TMS320UC5405ZQW [TI]

Fixed-Point Digital Signal Processor; 定点数字信号处理器
TMS320UC5405ZQW
型号: TMS320UC5405ZQW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Fixed-Point Digital Signal Processor
定点数字信号处理器

外围集成电路 数字信号处理器 时钟
文件: 总77页 (文件大小:1030K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320UC5405 Fixed-Point  
Digital Signal Processor  
Data Manual  
Literature Number: SPRS199B  
October 2002 − Revised October 2004  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Revision History  
REVISION HISTORY  
This data sheet revision history highlights the technical changes made to the SPRS199A device-specific data  
sheet to make it an SPRS199B revision.  
Scope: This document has been reviewed for technical accuracy; the technical content is up-to-date as of the  
specified release date with the following changes.  
PAGE(S)  
ADDITIONS/CHANGES/DELETIONS  
NO.  
Global:  
Added “ZQW” mechanical data package device-specific information.  
Moved “Package Thermal Resistance Characteristics” section (was page 42 in SPRS199A) to the Mechanical Data section  
18  
Signal Descriptions table, TEST PINS:  
Added “EMU0 should be pulled up to DV with a separate 4.7-kresistor” to the EMU0 pin DESCRIPTION column  
DD  
Added “EMU1/OFF should be pulled up to DV with a separate 4.7-kresistor” to the EMU1/OFF pin DESCRIPTION  
DD  
column  
39  
74  
Device Support section:  
Added new section  
Added associated figure  
Mechanical Data section:  
Deleted the “GQW (S−PBGA−N143)” mechanical data package diagram; now an automated merge process  
Added lead-in sentences for the thermal resistance characteristics table(s) and the “merged” mechanical data packages  
Added “for GQW” to the Thermal Resistance Characteristics table  
Added Thermal Resistance Characteristics table for the “ZQW” package  
3
October 2002 − Revised October 2004  
SPRS199B  
Revision History  
This page intentionally left blank  
4
SPRS199B  
October 2002 − Revised October 2004  
Contents  
Contents  
Section  
Page  
1
2
TMS320UC5405 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12  
12  
12  
13  
15  
2.1  
2.2  
2.3  
2.4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Assignments for the GQW and ZQW Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
19  
19  
19  
20  
21  
21  
22  
23  
23  
26  
28  
28  
30  
33  
33  
34  
35  
35  
37  
38  
3.1  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
On-Chip Dual-Access RAM (DARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
On-Chip ROM With Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Implications of 6-Bit Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Relocatable Interrupt Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2  
On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
Software-Programmable Wait-State Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Hardware Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.3  
3.4  
Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
CPU Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Peripheral Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Control Registers and Subaddresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Subbank Addressed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4.1 IFR and IMR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
Device Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1 Device and Development-Support Tool Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
39  
39  
5
6
Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
41  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
42  
42  
42  
43  
44  
45  
45  
46  
47  
6.1  
6.2  
6.3  
6.4  
6.5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Electrical Characteristics Over Recommended Operating Case Temperature Range . . . . . . .  
Timing Parameter Symbology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.5.1  
6.5.2  
6.5.3  
Internal Oscillator With External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Divide-By-Two Clock Option (PLL disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multiply-By-N Clock Option (PLL Enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
October 2002 − Revised October 2004  
SPRS199B  
Contents  
Section  
Page  
6.6  
Memory and Parallel I/O Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
48  
48  
50  
52  
53  
54  
57  
58  
60  
61  
62  
62  
65  
66  
70  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I/O Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I/O Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.7  
6.8  
6.9  
6.10  
6.11  
6.12  
Ready Timing for Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOLD and HOLDA Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reset, BIO, Interrupt, and MP/MC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interrupt Acknowledge (IACK) Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
External Flag (XF) and TOUT Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multichannel Buffered Serial Port (McBSP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.12.1  
6.12.2  
6.12.3  
McBSP Transmit and Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP General-Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP as SPI Master or Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6.13  
Host-Port Interface Timing (HPI8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
74  
6
SPRS199B  
October 2002 − Revised October 2004  
Figures  
List of Figures  
Figure  
Page  
2−1  
143-Terminal GQW and ZQW Ball Grid Array (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
Block Diagram of the TMS320UC5405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TMS320UC5405 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TMS320UC5405 External Memory Paging Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Processor Mode Status (PMST) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h] . . .  
Software Wait-State Control Register (SWCR) [MMR Address 002Bh] . . . . . . . . . . . . . . . . . . . . . . .  
Bank-Switching Control Register (BSCR) [MMR Address 0029h] . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HPI8 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
19  
21  
22  
22  
23  
24  
25  
26  
30  
38  
3−10 IFR and IMR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4−1  
TMS320UC5405 DSP Device Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
40  
6−1  
6−2  
6−3  
6−4  
6−5  
6−6  
6−7  
6−8  
6−9  
1.8-V Test Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Internal Oscillator With External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
External Divide-by-Two Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
External Multiply-by-One Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
43  
45  
46  
47  
49  
51  
52  
53  
54  
55  
55  
56  
57  
58  
59  
59  
60  
61  
61  
64  
64  
65  
66  
67  
6−10 Memory Write With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−11 I/O Read With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−12 I/O Write With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−13 HOLD and HOLDA Timings (HM = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−14 Reset and BIO Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−15 Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−16 MP/MC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−17 IACK Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−18 XF Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−19 TOUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−20 McBSP Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−21 McBSP Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−22 McBSP General-Purpose I/O Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−23 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . .  
6−24 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . .  
7
October 2002 − Revised October 2004  
SPRS199B  
Figures  
Figure  
Page  
6−25 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . .  
6−26 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . .  
6−27 Using HDS to Control Accesses (HCS Always Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−28 Using HCS to Control Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−29 HINT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6−30 GPIOx Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
68  
69  
72  
73  
73  
73  
8
SPRS199B  
October 2002 − Revised October 2004  
Tables  
Page  
List of Tables  
Table  
2−1  
2−2  
Terminal Assignments (143-Terminal GQW and ZQW Packages) . . . . . . . . . . . . . . . . . . . . . . . . .  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
14  
15  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
Standard On-Chip ROM Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software Wait-State Register (SWWSR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software Wait-State Control Register (SWCR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bank-Switching Control Register (BSCR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Mode Settings at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Channel Interrupt Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CPU Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Peripheral Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Control Registers and Subaddresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Subbank Addressed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interrupt Locations and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IFR and IMR Register Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20  
24  
24  
25  
29  
32  
32  
32  
33  
34  
35  
36  
37  
38  
3−9  
3−10  
3−11  
3−12  
3−13  
3−14  
6−1  
6−2  
6−3  
6−4  
6−5  
6−6  
6−7  
6−8  
Divide-By-2 and Divide-by-4 Clock Options Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . .  
Divide-By-2 and Divide-by-4 Clock Options Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . .  
Multiply-By-N Clock Option Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multiply-By-N Clock Option Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Write Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I/O Read Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I/O Read Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I/O Write Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ready Timing Requirements for Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . .  
HOLD and HOLDA Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOLD and HOLDA Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reset, BIO, Interrupt, and MP/MC Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interrupt Acknowledge (IACK) Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
External Flag (XF) and TOUT Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Transmit and Receive Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Transmit and Receive Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP General-Purpose I/O Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP General-Purpose I/O Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) . . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) . . . . . . .  
46  
46  
47  
47  
48  
48  
50  
52  
52  
53  
54  
57  
57  
58  
60  
61  
62  
63  
65  
65  
66  
66  
67  
67  
68  
68  
69  
69  
6−9  
6−10  
6−11  
6−12  
6−13  
6−14  
6−15  
6−16  
6−17  
6−18  
6−19  
6−20  
6−21  
6−22  
6−23  
6−24  
6−25  
6−26  
6−27  
6−28  
9
October 2002 − Revised October 2004  
SPRS199B  
Tables  
Table  
Page  
6−29  
6−30  
HPI8 Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HPI8 Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
70  
71  
7−1  
7−2  
Thermal Resistance Characteristics for GQW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Thermal Resistance Characteristics for ZQW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
74  
74  
10  
SPRS199B  
October 2002 − Revised October 2004  
Features  
1
TMS320UC5405 Features  
D
D
D
Advanced Multibus Architecture With Three  
Separate 16-Bit Data Memory Buses and  
One Program Memory Bus  
D
Arithmetic Instructions With Parallel Store  
and Parallel Load  
D
D
D
Conditional Store Instructions  
Fast Return From Interrupt  
40-Bit Arithmetic Logic Unit (ALU),  
Including a 40-Bit Barrel Shifter and Two  
Independent 40-Bit Accumulators  
On-Chip Peripherals  
− Software-Programmable Wait-State  
Generator and Programmable Bank  
Switching  
− On-Chip Phase-Locked Loop (PLL) Clock  
Generator With Internal Oscillator or  
External Clock Source  
− Two Multichannel Buffered Serial Ports  
(McBSPs)  
− Enhanced 8-Bit Parallel Host-Port  
Interface (HPI8)  
17- × 17-Bit Parallel Multiplier Coupled to a  
40-Bit Dedicated Adder for Non-Pipelined  
Single-Cycle Multiply/Accumulate (MAC)  
Operation  
D
D
D
D
Compare, Select, and Store Unit (CSSU) for  
the Add/Compare Selection of the Viterbi  
Operator  
Exponent Encoder to Compute an  
Exponent Value of a 40-Bit Accumulator  
Value in a Single Cycle  
− Two 16-Bit Timers  
− Six-Channel Direct Memory Access  
(DMA) Controller  
Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
D
Power Consumption Control With IDLE1,  
IDLE2, and IDLE3 Instructions With  
Power-Down Modes  
Simplified External Memory Interface  
(6-Bit Address Available, A0−A5)  
D
D
CLKOUT Off Control to Disable CLKOUT  
On-Chip Scan-Based Emulation Logic,  
D
D
D
Data Bus With a Bus-Holder Feature  
4K x 16-Bit On-Chip ROM  
IEEE Std 1149.1 (JTAG) Boundary Scan  
16K x 16-Bit On-Chip Dual-Access RAM  
(DARAM)  
Logic  
D
12.5-ns Single-Cycle Fixed-Point  
Instruction Execution Time (80 MIPS)  
D
D
D
D
Single-Instruction-Repeat and  
Block-Repeat Operations for Program Code  
D
D
1.8-V Core Power Supply  
Block-Memory-Move Instructions for  
Efficient Program and Data Management  
1.8-V to 3.6-V I/O Power Supply Enables  
Operation With a Single 1.8-V Supply or  
With Dual Supplies  
Instructions With a 32-Bit-Long Word  
Operand  
D
Available in a 143-Ball MicroStar Junior  
Ball Grid Array (BGA) (GQW/ZQW Suffixes)  
Instructions With Two- or Three-Operand  
Reads  
MicroStar Junior is a trademark of Texas Instruments.  
