (VREG) to generate the VDD voltage from the VDDIO supply. This eliminates the cost and  
space of a second external regulator on an application board. Additionally, internal power-on reset (POR)  
and brown-out reset (BOR) circuits monitor both the VDD and VDDIO rails during power-up and run mode.  
3.7.1 On-chip Voltage Regulator (VREG)  
A linear regulator generates the core voltage (VDD) from the VDDIO supply. Therefore, although capacitors  
are required on each VDD pin to stabilize the generated voltage, power need not be supplied to these pins  
to operate the device. Conversely, the VREG can be disabled, should power or redundancy be the  
primary concern of the application.  
3.7.1.1 Using the On-chip VREG  
To utilize the on-chip VREG, the VREGENZ pin should be tied low and the appropriate recommended  
operating voltage should be supplied to the VDDIO and VDDA pins. In this case, the VDD voltage needed by  
the core logic will be generated by the VREG. Each VDD pin requires on the order of 1.2 mF (minimum)  
capacitance for proper regulation of the VREG. These capacitors should be located as close as possible  
to the VDD pins.  
3.7.1.2 Disabling the On-chip VREG  
To conserve power, it is also possible to disable the on-chip VREG and supply the core logic voltage to  
the VDD pins with a more efficient external regulator. To enable this option, the VREGENZ pin must be tied  
high.  
3.7.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit  
Two on-chip supervisory circuits, the power-on reset (POR) and the brown-out reset (BOR) remove the  
burden of monitoring the VDD and VDDIO supply rails from the application board. The purpose of the POR is  
to create a clean reset throughout the device during the entire power-up procedure. The trip point is a  
looser, lower trip point than the BOR, which watches for dips in the VDD or VDDIO rail during device  
operation. The POR function is present on both VDD and VDDIO rails at all times. After initial device  
power-up, the BOR function is present on VDDIO at all times, and on VDD when the internal VREG is  
enabled (VREGENZ pin is tied low). Both functions tie the XRS pin low when one of the voltages is below  
their respective trip point. Additionally, when the internal voltage regulator is enabled, an over-voltage  
protection circuit will tie XRS low if the VDD rail rises above its trip point. See Section 6 for the various trip  
points as well as the delay time for the device to release the XRS pin after the under/over-voltage  
condition is removed. Figure 3-9 shows the VREG, POR, and BOR. To disable both the VDD and VDDIO  
BOR functions, a bit is provided in the BORCFG register. Refer to the TMS320x2802x/TMS320F2802xx  
Piccolo System Control and Interrupts Reference Guide (literature number SPRUFN3) for details.  
36  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
In  
I/O Pin  
Out  
(Force Hi-Z When High)  
DIR (0 = Input, 1 = Output)  
SYSRS  
Internal  
Weak PU  
SYSCLKOUT  
Deglitch  
XRS  
Filter  
Sync  
RS  
C28  
Core  
MCLKRS  
PLL  
JTAG  
TCK  
Detect  
Logic  
XRS  
Pin  
+
Clocking  
Logic  
VREGHALT  
WDRST(A)  
PBRS(B)  
POR/BOR  
Generating  
Module  
On-Chip  
Voltage  
Regulator  
(VREG)  
VREGENZ  
A. WDRST is the reset signal from the CPU-watchdog.  
B. PBRS is the reset signal from the POR/BOR module.  
Figure 3-9. VREG + POR + BOR + Reset Signal Connectivity  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
37  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.8 System Control  
This section describes the oscillator and clocking mechanisms, the watchdog function and the low power  
modes.  
Table 3-15. PLL, Clocking, Watchdog, and Low-Power Mode Registers  
NAME  
BORCFG  
ADDRESS  
0x00 0985  
0x00 7010  
0x00 7011  
0x00 7012  
0x00 7013  
0x00 7014  
0x00 7016  
0x00 701B  
0x00 701C  
0x00 701D  
0x00 701E  
0x00 7020  
0x00 7021  
0x00 7022  
0x00 7023  
0x00 7025  
0x00 7029  
SIZE (x16)  
DESCRIPTION(1)  
BOR Configuration Register  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
XCLK  
XCLKOUT Control  
PLLSTS  
PLL Status Register  
CLKCTL  
Clock Control Register  
PLLLOCKPRD  
INTOSC1TRIM  
INTOSC2TRIM  
LOSPCP  
PCLKCR0  
PCLKCR1  
LPMCR0  
PCLKCR3  
PLLCR  
PLL Lock Period  
Internal Oscillator 1 Trim Register  
Internal Oscillator 2 Trim Register  
Low-Speed Peripheral Clock Prescaler Register  
Peripheral Clock Control Register 0  
Peripheral Clock Control Register 1  
Low Power Mode Control Register 0  
Peripheral Clock Control Register 3  
PLL Control Register  
SCSR  
System Control and Status Register  
Watchdog Counter Register  
Watchdog Reset Key Register  
Watchdog Control Register  
WDCNTR  
WDKEY  
WDCR  
(1) All registers in this table are EALLOW protected.  
38  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Figure 3-10 shows the various clock domains that are discussed. Figure 3-11 shows the various clock  
sources (both internal and external) that can provide a clock for device operation.  
SYSCLKOUT  
PCLKCR0/1/3  
(System Ctrl Regs)  
LOSPCP  
(System Ctrl Regs)  
C28x Core  
CLKIN  
Clock Enables  
LSPCLK  
Peripheral  
Registers  
SPI-A, SCI-A  
I/O  
I/O  
I/O  
I/O  
PF2  
Clock Enables  
eCAP1  
Peripheral  
Registers  
PF1  
PF1  
PF2  
GPIO  
Mux  
Clock Enables  
ePWM1/.../4  
Clock Enables  
I2C-A  
Peripheral  
Registers  
Peripheral  
Registers  
Clock Enables  
ADC  
Registers  
PF2  
PF0  
16 Ch  
12-Bit ADC  
Analog  
GPIO  
Mux  
Clock Enables  
COMP1/2  
COMP  
Registers  
6
PF1  
A. CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency  
as SYSCLKOUT).  
Figure 3-10. Clock and Reset Domains  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
39  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
CLKCTL[WDCLKSRCSEL]  
Internal  
OSC 1  
(10 MHz)  
0
OSC1CLK  
OSCCLKSRC1  
INTOSC1TRIM Reg(A)  
WDCLK  
CPU-Watchdog  
(OSC1CLK on XRS reset)  
OSCE  
1
CLKCTL[INTOSC1OFF]  
1 = Turn OSC Off  
CLKCTL[OSCCLKSRCSEL]  
OSCCLK  
CLKCTL[INTOSC1HALT]  
1 = Ignore HALT  
WAKEOSC  
OSC2CLK  
0
1
Internal  
OSC 2  
(10 MHz)  
INTOSC2TRIM Reg(A)  
PLL  
Missing-Clock-Detect Circuit(B)  
(OSC1CLK on XRS reset)  
OSCE  
CLKCTL[TRM2CLKPRESCALE]  
CLKCTL[TMR2CLKSRCSEL]  
1 = Turn OSC Off  
10  
11  
CLKCTL[INTOSC2OFF]  
Prescale  
/1, /2, /4,  
/8, /16  
SYNC  
Edge  
Detect  
01, 10, 11  
CPUTMR2CLK  
1 = Ignore HALT  
01  
1
0
00  
CLKCTL[INTOSC2HALT]  
SYSCLKOUT  
OSCCLKSRC2  
CLKCTL[OSCCLKSRC2SEL]  
0 = GPIO38  
1 = GPIO19  
XCLK[XCLKINSEL]  
CLKCTL[XCLKINOFF]  
0
1
0
GPIO19  
or  
XCLKIN  
GPIO38  
XCLKIN  
X1  
X2  
EXTCLK  
(Crystal)  
OSC  
XTAL  
WAKEOSC  
(Oscillators enabled when this signal is high)  
0 = OSC on (default on reset)  
1 = Turn OSC off  
CLKCTL[XTALOSCOFF]  
A. Register loaded from TI OTP-based calibration function.  
B. See Section 3.8.4 for details on missing clock detection.  
Figure 3-11. Clock Tree  
40  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
3.8.1 Internal Zero Pin Oscillators  
The F2802x devices contain two independent internal zero pin oscillators. By default both oscillators are  
turned on at power up, and internal oscillator 1 is the default clock source at this time. For power savings,  
unused oscillators may be powered down by the user. The center frequency of these oscillators is  
determined by their respective oscillator trim registers, written to in the calibration routine as part of the  
boot ROM execution. See Section 6, Electrical Specifications, for more information on these oscillators.  
3.8.2 Crystal Oscillator Option  
The typical specifications for the external quartz crystal (fundamental mode, parallel resonant) are listed in  
Table 3-16. Furthermore, ESR range = 30 to 150 .  
Table 3-16. Typical Specifications for External Quartz Crystal(1)  
FREQUENCY (MHz)  
Rd ()  
2200  
470  
0
CL1 (pF)  
18  
CL2 (pF)  
18  
5
10  
15  
20  
15  
15  
15  
15  
0
12  
12  
(1) Cshunt should be less than or equal to 5 pF.  
XCLKIN/GPIO19/38  
X1  
X2  
Rd  
Turn off  
XCLKIN path  
in CLKCTL  
register  
CL1  
Crystal  
CL2  
A. X1/X2 pins are available in 48-pin package only.  
Figure 3-12. Using the On-chip Crystal Oscillator  
NOTE  
1. CL1 and CL2 are the total capacitance of the circuit board and components excluding the  
IC and crystal. The value is usually approximately twice the value of the crystal's load  
capacitance.  
2. The load capacitance of the crystal is described in the crystal specifications of the  
manufacturers.  
3. TI recommends that customers have the resonator/crystal vendor characterize the  
operation of their device with the MCU chip. The resonator/crystal vendor has the  
equipment and expertise to tune the tank circuit. The vendor can also advise the  
customer regarding the proper tank component values that will produce proper start up  
and stability over the entire operating range.  
XCLKIN/GPIO19/38  
X1  
X2  
NC  
External Clock Signal  
(Toggling 0−V  
)
DDIO  
Figure 3-13. Using a 3.3-V External Oscillator  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
41  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.8.3 PLL-Based Clock Module  
The devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking  
signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control  
PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing  
to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes  
1 ms. The input clock and PLLCR[DIV] bits should be chosen in such a way that the output frequency of  
the PLL (VCOCLK) is at least 50 MHz.  
Table 3-17. PLL Settings  
SYSCLKOUT (CLKIN)  
PLLCR[DIV] VALUE(1) (2)  
PLLSTS[DIVSEL] = 0 or 1(3)  
OSCCLK/4 (Default)(1)  
(OSCCLK * 1)/4  
PLLSTS[DIVSEL] = 2  
OSCCLK/2  
PLLSTS[DIVSEL] = 3  
OSCCLK  
0000 (PLL bypass)  
0001  
(OSCCLK * 1)/2  
(OSCCLK * 2)/2  
(OSCCLK * 3)/2  
(OSCCLK * 4)/2  
(OSCCLK * 5)/2  
(OSCCLK * 6)/2  
(OSCCLK * 7)/2  
(OSCCLK * 8)/2  
(OSCCLK * 9)/2  
(OSCCLK * 10)/2  
(OSCCLK * 11)/2  
(OSCCLK * 12)/2  
(OSCCLK * 1)/1  
(OSCCLK * 2)/1  
(OSCCLK * 3)/1  
(OSCCLK * 4)/1  
(OSCCLK * 5)/1  
(OSCCLK * 6)/1  
(OSCCLK * 7)/1  
(OSCCLK * 8)/1  
(OSCCLK * 9)/1  
(OSCCLK * 10)/1  
(OSCCLK * 11)/1  
(OSCCLK * 12)/1  
0010  
(OSCCLK * 2)/4  
0011  
(OSCCLK * 3)/4  
0100  
(OSCCLK * 4)/4  
0101  
(OSCCLK * 5)/4  
0110  
(OSCCLK * 6)/4  
0111  
(OSCCLK * 7)/4  
1000  
(OSCCLK * 8)/4  
1001  
(OSCCLK * 9)/4  
1010  
(OSCCLK * 10)/4  
(OSCCLK * 11)/4  
(OSCCLK * 12)/4  
1011  
1100  
(1) The PLL control register (PLLCR) and PLL Status Register (PLLSTS) are reset to their default state by the XRS signal or a watchdog  
reset only. A reset issued by the debugger or the missing clock detect logic has no effect.  
(2) This register is EALLOW protected. See the TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts Reference Guide  
(literature number SPRUFN3) for more information.  
(3) By default, PLLSTS[DIVSEL] is configured for /4. (The boot ROM changes this to /1.) PLLSTS[DIVSEL] must be 0 before writing to the  
PLLCR and should be changed only after PLLSTS[PLLLOCKS] = 1.  
Table 3-18. CLKIN Divide Options  
PLLSTS [DIVSEL]  
CLKIN DIVIDE  
0
1
2
3
/4  
/4  
/2  
/1  
The PLL-based clock module provides four modes of operation:  
INTOSC1 (Internal Zero-pin Oscillator 1): This is the on-chip internal oscillator 1. This can provide  
the clock for the Watchdog block, core and CPU-Timer 2  
INTOSC2 (Internal Zero-pin Oscillator 2): This is the on-chip internal oscillator 2. This can provide  
the clock for the Watchdog block, core and CPU-Timer 2. Both INTOSC1 and INTOSC2 can be  
independently chosen for the Watchdog block, core and CPU-Timer 2.  
Crystal/Resonator Operation: The on-chip (crystal) oscillator enables the use of an external  
crystal/resonator attached to the device to provide the time base. The crystal/resonator is connected to  
the X1/X2 pins. Some devices may not have the X1/X2 pins. See Table 2-2 for details.  
External Clock Source Operation: If the on-chip (crystal) oscillator is not used, this mode allows it to  
be bypassed. The device clocks are generated from an external clock source input on the XCLKIN pin.  
Note that the XCLKIN is multiplexed with GPIO19 or GPIO38 pin. The XCLKIN input can be selected  
as GPIO19 or GPIO38 via the XCLKINSEL bit in XCLK register. The CLKCTL[XCLKINOFF] bit  
42  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
disables this clock input (forced low). If the clock source is not used or the respective pins are used as  
GPIOs, the user should disable at boot time.  
Before changing clock sources, ensure that the target clock is present. If a clock is not present, then that  
clock source must be disabled (using the CLKCTL register) before switching clocks.  
Table 3-19. Possible PLL Configuration Modes  
CLKIN AND  
SYSCLKOUT  
PLL MODE  
REMARKS  
PLLSTS[DIVSEL]  
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block  
is disabled in this mode. This can be useful to reduce system noise and for low  
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)  
before entering this mode. The CPU clock (CLKIN) is derived directly from the  
input clock on either X1/X2, X1 or XCLKIN.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Off  
PLL Bypass is the default PLL configuration upon power-up or after an external  
reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or  
while the PLL locks to a new frequency after the PLLCR register has been  
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.  
0, 1  
2
3
OSCCLK/4  
OSCCLK/2  
OSCCLK/1  
PLL Bypass  
PLL Enable  
0, 1  
2
3
OSCCLK * n/4  
OSCCLK * n/2  
OSCCLK * n/1  
Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the  
PLLCR the device will switch to PLL Bypass mode until the PLL locks.  
3.8.4 Loss of Input Clock (NMI Watchdog Function)  
The 2802x devices may be clocked from either one of the internal zero-pin oscillators  
(INTOSC1/INTOSC2), the on-chip crystal oscillator, or from an external clock input. Regardless of the  
clock source, in PLL-enabled and PLL-bypass mode, if the input clock to the PLL vanishes, the PLL will  
issue a limp-mode clock at its output. This limp-mode clock continues to clock the CPU and peripherals at  
a typical frequency of 1–5 MHz.  
When the limp mode is activated, a CLOCKFAIL signal is generated that is latched as an NMI interrupt.  
Depending on how the NMIRESETSEL bit has been configured, a reset to the device can be fired  
immediately or the NMI watchdog counter can issue a reset when it overflows. In addition to this, the  
Missing Clock Status (MCLKSTS) bit is set. The NMI interrupt could be used by the application to detect  
the input clock failure and initiate necessary corrective action such as switching over to an alternative  
clock source (if available) or initiate a shut-down procedure for the system.  
If the software does not respond to the clock-fail condition, the NMI watchdog triggers a reset after a  
preprogrammed time interval. Figure 3-14 shows the interrupt mechanisms involved.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
43  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
NMIFLG[NMINT]  
NMIFLGCLR[NMINT]  
Clear  
Latch  
Set  
Clear  
XRS  
Generate  
Interrupt  
Pulse  
When  
Input = 1  
NMIFLG[CLOCKFAIL]  
Clear  
Latch  
1
0
0
NMIFLGCLR[CLOCKFAIL]  
CLOCKFAIL  
NMINT  
SYNC?  
Set  
Clear  
SYSCLKOUT  
NMICFG[CLOCKFAIL]  
NMIFLGFRC[CLOCKFAIL]  
XRS  
SYSCLKOUT  
SYSRS  
NMIWDPRD[15:0]  
NMIWDCNT[15:0]  
See System  
Control Section  
NMI Watchdog  
NMIRS  
Figure 3-14. NMI-watchdog  
3.8.5 CPU-Watchdog Module  
The CPU-watchdog module on the 2802x device is similar to the one used on the 281x/280x/283xx  
devices. This module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit  
watchdog up counter has reached its maximum value. To prevent this, the user must disable the counter  
or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register that resets  
the watchdog counter. Figure 3-15 shows the various functional blocks within the watchdog module.  
Normally, when the input clocks are present, the CPU-watchdog counter decrements to initiate a  
CPU-watchdog reset or WDINT interrupt. However, when the external input clock fails, the CPU-watchdog  
counter stops decrementing (i.e., the watchdog counter does not change with the limp-mode clock).  
NOTE  
The CPU-watchdog is different from the NMI watchdog. It is the legacy watchdog that is  
present in all 28x devices.  
NOTE  
Applications in which the correct CPU operating frequency is absolutely critical should  
implement a mechanism by which the MCU will be held in reset, should the input clocks ever  
fail. For example, an R-C circuit may be used to trigger the XRS pin of the MCU, should the  
capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a  
periodic basis to prevent it from getting fully charged. Such a circuit would also help in  
detecting failure of the flash memory.  
44  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
WDCR (WDPS[2:0])  
WDCR (WDDIS)  
WDCNTR(7:0)  
WDCLK  
WDCLK  
8-Bit  
Watchdog  
Counter  
CLR  
Watchdog  
Prescaler  
/512  
Clear Counter  
Internal  
Pullup  
WDKEY(7:0)  
WDRST  
WDINT  
Generate  
Watchdog  
55 + AA  
Key Detector  
Output Pulse  
(512 OSCCLKs)  
Good Key  