Other trademarks are the property of their respective owners.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
11  
October 2002 − Revised October 2004  
SPRS199B  
 
Introduction  
2
Introduction  
This section describes the main features of the TMS320UC5405, lists the pin assignments, and describes the  
function of each pin. This data manual also provides a detailed description section, electrical specifications,  
parameter measurement information, and mechanical data about the available packaging.  
NOTE: This data manual is designed to be used in conjunction with theTMS320C54xDSP Functional  
Overview (literature number SPRU307).  
2.1 Description  
The TMS320UC5405 fixed-point, digital signal processor (DSP) (hereafter referred to as the UC5405 unless  
otherwise specified) is ideal for low-power, high-performance applications. This processor offers very low  
power consumption and the flexibility to support various system voltage configurations. The wide range of I/O  
voltage enables it to operate with a single 1.8-V power supply or with dual power supplies for mixed-voltage  
systems. This feature eliminates the need for external level-shifting and reduces power consumption in  
emerging sub-3V systems.  
The TMS320UC5405 is essentially similar to a TMS320UC5402 DSP. The main differences are listed below:  
Simplified external memory interface. There are six address lines (A0−A5) and 16 data lines (D0−D15)  
available.  
MSC and IAQ signals are not available.  
Significantly reduced package size.  
Texas Instrument (TI) DSPs do not require specific power sequencing between the core supply and the I/O  
supply. However, systems should be designed to ensure that neither supply is powered up for extended  
periods of time if the other supply is below the proper operating voltage. Excessive exposure to these  
conditions can adversely affect the long-term reliability of the device.  
System-level concerns such as bus contention may require supply sequencing to be implemented. In this  
case, the core supply should be powered up at the same time as, or prior to, the I/O buffers and powered down  
after the I/O buffers.  
The UC5405 is based on an advanced modified Harvard architecture that has one program memory bus and  
three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of  
parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The  
basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.  
2.2 Pin Assignments  
Figure 2−1 illustrates the ball locations for the 143-terminal GQW and ZQW ball grid array (BGA) packages  
and is used in conjunction with Table 2−1 to locate signal names and ball grid numbers. DV is the power  
DD  
supply for the I/O pins while CV is the power supply for the core CPU. V is the ground for both the I/O  
DD  
SS  
pins and the core CPU.  
TMS320C54x is a trademark of Texas Instruments.  
12  
SPRS199B  
October 2002 − Revised October 2004  
 
Introduction  
2.3 Terminal Assignments for the GQW and ZQW Packages  
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12  
Figure 2−1. 143-Terminal GQW and ZQW Ball Grid Array (Bottom View)  
13  
October 2002 − Revised October 2004  
SPRS199B  
 
Introduction  
Table 2−1. Terminal Assignments (143-Terminal GQW and ZQW Packages)  
SIGNAL  
NAME  
SIGNAL  
NAME  
SIGNAL  
NAME  
SIGNAL  
NAME  
BGA BALL #  
BGA BALL #  
BGA BALL #  
BGA BALL #  
A1  
A2  
V
V
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
BDR1  
BFSR1  
BFSR0  
NC  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
DV  
K1  
K2  
INT1  
INT0  
INT3  
EMU0  
TDI  
SS  
SS  
DD  
V
SS  
A3  
MP/MC  
HOLDA  
IOSTRB  
IS  
HRDY  
NC  
K3  
A4  
K4  
A5  
NC  
NC  
K5  
A6  
NC  
NC  
K6  
TMS  
A7  
READY  
NC  
NC  
K7  
CV  
DD  
A8  
CV  
NC  
NC  
K8  
X1  
DD  
A9  
V
SS  
NC  
NC  
K9  
D0  
D3  
A10  
A11  
A12  
B1  
HD7  
A1  
D14  
HD4  
D13  
BDX0  
HD0  
BDX1  
INT2  
NC  
K10  
K11  
K12  
L1  
V
SS  
DV  
DV  
DD  
DD  
CV  
A0  
D6  
CV  
DD  
BCLKR1  
HCNTL0  
BIO  
V
SS  
DD  
B2  
E2  
BCLKX1  
HINT/TOUT1  
HCNTL1  
NC  
L2  
HD1  
CLKMD2  
HD2  
B3  
E3  
L3  
B4  
XF  
E4  
L4  
B5  
MSTRB  
DS  
E5  
L5  
EMU1/OFF  
TRST  
B6  
E6  
NC  
NC  
L6  
B7  
HR/W  
NC  
E7  
NC  
NC  
L7  
V
SS  
B8  
E8  
NC  
NC  
L8  
CLKOUT  
B9  
HAS  
E9  
NC  
NC  
L9  
X2/CLKIN  
D1  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
DV  
E10  
E11  
E12  
F1  
HDS2  
HDS1  
D12  
D10  
D11  
HBIL  
IACK  
NMI  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
DD  
A5  
D5  
A4  
V
SS  
V
SS  
V
SS  
V
SS  
BDR0  
BFSX0  
CV  
BCLKR0  
F2  
J2  
DD  
DV  
F3  
BFSX1  
BCLKX0  
NC  
J3  
CLKMD3  
TOUT0  
TDO  
DD  
HOLD  
NC  
F4  
J4  
DV  
DD  
F5  
J5  
CLKMD1  
NC  
R/W  
PS  
F6  
NC  
J6  
TCK  
F7  
NC  
J7  
NC  
HPIENA  
HD3  
HCS  
NC  
F8  
NC  
J8  
NC  
F9  
NC  
J9  
NC  
RS  
HD6  
A2  
F10  
F11  
F12  
D15  
J10  
J11  
J12  
D9  
D2  
CV  
D7  
D4  
DD  
C12  
A3  
HD5  
D8  
V
SS  
DV is the power supply for the I/O pins while CV is the power supply for the core CPU. V is the ground for both the I/O pins and the core  
DD  
DD  
SS  
CPU.  
If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
NOTE: NC = No connection  
14  
SPRS199B  
October 2002 − Revised October 2004  
 
Introduction  
2.4 Signal Descriptions  
Table 2−2 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact  
pin locations based on package type.  
Table 2−2. Signal Descriptions  
TERMINAL  
NAME  
TYPE  
DESCRIPTION  
DATA SIGNALS  
A5  
A4  
A3  
A2  
A1  
A0  
(MSB)  
O/Z  
Parallel address bus A5 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. These pins are placed  
in the high-impedance state when the hold mode is enabled, or when EMU1/OFF is low.  
(LSB)  
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
I/O/Z  
Parallel data bus D15 (MSB) through D0 (LSB). The sixteen data pins (D0 to D15) are multiplexed to transfer  
data between the core CPU and external data/program memory or I/O devices. The data bus is placed in the  
high-impedance state when not outputting or when RS or HOLD is asserted. The data bus also goes into the  
high-impedance state when EMU1/OFF is low.  
The data bus has bus holders to reduce the static power dissipation caused by floating, unused pins. These bus  
holders also eliminate the need for external bias resistors on unused pins. When the data bus is not being driven  
by the UC5405, the bus holders keep the pins at the previous logic level. The data bus holders on the UC5405  
are disabled at reset and can be enabled/disabled via the BH bit of the bank-switching control register (BSCR).  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
INITIALIZATION, INTERRUPT, AND RESET OPERATIONS  
Interrupt acknowledge signal. IACK Indicates receipt of an interrupt and that the program counter is fetching the  
interrupt vector location designated by A5−A0. IACK also goes into the high-impedance state when EMU1/OFF  
is low.  
IACK  
O/Z  
I
INT0  
INT1  
INT2  
INT3  
External user interrupts. INT0−INT3 are prioritized and are maskable by the interrupt mask register (IMR) and  
the interrupt mode bit. INT0 −INT3 can be polled and reset by way of the interrupt flag register (IFR).  
Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM bit (in the ST1  
register) or the IMR. When NMI is activated, the processor traps to the appropriate vector location.  
NMI  
I
I
Reset. RS causes the digital signal processor (DSP) to terminate execution and causes a reinitialization of the  
CPU and peripherals. When RS is brought to a high level, execution begins at location 0FF80h of program  
memory. RS affects various registers and status bits.  
RS  
Microprocessor/microcomputer mode select. If active (low) at reset, microcomputer mode is selected, and the  
internal program ROM is mapped into the upper 4K words of program memory space. If the pin is driven high  
during reset, microprocessor mode is selected, and the on-chip ROM is removed from program space. This pin  
is only sampled at reset, and the MP/MC bit of the processor mode status (PMST) register can override the mode  
that is selected at reset.  
MP/MC  
I
I = input, O = output, Z = high impedance, S = supply  
If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
15  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Introduction  
Table 2−2. Signal Descriptions (Continued)  
DESCRIPTION  
TERMINAL  
NAME  
TYPE  
MULTIPROCESSING SIGNALS  
Branch control. A branch can be conditionally executed when BIO is active. If low, the processor executes the  
conditional instruction. For the XC instruction, the BIO condition is sampled during the decode phase of the  
pipeline; all other instructions sample BIO during the read phase of the pipeline.  
BIO  
XF  
I
External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low  
by the RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor  
configurations or used as a general-purpose output pin. XF goes into the high-impedance state when EMU1/OFF  
is low, and is set high at reset.  
O/Z  
MEMORY CONTROL SIGNALS  
Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for accessing  
a particular external memory space. Active period corresponds to valid address information. DS, PS, and IS are  
placed in the high-impedance state in the hold mode; the signals also go into the high-impedance state when  
EMU1/OFF is low.  
DS  
PS  
IS  
O/Z  
O/Z  
I
Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to  
data or program memory. MSTRB is placed in the high-impedance state in the hold mode; it also goes into the  
high-impedance state when EMU1/OFF is low.  
MSTRB  
READY  
R/W  
Data ready. READY indicates that an external device is prepared for a bus transaction to be completed. If the  
device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the  
processor performs ready detection if at least two software wait states are programmed. The READY signal is  
not sampled until the completion of the software wait states.  
Read/write signal. R/W indicates transfer direction during communication to an external device. R/W is normally  
in the read mode (high), unless it is asserted low when the DSP performs a write operation. R/W is placed in the  
high-impedance state in hold mode; it also goes into the high-impedance state when EMU1/OFF is low.  
O/Z  
I/O strobe signal. IOSTRB is always high unless low-level asserted to indicate an external bus access to an I/O  
device. IOSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance  
state when EMU1/OFF is low.  
IOSTRB  
HOLD  
O/Z  
I
Hold. HOLD is asserted to request control of the address, data, and control lines. When acknowledged by the  
C54x, these lines go into the high-impedance state.  
Hold acknowledge. HOLDA indicates that the UC5405 is in a hold state and that the address, data, and control  
lines are in the high-impedance state, allowing the external memory interface to be accessed by other devices.  