XRS  
Bad  
WDCHK  
Key  
Core-reset  
SCSR (WDENINT)  
WDCR (WDCHK[2:0])  
1
0
1
(A)  
WDRST  
A. The WDRST signal is driven low for 512 OSCCLK cycles.  
Figure 3-15. CPU-watchdog Module  
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.  
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains  
functional is the CPU-watchdog. This module will run off OSCCLK. The WDINT signal is fed to the LPM  
block so that it can wake the device from STANDBY (if enabled). See Section 3.9, Low-power Modes  
Block, for more details.  
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of  
IDLE mode.  
In HALT mode, the CPU-watchdog can be used to wake up the device through a device reset.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Functional Overview  
45  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
3.9 Low-power Modes Block  
Table 3-20 summarizes the various modes.  
Table 3-20. Low-power Modes  
MODE  
LPMCR0(1:0)  
OSCCLK  
CLKIN  
SYSCLKOUT  
EXIT(1)  
XRS, CPU-watchdog interrupt, any  
enabled interrupt  
IDLE  
00  
On  
On  
On  
On  
XRS, CPU-watchdog interrupt, GPIO  
Port A signal, debugger(2)  
STANDBY  
HALT(3)  
01  
Off  
Off  
(CPU-watchdog still running)  
Off  
(on-chip crystal oscillator and  
PLL turned off, zero-pin oscillator  
and CPU-watchdog state  
dependent on user code.)  
XRS, GPIO Port A signal, debugger(2)  
CPU-watchdog  
,
1X  
Off  
Off  
(1) The Exit column lists which signals or under what conditions the low power mode is exited. A low signal, on any of the signals, exits the  
low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise, the low-power  
mode will not be exited and the device will go back into the indicated low power mode.  
(2) The JTAG port can still function even if the CPU clock (CLKIN) is turned off.  
(3) The WDCLK must be active for the device to go into HALT mode.  
The various low-power modes operate as follows:  
IDLE Mode:  
This mode is exited by any enabled interrupt that is recognized by the  
processor. The LPM block performs no tasks during this mode as long as  
the LPMCR0(LPM) bits are set to 0,0.  
STANDBY Mode:  
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY  
mode. The user must select which signal(s) will wake the device in the  
GPIOLPMSEL register. The selected signal(s) are also qualified by the  
OSCCLK before waking the device. The number of OSCCLKs is specified in  
the LPMCR0 register.  
HALT Mode:  
CPU-watchdog, XRS, and any GPIO port A signal (GPIO[31:0]) can wake  
the device from HALT mode. The user selects the signal in the  
GPIOLPMSEL register.  
NOTE  
The low-power modes do not affect the state of the output pins (PWM pins included). They  
will be in whatever state the code left them in when the IDLE instruction was executed. See  
the TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts Reference  
Guide (literature number SPRUFN3) for more details.  
46  
Functional Overview  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4 Peripherals  
4.1 Analog Block  
A 12-bit ADC core is implemented that has different timings than the 12-bit ADC used on F280x/F2833x.  
The ADC wrapper is modified to incorporate the new timings and also other enhancements to improve the  
timing control of start of conversions. Figure 4-1 shows the interaction of the analog module with the rest  
of the F2802x system.  
(3.3 V) VDDA  
(Agnd) VSSA  
VREFLO  
38-Pin  
VDDA  
48-Pin  
VDDA  
VREFLO VREFLO  
Tied To Tied To  
Interface Reference  
Diff  
VSSA  
VSSA  
VREFHI VREFHI  
Tied To Tied To  
VREFHI  
A0  
B0  
A0  
A2  
A4  
A6  
A0  
A1  
A2  
A3  
A4  
A1  
B1  
COMP1OUT  
A2  
AIO2  
AIO10  
10-Bit  
DAC  
Comp1  
Comp2  
B2  
A6  
A7  
A3  
B3  
ADC  
COMP2OUT  
(See Note A)  
A4  
B4  
B1  
B2  
B3  
B4  
AIO4  
AIO12  
10-Bit  
DAC  
B2  
B4  
B6  
B5  
B6  
B7  
Temperature Sensor  
A5  
A6  
Signal Pinout  
AIO6  
AIO14  
B6  
A7  
B7  
A. Comparator 2 is only available on the 48-pin PT package.  
Figure 4-1. Analog Pin Configurations  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
47  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.1.1 ADC  
www.ti.com  
4.1.1.1 Features  
The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The  
sample-and-hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total  
of up to 13 analog input channels. The converter can be configured to run with an internal bandgap  
reference to create true-voltage based conversions or with a pair of external voltage references  
(VREFHI/VREFLO) to create ratiometric-based conversions.  
Contrary to previous ADC types, this ADC is not sequencer-based. It is easy for the user to create a  
series of conversions from a single trigger. However, the basic principle of operation is centered around  
the configurations of individual conversions, called SOCs, or Start-Of-Conversions.  
Functions of the ADC module include:  
12-bit ADC core with built-in dual sample-and-hold (S/H)  
Simultaneous sampling or sequential sampling modes  
Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input  
analog voltage is derived by:  
Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or  
external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input < 3.3 V  
3.3  
Digital Value = 4095,  
when input ³ 3.3 V  
External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA  
when using either internal or external reference modes.)  
Digital Value = 0,  
when input £ 0 V  
Input Analog Voltage -  
VREFLO  
Digital Value = 4096 ´  
when 0 V < input <  
VREFHI  
-
VREFHI VREFLO  
Digital Value = 4095,  
when input ³  
VREFHI  
Runs at full system clock, no prescaling required  
Up to 16-channel, multiplexed inputs  
16 SOCs, configurable for trigger, sample window, and channel  
16 result registers (individually addressable) to store conversion values  
Multiple trigger sources  
S/W – software immediate start  
ePWM 1–7  
GPIO XINT2  
CPU Timers 0/1/2  
ADCINT1/2  
9 flexible PIE interrupts, can configure interrupt request after any conversion  
48  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 4-1. ADC Configuration and Control Registers  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCCTL1  
0x7100  
0x7104  
0x7105  
0x7106  
0x7107  
0x7108  
0x7109  
0x710A  
0x710B  
0x710C  
0x7110  
0x7112  
0x7114  
0x7115  
0x7118  
0x711A  
0x711C  
0x711E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Yes  
No  
Control 1 Register  
ADCINTFLG  
Interrupt Flag Register  
ADCINTFLGCLR  
ADCINTOVF  
No  
Interrupt Flag Clear Register  
No  
Interrupt Overflow Register  
ADCINTOVFCLR  
ADCINTSEL1AND2  
ADCINTSEL3AND4  
ADCINTSEL5AND6  
ADCINTSEL7AND8  
ADCINTSEL9AND10  
ADCSOCPRIORITYCTL  
ADCSAMPLEMODE  
ADCINTSOCSEL1  
ADCINTSOCSEL2  
ADCSOCFLG1  
No  
Interrupt Overflow Clear Register  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Interrupt 1 and 2 Selection Register  
Interrupt 3 and 4 Selection Register  
Interrupt 5 and 6 Selection Register  
Interrupt 7 and 8 Selection Register  
Interrupt 9 Selection Register (reserved Interrupt 10 Selection)  
SOC Priority Control Register  
Sampling Mode Register  
Interrupt SOC Selection 1 Register (for 8 channels)  
Interrupt SOC Selection 2 Register (for 8 channels)  
SOC Flag 1 Register (for 16 channels)  
SOC Force 1 Register (for 16 channels)  
SOC Overflow 1 Register (for 16 channels)  
SOC Overflow Clear 1 Register (for 16 channels)  
SOC0 Control Register to SOC15 Control Register  
ADCSOCFRC1  
No  
ADCSOCOVF1  
No  
ADCSOCOVFCLR1  
No  
ADCSOC0CTL to  
ADCSOC15CTL  
0x7120 –  
0x712F  
Yes  
ADCREFTRIM  
ADCOFFTRIM  
ADCREV  
0x7140  
0x7141  
0x714F  
1
1
1
Yes  
Yes  
No  
Reference Trim Register  
Offset Trim Register  
Revision Register  
Table 4-2. ADC Result Registers (Mapped to PF0)  
SIZE  
(x16)  
EALLOW  
PROTECTED  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
ADCRESULT0 to  
ADCRESULT15  
0xB00 –  
0xB0F  
1
No  
ADC Result 0 Register to ADC Result 15 Register  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
49  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
0-Wait  
Result  
Registers  
PF0 (CPU)  
PF2 (CPU)  
SYSCLKOUT  
ADCENCLK  
ADCINT 1  
PIE  
ADCINT 9  
TINT 0  
TINT 1  
TINT 2  
ADC  
Core  
12-Bit  
CPUTIMER 0  
CPUTIMER 1  
CPUTIMER 2  
AIO  
MUX  
ADC  
Channels  
ADCTRIG 1  
ADCTRIG 2  
ADCTRIG 3  
XINT 2SOC  
XINT 2  
ePWM 1  
ePWM 2  
ePWM 3  
ePWM 4  
ADCTRIG 4  
SOCA 1  
SOCB 1  
SOCA 2  
SOCB 2  
SOCA 3  
SOCB 3  
SOCA 4  
SOCB 4  
ADCTRIG 5  
ADCTRIG 6  
ADCTRIG 7  
ADCTRIG 8  
ADCTRIG 9  
ADCTRIG 10  
ADCTRIG 11  
ADCTRIG 12  
Figure 4-2. ADC Connections  
ADC Connections if the ADC is Not Used  
It is recommended that the connections for the analog power pins be kept, even if the ADC is not used.  
Following is a summary of how the ADC pins should be connected, if the ADC is not used in an  
application:  
VDDA – Connect to VDDIO  
VSSA – Connect to VSS  
VREFLO – Connect to VSS  
ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
When the ADC module is used in an application, unused ADC input pins should be connected to analog  
ground (VSSA).  
NOTE: Unused ADCIN pins that are multiplexed with AIO function should not be directly connected to  
analog ground. They should be grounded through a 1-kΩ resistor. This is to prevent an errant code from  
configuring these pins as AIO outputs and driving grounded pins to a logic-high state.  
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power  
savings.  
50  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.1.2 ADC MUX  
To COMPy A or B input  
To ADC Channel X  
Logic implemented in GPIO MUX block  
AIOx Pin  
SYSCLK  
AIOxIN  
1
AIOxINE  
AIODAT Reg  
(Read)  
SYNC  
0
AIODAT Reg  
(Latch)  
AIOMUX 1 Reg  
AIOSET,  
AIOCLEAR,  
AIOTOGGLE  
Regs  
AIODIR Reg  
(Latch)  
1
(0 = Input, 1 = Output)  
0
0
Figure 4-3. AIOx Pin Multiplexing  
The ADC channel and Comparator functions are always available. The digital I/O function is available only  
when the respective bit in the AIOMUX1 register is 0. In this mode, reading the AIODAT register reflects  
the actual pin state.  
The digital I/O function is disabled when the respective bit in the AIOMUX1 register is 1. In this mode,  
reading the AIODAT register reflects the output latch of the AIODAT register and the input digital I/O buffer  
is disabled to prevent analog signals from generating noise.  
On reset, the digital function is disabled. If the pin is used as an analog input, users should keep the AIO  
function disabled for that pin.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
51  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
4.1.3 Comparator Block  
Figure 4-4 shows the interaction of the Comparator modules with the rest of the system.  
COMP x A  
+
COMP x B  
COMP  
TZ1/2/3  
-
GPIO  
MUX  
COMP x  
+
DAC x  
Wrapper  
ePWM  
AIO  
MUX  
COMPxOUT  
DAC  
Core  
10-Bit  
Figure 4-4. Comparator Block Diagram  
Table 4-3. Comparator Control Registers  
REGISTER  
NAME  
COMP1  
ADDRESS  
COMP2  
SIZE (x16)  
EALLOW PROTECTED  
DESCRIPTION  
ADDRESS(1)  
0x6420  
COMPCTL  
COMPSTS  
DACVAL  
0x6400  
0x6402  
0x6406  
1
1
1
Yes  
No  
Comparator Control Register  
Comparator Status Register  
DAC Value Register  
0x6422  
0x6426  
Yes  
(1) Comparator 2 is only available on the 48-pin PT package.  
52  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.2 Serial Peripheral Interface (SPI) Module  
The device includes the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A) is  
available. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of  
programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable  
bit-transfer rate. Normally, the SPI is used for communications between the MCU and external peripherals  
or another processor. Typical applications include external I/O or peripheral expansion through devices  
such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the  
master/slave operation of the SPI.  
The SPI module features include:  
Four external pins:  
SPISOMI: SPI slave-output/master-input pin  
SPISIMO: SPI slave-input/master-output pin  
SPISTE: SPI slave transmit-enable pin  
SPICLK: SPI serial-clock pin  
NOTE: All four pins can be used as GPIO if the SPI module is not used.  
Two operational modes: master and slave  
Baud rate: 125 different programmable rates.  
LSPCLK  
Baud rate =  
when SPIBRR = 3 to127  
when SPIBRR = 0,1, 2  
(SPIBRR + 1)  
LSPCLK  
Baud rate =  
4
Data word length: one to sixteen data bits  
Four clocking schemes (controlled by clock polarity and clock phase bits) include:  
Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the  
SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the  
SPICLK signal and receives data on the falling edge of the SPICLK signal.  
Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the  
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.  
Simultaneous receive and transmit operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled  
algorithms.  
Nine SPI module control registers: Located in control register frame beginning at address 7040h.  
NOTE  
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced feature:  
4-level transmit/receive FIFO  
Delayed transmit control  
Bi-directional 3 wire SPI mode support  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
53  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
The SPI port operation is configured and controlled by the registers listed in Table 4-4.  
Table 4-4. SPI-A Registers  
NAME  
SPICCR  
SPICTL  
ADDRESS  
0x7040  
0x7041  
0x7042  
0x7044  
0x7046  
0x7047  
0x7048  
0x7049  
0x704A  
0x704B  
0x704C  
0x704F  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION(1)  
SPI-A Configuration Control Register  
SPI-A Operation Control Register  
SPI-A Status Register  
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SPISTS  
SPIBRR  
SPIRXEMU  
SPIRXBUF  
SPITXBUF  
SPIDAT  
SPI-A Baud Rate Register  
SPI-A Receive Emulation Buffer Register  
SPI-A Serial Input Buffer Register  
SPI-A Serial Output Buffer Register  
SPI-A Serial Data Register  
SPIFFTX  
SPIFFRX  
SPIFFCT  
SPIPRI  
SPI-A FIFO Transmit Register  
SPI-A FIFO Receive Register  
SPI-A FIFO Control Register  
SPI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined  
results.  
54  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Figure 4-5 is a block diagram of the SPI in slave mode.  
SPIFFENA  
Overrun  
INT ENA  
Receiver  
Overrun Flag  
SPIFFTX.14  
SPISTS.7  
RX FIFO Registers  
SPICTL.4  
SPIRXBUF  
RX FIFO _0  
RX FIFO _1  
-----  
SPIINT  
RX FIFO Interrupt  
RX Interrupt  
Logic  
RX FIFO _3  
16  
SPIRXBUF  
Buffer Register  
SPIFFOVF  
FLAG  
SPIFFRX.15  
To CPU  
TX FIFO Registers  
SPITXBUF  
TX FIFO _3  
TX Interrupt  
Logic  
TX FIFO Interrupt  
-----  
TX FIFO _1  
SPITX  
TX FIFO _0  
16  
SPI INT  
ENA  
16  
SPI INT FLAG  
SPITXBUF  
Buffer Register  
SPISTS.6  
SPICTL.0  
TRIWIRE  
SPIPRI.0  
16  
M
S
M
SPIDAT  
Data Register  
TW  
S
SW1  
SW2  
SPISIMO  
M
S
TW  
SPIDAT.15 - 0  
M
TW  
S
SPISOMI  
SPISTE  
Talk  
SPICTL.1  
State Control  
Master/Slave  
SPICTL.2  
SPI Char  
LSPCLK  
SPICCR.3 - 0  
S
SW3  
3
2
1
0
Clock  
Polarity  
Clock  
Phase  
M
S
SPI Bit Rate  
SPIBRR.6 - 0  
SPICCR.6  
SPICTL.3  
SPICLK  
M
6
5
4
3
2
1
0
A. SPISTE is driven low by the master for a slave device.  
Figure 4-5. SPI Module Block Diagram (Slave Mode)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
55  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
4.3 Serial Communications Interface (SCI) Module  
The devices include one serial communications interface (SCI) module (SCI-A). The SCI module supports  
digital communications between the CPU and other asynchronous peripherals that use the standard  
non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its  
own separate enable and interrupt bits. Both can be operated independently or simultaneously in the  
full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,  
overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit  
baud-select register.  
Features of each SCI module include:  
Two external pins:  
SCITXD: SCI transmit-output pin  
SCIRXD: SCI receive-input pin  
NOTE: Both pins can be used as GPIO if not used for SCI.  
Baud rate programmable to 64K different rates:  
LSPCLK  
Baud rate =  
Baud rate =  
when BRR ¹ 0  
when BRR = 0  
(BRR + 1) * 8  
LSPCLK  
16  
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: idle-line and address bit  
Half- or full-duplex operation  
Double-buffered receive and transmit functions  
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms  
with status flags.  
Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter-shift register is empty)  
Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag  
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)  
Separate enable bits for transmitter and receiver interrupts (except BRKDT)  
NRZ (non-return-to-zero) format  
NOTE  
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.  
When a register is accessed, the register data is in the lower byte (7–0), and the upper byte  
(15–8) is read as zeros. Writing to the upper byte has no effect.  
Enhanced features:  
Auto baud-detect hardware logic  
4-level transmit/receive FIFO  