HOLDA also goes into the high-impedance state when EMU1/OFF is low.  
HOLDA  
O/Z  
PLL/TIMER SIGNALS  
Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal machine cycle  
is bounded by the rising edges of this signal. CLKOUT also goes into the high-impedance state when EMU1/OFF  
is low.  
CLKOUT  
O/Z  
I
Clock mode-select signals. These inputs select the mode that the clock generator is initialized to after reset. The  
logic levels of CLKMD1–CLKMD3 are latched when the reset pin is low, and the clock mode register is initialized  
to the selected mode. After reset, the clock mode can be changed through software, but the clock mode-select  
signals have no effect until the device is reset again.  
CLKMD1  
CLKMD2  
CLKMD3  
X2/CLKIN  
X1  
I
Clock/PLL input. If the internal oscillator is not being used, X2/CLKIN functions as the clock input.  
Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should be left  
unconnected. X1 does not go into the high-impedance state when EMU1/OFF is low.  
O
Timer0 output. TOUT0 signals a pulse when the on-chip timer 0 counts down past zero. The pulse is a CLKOUT  
cycle wide. TOUT0 also goes into the high-impedance state when EMU1/OFF is low.  
TOUT0  
O/Z  
O/Z  
Timer1 output. TOUT1 signals a pulse when the on-chip timer 1 counts down past zero. The pulse is one  
CLKOUT cycle wide. The TOUT1 output is multiplexed with the HINT pin of the HPI and is only available when  
the HPI is disabled. TOUT1 also goes into the high-impedance state when EMU1/OFF is low.  
HINT/TOUT1  
I = input, O = output, Z = high impedance, S = supply  
If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
C54x is a trademark of Texas Instruments.  
16  
SPRS199B  
October 2002 − Revised October 2004  
Introduction  
Table 2−2. Signal Descriptions (Continued)  
DESCRIPTION  
TERMINAL  
NAME  
TYPE  
MULTICHANNEL BUFFERED SERIAL PORT SIGNALS  
Receive clock input. BCLKR serves as the serial shift clock for the buffered serial port receiver.  
BCLKR0  
BCLKR1  
I/O/Z  
I
BDR0  
BDR1  
Serial data receive input  
BFSR0  
BFSR1  
I/O/Z  
Frame synchronization pulse for receive input. The BFSR pulse initiates the receive data process over BDR.  
Transmit clock. BCLKX serves as the serial shift clock for the McBSP transmitter. BCLKX can be configured as  
an input or an output; it is configured as an input following reset. BCLKX enters the high-impedance state when  
EMU1/OFF goes low.  
BCLKX0  
BCLKX1  
I/O/Z  
O/Z  
BDX0  
BDX1  
Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when RS is  
asserted, or when EMU1/OFF is low.  
Frame synchronization pulse for transmit input/output. The BFSX pulse initiates the transmit data process. BFSX  
can be configured as an input or an output; it is configured as an input following reset. BFSX goes into the  
high-impedance state when EMU1/OFF is low.  
BFSX0  
BFSX1  
I/O/Z  
HOST-PORT INTERFACE SIGNALS  
Parallel bidirectional data bus. The HPI data bus is used by a host device bus to exchange information with the  
HPI registers. These pins can also be used as general-purpose I/O pins. HD0−HD7 is placed in the  
high-impedance state when not outputting data or when EMU1/OFF is low. The HPI data bus includes bus  
holders to reduce the static power dissipation caused by floating, unused pins. When the HPI data bus is not  
being driven by the UC5405, the bus holders keep the pins at the previous logic level. The HPI data bus holders  
are disabled at reset and can be enabled/disabled via the HBH bit of the BSCR.  
HD0−HD7  
I/O/Z  
HCNTL0  
HCNTL1  
Control. HCNTL0 and HCNTL1 select a host access to one of the three HPI registers. The control inputs have  
internal pullup resistors that are only enabled when HPIENA = 0.  
I
Byte identification. HBIL identifies the first or second byte of transfer. The HBIL input has an internal pullup  
resistor that is only enabled when HPIENA = 0.  
HBIL  
HCS  
I
Chip select. HCS is the select input for the HPI and must be driven low during accesses. The chip-select input  
has an internal pullup resistor that is only enabled when HPIENA = 0.  
I
HDS1  
HDS2  
Data strobe. HDS1 and HDS2 are driven by the host read and write strobes to control transfers. The strobe inputs  
have internal pullup resistors that are only enabled when HPIENA = 0.  
I
Address strobe. Hosts with multiplexed address and data pins require HAS to latch the address in the HPIA  
register. HAS has an internal pullup resistor that is only enabled when HPIENA = 0.  
HAS  
I
I
Read/write. HR/W controls the direction of an HPI transfer. HR/W has an internal pullup resistor that is only  
enabled when HPIENA = 0.  
HR/W  
HRDY  
Ready. The ready output informs the host when the HPI is ready for the next transfer. HRDY goes into the  
high-impedance state when EMU1/OFF is low.  
O/Z  
Interrupt. This output is used to interrupt the host. When the DSP is in reset, HINT is driven high. HINT can also  
be configured as the timer 1 output (TOUT1) when the HPI is disabled. The signal goes into the high-impedance  
state when EMU1/OFF is low.  
HINT/TOUT1  
HPIENA  
O/Z  
I
HPI module select. HPIENA must be driven high during reset to enable the HPI. An internal pulldown resistor  
is always active and the HPIENA pin is sampled on the rising edge of RS. If HPIENA is left open or is driven low  
during reset, the HPI module is disabled. Once the HPI is disabled, the HPIENA pin has no effect until the UC5405  
is reset.  
SUPPLY PINS  
CV  
DV  
S
S
S
+V . Dedicated power supply for the core CPU  
DD  
DD  
+V . Dedicated power supply for the I/O pins  
DD  
DD  
V
SS  
Ground  
I = input, O = output, Z = high impedance, S = supply  
If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
17  
October 2002 − Revised October 2004  
SPRS199B  
Introduction  
Table 2−2. Signal Descriptions (Continued)  
DESCRIPTION  
TERMINAL  
NAME  
TYPE  
MISCELLANEOUS SIGNAL  
NC  
No connection  
TEST PINS  
IEEE standard 1149.1 (JTAG) test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The  
changes on the test access port (TAP) of input signals TMS and TDI are clocked into the TAP controller,  
instruction register, or selected test data register on the rising edge of TCK. Changes at the TAP output signal  
(TDO) occur on the falling edge of TCK.  
TCK  
I
IEEE standard 1149.1 test data input pin with internal pullup device. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK.  
TDI  
I
IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted out  
of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in  
progress. TDO also goes into the high-impedance state when EMU1/OFF is low.  
TDO  
TMS  
TRST  
O/Z  
IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
I
I
IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the  
operations of the device. If TRST is not connected or is driven low, the device operates in its functional mode,  
and the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown device.  
Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST  
is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way  
EMU0  
I/O/Z  
of the IEEE standard 1149.1 scan system. EMU0 should be pulled up to DV with a separate 4.7-kresistor.  
DD  
Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the  
emulator system and is defined as input/output by way of the IEEE standard 1149.1 scan system. When TRST  
is driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active (low), puts all output drivers  
into the high-impedance state. EMU1/OFF should be pulled up to DV with a separate 4.7-kresistor. Note  
that OFF is used exclusively for testing and emulation purposes (not for multiprocessing applications). Therefore,  
DD  
EMU1/OFF  
I/O/Z  
for the OFF feature, the following apply:  
TRST = low  
EMU0 = high  
EMU1/OFF = low  
I = input, O = output, Z = high impedance, S = supply  
If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
18  
SPRS199B  
October 2002 − Revised October 2004  
Functional Overview  
3
Functional Overview  
The following functional overview is based on the block diagram in Figure 3−1.  
P, C, D, E Buses and Control Signals  
54x Core  
4K ROM Program/Data  
16K Dual-Access RAM  
Program/Data  
JTAG  
Peripheral Bus  
GPIO  
Limited External  
Memory Interface  
McBSP0  
McBSP1  
HPI8 Module  
DMA Controller  
6 Channels  
Timer0  
Timer1  
APLL  
DMA Bus  
Figure 3−1. Block Diagram of the TMS320UC5405  
3.1 Memory  
The UC5405 device provides both on-chip ROM and RAM to aid in system performance and integration.  
3.1.1 On-Chip Dual-Access RAM (DARAM)  
The UC5405 device contains 16K × 16-bit of on-chip dual-access RAM (DARAM). The DARAM is composed  
of two blocks of 8K words each. Each block in the DARAM can support two reads in one cycle, or a read and  
a write in one cycle. The DARAM is located in the address range 0080h−3FFFh in data space, and can be  
mapped into program/data space by setting the OVLY bit to 1.  
19  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
3.1.2 On-Chip ROM With Bootloader  
The UC5405 features 4K × 16-bit of on-chip maskable ROM. Customers can arrange to have the ROM of the  
UC5405 programmed with contents unique to any particular application. A security option is available to  
protect a custom ROM. This security option is described in the TMS320C54x DSP Reference Set, Volume 1:  
CPU and Peripherals (literature number SPRU131). Note that only the ROM security option, and not the  
ROM/RAM option, is available on the UC5405 .  
A bootloader is available in the standard UC5405 on-chip ROM. This bootloader can be used to automatically  
transfer user code from an external source to anywhere in the program memory at power up. If the MP/MC  
pin is sampled low during a hardware reset, execution begins at location FF80h of the on-chip ROM. This  
location contains a branch instruction to the start of the bootloader program. The standard UC5405 bootloader  
provides different ways to download the code to accomodate various system requirements:  
Serial boot from serial ports 8-bit or 16-bit mode  
Host-port interface boot  
The standard on-chip ROM layout is shown in Table 3−1.  
Table 3−1. Standard On-Chip ROM Layout  
ADDRESS RANGE  
DESCRIPTION  
F000h − F7FFh  
Reserved  
F800h − FBFFh  
FC00h − FCFFh  
FD00h − FDFFh  
FE00h − FEFFh  
FF00h − FF7Fh  
FF80h − FFFFh  
Bootloader  
µ-law expansion table  
A-law expansion table  
Sine look-up table  
Reserved  
Interrupt vector table  
In the UC5405 ROM, 128 words are reserved for factory device-testing purposes. Application  
code to be implemented in on-chip ROM must reserve these 128 words at addresses  
FF00h–FF7Fh in program space.  
20  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Functional Overview  
3.1.3 Memory Map  
Page 0 Program  
Page 0 Program  
Data  
Hex  
0000  
Hex  
Hex  
0000  
0000  
Memory  
Mapped  
Registers  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
005F  
0060  
Scratch-Pad  
RAM  
007F  
0080  
007F  
0080  
007F  
0080  
On-Chip DARAM  
(OVLY = 1)  
On-Chip DARAM  
(OVLY = 1)  
On-Chip DARAM  
(16K x 16-bit)  
External  
(OVLY = 0)  
External  
(OVLY = 0)  
3FFF  
4000  
3FFF  
4000  
3FFF  
4000  
External  
External  
EFFF  
F000  
EFFF  
F000  
ROM (DROM=1)  
External  
On-Chip ROM  
(4K x 16-bit)  
or External  
(DROM=0)  
FEFF  
FF00  
FEFF  
FF00  
Reserved  
FF7F  
FF80  
Reserved  
(DROM=1)  
or External  
(DROM=0)  
FF7F  
FF80  
Interrupts  
(On-Chip)  
Reserved  
MP/MC= 1  
FFFF  
FFFF  
FFFF  
MP/MC= 0  
(Microcomputer Mode)  
(Microprocessor Mode)  
Only six of the 16 total TMS320UC5405 address bits are available to the external interface; therefore, only 64 unique external addresses are  
available, regardless of the actual 16-bit address generated internally. These 64 addresses are those resulting from the truncation of the upper  
address bits (A6 and above). This results in these 64 addresses being repeated throughout all of the external address space.  
Figure 3−2. TMS320UC5405 Memory Map  
3.1.4 Implications of 6-Bit Addressing  
TMS320UC5405 provides only six of the 16 total address bits to the external interface. Therefore, only  
64 unique external addresses are available, regardless of the actual 16-bit address generated internally.  
These 64 addresses are those resulting from the truncation of the upper address bits (A6 through A15). This  
results in these 64 addresses being repeated throughout all of the external address space.  
If more than 64 external locations need to be addressed, a paging scheme can be used to expand the  
addressing capability as necessary. In this paging scheme, an external register is used to supply the upper  
addresses (A6 through A15) for the memory reach greater than six bits. The external register is loaded by  
having the 5405 write to a location in I/O space whose data lines are the higher address bits as shown in  
Figure 3−3. This scheme can be implemented using either a simple external latch, or can be included in a  
FPGA. This paging scheme can be implemented without any decoding required and shares the same bus  
with the SRAM and the DSP.  
21  
October 2002 − Revised October 2004  
SPRS199B  
 
Functional Overview  
Register  
EN  
Q0 − Q9  
D0 − D9  
TMS320UC5405  
IS  
SRAM  
A6 − A15  
D15 − D0  
A5 − A0  
D15 − D0  
A5 − A0  
CS  
PS or DS  
Figure 3−3. TMS320UC5405 External Memory Paging Scheme  
3.1.5 Relocatable Interrupt Vector Table  
The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft — meaning that  
the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the  
code at the vector location. Four words are reserved at each vector location to accommodate a delayed branch  
instruction, either two 1-word instructions or one 2-word instruction, which allows branching to the appropriate  
interrupt service routine with minimal overhead.  
At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space.  
However, these vectors can be remapped to the beginning of any 128-word page in program space after  
device reset. This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register (see  
Figure 3−4) with the appropriate 128-word page boundary address. After loading IPTR, any user interrupt or  
trap vector is mapped to the new 128-word page.  
NOTE: The hardware reset (RS) vector cannot be remapped because a hardware reset loads the IPTR  
with 1s. Therefore, the reset vector is always fetched at location FF80h in program space.  
15  
8
IPTR  
R/W  
7
6
5
4
AVIS  
R
3
DROM  
R
2
CLKOFF  
R
1
0
IPTR  
R/W  
MP/MC  
R/W  
OVLY  
R/W  
SMUL  
R/W  
SST  
R/W  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 3−4. Processor Mode Status (PMST) Register  
22  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Functional Overview  
3.2 On-Chip Peripherals  
The UC5405 device supports the following on-chip peripherals:  
Software-programmable wait-state generator with programmable bank-switching wait states  
An enhanced 8-bit host-port interface (HPI8)  
Two multichannel buffered serial ports (McBSPs)  
Two hardware timers  
A clock generator with a phase-locked loop (PLL)  
A direct memory access (DMA) controller  
3.2.1 Software-Programmable Wait-State Generator  
The software wait-state generator of the UC5405 can extend external bus cycles by up to 14 machine cycles.  
Devices that require more than 14 wait states can be interfaced using the hardware READY line. When all  
external accesses are configured for zero wait states, the internal clocks to the wait-state generator are  
automatically disabled. Disabling the wait-state generator clocks reduces the power consumption of the  
UC5405.  
The software wait-state register (SWWSR) controls the operation of the wait-state generator. The 15 LSBs  
of the SWWSR specify the number of wait states (0 to 7) to be inserted for external memory accesses to  
5 separate address ranges. This allows a different number of wait states for each of the five address ranges.  
Additionally, the software wait-state multiplier (SWSM) bit of the software wait-state control register (SWCR)  
defines a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is  
initialized to provide seven wait states on all external memory accesses. The SWWSR bit fields are shown  
in Figure 3−5 and described in Table 3−2.  
15  
14  
12  
11  
9
8
XPA  
I/O  
DATA  
DATA  
R/W-111  
R/W-0  
R/W-111  
R/W-111  
7
6
5
3
2
0
DATA  
PROGRAM  
R/W-111  
PROGRAM  
R/W-111  
R/W-111  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 3−5. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]  
23  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
Table 3−2. Software Wait-State Register (SWWSR) Bit Fields  
BIT  
RESET  
VALUE  
FUNCTION  
NO.  
NAME  
Extended program address control bit. XPA is used in conjunction with the program space fields  
(bits 0 through 5) to select the address range for the program space wait states.  
15  
XPA  
0
I/O space. The field value (0−7) corresponds to the base number of wait states for I/O space accesses  
within addresses 0000−FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for  
the base number of wait states.  
14−12  
11−9  
8−6  
I/O  
1
1
1
Upper data space. The field value (0−7) corresponds to the base number of wait states for external  
data space accesses within addresses 8000−FFFFh. The SWSM bit of the SWCR defines a  
multiplication factor of 1 or 2 for the base number of wait states.  
Data  
Data  
Lower data space. The field value (0−7) corresponds to the base number of wait states for external  
data space accesses within addresses 0000−7FFFh. The SWSM bit of the SWCR defines a  
multiplication factor of 1 or 2 for the base number of wait states.  
Upper program space. The field value (0−7) corresponds to the base number of wait states for external  
program space accesses within the following addresses:  
-
-
XPA = 0: x8000 − xFFFFh  
5−3  
2−0  
Program  
Program  
1
1
XPA = 1: The upper program space bit field has no effect on wait states.  
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.  
Program space. The field value (0−7) corresponds to the base number of wait states for external  
program space accesses within the following addresses:  
-
-
XPA = 0: x0000−x7FFFh  
XPA = 1: 00000−FFFFFh  
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.  
The software wait-state multiplier bit (SWSM) of the software wait-state control register (SWCR) is used to  
extend the base number of wait states selected by the SWWSR. The SWCR bit fields are shown in Figure 3−6  
and described in Table 3−3.  
15  
8
Reserved  
R/W-0  
7
1
0
Reserved  
R/W-0  
LEGEND: R = Read, W = Write, n = value present after reset  
SWSM  
R/W-0  
Figure 3−6. Software Wait-State Control Register (SWCR) [MMR Address 002Bh]  
Table 3−3. Software Wait-State Control Register (SWCR) Bit Fields  
BIT  
NAME  
RESET  
VALUE  
FUNCTION  
NO.  
15−1  
Reserved  
0
These bits are reserved and are unaffected by writes.  
Software wait-state multiplier. Used to multiply the number of wait states defined in the SWWSR by a factor  
of 1 or 2.  
0
SWSM  
0
-
-
SWSM = 0: wait-state base values are unchanged (multiplied by 1).  
SWSM = 1: wait-state base values are mulitplied by 2 for a maximum of 14 wait states.  
24  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Functional Overview  
3.2.1.1 Programmable Bank-Switching Wait States  
The programmable bank-switching logic of the UC5405 is functionally equivalent to that of the 548/549  
devices. This feature automatically inserts one cycle when accesses cross memory-bank boundaries within  
program or data memory space. A bank-switching wait state can also be automatically inserted when  
accesses cross the data space boundary into program space.  
The bank-switching control register (BSCR) defines the bank size for bank-switching wait states. Figure 3−7  
shows the BSCR and its bits are described in Table 3−4.  
15  
12  
11  
10  
8
BNKCMP  
R/W-1111  
PS−DS  
R/W-1  
Reserved  
R-0  
7
3
2
1
0
Reserved  
R-0  
LEGEND: R = Read, W = Write, n = value present after reset  
HBH  
R/W-0  
BH  
EXIO  
R/W-0  
R/W-0  
Figure 3−7. Bank-Switching Control Register (BSCR) [MMR Address 0029h]  
Table 3−4. Bank-Switching Control Register (BSCR) Bit Fields  
BIT  
NAME  
RESET  
VALUE  
FUNCTION  
NO.  
Bank compare. Determines the external memory-bank size. BNKCMP is used to mask the four MSBs of  
an address. For example, if BNKCMP = 1111b, the four MSBs (bits 12−15) are compared, resulting in a  
bank size of 4K words. Bank sizes of 4K words to 64K words are allowed.  
15−12 BNKCMP  
1111  
Program read − data read access. Inserts an extra cycle between consecutive accesses of program read  
and data read or data read and program read.  
11  
10−3  
2
PS - DS  
Reserved  
HBH  
1
0
0
PS-DS = 0  
PS-DS = 1  
No extra cycles are inserted by this feature.  
One extra cycle is inserted between consecutive data and program reads.  
These bits are reserved and are unaffected by writes.  
HPI Bus holder. Controls the HPI bus holder feature. HBH is cleared to 0 at reset.  
HBH = 0  
HBH = 1  
The bus holder is disabled.  
The bus holder is enabled. When not driven, the HPI data bus (HD[7:0]) is held in the  
previous logic level.  
Bus holder. Controls the data bus holder feature. BH is cleared to 0 at reset.  
BH = 0  
BH = 1  
The bus holder is disabled.  
The bus holder is enabled. When not driven, the data bus (D[15:0]) is held in the  
previous logic level.  
1
0
BH  
0
0
External bus interface off. The EXIO bit controls the external bus-off function.  
EXIO = 0  
EXIO = 1  
The external bus interface functions as usual.  
The address bus, data bus, and control signals become inactive after completing the  
current bus cycle. Note that the DROM, MP/MC, and OVLY bits in the PMST and the HM  
bit of ST1 cannot be modified when the interface is disabled.  