56  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
The SCI port operation is configured and controlled by the registers listed in Table 4-5.  
Table 4-5. SCI-A Registers(1)  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
SIZE (x16)  
DESCRIPTION  
SCICCRA  
SCICTL1A  
0x7050  
0x7051  
0x7052  
0x7053  
0x7054  
0x7055  
0x7056  
0x7057  
0x7059  
0x705A  
0x705B  
0x705C  
0x705F  
1
1
1
1
1
1
1
1
1
1
1
1
1
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
SCI-A Communications Control Register  
SCI-A Control Register 1  
SCIHBAUDA  
SCILBAUDA  
SCICTL2A  
SCI-A Baud Register, High Bits  
SCI-A Baud Register, Low Bits  
SCI-A Control Register 2  
SCIRXSTA  
SCIRXEMUA  
SCIRXBUFA  
SCITXBUFA  
SCIFFTXA(2)  
SCIFFRXA(2)  
SCIFFCTA(2)  
SCIPRIA  
SCI-A Receive Status Register  
SCI-A Receive Emulation Data Buffer Register  
SCI-A Receive Data Buffer Register  
SCI-A Transmit Data Buffer Register  
SCI-A FIFO Transmit Register  
SCI-A FIFO Receive Register  
SCI-A FIFO Control Register  
SCI-A Priority Control Register  
(1) Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce  
undefined results.  
(2) These registers are new registers for the FIFO mode.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
57  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Figure 4-6 shows the SCI module block diagram.  
SCICTL1.1  
SCITXD  
Frame Format and Mode  
SCITXD  
TXSHF  
TXENA  
Register  
Parity  
Even/Odd Enable  
TX EMPTY  
SCICTL2.6  
8
SCICCR.6 SCICCR.5  
TXRDY  
TX INT ENA  
SCICTL2.0  
Transmitter-Data  
Buffer Register  
SCICTL2.7  
TXWAKE  
SCICTL1.3  
1
8
TX FIFO _0  
TX FIFO  
Interrupts  
TXINT  
TX Interrupt  
Logic  
TX FIFO _1  
-----  
To CPU  
TX FIFO _3  
SCI TX Interrupt select logic  
SCITXBUF.7-0  
WUT  
TX FIFO registers  
SCIFFENA  
AutoBaud Detect logic  
SCIFFTX.14  
SCIHBAUD. 15 - 8  
SCIRXD  
RXSHF  
Register  
Baud Rate  
MSbyte  
Register  
SCIRXD  
RXWAKE  
LSPCLK  
SCIRXST.1  
SCILBAUD. 7 - 0  
RXENA  
SCICTL1.0  
8
Baud Rate  
LSbyte  
Register  
SCICTL2.1  
Receive Data  
Buffer register  
SCIRXBUF.7-0  
RXRDY  
RX/BK INT ENA  
SCIRXST.6  
8
RX FIFO _3  
BRKDT  
SCIRXST.5  
-----  
RX FIFO  
Interrupts  
RX FIFO_1  
RX FIFO _0  
RXINT  
RX Interrupt  
Logic  
SCIRXBUF.7-0  
RX FIFO registers  
To CPU  
RXFFOVF  
SCIRXST.7 SCIRXST.4 - 2  
SCIFFRX.15  
RX Error  
FE OE PE  
RX Error  
RX ERR INT ENA  
SCICTL1.6  
SCI RX Interrupt select logic  
Figure 4-6. Serial Communications Interface (SCI) Module Block Diagram  
58  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.4 Inter-Integrated Circuit (I2C)  
The device contains one I2C Serial Port. Figure 4-7 shows how the I2C peripheral module interfaces  
within the device.  
The I2C module has the following features:  
Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):  
Support for 1-bit to 8-bit format transfers  
7-bit and 10-bit addressing modes  
General call  
START byte mode  
Support for multiple master-transmitters and slave-receivers  
Support for multiple slave-transmitters and master-receivers  
Combined master transmit/receive and receive/transmit mode  
Data transfer rate of from 10 kbps up to 400 kbps (I2C Fast-mode rate)  
One 4-word receive FIFO and one 4-word transmit FIFO  
One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the  
following conditions:  
Transmit-data ready  
Receive-data ready  
Register-access ready  
No-acknowledgment received  
Arbitration lost  
Stop condition detected  
Addressed as slave  
An additional interrupt that can be used by the CPU when in FIFO mode  
Module enable/disable capability  
Free data format mode  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
59  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
I2C Module  
I2CXSR  
I2CDXR  
TX FIFO  
RX FIFO  
FIFO Interrupt to  
CPU/PIE  
SDA  
Peripheral Bus  
I2CRSR  
I2CDRR  
Control/Status  
Registers  
CPU  
Clock  
Synchronizer  
SCL  
Prescaler  
Noise Filters  
Arbitrator  
Interrupt to  
CPU/PIE  
I2C INT  
A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are  
also at the SYSCLKOUT rate.  
B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power  
operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.  
Figure 4-7. I2C Peripheral Module Interfaces  
The registers in Table 4-6 configure and control the I2C port operation.  
Table 4-6. I2C-A Registers  
EALLOW  
PROTECTED  
NAME  
ADDRESS  
DESCRIPTION  
I2C own address register  
I2COAR  
I2CIER  
0x7900  
0x7901  
0x7902  
0x7903  
0x7904  
0x7905  
0x7906  
0x7907  
0x7908  
0x7909  
0x790A  
0x790C  
0x7920  
0x7921  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
I2C interrupt enable register  
I2C status register  
I2CSTR  
I2CCLKL  
I2CCLKH  
I2CCNT  
I2CDRR  
I2CSAR  
I2CDXR  
I2CMDR  
I2CISRC  
I2CPSC  
I2CFFTX  
I2CFFRX  
I2CRSR  
I2CXSR  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
I2C data receive register  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt source register  
I2C prescaler register  
I2C FIFO transmit register  
I2C FIFO receive register  
I2C receive shift register (not accessible to the CPU)  
I2C transmit shift register (not accessible to the CPU)  
60  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.5 Enhanced PWM Modules (ePWM1/2/3/4)  
The devices contain up to four enhanced PWM Modules (ePWM). Figure 4-8 shows a block diagram of  
multiple ePWM modules. Figure 4-9 shows the signal interconnections with the ePWM. See the  
TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module Reference Guide  
(literature number SPRUGE9) for more details.  
Table 4-7 shows the complete ePWM register set per module.  
EPWMSYNCI  
EPWM1SYNCI  
EPWM1B  
EPWM1TZINT  
ePWM1  
Module  
TZ1 to TZ3  
EPWM1INT  
EPWM2TZINT  
PIE  
CLOCKFAIL  
EMUSTOP  
EPWM2INT  
EPWMxTZINT  
EPWMxINT  
TZ5  
TZ6  
EPWM1ENCLK  
TBCLKSYNC  
eCAPI  
EPWM1SYNCO  
EPWM2SYNCI  
EPWM1SYNCO  
TZ1 to TZ3  
COMPOUT1  
COMPOUT2  
EPWM2B  
ePWM2  
Module  
COMP  
CLOCKFAIL  
EMUSTOP  
EPWM1A  
EPWM2A  
TZ5  
TZ6  
H
R
P
W
M
EPWM2ENCLK  
TBCLKSYNC  
EPWMxA  
G
P
I
EPWM2SYNCO  
O
M
U
X
SOCA1  
SOCB1  
SOCA2  
SOCB2  
SOCAx  
SOCBx  
ADC  
EPWMxSYNCI  
EPWMxB  
TZ1 to TZ3  
ePWMx  
Module  
CLOCKFAIL  
EMUSTOP  
TZ5  
TZ6  
EPWMxENCLK  
TBCLKSYNC  
System Control  
C28x CPU  
SOCA1  
SOCA2  
SPCAx  
ADCSOCAO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
SOCB1  
SOCB2  
SPCBx  
ADCSOCBO  
Pulse Stretch  
(32 SYSCLKOUT Cycles, Active-Low Output)  
Figure 4-8. ePWM  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
61  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 4-7. ePWM Control and Status Registers  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
Time Base Control Register  
TBCTL  
TBSTS  
0x6800  
0x6801  
0x6802  
0x6803  
0x6804  
0x6805  
0x6806  
0x6807  
0x6808  
0x6809  
0x680A  
0x680B  
0x680C  
0x680D  
0x680E  
0x680F  
0x6810  
0x6811  
0x6812  
0x6813  
0x6814  
0x6815  
0x6816  
0x6817  
0x6818  
0x6819  
0x681A  
0x681B  
0x681C  
0x681D  
0x681E  
0x6820  
0x6840  
0x6841  
0x6842  
0x6843  
0x6844  
0x6845  
0x6846  
0x6847  
0x6848  
0x6849  
0x684A  
0x684B  
0x684C  
0x684D  
0x684E  
0x684F  
0x6850  
0x6851  
0x6852  
0x6853  
0x6854  
0x6855  
0x6856  
0x6857  
0x6858  
0x6859  
0x685A  
0x685B  
0x685C  
0x685D  
0x685E  
0x6860  
0x6880  
0x6881  
0x6882  
0x6883  
0x6884  
0x6885  
0x6886  
0x6887  
0x6888  
0x6889  
0x688A  
0x688B  
0x688C  
0x688D  
0x688E  
0x688F  
0x6890  
0x6891  
0x6892  
0x6893  
0x6894  
0x6895  
0x6896  
0x6897  
0x6898  
0x6899  
0x689A  
0x689B  
0x689C  
0x689D  
0x689E  
0x68A0  
0x68C0  
0x68C1  
0x68C2  
0x68C3  
0x68C4  
0x68C5  
0x68C6  
0x68C7  
0x68C8  
0x68C9  
0x68CA  
0x68CB  
0x68CC  
0x68CD  
0x68CE  
0x68CF  
0x68D0  
0x68D1  
0x68D2  
0x98D3  
0x68D4  
0x68D5  
0x68D6  
0x68D7  
0x68D8  
0x68D9  
0x68DA  
0x68DB  
0x68DC  
0x68DD  
0x68DE  
0x68E0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 1  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 1  
1 / 1  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
1 / 0  
Time Base Status Register  
TBPHSHR  
TBPHS  
TBCTR  
TBPRD  
TBPRDHR  
CMPCTL  
CMPAHR  
CMPA  
Time Base Phase HRPWM Register  
Time Base Phase Register  
Time Base Counter Register  
Time Base Period Register Set  
Time Base Period High Resolution Register(1)  
Counter Compare Control Register  
Time Base Compare A HRPWM Register  
Counter Compare A Register Set  
CMPB  
Counter Compare B Register Set  
AQCTLA  
AQCTLB  
AQSFRC  
AQCSFRC  
DBCTL  
Action Qualifier Control Register For Output A  
Action Qualifier Control Register For Output B  
Action Qualifier Software Force Register  
Action Qualifier Continuous S/W Force Register Set  
Dead-Band Generator Control Register  
DBRED  
DBFED  
TZSEL  
Dead-Band Generator Rising Edge Delay Count Register  
Dead-Band Generator Falling Edge Delay Count Register  
Trip Zone Select Register(1)  
TZDCSEL  
TZCTL  
Trip Zone Digital Compare Register  
Trip Zone Control Register(1)  
Trip Zone Enable Interrupt Register(1)  
TZEINT  
TZFLG  
(1)  
Trip Zone Flag Register  
TZCLR  
Trip Zone Clear Register(1)  
TZFRC  
Trip Zone Force Register(1)  
Event Trigger Selection Register  
Event Trigger Prescale Register  
Event Trigger Flag Register  
Event Trigger Clear Register  
Event Trigger Force Register  
PWM Chopper Control Register  
HRPWM Configuration Register(1)  
ETSEL  
ETPS  
ETFLG  
ETCLR  
ETFRC  
PCCTL  
HRCNFG  
(1) Registers that are EALLOW protected.  
62 Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 4-7. ePWM Control and Status Registers (continued)  
SIZE (x16) /  
#SHADOW  
NAME  
ePWM1  
ePWM2  
ePWM3  
ePWM4  
DESCRIPTION  
HRPWR  
0x6821  
0x6826  
0x6828  
0x682A  
0x682B  
0x682C  
0x682D  
0x6830  
0x6831  
0x6832  
0x6833  
0x6834  
0x6835  
0x6836  
0x6837  
0x6838  
0x6839  
-
-
-
1 / 0  
1 / 0  
HRPWM Power Register  
HRMSTEP  
HRPCTL  
-
-
-
HRPWM MEP Step Register  
0x6868  
0x686A  
0x686B  
0x686C  
0x686D  
0x6870  
0x6871  
0x6872  
0x6873  
0x6874  
0x6875  
0x6876  
0x6877  
0x6878  
0x6879  
0x68A8  
0x68AA  
0x68AB  
0x68AC  
0x68AD  
0x68B0  
0x68B1  
0x68B2  
0x68B3  
0x68B4  
0x68B5  
0x68B6  
0x68B7  
0x68B8  
0x68B9  
0x68E8  
0x68EA  
0x68EB  
0x68EC  
0x68ED  
0x68F0  
0x68F1  
0x68F2  
0x68F3  
0x68F4  
0x68F5  
0x68F6  
0x68F7  
0x68F8  
0x68F9  
1 / 0  
High resolution Period Control Register(1)  
Time Base Period HRPWM Register Mirror  
Time Base Period Register Mirror  
Compare A HRPWM Register Mirror  
Compare A Register Mirror  
TBPRDHRM  
TBPRDM  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / W(2)  
1 / 0  
CMPAHRM  
CMPAM  
(1)  
DCTRIPSEL  
DCACTL  
Digital Compare Trip Select Register  
Digital Compare A Control Register(1)  
Digital Compare B Control Register(1)  
Digital Compare Filter Control Register(1)  
Digital Compare Capture Control Register(1)  
Digital Compare Filter Offset Register  
1 / 0  
DCBCTL  
1 / 0  
DCFCTL  
1 / 0  
DCCAPCT  
DCFOFFSET  
DCFOFFSETCNT  
DCFWINDOW  
DCFWINDOWCNT  
DCCAP  
1 / 0  
1 / 1  
1 / 0  
Digital Compare Filter Offset Counter Register  
Digital Compare Filter Window Register  
Digital Compare Filter Window Counter Register  
Digital Compare Counter Capture Register  
1 / 0  
1 / 0  
1 / 1  
(2) W = Write to shadow register  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
63  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Time-Base (TB)  
CTR=ZERO  
Sync  
In/Out  
Select  
Mux  
TBPRD Shadow (24)  
CTR=CMPB  
TBPRDHR (8)  
EPWMxSYNCO  
Disabled  
TBPRD Active (24)  
8
CTR=PRD  
TBCTL[SYNCOSEL]  
TBCTL[PHSEN]  
EPWMxSYNCI  
DCAEVT1.sync  
DCBEVT1.sync  
Counter  
Up/Down  
(16 Bit)  
TBCTL[SWFSYNC]  
(Software Forced  
Sync)  
CTR=ZERO  
CTR_Dir  
TCBNT  
Active (16)  
CTR=PRD  
CTR=ZERO  
TBPHSHR (8)  
EPWMxINT  
CTR=PRD or ZERO  
CTR=CMPA  
Event  
Trigger  
and  
Interrupt  
(ET)  
16  
8
EPWMxSOCA  
Phase  
Control  
CTR=CMPB  
CTR_Dir  
(A)  
DCAEVT1.soc  
(A)  
TBPHS Active (24)  
EPWMxSOCB  
EPWMxSOCA  
ADC  
DCBEVT1.soc  
EPWMxSOCB  
Action  
Qualifier  
(AQ)  
CTR=CMPA  
CMPAHR (8)  
16  
High-resolution PWM (HRPWM)  
CMPA Active (24)  
CMPA Shadow (24)  
EPWMxA  
EPWMA  
PWM  
Chopper  
(PC)  
Trip  
Zone  
(TZ)  
Dead  
Band  
(DB)  
CTR=CMPB  
16  
CMPB Active (16)  
EPWMB  
EPWMxB  
EPWMxTZINT  
TZ1 to TZ3  
CMPB Shadow (16)  
EMUSTOP  
CTR=ZERO  
CLOCKFAIL  
DCAEVT1.inter  
DCBEVT1.inter  
(A)  
(A)  
(A)  
(A)  
DCAEVT1.force  
DCAEVT2.force  
DCBEVT1.force  
DCBEVT2.force  
DCAEVT2.inter  
DCBEVT2.inter  
A. These events are generated by the Type 1 ePWM digital compare (DC) submodule based on the levels of  
the COMPxOUT and TZ signals.  
Figure 4-9. ePWM Sub-Modules Showing Critical Internal Signal Interconnections  
64  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.6 High-Resolution PWM (HRPWM)  
This module combines multiple delay lines in a single module and a simplified calibration system by using  
a dedicated calibration delay line. For each ePWM module there is one HR delay line.  
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be  
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:  
Significantly extends the time resolution capabilities of conventionally derived digital PWM  
This capability can be utilized in both single edge (duty cycle and phase-shift control) as well as dual  
edge control for frequency/period modulation.  
Finer time granularity control or edge positioning is controlled via extensions to the Compare A and  
Phase registers of the ePWM module.  
HRPWM capabilities, when available on a particular device, are offered only on the A signal path of an  
ePWM module (i.e., on the EPWMxA output). EPWMxB output has conventional PWM capabilities.  
NOTE  
The minimum SYSCLKOUT frequency allowed for HRPWM is 50 MHz.  
NOTE  
When dual-edge high-resolution is enabled (high-resolution period mode), the PWMxB output  
is not available for use.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
65  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
4.7 Enhanced Capture Module (eCAP1)  
The device contains an enhanced capture (eCAP) module. Figure 4-10 shows a functional block diagram  
of a module.  
CTRPHS  
(phase register−32 bit)  
APWM mode  
SYNCIn  
CTR_OVF  
OVF  
CTR [0−31]  
PRD [0−31]  
CMP [0−31]  
TSCTR  
(counter−32 bit)  
SYNCOut  
PWM  
compare  
logic  
Delta−mode  
RST  
32  
CTR=PRD  
CTR=CMP  
CTR [0−31]  
PRD [0−31]  
32  
eCAPx  
32  
LD1  
CAP1  
(APRD active)  
Polarity  
select  
LD  
APRD  
shadow  
32  
CMP [0−31]  
32  
32  
LD2  
CAP2  
(ACMP active)  
Polarity  
select  
LD  
Event  
qualifier  
Event  
Pre-scale  
32  
ACMP  
shadow  
Polarity  
select  
32  
32  
LD3  
LD4  
CAP3  
(APRD shadow)  
LD  
CAP4  
(ACMP shadow)  
Polarity  
select  
LD  
4
Capture events  
4
CEVT[1:4]  
Interrupt  
Trigger  
and  
Flag  
control  
Continuous /  
Oneshot  
Capture Control  
to PIE  
CTR_OVF  
CTR=PRD  
CTR=CMP  
Figure 4-10. eCAP Functional Block Diagram  
The eCAP module is clocked at the SYSCLKOUT rate.  
The clock enable bits (ECAP1 ENCLK) in the PCLKCR1 register turn off the eCAP module individually (for  
low power operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off.  
66  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 4-8. eCAP Control and Status Registers  
NAME  
TSCTR  
CTRPHS  
CAP1  
eCAP1  
0x6A00  
SIZE (x16) EALLOW PROTECTED  
DESCRIPTION  
Time-Stamp Counter  
2
2
2
2
2
2
8
1
1
1
1
1
1
6
0x6A02  
Counter Phase Offset Value Register  
Capture 1 Register  
0x6A04  
CAP2  
0x6A06  
Capture 2 Register  
CAP3  
0x6A08  
Capture 3 Register  
CAP4  
0x6A0A  
Capture 4 Register  
Reserved  
ECCTL1  
ECCTL2  
ECEINT  
ECFLG  
ECCLR  
ECFRC  
Reserved  
0x6A0C – 0x6A12  
0x6A14  
Reserved  
Capture Control Register 1  
Capture Control Register 2  
Capture Interrupt Enable Register  
Capture Interrupt Flag Register  
Capture Interrupt Clear Register  
Capture Interrupt Force Register  
Reserved  
0x6A15  
0x6A16  
0x6A17  
0x6A18  
0x6A19  
0x6A1A – 0x6A1F  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
67  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
4.8 JTAG Port  
On the 2802x device, the JTAG port is reduced to 5 pins (TRST, TCK, TDI, TMS, TDO). TCK, TDI, TMS  
and TDO pins are also GPIO pins. The TRST signal selects either JTAG or GPIO operating mode for the  
pins in Figure 4-11. During emulation/debug, the GPIO function of these pins are not available. If the  
GPIO38/TCK/XCLKIN pin is used to provide an external clock, an alternate clock source should be used  
to clock the device during emulation/debug since this pin will be needed for the TCK function.  
NOTE  
In 2802x devices, the JTAG pins may also be used as GPIO pins. Care should be taken in  
the board design to ensure that the circuitry connected to these pins do not affect the  
emulation capabilities of the JTAG pin function. Any circuitry connected to these pins should  
not prevent the emulator from driving (or being driven by) the JTAG pins for successful  
debug.  
TRST = 0: JTAG Disabled (GPIO Mode)  
TRST = 1: JTAG Mode  
TRST  
TRST  
XCLKIN  
GPIO38_in  
TCK  
TCK/GPIO38  
GPIO38_out  
C28x  
Core  
GPIO37_in  
TDO  
TDO/GPIO37  
1
0
GPIO37_out  
GPIO36_in  
1
0
TMS  
TMS/GPIO36  
TDI/GPIO35  
1
GPIO36_out  
GPIO35_in  
1
0
TDI  
1
GPIO35_out  
Figure 4-11. JTAG/GPIO Multiplexing  
68  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
4.9 GPIO MUX  
The GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition  
to providing individual pin bit-banging I/O capability.  
The device supports 22 GPIO pins. The GPIO control and data registers are mapped to Peripheral  
Frame 1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 4-9 shows the  
GPIO register mapping.  
Table 4-9. GPIO Registers  
NAME  
ADDRESS  
GPIO CONTROL REGISTERS (EALLOW PROTECTED)  
0x6F80 GPIO A Control Register (GPIO0 to 31)  
SIZE (x16)  
DESCRIPTION  
GPACTRL  
GPAQSEL1  
GPAQSEL2  
GPAMUX1  
GPAMUX2  
GPADIR  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0x6F82  
0x6F84  
0x6F86  
0x6F88  
0x6F8A  
0x6F8C  
0x6F90  
0x6F92  
0x6F96  
0x6F9A  
0x6F9C  
0x6FB6  
0x6FBA  
GPIO A Qualifier Select 1 Register (GPIO0 to 15)  
GPIO A Qualifier Select 2 Register (GPIO16 to 31)  
GPIO A MUX 1 Register (GPIO0 to 15)  
GPIO A MUX 2 Register (GPIO16 to 31)  
GPIO A Direction Register (GPIO0 to 31)  
GPIO A Pull Up Disable Register (GPIO0 to 31)  
GPIO B Control Register (GPIO32 to 38 )  
GPIO B Qualifier Select 1 Register (GPIO32 to 38 )  
GPIO B MUX 1 Register (GPIO32 to 38 )  
GPIO B Direction Register (GPIO32 to 38 )  
GPIO B Pull Up Disable Register (GPIO32 to 38 )  
Analog, I/O mux 1 register (AIO0 to AIO15)  
Analog, I/O Direction Register (AIO0 to AIO15)  
GPAPUD  
GPBCTRL  
GPBQSEL1  
GPBMUX1  
GPBDIR  
GPBPUD  
AIOMUX1  
AIODIR  
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)  
GPADAT  
GPASET  
0x6FC0  
0x6FC2  
0x6FC4  
0x6FC6  
0x6FC8  
0x6FCA  
0x6FCC  
0x6FCE  
0x6FD8  
0x6FDA  
0x6FDC  
0x6FDE  
2
2
2
2
2
2
2
2
2
2
2
2
GPIO A Data Register (GPIO0 to 31)  
GPIO A Data Set Register (GPIO0 to 31)  
GPIO A Data Clear Register (GPIO0 to 31)  
GPIO A Data Toggle Register (GPIO0 to 31)  
GPIO B Data Register (GPIO32 to 38 )  
GPACLEAR  
GPATOGGLE  
GPBDAT  
GPBSET  
GPIO B Data Set Register (GPIO32 to 38 )  
GPIO B Data Clear Register (GPIO32 to 38 )  
GPIO B Data Toggle Register (GPIO32 to 38 )  
Analog I/O Data Register (AIO0 to AIO15)  
Analog I/O Data Set Register (AIO0 to AIO15)  
Analog I/O Data Clear Register (AIO0 to AIO15)  
Analog I/O Data Toggle Register (AIO0 to AIO15)  
GPBCLEAR  
GPBTOGGLE  
AIODAT  
AIOSET  
AIOCLEAR  
AIOTOGGLE  
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)  
GPIOXINT1SEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
GPIOLPMSEL  
0x6FE0  
0x6FE1  
0x6FE2  
0x6FE8  
1
1
1
2
XINT1 GPIO Input Select Register (GPIO0 to 31)  
XINT2 GPIO Input Select Register (GPIO0 to 31)  
XINT3 GPIO Input Select Register (GPIO0 to 31)  
LPM GPIO Select Register (GPIO0 to 31)  
NOTE  
There is a two-SYSCLKOUT cycle delay from when the write to the GPxMUXn/AIOMUXn  
and GPxQSELn registers occurs to when the action is valid.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
69  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 4-10. GPIOA MUX(1)(2)  
DEFAULT AT RESET  
PERIPHERAL  
PRIMARY I/O  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
SELECTION 1  
FUNCTION  
GPAMUX1 REGISTER  
(GPAMUX1 BITS = 00) (GPAMUX1 BITS = 01)  
(GPAMUX1 BITS = 10)  
(GPAMUX1 BITS = 11)  
BITS  
1-0  
GPIO0  
GPIO1  
EPWM1A (O)  
EPWM1B (O)  
EPWM2A (O)  
EPWM2B (O)  
EPWM3A (O)  
EPWM3B (O)  
EPWM4A (O)  
EPWM4B (O)  
Reserved  
Reserved  
Reserved  
Reserved  
COMP1OUT (O)  
Reserved  
3-2  
5-4  
GPIO2  
Reserved  
7-6  
GPIO3  
Reserved  
COMP2OUT(3) (O)  
9-8  
GPIO4  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
GPIO5  
Reserved  
ECAP1 (I/O)  
EPWMSYNCO (O)  
Reserved  
GPIO6  
EPWMSYNCI (I)  
SCIRXDA (I)  
Reserved  
GPIO7  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO12  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TZ1 (I)  
SCITXDA (O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPAMUX2 REGISTER  
BITS  
(GPAMUX2 BITS = 00) (GPAMUX2 BITS = 01)  
(GPAMUX2 BITS = 10)  
(GPAMUX2 BITS = 11)  
1-0  
GPIO16  
GPIO17  
SPISIMOA (I/O)  
SPISOMIA (I/O)  
SPICLKA (I/O)  
SPISTEA (I/O)  
Reserved  
Reserved  
Reserved  
TZ2 (I)  
TZ3 (I)  
3-2  
5-4  
GPIO18  
SCITXDA (O)  
SCIRXDA (I)  
Reserved  
XCLKOUT (O)  
ECAP1 (I/O)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TZ2 (I)  
7-6  
GPIO19/XCLKIN  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO28  
9-8  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SCIRXDA (I)  
SCITXDA (O)  
Reserved  
SDAA (I/OD)  
SCLA (I/OD)  
Reserved  
GPIO29  
TZ3 (I)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) The word reserved means that there is no peripheral assigned to this GPxMUX1/2 register setting. Should it be selected, the state of the  
pin will be undefined and the pin may be driven. This selection is a reserved configuration for future expansion.  
(2) I = Input, O = Output, OD = Open Drain  
(3) These functions are not available in the 38-pin package.  
70  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 4-11. GPIOB MUX(1)  
DEFAULT AT RESET  
PRIMARY I/O FUNCTION  
PERIPHERAL  
SELECTION 1  
PERIPHERAL  
SELECTION 2  
PERIPHERAL  
SELECTION 3  
GPBMUX1 REGISTER  
BITS  
(GPBMUX1 BITS = 00)  
(GPBMUX1 BITS = 01)  
(GPBMUX1 BITS = 10)  
(GPBMUX1 BITS = 11)  
1-0  
GPIO32(2)  
GPIO33(2)  
SDAA(2) (I/OD)  
SCLA(2) (I/OD)  
COMP2OUT (O)  
Reserved  
EPWMSYNCI(2) (I)  
EPWMSYNCO(2) (O)  
Reserved  
ADCSOCAO (2) (O)  
ADCSOCBO (2) (O)  
Reserved  
3-2  
5-4  
GPIO34  
7-6  
GPIO35 (TDI)  
GPIO36 (TMS)  
GPIO37 (TDO)  
GPIO38/XCLKIN (TCK)  
Reserved  
Reserved  
Reserved  
9-8  
Reserved  
Reserved  
Reserved  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) I = Input, O = Output, OD = Open Drain  
(2) These pins are not available in the 38-pin package.  
Table 4-12. Analog MUX(1)  
DEFAULT AT RESET  
PERIPHERAL SELECTION 2 AND  
PERIPHERAL SELECTION 3  
AIOx AND PERIPHERAL SELECTION 1  
AIOMUX1 REGISTER BITS  
AIOMUX1 BITS = 0,x  
ADCINA0 (I)  
ADCINA1 (2) (I)  
AIO2 (I/O)  
AIOMUX1 BITS = 1,x  
1-0  
ADCINA0 (I)  
ADCINA1 (2) (I)  
3-2  
5-4  
ADCINA2 (I), COMP1A (I)  
ADCINA3 (2) (I)  
7-6  
ADCINA3 (2) (I)  
9-8  
AIO4 (I/O)  
ADCINA4 (I), COMP2A (3) (I)  
11-10  
13-12  
15-14  
17-16  
19-18  
21-20  
23-22  
25-24  
27-26  
29-28  
31-30  
ADCINA5 (I)  
AIO6 (I/O)  
ADCINA7 (2) (I)  
ADCINB0 (I)  
ADCINB1 (2) (I)  
AIO10 (I/O)  
ADCINA5 (I)  
ADCINA6 (I)  
ADCINA7 (2) (I)  
ADCINB0 (I)  
ADCINB1 (2) (I)  
ADCINB2 (I), COMP1B (I)  
ADCINB3 (2) (I)  
ADCINB4 (I), COMP2B (3) (I)  
ADCINB3 (2) (I)  
AIO12 (I/O)  
ADCINB5 (I)  
AIO14 (I/O)  
ADCINB7 (2) (I)  
ADCINB5 (I)  
ADCINB6 (I)  
ADCINB7 (2) (I)  
(1) I = Input, O = Output  
(2) These pins are not available in the 38-pin package.  
(3) These functions are not available in the 38-pin package.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
71  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from  
four choices:  
Synchronization To SYSCLKOUT Only (GPxQSEL1/2 = 0, 0): This is the default mode of all GPIO pins  
at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).  
Qualification Using Sampling Window (GPxQSEL1/2 = 0, 1 and 1, 0): In this mode the input signal,  
after synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles  
before the input is allowed to change.  
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in  
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The  
sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL  
samples are the same (all 0s or all 1s) as shown in Figure 4-18 (for 6 sample mode).  
No Synchronization (GPxQSEL1/2 = 1,1): This mode is used for peripherals where synchronization is  
not required (synchronization is performed within the peripheral).  
Due to the multi-level multiplexing that is required on the device, there may be cases where a peripheral  
input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the  
input signal will default to either a 0 or 1 state, depending on the peripheral.  
72  
Peripherals  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
GPIOXINT1SEL  
GPIOLMPSEL  
GPIOXINT2SEL  
GPIOXINT3SEL  
LPMCR0  
External Interrupt  
MUX  
Low Power  
Modes Block  
PIE  
Asynchronous  
path  
GPxDAT (read)  
GPxQSEL1/2  
GPxCTRL  
GPxPUD  
N/C  
00  
01  
Peripheral 1 Input  
Peripheral 2 Input  
Input  
Internal  
Pullup  
Qualification  
10  
11  
Peripheral 3 Input  
GPxTOGGLE  
Asynchronous path  
GPIOx pin  
GPxCLEAR  
GPxSET  
00  
01  
GPxDAT (latch)  
Peripheral 1 Output  
10  
11  
Peripheral 2 Output  
Peripheral 3 Output  
High Impedance  
Output Control  
GPxDIR (latch)  
00  
01  
Peripheral 1 Output Enable  
Peripheral 2 Output Enable  
0 = Input, 1 = Output  
XRS  
10  
11  
Peripheral 3 Output Enable  
= Default at Reset  
GPxMUX1/2  
A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register  
depending on the particular GPIO pin selected.  
B. GPxDAT latch/read are accessed at the same memory location.  
C. This is a generic GPIO MUX block diagram. Not all options may be applicable for all GPIO pins. See the  
TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts Reference Guide (literature number  
SPRUFN3) for pin-specific variations.  
Figure 4-12. GPIO Multiplexing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Peripherals  
73  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
5 Device Support  
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of MCUs,  
including tools to evaluate the performance of the processors, generate code, develop algorithm  
implementations, and fully integrate and debug software and hardware modules.  
The following products support development of 2802x-based applications:  
Software Development Tools  
Code Composer Studio™ Integrated Development Environment (IDE)  
C/C++ Compiler  
Code generation tools  
Assembler/Linker  
Cycle Accurate Simulator  
Application algorithms  
Sample applications code  
Hardware Development Tools  
Development and evaluation boards  
JTAG-based emulators - XDS510™ class, XDS560™ emulator, XDS100  
Flash programming tools  
Power supply  
Documentation and cables  
5.1 Device and Development Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320™ MCU devices and support tools. Each TMS320™ MCU commercial family member has one of  
three prefixes: TMX, TMP, or TMS (e.g., TMS320F28023). Texas Instruments recommends two of three  
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary  
stages of product development from engineering prototypes (TMX/TMDX) through fully qualified  
production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not  
completed quality and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal  
qualification testing  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following  
disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
74  
Device Support  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production  
system because their expected end-use failure rate still is undefined. Only qualified production devices are  
to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, PT) and temperature range (for example, S). Figure 5-1 provides a legend for  
reading the complete device name for any family member.  
TMS 320  
F
28023  
PT  
S
PREFIX  
TEMPERATURE RANGE  
experimental device  
prototype device  
qualified device  
TMX =  
TMP =  
TMS =  
T
−40°C to 105°C  
−40°C to 125°C  
=
=
=
S
Q
−40°C to 125°C  
(Q refers to Q100 qualification for automotive applications.)  
DEVICE FAMILY  
PACKAGE TYPE  
320 = TMS320 MCU Family  
48-Pin PT Plastic Quad Flatpack  
38-Pin DA Plastic Small-outline Package  
DEVICE  
28027  
28026  
28023  
28022  
28021  
28020  
280200  
TECHNOLOGY  
F = Flash  
Figure 5-1. Device Nomenclature  
Copyright © 2008–2010, Texas Instruments Incorporated  
Device Support  
75  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
5.2 Related Documentation  
Extensive documentation supports all of the TMS320™ MCU family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets and data manuals, with design specifications; and hardware and software applications.  
Table 5-1 shows the peripheral reference guides appropriate for use with the devices in this data manual.  
See the TMS320x28xx, 28xxx DSP Peripheral Reference Guide (literature number SPRU566) for more  
information on types of peripherals.  
Table 5-1. TMS320F2802x, TMS320F2802xx Peripheral Selection Guide  
28027, 28026,  
28023, 28022,  
28021, 28020  
PERIPHERAL  
LIT. NO.  
SPRUFN3  
SPRUGE5  
TYPE(1)  
280200  
TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts  
Reference Guide  
X
X
X
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and  
Comparator  
3/0(2)  
X
TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI)  
TMS320x2802x, 2803x Piccolo Serial Peripheral Interface (SPI)  
TMS320x2802x Piccolo Boot ROM  
SPRUGH1  
SPRUG71  
SPRUFN6  
SPRUGE9  
0
1
1
X
X
X
X
X
X
X
X
TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM)  
Module  
TMS320x2802x, 2803x Piccolo Enhanced Capture (eCAP) Module  
TMS320x2802x, 2803x Piccolo Inter-Integrated Circuit (I2C)  
SPRUFZ8  
SPRUFZ9  
SPRUGE8  
0
0
1
X
X
X
X
TMS320x2802x, 2803x Piccolo High-Resolution Pulse-Width Modulator  
(HRPWM)  
(1) A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor  
differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the  
peripheral reference guides.  
(2) The ADC module is Type 3 and the comparator module is Type 0.  
The following documents can be downloaded from the TI website (www.ti.com):  
Errata  
SPRZ292  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022, TMS320F28021,  
TMS320F28020, TMS320F280200 Piccolo MCU Silicon Errata describes known advisories  
on silicon and provides workarounds.  
CPU User's Guides  
SPRU430 TMS320C28x CPU and Instruction Set Reference Guide describes the central processing  
unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital  
signal processors (DSPs). It also describes emulation features available on these DSPs.  
Peripheral Guides  
SPRUFN3 TMS320x2802x/TMS320F2802xx Piccolo System Control and Interrupts Reference  
Guide describes the various interrupts and system control features of the 2802x  
microcontrollers (MCUs).  
SPRU566  
TMS320x28xx, 28xxx DSP Peripheral Reference Guide describes the peripheral reference  
guides of the 28x digital signal processors (DSPs).  
SPRUFN6 TMS320x2802x Piccolo Boot ROM Reference Guide describes the purpose and features  
of the boot loader (factory-programmed boot-loading software) and provides examples of  
code. It also describes other contents of the device on-chip boot ROM and identifies where  
all of the information is located within that memory.  
76  
Device Support  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
SPRUGE5 TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator  
Reference Guide describes how to configure and use the on-chip ADC module, which is a  
12-bit pipelined ADC.  
SPRUGE9 TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module  
Reference Guide describes the main areas of the enhanced pulse width modulator that  
include digital motor control, switch mode power supply control, UPS (uninterruptible power  
supplies), and other forms of power conversion.  
SPRUGE8 TMS320x2802x, 2803x Piccolo High-Resolution Pulse Width Modulator (HRPWM)  
describes the operation of the high-resolution extension to the pulse width modulator  
(HRPWM).  
SPRUGH1 TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI) Reference Guide  
describes how to use the SCI.  
SPRUFZ8 TMS320x2802x, 2803x Piccolo Enhanced Capture (eCAP) Module Reference Guide  
describes the enhanced capture module. It includes the module description and registers.  
SPRUG71 TMS320x2802x, 2803x Piccolo Serial Peripheral Interface (SPI) Reference Guide  
describes the SPI - a high-speed synchronous serial input/output (I/O) port - that allows a  
serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the  
device at a programmed bit-transfer rate.  
SPRUFZ9 TMS320x2802x, 2803x Piccolo Inter-Integrated Circuit (I2C) Reference Guide describes  
the features and operation of the inter-integrated circuit (I2C) module.  
Tools Guides  
SPRU513  
TMS320C28x Assembly Language Tools v5.0.0 User's Guide describes the assembly  
language tools (assembler and other tools used to develop assembly language code),  
assembler directives, macros, common object file format, and symbolic debugging directives  
for the TMS320C28x device.  
SPRU514  
SPRU608  
TMS320C28x Optimizing C/C++ Compiler v5.0.0 User's Guide describes the  
TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code  
and produces TMS320 DSP assembly language source code for the TMS320C28x device.  
TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,  
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the  
instruction set of the C28x™ core.  
5.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and  
help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Device Support  
77  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6 Electrical Specifications  
6.1 Absolute Maximum Ratings(1) (2)  
Supply voltage range, VDDIO (I/O and Flash)  
Supply voltage range, VDD  
with respect to VSS  
with respect to VSS  
with respect to VSSA  
–0.3 V to 4.6 V  
–0.3 V to 2.5 V  
–0.3 V to 4.6 V  