EXIO  
25  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
3.2.2 Parallel I/O Ports  
The UC5405 has a total of 64K I/O ports. These ports can be addressed by the PORTR instruction or the  
PORTW instruction. The IS signal indicates a read/write operation through an I/O port. The UC5405 can  
interface easily with external devices through the I/O ports while requiring minimal off-chip address-decoding  
circuits.  
3.2.2.1 Enhanced 8-Bit Host-Port Interface (HPI8)  
The UC5405 host-port interface, also referred to as the HPI8, is an enhanced version of the standard 8-bit  
HPI found on earlier 54x DSPs (542, 545, 548, and 549). The HPI8 is an 8-bit parallel port for interprocessor  
communication. The features of the HPI8 include:  
Standard features:  
Sequential transfers (with autoincrement) or random-access transfers  
Host interrupt and 54x interrupt capability  
Multiple data strobes and control pins for interface flexibility  
Enhanced features of the UC5405 HPI8:  
Access to entire on-chip RAM through DMA bus  
Capability to continue transferring during emulation stop  
Hex  
0000  
Reserved  
001F  
0020  
McBSP  
Registers  
0023  
0024  
Reserved  
005F  
0060  
Scratch-Pad  
RAM  
007F  
0080  
(16K x 16-bit)  
On-Chip DARAM  
3FFF  
4000  
Reserved  
FFFF  
Figure 3−8. HPI8 Memory Map  
The HPI8 functions as a slave and enables the host processor to access the on-chip memory of the UC5405.  
A major enhancement to the UC5405 HPI over previous versions is that it allows host access to the entire  
on-chip memory range of the DSP. The host and the DSP both have access to the on-chip RAM at all times  
and host accesses are always synchronized to the DSP clock. If the host and the DSP contend for access to  
the same location, the host has priority, and the DSP waits for one HPI8 cycle. Note that since host accesses  
are always synchronized to the UC5405 clock, an active input clock (CLKIN) is required for HPI8 accesses  
during IDLE states, and host accesses are not allowed while the UC5405 reset pin is asserted.  
26  
SPRS199B  
October 2002 − Revised October 2004  
 
Functional Overview  
The HPI8 interface consists of an 8-bit bidirectional data bus and various control signals. Sixteen-bit transfers  
are accomplished in two parts with the HBIL input designating high or low byte. The host communicates with  
the HPI8 through three dedicated registers — HPI address register (HPIA), HPI data register (HPID), and an  
HPI control register (HPIC). The HPIA and HPID registers are only accessible by the host, and the HPIC  
register is accessible by both the host and the UC5405.  
3.2.2.2 Multichannel Buffered Serial Ports  
The UC5405 device includes two high-speed, full-duplex multichannel buffered serial ports (McBSPs) that  
allow direct interface to other C54x/LC54x DSPs, codecs, and other devices in a system. The McBSPs are  
based on the standard serial port interface found on other 54x devices. Like its predecessors, the McBSP  
provides:  
Full-duplex communication  
Double-buffered data registers, which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
In addition, the McBSP has the following capabilities:  
Direct interface to:  
T1/E1 framers  
MVIP switching compatible and ST-BUS compliant devices  
IOM-2 compliant devices  
Serial peripheral interface devices  
Multichannel transmit and receive of up to 128 channels  
A wide selection of data sizes including 8, 12, 16, 20, 24, or 32 bits  
µ-law and A-law companding  
Programmable polarity for both frame synchronization and data clocks  
Programmable internal clock and frame generation  
The McBSPs consist of separate transmit and receive channels that operate independently. The external  
interface of each McBSP consists of the following pins:  
BCLKX  
BDX  
BFSX  
BCLKR  
BDR  
Transmit reference clock  
Transmit data  
Transmit frame synchronization  
Receive reference clock  
Receive data  
BFSR  
Receive frame synchronization  
The six pins listed are functionally equivalent to the previous serial port interface pins in the TMS320C5000  
platform of DSPs. On the transmitter, transmit frame synchronization and clocking are indicated by the BFSX  
and BCLKX pins, respectively. The CPU or DMA can initiate transmission of data by writing to the data transmit  
register (DXR). Data written to DXR is shifted out on the BDX pin through a transmit shift register (XSR). This  
structure allows DXR to be loaded with the next word to be sent while the transmission of the current word  
is in progress.  
On the receiver, receive frame synchronization and clocking are indicated by the BFSR and BCLKR pins,  
respectively. The CPU or DMA can read received data from the data receive register (DRR). Data received  
on the BDR pin is shifted into a receive shift register (RSR) and then buffered in the receive buffer register  
(RBR). If the DRR is empty, the RBR contents are copied into the DRR. If not, the RBR holds the data until  
the DRR is available. This structure allows storage of the two previous words while the reception of the current  
word is in progress.  
The CPU and DMA can move data to and from the McBSPs and can synchronize transfers based on McBSP  
interrupts, event signals, and status flags. The DMA is capable of handling data movement between the  
McBSPs and memory with no intervention from the CPU.  
TMS320C5000 is a trademark of Texas Instruments.  
27  
October 2002 − Revised October 2004  
SPRS199B  
Functional Overview  
In addition to the standard serial port functions, the McBSP provides programmable clock and frame  
synchronization generation. Among the programmable functions are:  
Frame synchronization pulse width  
Frame period  
Frame synchronization delay  
Clock reference (internal vs. external)  
Clock division  
Clock and frame synchronization polarity  
The on-chip companding hardware allows compression and expansion of data in either µ-law or A-law format.  
When companding is used, transmit data is encoded according to specified companding law and received  
data is decoded to 2s complement format.  
The McBSP allows multiple channels to be independently selected for the transmitter and receiver. When  
multiple channels are selected, each frame represents a time-division multiplexed (TDM) data stream. In using  
TDM data streams, the CPU may only need to process a few of them. Thus, to save memory and bus  
bandwidth, multichannel selection allows independent enabling of particular channels for transmission and  
reception. Up to 32 channels in a stream of up to 128 channels can be enabled.  
The clock-stop mode (CLKSTP) in the McBSP provides compatibility with the serial peripheral interface (SPI)  
protocol. Clock-stop mode works with only single-phase frames and one word per frame. The word sizes  
supported by the McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation. When the McBSP  
is configured to operate in SPI mode, both the transmitter and the receiver operate together as a master or  
as a slave.  
The McBSP is fully static and operates at arbitrarily low clock frequencies. The maximum frequency is CPU  
clock frequency divided by 2.  
3.2.3 Hardware Timer  
The UC5405 device features two 16-bit timing circuits with 4-bit prescalers. The main counter of each timer  
is decremented by one every CLKOUT cycle. Each time the counter decrements to 0, a timer interrupt is  
generated. The timers can be stopped, restarted, reset, or disabled by specific control bits.  
3.2.4 Clock Generator  
The clock generator provides clocks to the UC5405 device, and consists of an internal oscillator and a  
phase-locked loop (PLL) circuit. The clock generator requires a reference clock input, which can be provided  
by using a crystal resonator with the internal oscillator, or from an external reference clock source. The  
reference clock input is then divided by two or four (DIV mode) to generate clocks for the UC5405 device, or  
the PLL circuit can be used (PLL mode) to generate the device clock by multiplying the reference clock  
frequency by a scale factor. This allows the use of a clock source with a lower frequency than that of the  
CPU.The PLL is an adaptive circuit that, once synchronized, locks onto and tracks an input clock signal.  
NOTE: If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input  
signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal. Then,  
other internal clock circuitry allows the synthesis of new clock frequencies for use as master clock for the  
UC5405 device.  
28  
SPRS199B  
October 2002 − Revised October 2004  
 
Functional Overview  
This clock generator allows system designers to select the clock source. The sources that drive the clock  
generator are:  
A crystal resonator circuit. The crystal resonator circuit is connected across the X1 and X2/CLKIN pins  
of the UC5405 to enable the internal oscillator.  
An external clock. The external clock source is directly connected to the X2/CLKIN pin, and X1 is left  
unconnected.  
NOTE: If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
The software-programmable PLL features a high level of flexibility, and includes a clock scaler that provides  
various clock multiplier ratios, capability to directly enable and disable the PLL, and a PLL lock timer that can  
be used to delay switching to the PLL clocking mode of the device until lock is achieved. Devices that have  
a built-in software-programmable PLL can be configured in one of two clock modes:  
PLL mode. The input clock (X2/CLKIN) is multiplied by 1 of 31 possible ratios. These ratios are achieved  
using the PLL circuitry.  
DIV (divider) mode. The input clock is divided by 2 or 4. Note that when DIV mode is used, the PLL can  
be completely disabled to minimize power dissipation.  
The software-programmable PLL is controlled using the 16-bit memory-mapped (address 0058h) clock mode  
register (CLKMD). The CLKMD register is used to define the clock configuration of the PLL clock module. Upon  
reset, the CLKMD register is initialized with a predetermined value dependent only upon the state of the  
CLKMD1 − CLKMD3 pins as shown in Table 3−5.  
Table 3−5. Clock Mode Settings at Reset  
CLKMD  
RESET VALUE  
CLKMD1  
CLKMD2  
CLKMD3  
CLOCK MODE  
0
0
0
0
0
1
E007h  
PLL x 15  
PLL x 10  
9007h  
0
1
1
1
1
0
1
0
1
1
0
1
0
0
0
1
1
1
4007h  
1007h  
F007h  
0000h  
F000h  
PLL x 5  
PLL x 2  
PLL x 1  
1/2 (PLL disabled)  
1/4 (PLL disabled)  
Reserved (bypass mode)  
29  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
3.2.5 DMA Controller  
The UC5405 direct memory access (DMA) controller transfers data between points in the memory map  
without intervention by the CPU. The DMA controller allows movements of data to and from internal  
program/data memory or internal peripherals (such as the McBSPs) to occur in the background of CPU  
operation. The DMA has six independent programmable channels, allowing six different contexts for DMA  
operation.  
3.2.5.1 Features  
The DMA has the following features:  
The DMA operates independently of the CPU.  
The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.  
The DMA has higher priority than the CPU for internal accesses.  
Each channel has independently programmable priorities.  
Each channel’s source and destination address registers can have configurable indexes through memory  
on each read and write transfer, respectively. The address may remain constant, be postincremented,  
postdecremented, or be adjusted by a programmable value.  
Each read or write transfer may be initialized by selected events.  
Upon completion of a half-block or an entire-block transfer, each DMA channel may send an interrupt to  
the CPU.  
The DMA can perform doubleword transfers (a 32-bit transfer of two 16-bit words).  
3.2.5.2 DMA Memory Map  
The DMA memory map allows DMA transfers to be unaffected by the status of the MP/MC, DROM, and OVLY  
bits. The DMA memory map (see Figure 3−9) is identical to that of the HPI8 controller.  