–0.3 V to 4.6 V  
–0.3 V to 4.6 V  
±20 mA  
Analog voltage range, VDDA  
Input voltage range, VIN (3.3 V)  
Output voltage range, VO  
(3)  
Input clamp current, IIK (VIN < 0 or VIN > VDDIO  
)
Output clamp current, IOK (VO < 0 or VO > VDDIO  
)
±20 mA  
(4)  
Junction temperature range, TJ  
–40°C to 150°C  
–65°C to 150°C  
(4)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) Continuous clamp current per pin is ± 2 mA.  
(4) Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device  
life. For additional information, see IC Package Thermal Metrics Application Report (literature number SPRA953) and Reliability Data for  
TMS320LF24xx and TMS320F28xx Devices Application Report (literature number SPRA963).  
6.2 Recommended Operating Conditions  
MIN  
2.97  
1.71  
NOM  
3.3  
MAX  
3.63  
UNIT  
(1)(2)  
Device supply voltage, I/O, VDDIO  
V
Device supply voltage CPU, VDD (When internal  
VREG is disabled and 1.8 V is supplied externally)  
1.8  
1.995  
V
Supply ground, VSS  
0
3.3  
0
V
V
V
(1)  
Analog supply voltage, VDDA  
2.97  
3.63  
Analog ground, VSSA  
Device clock frequency (system clock)  
28020, 28021, 280200  
28022, 28023  
2
40  
2
50  
60  
MHz  
28026, 28027  
2
2
High-level input voltage, VIH (3.3 V)  
VDDIO + 0.3  
0.8  
V
Low-level input voltage, VIL (3.3 V)  
VSS – 0.3  
V
High-level output source current, VOH = VOH(MIN), IOH  
All GPIO/AIO pins  
Group 2(3)  
–4  
–8  
4
mA  
mA  
mA  
mA  
Low-level output sink current, VOL = VOL(MAX), IOL  
All GPIO/AIO pins  
Group 2(3)  
8
(4)  
Junction temperature, TJ  
T version  
–40  
–40  
–40  
105  
125  
125  
S version  
°C  
Q version  
(Q100 Qualification)  
(1) VDDIO and VDDA should be maintained within ~0.3 V of each other.  
(2) A tolerance of ±10% may be used for VDDIO if the BOR is not used. See the TMS320F28027, TMS320F28026, TMS320F28023,  
TMS320F28022, TMS320F28021, TMS320F28020, TMS320F280200 Piccolo MCU Silicon Errata (literature number SPRZ292) for more  
information. VDDIO tolerance is ±5% if the BOR is enabled.  
(3) Group 2 pins are as follows: GPIO16, GPIO17, GPIO18, GPIO19, GPIO28, GPIO29, GPIO36, GPIO37  
(4) TA (Ambient temperature) is product- and application-dependent and can go up to the specified TJ max of the device. See Section 6.5,  
Thermal Design Considerations.  
78  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.3 Electrical Characteristics(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX UNIT  
IOH = IOH MAX  
IOH = 50 mA  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
VDDIO – 0.2  
IOL = IOL MAX  
0.4  
–205  
–360  
V
All GPIO/AIO  
XRS pin  
–80  
–140  
–290  
Pin with pullup  
VDDIO = 3.3 V, VIN = 0 V  
enabled  
Input current  
(low level)  
–225  
IIL  
mA  
Pin with pulldown  
enabled  
VDDIO = 3.3 V, VIN = 0 V  
VDDIO = 3.3 V, VIN = VDDIO  
VDDIO = 3.3 V, VIN = VDDIO  
VO = VDDIO or 0 V  
±2  
±2  
80  
Pin with pullup  
enabled  
Input current  
(high level)  
IIH  
mA  
Pin with pulldown  
enabled  
28  
50  
Output current, pullup or  
pulldown disabled  
IOZ  
CI  
±2 mA  
Input capacitance  
2
2.65  
35  
pF  
VDDIO BOR trip point  
VDDIO BOR hysteresis  
Falling VDDIO  
2.42  
400  
3.135  
V
mV  
Supervisor reset release delay  
time  
Time after BOR/POR/OVR event is removed to XRS  
release  
800 ms  
VREG VDD output  
Internal VREG on  
1.9  
V
(1) When the on-chip VREG is used, its output is monitored by the POR/BOR circuit, which will reset the device should the core voltage  
(VDD) go out of range.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
79  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.4 Current Consumption  
Table 6-1. TMS320F2802x/F280200(1) Current Consumption at 40-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(2)  
(3)  
(2)  
(3)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(4)  
IDDA  
TYP(4)  
IDD  
IDDIO  
TYP(4)  
IDDA  
TYP(4)  
MAX  
MAX  
TYP(4)  
MAX  
MAX  
MAX  
The following peripheral clocks are  
enabled:  
ePWM1/2/3/4  
eCAP1  
SCI-A  
SPI-A  
ADC  
Operational  
(Flash)  
70 mA 80 mA 13 mA 18 mA  
62 mA  
70 mA  
15 mA  
18 mA 13 mA  
18 mA  
I2C  
COMP1/2  
CPU Timer0/1/2  
All PWM pins are toggled at 40 kHz.  
All I/O pins are left unconnected.(5)  
Code is running out of flash with  
1 wait-state.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are off.  
IDLE  
13 mA 16 mA  
53 mA  
10 mA  
10 mA  
58 mA  
15 mA  
15 mA  
15 mA  
3 mA  
17 mA  
6 mA  
120 mA  
120 mA  
25 mA  
400 mA 53 mA  
400 mA 10 mA  
10 mA  
58 mA  
15 mA  
15 mA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
3 mA  
6 mA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(6)  
50 mA  
15 mA  
(1) For the TMS320F280200 device, subtract the IDD current number for eCAP (see Table 6-4) from IDD (VREG disabled)/IDDIO (VREG  
enabled) current numbers shown in Table 6-1 for operational mode.  
(2) IDDIO current is dependent on the electrical loading on the I/O pins.  
(3) In order to realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by  
writing to the PCLKCR0 register.  
(4) The TYP numbers are applicable over room temperature and nominal voltage.  
(5) The following is done in a loop:  
Data is continuously transmitted out of SPI-A and SCI-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(6) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
80  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 6-2. TMS320F2802x Current Consumption at 50-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
MAX  
MAX  
MAX  
TYP(3)  
MAX  
MAX  
The following peripheral clocks are  
enabled:  
ePWM1/2/3/4  
eCAP1  
SCI-A  
SPI-A  
ADC  
Operational  
(Flash)  
80 mA 90 mA 13 mA 18 mA  
71 mA  
80 mA  
15 mA  
18 mA 13 mA  
18 mA  
I2C  
COMP1/2  
CPU Timer0/1/2  
All PWM pins are toggled at 40 kHz.  
All I/O pins are left unconnected.(4)  
Code is running out of flash with  
1 wait-state.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are off.  
IDLE  
16 mA 19 mA  
64 mA  
10 mA  
10 mA  
69 mA  
15 mA  
15 mA  
17 mA  
4 mA  
20 mA  
7 mA  
120 mA  
120 mA  
25 mA  
400 mA 64 mA  
400 mA 10 mA  
10 mA  
69 mA  
15 mA  
15 mA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
4 mA  
7 mA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(5)  
50 mA  
15 mA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) In order to realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by  
writing to the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A and SCI-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
81  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 6-3. TMS320F2802x Current Consumption at 60-MHz SYSCLKOUT  
VREG ENABLED  
VREG DISABLED  
(1)  
(2)  
(1)  
(2)  
MODE  
TEST CONDITIONS  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
IDD  
IDDIO  
TYP(3)  
IDDA  
TYP(3)  
MAX  
MAX  
TYP(3)  
MAX  
MAX  
MAX  
The following peripheral clocks  
are enabled:  
ePWM1/2/3/4  
eCAP1  
SCI-A  
SPI-A  
ADC  
Operational  
(Flash)  
I2C  
90 mA  
100 mA  
13 mA  
18 mA  
80 mA  
90 mA  
15 mA  
18 mA 13 mA  
18 mA  
COMP1/2  
CPU-TIMER0/1/2  
All PWM pins are toggled at  
60 kHz.  
All I/O pins are left  
unconnected.(4)  
Code is running out of flash  
with 2 wait-states.  
XCLKOUT is turned off.  
Flash is powered down.  
XCLKOUT is turned off.  
All peripheral clocks are turned  
off.  
IDLE  
18 mA  
23 mA  
7 mA  
75 mA  
80 mA  
19 mA  
24 mA  
7 mA  
120 mA 400 mA 75 mA  
120 mA 400 mA 10 mA  
80 mA  
Flash is powered down.  
Peripheral clocks are off.  
STANDBY  
HALT  
4 mA  
10 mA  
10 mA  
15 mA  
15 mA  
4 mA  
15 mA  
15 mA  
Flash is powered down.  
Peripheral clocks are off.  
Input clock is disabled.(5)  
50 mA  
15 mA  
25 mA  
10 mA  
(1) IDDIO current is dependent on the electrical loading on the I/O pins.  
(2) In order to realize the IDDA currents shown for IDLE, STANDBY, and HALT, clock to the ADC module must be turned off explicitly by  
writing to the PCLKCR0 register.  
(3) The TYP numbers are applicable over room temperature and nominal voltage.  
(4) The following is done in a loop:  
Data is continuously transmitted out of SPI-A and SCI-A ports.  
The hardware multiplier is exercised.  
Watchdog is reset.  
ADC is performing continuous conversion.  
COMP1/2 are continuously switching voltages.  
GPIO17 is toggled.  
(5) If a quartz crystal or ceramic resonator is used as the clock source, the HALT mode shuts down the on-chip crystal oscillator.  
NOTE  
The peripheral - I/O multiplexing implemented in the device prevents all available peripherals  
from being used at the same time. This is because more than one peripheral function may  
share an I/O pin. It is, however, possible to turn on the clocks to all the peripherals at the  
same time, although such a configuration is not useful. If this is done, the current drawn by  
the device will be more than the numbers specified in the current consumption tables.  
82  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.4.1 Reducing Current Consumption  
The 2802x/280200 devices incorporate a method to reduce the device current consumption. Since each  
peripheral unit has an individual clock-enable bit, significant reduction in current consumption can be  
achieved by turning off the clock to any peripheral module that is not used in a given application.  
Furthermore, any one of the three low-power modes could be taken advantage of to reduce the current  
consumption even further. Table 6-4 indicates the typical reduction in current consumption achieved by  
turning off the clocks.  
Table 6-4. Typical Current Consumption by Various  
Peripherals (at 60 MHz)(1)  
PERIPHERAL  
MODULE(2)  
IDD CURRENT  
REDUCTION (mA)  
ADC  
2(3)  
I2C  
ePWM  
3
2
eCAP  
2
SCI  
2
SPI  
2
COMP/DAC  
HRPWM  
1
3
CPU-TIMER  
Internal zero-pin oscillator  
1
0.5  
(1) All peripheral clocks (except CPU Timer clocks) are disabled upon  
reset. Writing to/reading from peripheral registers is possible only  
after the peripheral clocks are turned on.  
(2) For peripherals with multiple instances, the current quoted is per  
module. For example, the 2 mA value quoted for ePWM is for one  
ePWM module.  
(3) This number represents the current drawn by the digital portion of  
the ADC module. Turning off the clock to the ADC module results in  
the elimination of the current drawn by the analog portion of the ADC  
(IDDA) as well.  
NOTE  
IDDIO current consumption is reduced by 15 mA (typical) when XCLKOUT is turned off.  
NOTE  
The baseline IDD current (current when the core is executing a dummy loop with no  
peripherals enabled) is 45 mA, typical. To arrive at the IDD current for a given application, the  
current-drawn by the peripherals (enabled by that application) must be added to the baseline  
IDD current.  
Following are other methods to reduce power consumption further:  
The flash module may be powered down if code is run off SARAM. This results in a current reduction  
of 18 mA (typical) in the VDD rail and 13 mA (typical) in the VDDIO rail.  
Savings in IDDIO may be realized by disabling the pullups on pins that assume an output function.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
83  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.4.2 Current Consumption Graphs (VREG Enabled)  
Operational Current vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
IDDIO (mA)  
IDDA  
Figure 6-1. Typical Operational Current Versus Frequency (F2802x/F280200)  
Operational Power vs Frequency  
450  
400  
350  
300  
250  
200  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
SYSCLKOUT (MHz)  
Figure 6-2. Typical Operational Power Versus Frequency (F2802x/F280200)  
84  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.5 Thermal Design Considerations  
Based on the end application design and operational profile, the IDD and IDDIO currents could vary.  
Systems that exceed the recommended maximum power dissipation in the end product may require  
additional thermal enhancements. Ambient temperature (TA) varies with the end application and product  
design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the  
ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be  
measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of  
the package top-side surface. The thermal application reports IC Package Thermal Metrics (literature  
number SPRA953) and Reliability Data for TMS320LF24xx and TMS320F28xx Devices (literature number  
SPRA963) help to understand the thermal metrics and definitions.  
6.6 Emulator Connection Without Signal Buffering for the MCU  
Figure 6-3 shows the connection between the MCU and JTAG header for a single-processor configuration.  
If the distance between the JTAG header and the MCU is greater than 6 inches, the emulation signals  
must be buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 6-3 shows  
the simpler, no-buffering situation. For the pullup/pulldown resistor values, see Section 2.2, Signal  
Descriptions.  
6 inches or less  
VDDIO  
VDDIO  
13  
14  
2
5
EMU0  
EMU1  
TRST  
TMS  
PD  
4
6
8
TRST  
TMS  
TDI  
GND  
1
GND  
GND  
GND  
GND  
3
TDI  
7
10  
12  
TDO  
TCK  
TDO  
11  
9
TCK  
TCK_RET  
MCU  
JTAG Header  
A. See Figure 4-11 for JTAG/GPIO multiplexing.  
Figure 6-3. Emulator Connection Without Signal Buffering for the MCU  
NOTE  
The 2802x devices do not have EMU0/EMU1 pins. For designs that have a JTAG Header  
on-board, the EMU0/EMU1 pins on the header must be tied to VDDIO through a 4.7-k  
(typical) resistor.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
85  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.7 Timing Parameter Symbology  
Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
Lowercase subscripts and their  
meanings:  
Letters and symbols and their  
meanings:  
a
c
d
access time  
H
L
High  
Low  
cycle time (period)  
delay time  
V
Valid  
Unknown, changing, or don't care  
level  
f
fall time  
X
Z
h
r
hold time  
High impedance  
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
pulse duration (width)  
6.7.1 General Notes on Timing Parameters  
All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that  
all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.  
The signal combinations shown in the following timing diagrams may not necessarily represent actual  
cycles. For actual cycle examples, see the appropriate cycle description section of this document.  
6.7.2 Test Load Circuit  
This test load circuit is used to measure all switching characteristics provided in this document.  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
W
3.5 nH  
Output  
Under  
Test  
42  
Transmission Line  
(A)  
Z0 = 50 W  
Device Pin(B)  
4.0 pF  
1.85 pF  
A. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the  
device pin.  
B. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to  
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to  
add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.  
Figure 6-4. 3.3-V Test Load Circuit  
86  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.7.3 Device Clock Table  
This section provides the timing requirements and switching characteristics for the various clock options  
available on the 2802x MCUs. Table 6-5, Table 6-6, and Table 6-7 list the cycle times of various clocks.  
Table 6-5. 2802x Clock Table and Nomenclature (40-MHz Devices)  
MIN  
25  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
40  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
25  
100(2)  
10(2)  
40  
40  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
25  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 40 MHz.  
Table 6-6. 2802x Clock Table and Nomenclature (50-MHz Devices)  
MIN  
20  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
50  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
20  
80(2)  
12.5(2)  
50  
50  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
20  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 50 MHz.  
Table 6-7. 2802x Clock Table and Nomenclature (60-MHz Devices)  
MIN  
16.67  
2
NOM  
MAX UNIT  
tc(SCO), Cycle time  
Frequency  
500  
60  
ns  
MHz  
ns  
SYSCLKOUT  
LSPCLK(1)  
ADC clock  
tc(LCO), Cycle time  
Frequency  
16.67  
66.67(2)  
15(2)  
60  
60  
MHz  
ns  
tc(ADCCLK), Cycle time  
Frequency  
16.67  
MHz  
(1) Lower LSPCLK will reduce device power consumption.  
(2) This is the default reset value if SYSCLKOUT = 60 MHz.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
87  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 6-8. Device Clocking Requirements/Characteristics  
MIN  
NOM  
MAX UNIT  
tc(OSC), Cycle time  
Frequency  
50  
5
200  
20  
ns  
MHz  
ns  
On-chip oscillator (X1/X2 pins)  
(Crystal/Resonator)  
tc(CI), Cycle time (C8)  
Frequency  
33.3  
5
200  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Enabled  
MHz  
ns  
tc(CI), Cycle time (C8)  
Frequency  
33.33  
4
250  
30  
External oscillator/clock source  
(XCLKIN pin) — PLL Disabled  
MHz  
Limp mode SYSCLKOUT  
(with /2 enabled)  
Frequency range  
1 to 5  
MHz  
tc(XCO), Cycle time (C1)  
66.67  
0.5  
2000  
15  
ns  
MHz  
ms  
XCLKOUT  
Frequency  
tp  
PLL lock time(1)  
1
(1) The PLLLOCKPRD register must be updated based on the number of OSCCLK cycles. If the zero-pin internal oscillators (10 MHz) are  
used as the clock source, then the PLLLOCKPRD register must be written with a value of 10,000 (minimum).  
88  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 6-9. Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics  
PARAMETER  
MIN  
TYP  
10  
MAX UNIT  
MHz  
Internal zero-pin oscillator 1 (INTOSC1)(1)(2)  
Internal zero-pin oscillator 2 (INTOSC2)(1)(2)  
Step size (coarse trim)  
Frequency  
Frequency  
10  
MHz  
55  
kHz  
Step size (fine trim)  
14  
kHz  
Temperature drift(3)  
Voltage (VDD) drift(3)  
3.03  
175  
4.85 kHz/°C  
Hz/mV  
(1) In order to achieve better oscillator accuracy (10 MHz ± 1% or better) than shown, refer to the oscillator calibration example in  
2802x C/C++ Header Files and Peripheral Examples (literature number SPRC832). Refer to Figure 6-5 for MIN/MAX values.  
(2) Frequency range ensured only when VREG is enabled, VREGENZ = VSS  
.
(3) Output frequency of the internal oscillators follows the direction of both the temperature gradient and voltage (VDD) gradient. For  
example:  
Increase in temperature will cause the output frequency to increase per the temperature coefficient.  
Decrease in voltage (VDD) will cause the output frequency to decrease per the voltage coefficient.  
Zero-Pin Oscillator Frequency Movement With Temperature  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
Typical  
Max  
Temperature (°C)  
Figure 6-5. Zero-Pin Oscillator Frequency Movement With Temperature  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
89  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.8 Clock Requirements and Characteristics  
Table 6-10. XCLKIN Timing Requirements - PLL Enabled  
NO.  
MIN  
MAX UNIT  
C9  
tf(CI)  
Fall time, XCLKIN  
6
6
ns  
ns  
%
%
C10 tr(CI)  
Rise time, XCLKIN  
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
Table 6-11. XCLKIN Timing Requirements - PLL Disabled  
NO.  
MIN  
MAX UNIT  
C9  
tf(CI)  
Fall time, XCLKIN  
Rise time, XCLKIN  
Up to 20 MHz  
6
2
ns  
20 MHz to 30 MHz  
Up to 20 MHz  
C10 tr(CI)  
6
ns  
20 MHz to 30 MHz  
2
C11 tw(CIL)  
C12 tw(CIH)  
Pulse duration, XCLKIN low as a percentage of tc(OSCCLK)  
Pulse duration, XCLKIN high as a percentage of tc(OSCCLK)  
45  
45  
55  
55  
%
%
The possible configuration modes are shown in Table 3-19.  
Table 6-12. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)(1) (2)  
NO.  
C3  
C4  
C5  
C6  
PARAMETER  
MIN  
TYP  
MAX  
11  
UNIT  
ns  
tf(XCO)  
Fall time, XCLKOUT  
Rise time, XCLKOUT  
tr(XCO)  
11  
ns  
tw(XCOL)  
tw(XCOH)  
Pulse duration, XCLKOUT low  
Pulse duration, XCLKOUT high  
H – 2  
H – 2  
H + 2  
H + 2  
ns  
ns  
(1) A load of 40 pF is assumed for these parameters.  
(2) H = 0.5tc(XCO)  
C10  
C9  
C8  
(A)  
XCLKIN  
C6  
C3  
C1  
C4  
C5  
(B)  
XCLKOUT  
A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown is  
intended to illustrate the timing parameters only and may differ based on actual configuration.  
B. XCLKOUT configured to reflect SYSCLKOUT.  
Figure 6-6. Clock Timing  
90  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.9 Power Sequencing  
There is no power sequencing requirement needed to ensure the device is in the proper state after reset  
or to prevent the I/Os from glitching during power up/down. However, it is recommended that no voltage  
larger than a diode drop (0.7 V) should be applied to any pin prior to powering up the device. Voltages  
applied to pins on an unpowered device can bias internal p-n junctions in unintended ways and produce  
unpredictable results.  
VDDIO, VDDA  
(3.3 V)  
VDD (1.8 V)  
INTOSC1  
tINTOSCST  
X1/X2  
tOSCST  
(B)  
(A)  
XCLKOUT  
User-code dependent  
t
w(RSL1)  
XRS(D)  
Address/data valid, internal boot-ROM code execution phase  
Address/Data/  
Control  
(Internal)  
User-code execution phase  
User-code dependent  
t
d(EX)  
(C)  
h(boot-mode)  
t
Boot-Mode  
Pins  
GPIO pins as input  
Boot-ROM execution starts  
Peripheral/GPIO function  
Based on boot code  
GPIO pins as input (state depends on internal PU/PD)  
User-code dependent  
I/O Pins  
A. Upon power up, SYSCLKOUT is OSCCLK/4. Since the XCLKOUTDIV bits in the XCLK register come up with a reset  
state of 0, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. XCLKOUT = OSCCLK/16 during this  
phase.  
B. Boot ROM configures the DIVSEL bits for /1 operation. XCLKOUT = OSCCLK/4 during this phase. Note that  
XCLKOUT will not be visible at the pin until explicitly configured by user code.  
C. After reset, the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in  
debugger environment), the boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT  
will be based on user environment and could be with or without PLL enabled.  
D. Using the XRS pin is optional due to the on-chip power-on reset (POR) circuitry.  
Figure 6-7. Power-on Reset  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
91  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 6-13. Reset (XRS) Timing Requirements  
MIN  
1000tc(SCO)  
32tc(OSCCLK)  
NOM  
MAX UNIT  
cycles  
th(boot-mode)  
tw(RSL2)  
Hold time for boot-mode pins  
Pulse duration, XRS low on warm reset  
cycles  
Table 6-14. Reset (XRS) Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tw(RSL1)  
Pulse duration, XRS driven by device  
600  
ms  
Pulse duration, reset pulse generated by  
watchdog  
tw(WDRS)  
512tc(OSCCLK)  
cycles  
td(EX)  
Delay time, address/data valid after XRS high  
Start up time, internal zero-pin oscillator  
On-chip crystal-oscillator start-up time  
32tc(OSCCLK)  
cycles  
ms  
tINTOSCST  
3
(1)  
tOSCST  
1
10  
ms  
(1) Dependent on crystal/resonator and board design.  
INTOSC1  
X1/X2  
XCLKOUT  
User-Code Dependent  
t
w(RSL2)  
XRS  
User-Code Execution Phase  
t
d(EX)  
Address/Data/  
User-Code Execution  
Control  
(Internal)  
(A)  
t
Boot-ROM Execution Starts  
GPIO Pins as Input  
h(boot-mode)  
Boot-Mode  
Pins  
Peripheral/GPIO Function  
User-Code Dependent  
Peripheral/GPIO Function  
User-Code Execution Starts  
I/O Pins  
GPIO Pins as Input (State Depends on Internal PU/PD)  
User-Code Dependent  
A. After reset, the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code  
branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in  
debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The  
SYSCLKOUT will be based on user environment and could be with or without PLL enabled.  
Figure 6-8. Warm Reset  
92  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Figure 6-9 shows an example for the effect of writing into PLLCR register. In the first phase, PLLCR =  
0x0004 and SYSCLKOUT = OSCCLK x 2. The PLLCR is then written with 0x0008. Right after the PLLCR  
register is written, the PLL lock-up phase begins. During this phase, SYSCLKOUT = OSCCLK/2. After the  
PLL lock-up is complete, SYSCLKOUT reflects the new operating frequency, OSCCLK x 4.  
OSCCLK  
Write to PLLCR  
SYSCLKOUT  
OSCCLK * 2  
OSCCLK/2  
OSCCLK * 4  
(CPU frequency while PLL is stabilizing  
with the desired frequency. This period  
(PLL lock-up time tp) is 1 ms long.)  
(Current CPU  
Frequency)  
(Changed CPU frequency)  
Figure 6-9. Example of Effect of Writing Into PLLCR Register  
6.10 General-Purpose Input/Output (GPIO)  
6.10.1 GPIO - Output Timing  
Table 6-15. General-Purpose Output Switching Characteristics  
PARAMETER  
Rise time, GPIO switching low to high  
Fall time, GPIO switching high to low  
Toggling frequency  
MIN  
MAX  
13(1)  
13(1)  
15  
UNIT  
ns  
tr(GPO)  
tf(GPO)  
tfGPO  
All GPIOs  
All GPIOs  
ns  
MHz  
(1) Rise time and fall time vary with electrical loading on I/O pins. Values given in Table 6-15 are applicable for a 40-pF load on I/O pins.  
GPIO  
t
r(GPO)  
t
f(GPO)  
Figure 6-10. General-Purpose Output Timing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
93  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.10.2 GPIO - Input Timing  
(A)  
GPIO Signal  
GPxQSELn = 1,0 (6 samples)  
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
tw(SP)  
Sampling Period determined  
by GPxCTRL[QUALPRD](B)  
tw(IQSW)  
[(SYSCLKOUT cycle * 2 * QUALPRD) * 5(C)  
]
Sampling Window  
SYSCLKOUT  
QUALPRD = 1  
(SYSCLKOUT/2)  
(D)  
Output From  
Qualifier  
A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It  
can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLKOUT cycle. For any other value  
"n", the qualification sampling period in 2n SYSCLKOUT cycles (i.e., at every 2n SYSCLKOUT cycles, the GPIO pin  
will be sampled).  
B. The qualification period selected via the GPxCTRL register applies to groups of 8 GPIO pins.  
C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is  
used.  
D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLKOUT cycles or  
greater. In other words, the inputs should be stable for (5 x QUALPRD x 2) SYSCLKOUT cycles. This would ensure  
5 sampling periods for detection to occur. Since external signals are driven asynchronously, an 13-SYSCLKOUT-wide  
pulse ensures reliable recognition.  
Figure 6-11. Sampling Mode  
Table 6-16. General-Purpose Input Timing Requirements  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
cycles  
cycles  
QUALPRD = 0  
tw(SP)  
Sampling period  
QUALPRD 0  
2tc(SCO) * QUALPRD  
tw(SP) * (n(1) – 1)  
2tc(SCO)  
tw(IQSW)  
Input qualifier sampling window  
Pulse duration, GPIO low/high  
Synchronous mode  
With input qualifier  
(2)  
tw(GPI)  
tw(IQSW) + tw(SP) + 1tc(SCO)  
(1) "n" represents the number of qualification samples as defined by GPxQSELn register.  
(2) For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.  
94  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.10.3 Sampling Window Width for Input Signals  
The following section summarizes the sampling window width for input signals for various input qualifier  
configurations.  
Sampling frequency denotes how often a signal is sampled with respect to SYSCLKOUT.  
Sampling frequency = SYSCLKOUT/(2 * QUALPRD), if QUALPRD 0  
Sampling frequency = SYSCLKOUT, if QUALPRD = 0  
Sampling period = SYSCLKOUT cycle x 2 x QUALPRD, if QUALPRD 0  
In the above equations, SYSCLKOUT cycle indicates the time period of SYSCLKOUT.  
Sampling period = SYSCLKOUT cycle, if QUALPRD = 0  
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of  
the signal. This is determined by the value written to GPxQSELn register.  
Case 1:  
Qualification using 3 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 2, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 2, if QUALPRD = 0  
Case 2:  
Qualification using 6 samples  
Sampling window width = (SYSCLKOUT cycle x 2 x QUALPRD) x 5, if QUALPRD 0  
Sampling window width = (SYSCLKOUT cycle) x 5, if QUALPRD = 0  
XCLKOUT  
GPIOxn  
t
w(GPI)  
Figure 6-12. General-Purpose Input Timing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
95  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.10.4 Low-Power Mode Wakeup Timing  
Table 6-17 shows the timing requirements, Table 6-18 shows the switching characteristics, and  
Figure 6-13 shows the timing diagram for IDLE mode.  
Table 6-17. IDLE Mode Timing Requirements(1)  
MIN NOM  
2tc(SCO)  
5tc(SCO) + tw(IQSW)  
MAX  
UNIT  
Without input qualifier  
With input qualifier  
tw(WAKE-INT) Pulse duration, external wake-up signal  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
Table 6-18. IDLE Mode Switching Characteristics(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
cycles  
cycles  
(2)  
Delay time, external wake signal to program execution resume  
Without input qualifier  
20tc(SCO)  
20tc(SCO) + tw(IQSW)  
1050tc(SCO)  
Wake-up from Flash  
Flash module in active state  
Wake-up from Flash  
Flash module in sleep state  
Wake-up from SARAM  
With input qualifier  
Without input qualifier  
With input qualifier  
Without input qualifier  
With input qualifier  
td(WAKE-IDLE)  
cycles  
cycles  
1050tc(SCO) + tw(IQSW)  
20tc(SCO)  
20tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
(2) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake-up) signal involves additional latency.  
t
d(WAKE−IDLE)  
Address/Data  
(internal)  
XCLKOUT  
t
w(WAKE−INT)  
WAKE INT(A)(B)  
A. WAKE INT can be any enabled interrupt, WDINT or XRS.  
B. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-13. IDLE Entry and Exit Timing  
96  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 6-19. STANDBY Mode Timing Requirements  
TEST CONDITIONS  
Without input qualification  
With input qualification(1)  
MIN  
3tc(OSCCLK)  
NOM  
MAX  
UNIT  
Pulse duration, external  
wake-up signal  
tw(WAKE-INT)  
cycles  
(2 + QUALSTDBY) * tc(OSCCLK)  
(1) QUALSTDBY is a 6-bit field in the LPMCR0 register.  
Table 6-20. STANDBY Mode Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
45tc(SCO)  
UNIT  
Delay time, IDLE instruction  
executed to XCLKOUT low  
td(IDLE-XCOL)  
32tc(SCO)  
cycles  
Delay time, external wake signal to program execution  
resume(1)  
cycles  
cycles  
Without input qualifier  
100tc(SCO)  
100tc(SCO) + tw(WAKE-INT)  
1125tc(SCO)  
Wake up from flash  
Flash module in active  
state  
With input qualifier  
Without input qualifier  
With input qualifier  
td(WAKE-STBY)  
Wake up from flash  
cycles  
cycles  
Flash module in sleep  
state  
1125tc(SCO) + tw(WAKE-INT)  
Without input qualifier  
With input qualifier  
100tc(SCO)  
Wake up from SARAM  
100tc(SCO) + tw(WAKE-INT)  
(1) This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. execution of an ISR (triggered  
by the wake up signal) involves additional latency.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
97  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
(C)  
(F)  
(A)  
(B)  
(D)(E)  
(G)  
Normal Execution  
Device  
Status  
STANDBY  
STANDBY  
Flushing Pipeline  
Wake-up  
Signal(H)  
t
w(WAKE-INT)  
t
d(WAKE-STBY)  
X1/X2 or  
XCLKIN  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into STANDBY mode.  
B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below  
before being turned off:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in  
STANDBY mode.  
D. The external wake-up signal is driven active.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. After a latency period, the STANDBY mode is exited.  
G. Normal execution resumes. The device will respond to the interrupt (if enabled).  
H. From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-14. STANDBY Entry and Exit Timing Diagram  
Table 6-21. HALT Mode Timing Requirements  
MIN NOM  
toscst + 2tc(OSCCLK)  
MAX  
UNIT  
cycles  
cycles  
tw(WAKE-GPIO)  
tw(WAKE-XRS)  
Pulse duration, GPIO wake-up signal  
Pulse duration, XRS wakeup signal  
toscst + 8tc(OSCCLK)  
Table 6-22. HALT Mode Switching Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
45tc(SCO)  
1
UNIT  
cycles  
ms  
td(IDLE-XCOL)  
tp  
Delay time, IDLE instruction executed to XCLKOUT low  
PLL lock-up time  
32tc(SCO)  
Delay time, PLL lock to program execution resume  
1125tc(SCO)  
35tc(SCO)  
cycles  
cycles  
Wake up from flash  
Flash module in sleep state  
td(WAKE-HALT)  
Wake up from SARAM  
98  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
(C)  
(F)  
(A)  
(H)  
(B)  
(G)  
(D)(E)  
Device  
Status  
HALT  
HALT  
Flushing Pipeline  
PLL Lock-up Time  
Normal  
Execution  
Wake-up Latency  
GPIOn(I)  
t
)
d(WAKE−HALT  
t
w(WAKE-GPIO)  
tp  
X1/X2 or  
XCLKIN  
Oscillator Start-up Time  
XCLKOUT  
t
d(IDLE−XCOL)  
A. IDLE instruction is executed to put the device into HALT mode.  
B. The PLL block responds to the HALT signal. SYSCLKOUT is held for the number of cycles indicated below before  
oscillator is turned off and the CLKIN to the core is stopped:  
16 cycles, when DIVSEL = 00 or 01  
32 cycles, when DIVSEL = 10  
64 cycles, when DIVSEL = 11  
This delay enables the CPU pipeline and any other pending operations to flush properly.  
C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as  
the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes  
absolute minimum power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the  
watchdog alive in HALT mode. This is done by writing to the appropriate bits in the CLKCTL register.  
D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator  
wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This  
enables the provision of a clean clock signal during the PLL lock sequence. Since the falling edge of the GPIO pin  
asynchronously begins the wakeup procedure, care should be taken to maintain a low noise environment prior to  
entering and during HALT mode.  
E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement.  
Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the  
device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses.  
F. Once the oscillator has stabilized, the PLL lock sequence is initiated, which takes 1 ms.  
G. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT  
mode is now exited.  
H. Normal operation resumes.  
I.  
From the time the IDLE instruction is executed to place the device into low-power mode (LPM), wakeup should not be  
initiated until at least 4 OSCCLK cycles have elapsed.  
Figure 6-15. HALT Wake-Up Using GPIOn  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
99  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.11 Enhanced Control Peripherals  
6.11.1 Enhanced Pulse Width Modulator (ePWM) Timing  