Hex  
0000  
Reserved  
001F  
0020  
McBSP  
Registers  
0023  
0024  
Reserved  
005F  
0060  
Scratch-Pad  
RAM  
007F  
0080  
(16K x 16-bit)  
On-Chip DARAM  
3FFF  
4000  
Reserved  
FFFF  
Figure 3−9. DMA Memory Map  
3.2.5.3 DMA Priority Level  
Each DMA channel can be independently assigned high priority or low priority relative to each other. Multiple  
DMA channels that are assigned to the same priority level are handled in a round-robin manner.  
30  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Functional Overview  
3.2.5.4 DMA Source/Destination Address Modification  
The DMA provides flexible address-indexing modes for easy implementation of data management schemes  
such as autobuffering and circular buffers. Source and destination addresses can be indexed separately and  
can be postincremented, postdecremented, or postincremented with a specified index offset.  
3.2.5.5 DMA in Autoinitialization Mode  
The DMA can automatically reinitialize itself after completion of a block transfer. Some of the DMA registers  
can be preloaded for the next block transfer through the DMA global reload registers (DMGSA, DMGDA, and  
DMGCR). Autoinitialization allows:  
Continuous operation: Normally, the CPU would have to reinitialize the DMA immediately after the  
completion of the current block transfer; but with the global reload registers, it can reinitialize these values  
for the next block transfer any time after the current block transfer begins.  
Repetitive operation: The CPU does not preload the global reload register with new values for each block  
transfer but only loads them on the first block transfer.  
3.2.5.6 DMA Transfer Counting  
The DMA channel element count register (DMCTRx) and the frame count register (DMFRCx) contain bit fields  
that represent the number of frames and the number of elements per frame to be transferred.  
Frame count. This 8-bit value defines the total number of frames in the block transfer. The maximum  
number of frames per block transfer is 128 (FRAME COUNT= 0ffh). The counter is decremented upon  
the last read transfer in a frame transfer. Once the last frame is transferred, the selected 8-bit counter is  
reloaded with the DMA global frame reload register (DMGFR) if the AUTOINIT bit is set to 1. A frame count  
of 0 (default value) means the block transfer contains a single frame.  
Element count. This 16-bit value defines the number of elements per frame. This counter is decremented  
after the read transfer of each element. The maximum number of elements per frame is 65536  
(DMCTRn = 0FFFFh). In autoinitialization mode, once the last frame is transferred, the counter is  
reloaded with the DMA global count reload register (DMGCR).  
3.2.5.7 DMA Transfers in Doubleword Mode  
Doubleword mode allows the DMA to transfer 32-bit words in any index mode. In doubleword mode, two  
consecutive 16-bit transfers are initiated and the source and destination addresses are automatically updated  
following each transfer. In this mode, each 32-bit word is considered to be one element.  
3.2.5.8 DMA Channel Index Registers  
The particular DMA channel index register is selected by way of the SIND and DIND field in the DMA mode  
control register (DMMCRx). Unlike basic address adjustment, in conjunction with the frame index DMFRI0 and  
DMFRI1, the DMA allows different adjustment amounts depending on whether or not the element transfer is  
the last in the current frame. The normal adjustment value (element index) is contained in the element index  
registers DMIDX0 and DMIDX1. The adjustment value (frame index) for the end of the frame is determined  
by the selected DMA frame index register, either DMFRI0 or DMFRI1.  
The element index and the frame index affect address adjustment as follows:  
Element index: For all except the last transfer in the frame, the element index determines the amount to  
be added to the DMA channel for the source/destination address register (DMSRCx/DMDSTx) as  
selected by the SIND/DIND bits.  
Frame index: If the transfer is the last in a frame, the frame index is used for address adjustment as  
selected by the SIND/DIND bits. This occurs in both single-frame and multi-frame transfer.  
3.2.5.9 DMA Interrupts  
The ability of the DMA to interrupt the CPU based on the status of the data transfer is configurable and is  
determined by the IMOD and DINM bits in the DMA mode control register (DMMCRx). The available modes  
are shown in Table 3−6.  
31  
October 2002 − Revised October 2004  
SPRS199B  
Functional Overview  
Table 3−6. DMA Interrupts  
MODE  
ABU (non-decrement)  
ABU (non-decrement)  
Multi-Frame  
DINM  
INTERRUPT  
1
1
1
1
0
0
0
At full buffer only  
1
0
At half buffer and full buffer  
At block transfer complete (DMCTRx = DMSEFCx[7:0] = 0)  
At end of frame and end of block (DMCTRx = 0)  
No interrupt generated  
Multi-Frame  
1
Either  
X
X
Either  
No interrupt generated  
3.2.5.10 DMA Controller Synchronization Events  
The transfers associated with each DMA channel can be synchronized to one of several events. The DSYN  
bit field of the DMA channel x sync select and frame count (DMSFCx) register selects the synchronization  
event for a channel. The list of possible events and the DSYN values are shown in Table 3−7.  
Table 3−7. DMA Synchronization Events  
DSYN VALUE  
0000b  
DMA SYNCHRONIZATION EVENT  
No synchronization used  
0001b  
McBSP0 receive event  
McBSP0 transmit event  
Reserved  
0010b  
0011−0100b  
0101b  
McBSP1 receive event  
McBSP1 transmit event  
Reserved  
0110b  
0111b−0110b  
1101b  
Timer0 interrupt  
1110b  
External interrupt 3  
Timer1 interrupt  
1111b  
3.2.5.11 DMA Channel Interrupt Selection  
The DMA controller can generate a CPU interrupt for each of the six channels. However, the interrupt sources  
for channels 0,1, 2, and 3 are multiplexed with other interrupt sources. DMA channels 2 and 3 share an interrupt  
line with the receive and transmit portions of McBSP1 (IMR/IFR bits 10 and 11), and DMA channel 1 shares an  
interrupt line with timer 1 (IMR/IFR bit 7). The interrupt source for DMA channel 0 is shared with a reserved  
interrupt source. When the UC5405 is reset, the interrupts from these four DMA channels are deselected. The  
INTSEL bit field in the DMA channel priority and enable control (DMPREC) register can be used to select these  
interrupts, as shown in Table 3−8.  
Table 3−8. DMA Channel Interrupt Selection  
INTSEL Value  
00b (reset)  
01b  
IMR/IFR[6]  
Reserved  
Reserved  
DMAC0  
IMR/IFR[7]  
TINT1  
IMR/IFR[10]  
BRINT1  
IMR/IFR[11]  
BXINT1  
TINT1  
DMAC2  
DMAC3  
10b  
DMAC1  
DMAC2  
DMAC3  
11b  
Reserved  
32  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Functional Overview  
3.3 Memory-Mapped Registers  
The UC5405 has a set of memory-mapped registers associated with the CPU, on-chip peripherals, the  
McBSPs, and the DMA.  
3.3.1 CPU Memory-Mapped Registers  
The UC5405 has 27 memory-mapped CPU registers, which are mapped in data memory space addresses  
0h to 1Fh. Table 3−9 gives a list of the CPU memory-mapped registers (MMRs) available on UC5405.  
Table 3−9. CPU Memory-Mapped Registers  
ADDRESS  
NAME  
IMR  
DESCRIPTION  
DEC  
0
HEX  
0
Interrupt mask register  
Interrupt flag register  
Reserved for testing  
Status register 0  
IFR  
1
1
2−5  
6
2−5  
6
ST0  
ST1  
AL  
7
7
Status register 1  
8
8
Accumulator A low word (15−0)  
AH  
9
9
Accumulator A high word (31−16)  
Accumulator A guard bits (39−32)  
Accumulator B low word (15−0)  
Accumulator B high word (31−16)  
Accumulator B guard bits (39−32)  
Temporary register  
AG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
BL  
B
BH  
C
BG  
D
TREG  
TRN  
AR0  
AR1  
AR2  
AR3  
AR4  
AR5  
AR6  
AR7  
SP  
E
F
Transition register  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Auxiliary register 0  
Auxiliary register 1  
Auxiliary register 2  
Auxiliary register 3  
Auxiliary register 4  
Auxiliary register 5  
Auxiliary register 6  
Auxiliary register 7  
Stack pointer register  
BK  
Circular buffer size register  
Block-repeat counter  
BRC  
RSA  
REA  
PMST  
XPC  
Block-repeat start address  
Block-repeat end address  
Processor mode status (PMST) register  
Extended program page register  
Reserved  
33  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
3.3.2 Peripheral Memory-Mapped Registers  
The UC5405 has a set of memory-mapped registers associated with peripherals as shown in Table 3−10.  
Table 3−10. Peripheral Memory-Mapped Registers  
NAME  
DRR20  
ADDRESS  
20h  
DESCRIPTION  
McBSP0 data receive register 2  
TYPE  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
Timer0  
DRR10  
DXR20  
DXR10  
TIM  
21h  
McBSP0 data receive register 1  
McBSP0 data transmit register 2  
McBSP0 data transmit register 1  
Timer0 register  
22h  
23h  
24h  
PRD  
25h  
Timer0 period counter  
Timer0 control register  
Reserved  
Timer0  
TCR  
26h  
Timer0  
27h  
SWWSR  
BSCR  
28h  
Software wait-state register  
Bank-switching control register  
Reserved  
External Bus  
External Bus  
29h  
2Ah  
SWCR  
HPIC  
2Bh  
Software wait-state control register  
HPI control register  
External Bus  
HPI  
2Ch  
2Dh−2Fh  
30h  
Reserved  
TIM1  
PRD1  
TCR1  
Timer1 register  
Timer1  
Timer1  
Timer1  
31h  
Timer1 period counter  
Timer1 control register  
Reserved  
32h  
33h−37h  
38h  
SPSA0  
SPSD0  
McBSP0 subbank address register  
McBSP #0  
McBSP #0  
39h  
McBSP0 subbank data register  
3Ah−3Bh  
3Ch  
Reserved  
GPIOCR  
GPIOSR  
General-purpose I/O pins control register  
General-purpose I/O pins status register  
Reserved  
GPIO  
GPIO  
3Dh  
3Eh−3Fh  
40h  
DRR21  
DRR11  
DXR21  
DXR11  
McBSP1 data receive register 2  
McBSP1 data receive register 1  
McBSP1 data transmit register 2  
McBSP1 data transmit register 1  
Reserved  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
41h  
42h  
43h  
44h−47h  
48h  
SPSA1  
SPSD1  
McBSP1 subbank address register  
McBSP #1  
McBSP #1  
49h  
McBSP1 subbank data register  
4Ah−53h  
54h  
Reserved  
DMPREC  
DMSA  
DMSDI  
DMSDN  
CLKMD  
DMA channel priority and enable control register  
DMA  
DMA  
DMA  
DMA  
PLL  
55h  
DMA subbank address register  
56h  
DMA subbank data register with autoincrement  
57h  
DMA subbank data register  
58h  
Clock mode register  
Reserved  
59h−5Fh  
See Table 3−11 for a detailed description of the McBSP control registers and their subaddresses.  