PWM refers to PWM outputs on ePWM1–4 . Table 6-23 shows the PWM timing requirements and  
Table 6-24, switching characteristics.  
Table 6-23. ePWM Timing Requirements(1)  
TEST CONDITIONS  
Asynchronous  
MIN  
2tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
cycles  
tw(SYCIN)  
Sync input pulse width  
Synchronous  
2tc(SCO)  
With input qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
Table 6-24. ePWM Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
33.33  
MAX  
UNIT  
ns  
tw(PWM)  
Pulse duration, PWMx output high/low  
Sync output pulse width  
tw(SYNCOUT)  
td(PWM)tza  
8tc(SCO)  
cycles  
ns  
Delay time, trip input active to PWM forced high  
Delay time, trip input active to PWM forced low  
no pin load  
25  
20  
td(TZ-PWM)HZ  
Delay time, trip input active to PWM Hi-Z  
ns  
6.11.2 Trip-Zone Input Timing  
(A)  
XCLKOUT  
t
w(TZ)  
TZ  
t
d(TZ-PWM)HZ  
(B)  
PWM  
A. TZ - TZ1, TZ2, TZ3  
B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM  
recovery software.  
Figure 6-16. PWM Hi-Z Characteristics  
Table 6-25. Trip-Zone Input Timing Requirements(1)  
MIN  
1tc(SCO)  
MAX UNIT  
cycles  
tw(TZ)  
Pulse duration, TZx input low  
Asynchronous  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
100  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 6-26 shows the high-resolution PWM switching characteristics.  
Table 6-26. High-Resolution PWM Characteristics at SYSCLKOUT = 50 MHz(1)–60 MHz  
MIN  
TYP  
MAX UNIT  
310 ps  
Micro Edge Positioning (MEP) step size(2)  
150  
(1) The HRPWM operates at a minimum SYSCLKOUT frequency of 50 MHz. Below 50 MHz, with device process variation, the MEP step  
size may decrease under cold temperature and high core voltage conditions to such a point that 255 MEP steps will not span an entire  
SYSCLKOUT cycle.  
(2) Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase  
with low voltage and high temperature and decrease with voltage and cold temperature.  
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI  
software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per  
SYSCLKOUT period dynamically while the HRPWM is in operation.  
6.11.3 Enhanced Capture (eCAP) Timing  
Table 6-27 shows the eCAP timing requirement and Table 6-28 shows the eCAP switching characteristics.  
Table 6-27. Enhanced Capture (eCAP) Timing Requirement(1)  
TEST CONDITIONS  
Asynchronous  
MIN  
2tc(SCO)  
MAX UNIT  
cycles  
tw(CAP)  
Capture input pulse width  
Synchronous  
2tc(SCO)  
cycles  
With input qualifier  
1tc(SCO) + tw(IQSW)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
Table 6-28. eCAP Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
tw(APWM)  
Pulse duration, APWMx output high/low  
20  
ns  
6.11.4 ADC Start-of-Conversion Timing  
Table 6-29. External ADC Start-of-Conversion Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
tw(ADCSOCL)  
Pulse duration, ADCSOCxO low  
32tc(HCO )  
cycles  
tw(ADCSOCL)  
ADCSOCAO  
or  
ADCSOCBO  
Figure 6-17. ADCSOCAO or ADCSOCBO Timing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
101  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.11.5 External Interrupt Timing  
t
w(INT)  
XINT1, XINT2, XINT3  
t
d(INT)  
Address bus  
(internal)  
Interrupt Vector  
Figure 6-18. External Interrupt Timing  
Table 6-30. External Interrupt Timing Requirements(1)  
TEST CONDITIONS  
MIN  
1tc(SCO)  
MAX  
UNIT  
cycles  
cycles  
(2)  
tw(INT)  
Pulse duration, INT input low/high  
Synchronous  
With qualifier  
1tc(SCO) + tw(IQSW)  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
(2) This timing is applicable to any GPIO pin configured for ADCSOC functionality.  
Table 6-31. External Interrupt Switching Characteristics(1)  
PARAMETER  
MIN  
MAX  
UNIT  
td(INT)  
Delay time, INT low/high to interrupt-vector fetch  
tw(IQSW) + 12tc(SCO)  
cycles  
(1) For an explanation of the input qualifier parameters, see Table 6-16.  
102  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.11.6 I2C Electrical Specification and Timing  
Table 6-32. I2C Timing  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
fSCL  
SCL clock frequency  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
400  
kHz  
vil  
Low level input voltage  
High level input voltage  
Input hysteresis  
0.3 VDDIO  
V
V
Vih  
0.7 VDDIO  
Vhys  
Vol  
0.05 VDDIO  
V
Low level output voltage  
Low period of SCL clock  
3 mA sink current  
0
0.4  
V
tLOW  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
1.3  
ms  
tHIGH  
High period of SCL clock  
I2C clock module frequency is between  
7 MHz and 12 MHz and I2C prescaler and  
clock divider registers are configured  
appropriately  
0.6  
ms  
lI  
Input current with an input voltage  
–10  
10  
mA  
between 0.1 VDDIO and 0.9 VDDIO MAX  
6.11.7 Serial Peripheral Interface (SPI) Master Mode Timing  
Table 6-33 lists the master mode timing (clock phase = 0) and Table 6-34 lists the timing (clock  
phase = 1). Figure 6-19 and Figure 6-20 show the timing waveforms.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
103  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 6-33. SPI Master Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
SPI WHEN (SPIBRR + 1) IS EVEN OR  
SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
NO.  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
10  
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
10  
3
4
5
8
9
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
ns  
ns  
ns  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Delay time, SPICLK high to SPISIMO  
valid (clock polarity = 0)  
Delay time, SPICLK low to SPISIMO  
valid (clock polarity = 1)  
10  
10  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
35  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
35  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
35  
35  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
0.25tc(SPC)M – 10  
0.25tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
0.5tc(SPC)M – 0.5tc(LCO) – 10  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
(1) The MASTER / SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR +1)  
(3) tc(LCO) = LSPCLK cycle time  
(4) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(5) The active edge of the SPICLK signal referenced is controlled by the clock polarity bit (SPICCR.6).  
104  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
SPISTE(A)  
A. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing  
end of the word, the SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit,  
except that SPISTE stays active between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 6-19. SPI Master Mode External Timing (Clock Phase = 0)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
105  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 6-34. SPI Master Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)(5)  
SPI WHEN (SPIBRR + 1) IS EVEN  
OR SPIBRR = 0 OR 2  
SPI WHEN (SPIBRR + 1) IS ODD  
AND SPIBRR > 3  
NO.  
UNIT  
MIN  
4tc(LCO)  
MAX  
MIN  
MAX  
1
2
tc(SPC)M  
Cycle time, SPICLK  
128tc(LCO)  
0.5tc(SPC)M  
5tc(LCO)  
127tc(LCO)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc (LCO) – 10  
0.5tc(SPC)M – 0.5tc (LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M + 0.5tc(LCO) – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 0.5tc(LCO)  
0.5tc(SPC)M – 0.5tc(LCO  
0.5tc(SPC)M + 0.5tc(LCO)  
0.5tc(SPC)M + 0.5tc(LCO)  
tw(SPCL))M  
Pulse duration, SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M  
0.5tc(SPC)M  
0.5tc(SPC)M  
3
6
tw(SPCL)M  
Pulse duration, SPICLK low  
(clock polarity = 0)  
ns  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high  
(clock polarity = 1)  
tsu(SIMO-SPCH)M  
Setup time, SPISIMO data valid  
before SPICLK high  
(clock polarity = 0)  
tsu(SIMO-SPCL)M  
Setup time, SPISIMO data valid  
before SPICLK low  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
(clock polarity = 1)  
7
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
35  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
35  
ns  
ns  
ns  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
10  
11  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 1)  
35  
35  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
0.25tc(SPC)M – 10  
0.25tc(SPC)M – 10  
0.5tc(SPC)M – 10  
0.5tc(SPC)M – 10  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
(1) The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
106  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
6
7
Master out data Is valid  
10  
SPISIMO  
SPISOMI  
Data Valid  
11  
Master in data  
must be valid  
(A)  
SPISTE  
B. In the master mode, SPISTE goes active 0.5tc(SPC) (minimum) before valid SPI clock edge. On the trailing  
end of the word, the SPISTE will go inactive 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit,  
except that SPISTE stays active between back-to-back transmit words in both FIFO and non-FIFO modes.  
Figure 6-20. SPI Master Mode External Timing (Clock Phase = 1)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
107  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.11.8 SPI Slave Mode Timing  
Table 6-35 lists the slave mode external timing (clock phase = 0) and Table 6-36 (clock phase = 1).  
Figure 6-21 and Figure 6-22 show the timing waveforms.  
Table 6-35. SPI Slave Mode External Timing (Clock Phase = 0)(1)(2)(3)(4)(5)  
NO.  
MIN  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
4tc(LCO)  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK low (clock polarity = 1)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK low (clock polarity = 0)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
Pulse duration, SPICLK high (clock polarity = 1)  
0.5tc(SPC)S – 10 0.5tc(SPC)S  
15 td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
16 tv(SPCL-SOMI)S  
tv(SPCH-SOMI)S  
19 tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
20 tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)  
Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)  
Valid time, SPISOMI data valid after SPICLK low (clock polarity = 0)  
Valid time, SPISOMI data valid after SPICLK high (clock polarity = 1)  
Setup time, SPISIMO before SPICLK low (clock polarity = 0)  
Setup time, SPISIMO before SPICLK high (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1)  
35  
35  
0.75tc(SPC)S  
0.75tc(SPC)S  
35  
35  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(4) tc(LCO) = LSPCLK cycle time  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
15  
16  
SPISOMI data Is valid  
19  
SPISOMI  
SPISIMO  
20  
SPISIMO data  
must be valid  
(A)  
SPISTE  
C. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) (minimum) before the valid SPI clock  
edge and remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-21. SPI Slave Mode External Timing (Clock Phase = 0)  
108  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Table 6-36. SPI Slave Mode External Timing (Clock Phase = 1)(1)(2)(3)(4)  
NO.  
MIN  
8tc(LCO)  
MAX UNIT  
12 tc(SPC)S  
13 tw(SPCH)S  
tw(SPCL)S  
Cycle time, SPICLK  
ns  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
Setup time, SPISOMI before SPICLK high (clock polarity = 0)  
Setup time, SPISOMI before SPICLK low (clock polarity = 1)  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.5tc(SPC)S – 10  
0.125tc(SPC)S  
0.5tc(SPC)S  
ns  
ns  
ns  
ns  
0.5tc(SPC) S  
0.5tc(SPC) S  
0.5tc(SPC)S  
14 tw(SPCL)S  
tw(SPCH)S  
17 tsu(SOMI-SPCH)S  
tsu(SOMI-SPCL)S  
18 tv(SPCL-SOMI)S  
0.125tc(SPC)S  
Valid time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
0.75tc(SPC)S  
tv(SPCH-SOMI)S  
Valid time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
0.75tc(SPC) S  
21 tsu(SIMO-SPCH)S  
tsu(SIMO-SPCL)S  
Setup time, SPISIMO before SPICLK high (clock polarity = 0)  
Setup time, SPISIMO before SPICLK low (clock polarity = 1)  
35  
35  
ns  
ns  
22 tv(SPCH-SIMO)S  
Valid time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
0.5tc(SPC)S – 10  
tv(SPCL-SIMO)S  
Valid time, SPISIMO data valid after SPICLK low  
(clock polarity = 1)  
0.5tc(SPC)S – 10  
(1) The MASTER / SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.  
(2) tc(SPC) = SPI clock cycle time = LSPCLK/4 or LSPCLK/(SPIBRR + 1)  
(3) Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:  
Master mode transmit 15-MHz MAX, master mode receive 10-MHz MAX  
Slave mode transmit 10-MHz MAX, slave mode receive 10-MHz MAX.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).  
12  
SPICLK  
(clock polarity = 0)  
13  
14  
SPICLK  
(clock polarity = 1)  
17  
18  
SPISOMI data is valid  
SPISOMI  
SPISIMO  
Data Valid  
21  
22  
SPISIMO data  
must be valid  
(A)  
SPISTE  
A. In the slave mode, the SPISTE signal should be asserted low at least 0.5tc(SPC) before the valid SPI clock edge and  
remain low for at least 0.5tc(SPC) after the receiving edge (SPICLK) of the last data bit.  
Figure 6-22. SPI Slave Mode External Timing (Clock Phase = 1)  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
109  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.11.9 On-Chip Comparator/DAC  
Table 6-37. Electrical Characteristics of the Comparator/DAC  
CHARACTERISTIC  
MIN  
TYP  
MAX  
UNITS  
Comparator  
Comparator Input Range  
VSSA – VDDA  
V
Comparator response time to PWM Trip Zone (Async)  
30  
±5  
35  
ns  
Input Offset  
Input Hysteresis(1)  
mV  
mV  
DAC  
DAC Output Range  
DAC resolution  
VSSA – VDDA  
10  
V
bits  
DAC settling time  
See  
Figure 6-23  
DAC Gain  
DAC Offset  
Monotonic  
INL  
–1.5  
10  
%
mV  
Yes  
±3  
LSB  
(1) Hysteresis on the comparator inputs is achieved with a Schmidt trigger configuration. This results in an effective 100-kΩ feedback  
resistance between the output of the comparator and the non-inverting input of the comparator. There is an option to disable the  
hysteresis and, with it, the feedback resistance; see the TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and  
Comparator Reference Guide (literature number SPRUGE5) for more information on this option if needed in your system.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
DAC Step Size (Codes)  
DAC Accuracy  
15 Codes  
7 Codes  
3 Codes  
1 Code  
Figure 6-23. DAC Settling Time  
110  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.11.10 On-Chip Analog-to-Digital Converter  
Table 6-38. ADC Electrical Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
DC SPECIFICATIONS  
Resolution  
12  
0.001  
7
Bits  
ADC clock  
60-MHz device  
28027/26/23/22  
28021/20/200  
60  
64  
64  
MHz  
Sample Window  
ADC  
Clocks  
14  
ACCURACY  
INL (Integral nonlinearity)(1)  
60-MHz clock  
(4.62 MSPS)  
±2  
LSB  
DNL (Differential nonlinearity)  
±1  
0
LSB  
LSB  
(2)  
Offset error  
Executing Device_Cal  
function  
–20  
–4  
20  
4
Executing periodic  
self-recalibration(3)  
0
Overall gain error with internal reference  
Overall gain error with external reference  
Channel-to-channel offset variation  
Channel-to-channel gain variation  
ADC temperature coefficient with internal reference  
ADC temperature coefficient with external reference  
ANALOG INPUT  
–60  
–40  
–4  
60  
40  
4
LSB  
LSB  
LSB  
–4  
4
LSB  
–50  
–20  
ppm/°C  
ppm/°C  
Analog input voltage with internal reference  
Analog input voltage with external reference  
VREFLO input voltage(4)  
0
VREFLO  
VSSA  
3.3  
VREFHI  
VSSA  
V
V
V
VREFHI input voltage(5)  
with VREFLO = VSSA  
1.98  
VDDA  
V
Input capacitance  
5
pF  
mA  
Input leakage current  
±5  
(1) INL will degrade when the ADC input voltage goes above VDDA  
.
(2) 1 LSB has the weighted value of full-scale range (FSR)/4096. FSR is 3.3 V with internal reference and VREFHI - VREFLO for external  
reference.  
(3) Periodic self-recalibration will remove system-level and temperature dependencies on the ADC zero offset error. This can be performed  
as needed in the application without sacrificing an ADC channel by using the procedure listed in the "ADC Zero Offset Calibration"  
section of the TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator Reference Guide (literature number  
SPRUGE5).  
(4) VREFLO is always connected to VSSA  
(5) VREFHI must not exceed VDDA when using either internal or external reference modes. Since VREFHI is tied to ADCINA0, the input signal  
on ADCINA0 must not exceed VDDA  
.
.
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
111  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Table 6-39. ADC Power Modes  
ADC OPERATING MODE  
Mode A – Operating Mode  
CONDITIONS  
IDDA  
UNITS  
ADC Clock Enabled  
13  
mA  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWRDN = 1)  
Mode B – Quick Wake Mode  
Mode C – Comparator-Only Mode  
Mode D – Off Mode  
ADC Clock Enabled  
4
mA  
mA  
mA  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 1)  
ADC Powered Up (ADCPWRDN = 0)  
ADC Clock Enabled  
1.5  
Bandgap On (ADCBGPWD = 1)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWRDN = 0)  
ADC Clock Enabled  
0.075  
Bandgap On (ADCBGPWD = 0)  
Reference On (ADCREFPWD = 0)  
ADC Powered Up (ADCPWRDN = 0)  
6.11.10.1 Internal Temperature Sensor  
Table 6-40. Temperature Sensor Coefficient  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
TSLOPE  
Degrees C of temperature movement per measured ADC LSB change  