See Table 3−12 for a detailed description of the DMA subbank addressed registers.  
34  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Functional Overview  
3.3.3 McBSP Control Registers and Subaddresses  
The control registers for the multichannel buffered serial port (McBSP) are accessed using the subbank  
addressing scheme. This allows a set or subbank of registers to be accessed through a single memory  
location. The serial port subbank address (SPSA) register is used as a pointer to select a particular register  
within the subbank. The serial port subbank data (SPSD) register is used to access (read or write) the selected  
register. Table 3−11 shows the McBSP control registers and their corresponding subaddresses.  
Table 3−11. McBSP Control Registers and Subaddresses  
McBSP0  
ADDRESS  
McBSP1  
SUB-  
ADDRESS  
DESCRIPTION  
NAME  
SPCR10  
NAME  
ADDRESS  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
SPCR11  
SPCR21  
RCR11  
49h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
Serial port control register 1  
SPCR20  
RCR10  
49h  
Serial port control register 2  
49h  
Receive control register 1  
RCR20  
RCR21  
49h  
Receive control register 2  
XCR10  
XCR11  
49h  
Transmit control register 1  
XCR20  
XCR21  
49h  
Transmit control register 2  
SRGR10  
SRGR20  
MCR10  
MCR20  
RCERA0  
RCERB0  
XCERA0  
XCERB0  
PCR0  
SRGR11  
SRGR21  
MCR11  
MCR21  
RCERA1  
RCERB1  
XCERA1  
XCERB1  
PCR1  
49h  
Sample rate generator register 1  
Sample rate generator register 2  
Multichannel register 1  
49h  
49h  
49h  
Multichannel register 2  
49h  
Receive channel enable register partition A  
Receive channel enable register partition B  
Transmit channel enable register partition A  
Transmit channel enable register partition B  
Pin control register  
49h  
49h  
49h  
49h  
3.3.4 DMA Subbank Addressed Registers  
The direct memory access (DMA) controller has several control registers associated with it. The main control  
register (DMPREC) is a standard memory-mapped register. However, the other registers are accessed using  
the subbank addressing scheme. This allows a set or subbank of registers to be accessed through a single  
memory location. The DMA subbank address (DMSA) register is used as a pointer to select a particular  
register within the subbank, while the DMA subbank data (DMSDN) register or the DMA subbank data register  
with autoincrement (DMSDI) is used to access (read or write) the selected register.  
When the DMSDI register is used to access the subbank, the subbank address is automatically  
postincremented so that a subsequent access affects the next register within the subbank. This autoincrement  
feature is intended for efficient, successive accesses to several control registers. If the autoincrement feature  
is not required, the DMSDN register should be used to access the subbank. Table 3−12 shows the DMA  
controller subbank addressed registers and their corresponding subaddresses.  
35  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
Table 3−12. DMA Subbank Addressed Registers  
SUB-  
ADDRESS  
NAME  
ADDRESS  
DESCRIPTION  
DMSRC0  
DMDST0  
DMCTR0  
DMSFC0  
DMMCR0  
DMSRC1  
DMDST1  
DMCTR1  
DMSFC1  
DMMCR1  
DMSRC2  
DMDST2  
DMCTR2  
DMSFC2  
DMMCR2  
DMSRC3  
DMDST3  
DMCTR3  
DMSFC3  
DMMCR3  
DMSRC4  
DMDST4  
DMCTR4  
DMSFC4  
DMMCR4  
DMSRC5  
DMDST5  
DMCTR5  
DMSFC5  
DMMCR5  
DMSRCP  
DMDSTP  
DMIDX0  
DMIDX1  
DMFRI0  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
00h  
DMA channel 0 source address register  
DMA channel 0 destination address register  
DMA channel 0 element count register  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
DMA channel 0 sync select and frame count register  
DMA channel 0 transfer mode control register  
DMA channel 1 source address register  
DMA channel 1 destination address register  
DMA channel 1 element count register  
DMA channel 1 sync select and frame count register  
DMA channel 1 transfer mode control register  
DMA channel 2 source address register  
DMA channel 2 destination address register  
DMA channel 2 element count register  
DMA channel 2 sync select and frame count register  
DMA channel 2 transfer mode control register  
DMA channel 3 source address register  
DMA channel 3 destination address register  
DMA channel 3 element count register  
DMA channel 3 sync select and frame count register  
DMA channel 3 transfer mode control register  
DMA channel 4 source address register  
DMA channel 4 destination address register  
DMA channel 4 element count register  
DMA channel 4 sync select and frame count register  
DMA channel 4 transfer mode control register  
DMA channel 5 source address register  
DMA channel 5 destination address register  
DMA channel 5 element count register  
DMA channel 5 sync select and frame count register  
DMA channel 5 transfer mode control register  
DMA source program page address (common channel)  
DMA destination program page address (common channel)  
DMA element index address register 0  
DMA element index address register 1  
DMA frame index register 0  
DMFRI1  
DMA frame index register 1  
DMGSA  
DMA global source address reload register  
DMA global destination address reload register  
DMA global count reload register  
DMGDA  
DMGCR  
DMGFR  
DMA global frame count reload register  
Address 56h is used to access DMA subbank data registers with autoincrement (DMSDI) while address 57h is used to access DMA subbank  
data register without autoincrement (DMSDN).  
36  
SPRS199B  
October 2002 − Revised October 2004  
 
Functional Overview  
3.4 Interrupts  
Vector-relative locations and priorities for all internal and external interrupts are shown in Table 3−13.  
Table 3−13. Interrupt Locations and Priorities  
LOCATION  
PRIORITY  
NAME  
FUNCTION  
DECIMAL  
0
HEX  
00  
04  
08  
0C  
10  
14  
18  
1C  
20  
24  
28  
2C  
30  
34  
38  
3C  
40  
44  
48  
4C  
50  
54  
RS, SINTR  
NMI, SINT16  
SINT17  
1
2
Reset (hardware and software reset)  
Nonmaskable interrupt  
Software interrupt #17  
Software interrupt #18  
Software interrupt #19  
Software interrupt #20  
Software interrupt #21  
Software interrupt #22  
Software interrupt #23  
Software interrupt #24  
Software interrupt #25  
Software interrupt #26  
Software interrupt #27  
Software interrupt #28  
Software interrupt #29  
Software interrupt #30  
External user interrupt #0  
External user interrupt #1  
External user interrupt #2  
Timer0 interrupt  
4
8
3
SINT18  
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
68  
72  
76  
80  
84  
SINT19  
SINT20  
SINT21  
SINT22  
SINT23  
SINT24  
SINT25  
SINT26  
SINT27  
SINT28  
SINT29  
SINT30  
INT0, SINT0  
INT1, SINT1  
INT2, SINT2  
TINT0, SINT3  
4
5
6
BRINT0, SINT4  
BXINT0, SINT5  
7
McBSP #0 receive interrupt  
McBSP #0 transmit interrupt  
8
Reserved (default) or DMA channel 0  
interrupt. The selection is made in the  
DMPREC register.  
Reserved(DMAC0), SINT6  
TINT1(DMAC1), SINT7  
88  
92  
58  
9
Timer1 interrupt (default) or DMA channel 1  
interrupt. The selection is made in the  
DMPREC register.  
5C  
10  
INT3, SINT8  
96  
60  
64  
11  
12  
External user interrupt #3  
HPI interrupt  
HPINT, SINT9  
100  
McBSP #1 receive interrupt (default) or DMA  
channel 2 interrupt. The selection is made in  
the DMPREC register.  
BRINT1(DMAC2), SINT10  
BXINT1(DMAC3), SINT11  
104  
108  
68  
13  
14  
McBSP #1 transmit interrupt (default) or DMA  
channel 3 interrupt. The selection is made in  
the DMPREC register.  
6C  
DMAC4,SINT12  
DMAC5,SINT13  
Reserved  
112  
116  
70  
74  
15  
16  
DMA channel 4 interrupt  
DMA channel 5 interrupt  
Reserved  
120−127  
78−7F  
37  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Functional Overview  
3.4.1 IFR and IMR Registers  
The bits of the interrupt flag register (IFR) and interrupt mask register (IMR) are arranged as shown in  
Figure 3−10.  
15  
14  
13  
12  
11  
10  
9
8
BXINT1/  
DMAC3  
BRINT1/  
DMAC2  
Reserved  
DMAC5  
DMAC4  
HPINT  
INT3  
7
6
5
4
3
2
1
0
TINT1/  
DMAC1  
Reserved/  
DMAC0  
BXINT0  
BRINT0  
TINT0  
INT2  
INT1  
INT0  
Figure 3−10. IFR and IMR Registers  
Table 3−14. IFR and IMR Register Bit Fields  
BIT  
FUNCTION  
NUMBER  
15−14  
13  
NAME  
Reserved for future expansion  
DMAC5  
DMAC4  
DMA channel 5 interrupt flag/mask bit  
DMA channel 4 interrupt flag/mask bit  
12  
This bit can be configured as either the McBSP1 transmit interrupt flag/mask bit, or the DMA  
channel 3 interrupt flag/mask bit. The selection is made in the DMPREC register.  
11  
10  
BXINT1/DMAC3  
BRINT1/DMAC2  
This bit can be configured as either the McBSP1 receive interrupt flag/mask bit, or the DMA  
channel 2 interrupt flag/mask bit. The selection is made in the DMPREC register.  
9
8
HPINT  
INT3  
Host−to-C54x interrupt flag/mask  
External interrupt 3 flag/mask  
This bit can be configured as either the timer1 interrupt flag/mask bit, or the DMA channel 1  
interrupt flag/mask bit. The selection is made in the DMPREC register.  
7
6
TINT1/DMAC1  
This bit can be configured either as reserved or as the DMA channel 0 interrupt flag/mask bit. The  
selection is made in the DMPREC register.  
Reserved or DMAC0  
5
4
3
2
1
0
BXINT0  
BRINT0  
TINT0  
INT2  
McBSP0 transmit interrupt flag/mask bit  
McBSP0 receive interrupt flag/mask bit  
Timer 0 interrupt flag/mask bit  
External interrupt 2 flag/mask bit  
External interrupt 1 flag/mask bit  
External interrupt 0 flag/mask bit  
INT1  
INT0  
38  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Device Support  
4
Device Support  
4.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320DSP devices and support tools. Each TMS320DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device’s electrical specifications  
TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality  
and reliability verification  
TMS Fully qualified production device  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped with against the following  
disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package  
type (for example, GQW or ZQW) and temperature range (for example, “Blank” is the default temperature  
range). Figure 4−1 provides a legend for reading the complete device name for the TMS320UC5405 device.  