of the temperature sensor  
0.18(2)(3)  
°C/LSB  
TOFFSET  
ADC output at 0°C of the temperature sensor  
1750  
LSB  
(1) The temperature sensor slope and offset are given in terms of ADC LSBs using the internal reference of the ADC. Values must be  
adjusted accordingly in external reference mode to the external reference voltage.  
(2) ADC temperature coeffieicient is accounted for in this specification  
(3) Output of the temperature sensor (in terms of LSBs) is sign-consistent with the direction of the temperature movement. Increasing  
temperatures will give increasing ADC values relative to an initial value; decreasing temperatures will give decreasing ADC values  
relative to an initial value.  
6.11.10.2 ADC Power-Up Control Bit Timing  
Table 6-41. ADC Power-Up Delays  
PARAMETER(1)  
MIN  
TYP  
MAX  
UNIT  
td(PWD)  
Delay time for the ADC to be stable after power up  
1
ms  
(1) Timings maintain compatibility to the ADC module. The 2802x ADC supports driving all 3 bits at the same time td(PWD) ms before first  
conversion.  
ADCPWDN/  
ADCBGPWD/  
ADCREFPWD/  
ADCENABLE  
td(PWD)  
Request for ADC  
Conversion  
Figure 6-24. ADC Conversion Timing  
112  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Ron  
3.4 kW  
Switch  
Rs  
ADCIN  
Cp  
Ch  
Source  
Signal  
ac  
5 pF  
1.6 pF  
28x DSP  
Typical Values of the Input Circuit Components:  
Switch Resistance (Ron): 3.4 kW  
Sampling Capacitor (Ch): 1.6 pF  
Parasitic Capacitance (Cp): 5 pF  
Source Resistance (Rs): 50 W  
Figure 6-25. ADC Input Impedance Model  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
113  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.11.10.3 ADC Sequential and Simultaneous Timings  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL 1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
2 ADCCLKs  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
1 ADCCLK  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 6-26. Timing Example for Sequential Mode / Late Interrupt Pulse  
114  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Analog Input  
SOC0 Sample  
Window  
SOC1 Sample  
Window  
SOC2 Sample  
Window  
0
2
9
15  
22 24  
37  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0  
SOC1  
SOC2  
Result 0 Latched  
ADCRESULT 1  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG.ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0  
13 ADC Clocks  
2 ADCCLKs  
6
Minimum  
ADCCLKs 7 ADCCLKs  
Conversion 1  
13 ADC Clocks  
Figure 6-27. Timing Example for Sequential Mode / Early Interrupt Pulse  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
115  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
Analog Input A  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
Analog Input B  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
2 ADCCLKs  
Result 0 (A) Latched  
ADCRESULT 1  
Result 0 (B) Latched  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
1 ADCCLK  
EOC2 Pulse  
ADCINTFLG .ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
2 ADCCLKs  
19  
ADCCLKs  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
Figure 6-28. Timing Example for Simultaneous Mode / Late Interrupt Pulse  
116  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
Analog Input A  
Analog Input B  
SOC0 Sample  
A Window  
SOC2 Sample  
A Window  
SOC0 Sample  
B Window  
SOC2 Sample  
B Window  
0
2
9
22 24  
37  
50  
ADCCLK  
ADCCTL1.INTPULSEPOS  
ADCSOCFLG 1.SOC0  
ADCSOCFLG 1.SOC1  
ADCSOCFLG 1.SOC2  
S/H Window Pulse to Core  
ADCRESULT 0  
SOC0 (A/B)  
SOC2 (A/B)  
2 ADCCLKs  
Result 0 (A) Latched  
ADCRESULT 1  
Result 0 (B) Latched  
ADCRESULT 2  
EOC0 Pulse  
EOC1 Pulse  
EOC2 Pulse  
ADCINTFLG .ADCINTx  
Minimum  
7 ADCCLKs  
Conversion 0 (A)  
13 ADC Clocks  
Conversion 0 (B)  
13 ADC Clocks  
2 ADCCLKs  
19  
ADCCLKs  
Minimum  
7 ADCCLKs  
Conversion 1 (A)  
13 ADC Clocks  
Figure 6-29. Timing Example for Simultaneous Mode / Early Interrupt Pulse  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
117  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
6.12 Detailed Descriptions  
Integral Nonlinearity  
Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full  
scale. The point used as zero occurs one-half LSB before the first code transition. The full-scale point is  
defined as level one-half LSB beyond the last code transition. The deviation is measured from the center  
of each particular code to the true straight line between these two points.  
Differential Nonlinearity  
An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal  
value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.  
Zero Offset  
The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value one-half LSB above negative full scale. The last  
transition should occur at an analog value one and one-half LSB below the nominal full scale. Gain error is  
the deviation of the actual difference between first and last code transitions and the ideal difference  
between first and last code transitions.  
Signal-to-Noise Ratio + Distortion (SINAD)  
SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral  
components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is  
expressed in decibels.  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,  
(SINAD -1.76)  
N =  
6.02  
it is possible to get a measure of performance expressed as N, the effective number of  
bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be  
calculated directly from its measured SINAD.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first nine harmonic components to the rms value of the measured  
input signal and is expressed as a percentage or in decibels.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.  
118  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
6.13 Flash Timing  
Table 6-42. Flash/OTP Endurance for T Temperature Material(1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
0°C to 105°C (ambient)  
0°C to 30°C (ambient)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 6-43. Flash/OTP Endurance for S Temperature Material(1)  
ERASE/PROGRAM  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE  
0°C to 125°C (ambient)  
0°C to 30°C (ambient)  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 6-44. Flash/OTP Endurance for Q Temperature Material(1)  
ERASE/PROGRAM  
TEMPERATURE  
MIN  
TYP  
MAX  
UNIT  
Nf  
Flash endurance for the array (write/erase cycles)  
OTP endurance for the array (write cycles)  
–40°C to 125°C (ambient)  
–40°C to 30°C (ambient)  
20000  
50000  
cycles  
write  
NOTP  
1
(1) Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.  
Table 6-45. Flash Parameters at 60-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
MAX  
MAX  
UNIT  
(1)  
IDDP  
IDDIOP  
IDDIOP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG  
disabled  
80  
60  
mA  
(1)  
(1)  
VDDIO current consumption during Erase/Program cycle VREG enabled  
120  
mA  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off.  
Table 6-46. Flash Parameters at 50-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
UNIT  
(1)  
IDDP  
IDDIOP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG  
disabled  
70  
60  
mA  
(1)  
(1)  
IDDIOP  
VDDIO current consumption during Erase/Program cycle VREG enabled  
110  
mA  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off.  
Table 6-47. Flash Parameters at 40-MHz SYSCLKOUT  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
UNIT  
(1)  
IDDP  
IDDIOP  
VDD current consumption during Erase/Program cycle  
VDDIO current consumption during Erase/Program cycle  
VREG  
disabled  
60  
60  
mA  
(1)  
(1)  
IDDIOP  
VDDIO current consumption during Erase/Program cycle VREG enabled  
100  
mA  
(1) Typical parameters as seen at room temperature including function call overhead, with all peripherals off.  
Copyright © 2008–2010, Texas Instruments Incorporated  
Electrical Specifications  
119  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
UNIT  
Table 6-48. Flash Program/Erase Time  
TEST  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
Program Time 16-Bit Word  
8K Sector  
50  
250  
125  
2
ms  
ms  
ms  
s
4K Sector  
Erase Time  
8K Sector  
4K Sector  
2
s
Table 6-49. Flash/OTP Access Timing  
PARAMETER  
MIN  
MAX UNIT  
ta(fp)  
Paged Flash access time  
Random Flash access time  
OTP access time  
40  
40  
60  
ns  
ns  
ns  
ta(fr)  
ta(OTP)  
Table 6-50. Minimum Required Flash/OTP Wait-States at Different Frequencies  
SYSCLKOUT  
SYSCLKOUT  
(ns)  
PAGE  
RANDOM  
OTP  
WAIT-STATE  
(MHz)  
WAIT-STATE(1)  
WAIT-STATE(1)  
60  
16.67  
18.18  
20  
2
2
1
1
1
1
1
2
2
1
1
1
1
1
3
3
2
2
2
2
1
55  
50  
45  
22.22  
25  
40  
35  
28.57  
33.33  
30  
(1) Page and random wait-state must be 1.  
The equations to compute the Flash page wait-state and random wait-state in Table 6-50 are as follows:  
é
ê
ù
æ
ç
ç
è
ö
÷
ta(f ×p)  
Flash Page Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
÷
c(SCO) ø  
t
ê
ë
ú
û
é
ù
æ
ö
÷
ta(f ×r)  
ç
Flash Random Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
ê
ç
ê
÷
c(SCO) ø  
t
ú
è
ë
û
The equation to compute the OTP wait-state in Table 6-50 is as follows:  
é
ê
ù
æ
ç
ç
è
ö
÷
ta(OTP)  
OTP Wait State =  
-1 round up to the next highest integer, or 1, whichever is larger  
ú
÷
c(SCO) ø  
t
ê
ë
ú
û
120  
Electrical Specifications  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
7 Revision History  
This data sheet revision history highlights the technical changes made to the SPRS523E device-specific  
data sheet to make it an SPRS523F revision.  
Scope: See table below.  
LOCATION  
Section 2  
Table 2-1  
ADDITIONS, DELETIONS, AND MODIFICATIONS  
Changed section title from "Hardware Features" to "Introduction"  
Hardware Features:  
12-Bit ADC:  
Added row for "Dual Sample-and-Hold"  
Signal Descriptions:  
Added NOTE about using the on-chip VREG  
Register Map:  
Changed "The devices contain four peripheral register spaces" to "The devices contain three peripheral  
register spaces"  
Typical Specifications for External Quartz Crystal:  
Section 2.2  
Section 3.4  
Table 3-16  
Changed CL1 for 15 MHz from 12 pF to 15 pF  
Removed "CL (pF)" column  
Added footnote about Cshunt  
Section 4.1.1  
ADC:  
Section 4.1.1.1, Features:  
Updated Internal Reference list item and equations  
Updated External Reference list item and equations  
Section 4.1.1  
Section 5  
ADC:  
"ADC Connections if the ADC is Not Used" section:  
Changed "ADCINAn, ADCINBn – Connect to VSSA" to "ADCINAn, ADCINBn, VREFHI – Connect to VSSA  
Device Support:  
"
Added "XDS560 emulator" under Hardware Development Tools  
Section 5.3  
Section 6.3  
Added "Community Resources" section  
Electrical Characteristics:  
Removed "VDD BOR trip point" parameter  
Removed "VDD over-voltage trip point" parameter  
VREG VDD output:  
Removed MIN value of 1.865 V  
Removed MAX value of 1.955 V  
Updated footnote  
Table 6-9  
Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics:  
Internal zero-pin oscillator 1 (INTOSC1):  
Removed "tc(ZPOSC1), Cycle time" row  
Removed MIN Frequency of 9.7 MHz  
Removed MAX Frequency of 10.3 MHz  
Internal zero-pin oscillator 2 (INTOSC2):  
Removed "tc(ZPOSC2), Cycle time" row  
Removed MIN Frequency of 9.7 MHz  
Removed MAX Frequency of 10.3 MHz  
Temperature drift:  
Changed TYP value from 3 kHz/°C to 3.03 kHz/°C  
Added MAX value of 4.85 kHz/°C  
Updated "In order to achieve better oscillator accuracy ..." footnote  
Figure 6-5  
Added "Zero-Pin Oscillator Frequency Movement With Temperature" graph  
SPI Master Mode External Timing (Clock Phase = 0):  
Figure 6-19  
Replaced drawing  
Copyright © 2008–2010, Texas Instruments Incorporated  
Revision History  
121  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
www.ti.com  
LOCATION  
ADDITIONS, DELETIONS, AND MODIFICATIONS  
Electrical Characteristics of the Comparator/DAC:  
Table 6-37  
Input Hysteresis: Added reference to new footnote  
DAC settling time: Replaced TYP value of 2 µs with reference to Figure 6-23  
Added footnote  
Figure 6-23  
Table 6-48  
Added "DAC Settling Time" figure  
Flash Program/Erase Time:  
Erase time (8K Sector): Changed TYP value from 10 s to 2 s  
Erase time (4K Sector): Changed TYP value from 10 s to 2 s  
122  
Revision History  
Copyright © 2008–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
TMS320F28027, TMS320F28026, TMS320F28023, TMS320F28022  
TMS320F28021, TMS320F28020, TMS320F280200  
www.ti.com  
SPRS523FNOVEMBER 2008REVISED DECEMBER 2010  
8 Thermal/Mechanical Data  
Table 8-1 and Table 8-2 show the thermal data. See Section 6.5 for more information on thermal design  
considerations.  
The mechanical package diagrams that follow the tables reflect the most current released mechanical data  
available for the designated devices.  
Table 8-1. Thermal Model 38-Pin DA Results  
AIR FLOW  
PARAMETER  
0 lfm  
70.1  
0.34  
32.5  
12.8  
33  
150 lfm  
56.4  
250 lfm  
53.9  
500 lfm  
50.2  
qJA [°C/W] High k PCB  
ΨJT [°C/W]  
ΨJB  
0.61  
0.74  
0.98  
32.1  
31.7  
31.1  
qJC  
qJB  
Table 8-2. Thermal Model 48-Pin PT Results  
AIR FLOW  
PARAMETER  
0 lfm  
64  
150 lfm  
50.4  
250 lfm  
48.2  
500 lfm  
45  
qJA [°C/W] High k PCB  
ΨJT [°C/W]  
ΨJB  
0.56  
30.1  
13.6  
30.6  
0.94  
1.1  
1.38  
28  
28.7  
28.4  
qJC  
qJB  
Copyright © 2008–2010, Texas Instruments Incorporated  
Thermal/Mechanical Data  
123  
Submit Documentation Feedback  
Product Folder Link(s): TMS320F28027 TMS320F28026 TMS320F28023 TMS320F28022 TMS320F28021  
TMS320F28020 TMS320F280200  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jun-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TMS320F280200DAS  
TMS320F280200DAT  
TMS320F280200PTS  
TMS320F280200PTT  
TMS320F28020DAS  
TMS320F28020DAT  
TMS320F28020PTS  
TMS320F28020PTT  
TMS320F28021DAS  
TMS320F28021DAT  
TMS320F28021PTS  
TMS320F28021PTT  
TMS320F28022DAQ  
TMS320F28022DAS  
TMS320F28022DAT  
TMS320F28022PTQ  
TMS320F28022PTS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
LQFP  
DA  
DA  
PT  
PT  
DA  
DA  
PT  
PT  
DA  
DA  
PT  
PT  
DA  
DA  
DA  
PT  
PT  
38  
38  
48  
48  
38  
38  
48  
48  
38  
38  
48  
48  
38  
38  
38  
48  
48  
40  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
250  
250  
40  
Green (RoHS  
& no Sb/Br)  
LQFP  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
LQFP  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
250  
250  
40  
Green (RoHS  
& no Sb/Br)  
LQFP  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
LQFP  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
250  
250  
40  
Green (RoHS  
& no Sb/Br)  
LQFP  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
LQFP  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
1
Green (RoHS  
& no Sb/Br)  
LQFP  
250  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jun-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TMS320F28022PTT  
TMS320F28023DAQ  
TMS320F28023DAS  
TMS320F28023DAT  
TMS320F28023PTQ  
TMS320F28023PTS  
TMS320F28023PTT  
TMS320F28026DAQ  
TMS320F28026DAS  
TMS320F28026DAT  
TMS320F28026DATR  
TMS320F28026PTQ  
TMS320F28026PTS  
TMS320F28026PTT  
TMS320F28027DAQ  
TMS320F28027DAS  
TMS320F28027DAT  
TMS320F28027DATR  
LQFP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
PT  
DA  
DA  
DA  
PT  
PT  
PT  
DA  
DA  
DA  
DA  
PT  
PT  
PT  
DA  
DA  
DA  
DA  
48  
38  
38  
38  
48  
48  
48  
38  
38  
38  
38  
48  
48  
48  
38  
38  
38  
38  
250  
40  
40  
40  
1
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LQFP  
1
Green (RoHS  
& no Sb/Br)  
LQFP  
1
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
LQFP  
40  
40  
40  
2000  
1
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LQFP  
1
Green (RoHS  
& no Sb/Br)  
LQFP  
1
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
40  
40  
40  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jun-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TMS320F28027PTQ  
TMS320F28027PTS  
TMS320F28027PTT  
LQFP  
LQFP  
LQFP  
PT  
PT  
PT  
48  
48  
48  
1
1
1
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
MECHANICAL DATA  
MTQF003A – OCTOBER 1994 – REVISED DECEMBER 1996  
PT (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,08  
0,50  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
6,80  
Gage Plane  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,10  
1,60 MAX  
4040052/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. This may also be a thermally enhanced plastic package with leads conected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

TMS320F28022PTS

Piccolo Microcontrollers
TI

TMS320F28022PTSCA

Piccolo Microcontroller 48-LQFP -40 to 125
TI

TMS320F28022PTT

Piccolo Microcontrollers
TI

TMS320F28023

Piccolo Microcontrollers
TI

TMS320F28023-Q1

TMS320F2802x Microcontrollers
TI

TMS320F280230

Piccolo Microcontrollers
TI

TMS320F280230DAS

Piccolo Microcontrollers
TI

TMS320F280230DAT

Piccolo Microcontrollers
TI

TMS320F280230PTS

Piccolo Microcontrollers
TI

TMS320F280230PTT

Piccolo Microcontrollers
TI

TMS320F2802338A

TMS320x28027, TMS320x28026, TMS320x28025,TMS320x28024, TMS320x28023, TMS320x28022 Piccolo MCU
TI

TMS320F2802338S

TMS320x28027, TMS320x28026, TMS320x28025,TMS320x28024, TMS320x28023, TMS320x28022 Piccolo MCU
TI