For device part numbers and further ordering information for TMS320UC5405 in the GQW and ZQW package  
types, see the TI website (http://www.ti.com) or contact your TI sales representative.  
TMS320 is a trademark of Texas Instruments.  
39  
October 2002 − Revised October 2004  
SPRS199B  
 
Device and Development-Support Tool Nomenclature  
5405  
TMS 320 UC  
GQW  
(
)
(R)  
PREFIX  
PACKAGING  
TMX= Experimental device  
TMP= Prototype device  
TMS= Qualified device  
R = Tape and Reel  
TEMPERATURE RANGE  
Blank = −40°C TO 100°C (default)  
DEVICE FAMILY  
320 = TMS320 Family  
PACKAGE TYPE  
GQW = 143-pin plastic PBGA  
ZQW = 143-pin plastic BGA with Pb-free soldered balls  
TECHNOLOGY  
C = CMOS  
E
F
=
=
CMOS EPROM  
CMOS Flash EEPROM  
DEVICE  
LC = Low-Voltage CMOS (3.3 V)  
C54x DSP:  
5405  
VC= Low Voltage CMOS [3 V (2.5 V Core)]  
UC= Ultra-Low Voltage CMOS [1.8-V to 3.6-V I/O (1.8-v Core)]  
BGA = Ball Grid Array  
For actual part numbers (P/Ns) and ordering information, see the TI website (www.ti.com).  
Figure 4−1. TMS320UC5405 DSP Device Nomenclature  
40  
SPRS199B  
October 2002 − Revised October 2004  
 
Documentation Support  
5
Documentation Support  
Extensive documentation supports all TMS320DSP family of devices from product announcement through  
applications development. The following types of documentation are available to support the design and use  
of the C5000platform of DSPs:  
TMS320C54xDSP Functional Overview (literature number SPRU307)  
Device-specific data sheets  
Complete user’s guides  
Development support tools  
Hardware and software application reports  
The five-volume TMS320C54x DSP Reference Set consists of:  
Volume 1: CPU and Peripherals (literature number SPRU131)  
Volume 2: Mnemonic Instruction Set (literature number SPRU172)  
Volume 3: Algebraic Instruction Set (literature number SPRU179)  
Volume 4: Applications Guide (literature number SPRU173)  
Volume 5: Enhanced Peripherals (literature number SPRU302)  
The reference set describes in detail the TMS320C54xDSP products currently available and the hardware  
and software applications, including algorithms, for fixed-point TMS320DSP family of devices.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320DSP newsletter, Details on Signal Processing, is  
published quarterly and distributed to update TMS320DSP customers on product information.  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
TMS320 and C5000 are trademarks of Texas Instruments.  
41  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
6
Electrical Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions for the  
TMS320UC5405 DSP.  
6.1 Absolute Maximum Ratings  
The list of absolute maximum ratings are specified over operating case temperature. Stresses beyond those  
listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated  
under Section 6.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may  
affect device reliability. All voltage values are with respect to V . Figure 6−1 provides the test load circuit  
SS  
values for a 1.8-V device.  
Supply voltage I/O range, DV  
Supply voltage core range, CV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.0 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 2.0 V  
DD  
DD  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.5 V  
I
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.5 V  
O
Operating case temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 100°C  
C
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
6.2 Recommended Operating Conditions  
MIN  
1.71  
1.71  
NOM  
MAX  
3.6  
UNIT  
V
DV  
CV  
Device supply voltage, I/O  
Device supply voltage, core  
DD  
1.8  
0
1.98  
V
DD  
V
SS  
Supply voltage, GND  
V
X2/CLKIN  
1.35  
1.35  
CV + 0.3  
DD  
DV = 1.71 V to 1.89 V  
DD  
All other inputs  
DV + 0.3  
DD  
X2/CLKIN  
1.35  
1.7  
CV + 0.3  
DD  
DV = 1.90 V to 2.99 V  
DD  
All other inputs  
X2/CLKIN  
DV + 0.3  
DD  
1.35  
CV + 0.3  
DD  
High-level input  
voltage  
V
IH  
V
RS, INTn, NMI, BIO,  
BCLKR0, BCLKR1, BCLKX0,  
BCLKX1, HCS, HDS1,  
HDS2, TDI, TMS, CLKMDn  
2.2  
DV + 0.3  
DD  
DV = 3.0 V to 3.6 V  
DD  
TCK, TRST  
2.5  
2
DV + 0.3  
DD  
All other inputs  
DV + 0.3  
DD  
X2/CLKIN  
−0.3  
−0.3  
0.6  
0.6  
DV = 1.71 V to 1.89 V  
DD  
All other inputs  
X2/CLKIN  
−0.3  
−0.3  
−0.3  
0.6  
0.6  
0.8  
Low-level input  
voltage  
RS, INTn, NMI, BIO,  
V
IL  
V
BCLKR0, BCLKR1, BCLKX0,  
BCLKX1, HCS, HDS1,  
HDS2, TCK, CLKMDn  
DV = 1.90 V to 3.6 V  
DD  
All other inputs  
I
High-level output current  
Low-level output current  
Operating case temperature  
−300  
1.5  
µA  
mA  
°C  
OH  
I
OL  
T
−40  
100  
C
42  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
6.3 Electrical Characteristics Over Recommended Operating Case Temperature  
Range (Unless Otherwise Noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
= MAX  
DV − 0.3  
V
High-level output voltage  
OH  
OH  
DD  
CLKOUT  
0.4  
DV = 1.71 to 1.89 V  
I
I
= MAX  
= MAX  
DD  
OL  
Low-level output  
voltage  
All other outputs  
All outputs  
0.35  
V
OL  
DV = 1.9 to 3.6 V  
0.4  
DD  
OL  
Bus holders enabled, DV = MAX,  
DD  
Input current for  
outputs in high  
impedance  
D[15:0], HD[7:0]  
−175  
175  
V = V to DV  
DD  
I
SS  
I
IZ  
µA  
All other inputs  
X2/CLKIN  
DV = MAX, V = V to DV  
DD  
−5  
5
DD  
O
SS  
−40  
40  
TRST  
With internal pulldown  
With internal pulldown  
−5  
−5  
300  
300  
HPIENA  
Input current  
(V = V  
I SS  
I
I
µA  
With internal pullups,  
HPIENA = 0  
}
to DV  
)
DD  
TMS, TCK, TDI, HPI  
−300  
−5  
5
5
All other input-only  
pins  
w
CV = 1.8 V, f  
= 80 MHz,  
DD  
clock  
I
I
Supply current, core CPU  
35  
mA  
mA  
DDC  
T
= 25°C  
C
DV = 1.71 to  
1.89 V  
DD  
12  
27  
w
f
= 80 MHz,  
= 25°C  
clock  
Supply current, pins  
DDP  
T
C
DV = 1.9 to  
DD  
3.6 V  
IDLE2  
PLL × 1 mode, 80 MHz input  
1.6  
20  
mA  
Supply current,  
standby  
I
DD  
IDLE3  
Divide-by-two mode, CLKIN stopped  
µA  
C
C
Input capacitance  
Output capacitance  
5
5
pF  
pF  
i
o
§
All values are typical unless otherwise specified.  
HPI input signals except for HPIENA.  
Clock mode: PLL × 1 with external source  
I
OL  
50 Ω  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where:  
I
I
= 1.5 mA (all outputs)  
= 300 µA (all outputs)  
= 0.855 V  
OL  
OH  
V
Load  
C
= 40 pF typical load circuit capacitance  
T
Figure 6−1. 1.8-V Test Load Circuit  
43  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
6.4 Timing Parameter Symbology  
Timing parameter symbols used in the timing requirements and switching characteristics tables are created  
in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related  
terminology have been abbreviated as follows:  
Lowercase subscripts and their meanings:  
Letters and symbols and their meanings:  
a
access time  
H
L
High  
c
cycle time (period)  
delay time  
Low  
d
V
Z
Valid  
dis  
en  
f
disable time  
High impedance  
enable time  
fall time  
h
hold time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
X
pulse duration (width)  
Unknown, changing, or don’t care level  
44  
SPRS199B  
October 2002 − Revised October 2004  
 
Electrical Specifications  
6.5 Clock Options  
The frequency of the reference clock provided at the CLKIN pin can be divided by a factor of two or four or  
multiplied by one of several values to generate the internal machine cycle.  
6.5.1 Internal Oscillator With External Crystal  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN. The frequency of CLKOUT  
is a multiple of the oscillator frequency. The multiply ratio is determined by the bit settings in the CLKMD  
register. The crystal should be in fundamental-mode operation, and parallel resonant, with an effective series  
resistance of 30 and power dissipation of 1 mW. The circuit shown in Figure 6−2 represents  
fundamental-mode operation.  
The connection of the required circuit, consisting of the crystal and two load capacitors, is shown in Figure 6−2.  
The load capacitors, C and C , should be chosen such that the equation below is satisfied. C in the equation  
1
2
L
is the load specified for the crystal.  
C1C2  
(C1 ) C2)  
CL +  
MIN  
MAX  
UNIT  
f
Input clock frequency  
10  
20  
MHz  
clock  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 6−2. Internal Oscillator With External Crystal  
45  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Electrical Specifications  
6.5.2 Divide-By-Two Clock Option (PLL disabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of two to generate  
the internal machine cycle. The selection of the clock mode is described in the clock generator section.  
When an external clock source is used, the external frequency injected must conform to specifications listed  
in Table 6−1.  
NOTE: If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
Table 6−1 and Table 6−2 assume testing over recommended operating conditions and H = 0.5t  
Figure 6−3).  
(see  
c(CO)  
Table 6−1. Divide-By-2 and Divide-by-4 Clock Options Timing Requirements  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, X2/CLKIN  
Fall time, X2/CLKIN  
Rise time, X2/CLKIN  
6.25  
ns  
ns  
ns  
c(CI)  
f(CI)  
r(CI)  
8
8
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
approaching . The device is characterized at frequencies  
c(CI)  
Table 6−2. Divide-By-2 and Divide-by-4 Clock Options Switching Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
t
Cycle time, CLKOUT  
12.5  
2t  
c(CI)  
c(CO)  
t
Delay time, X2/CLKIN high to CLKOUT high/low  
Fall time, CLKOUT  
7
12  
20  
ns  
d(CIH-CO)  
t
4
4
ns  
f(CO)  
t
t
t
Rise time, CLKOUT  
ns  
r(CO)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H−2  
H−2  
H + 2  
H + 2  
ns  
w(COL)  
w(COH)  
ns  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
approaching . The device is characterized at frequencies  
c(CI)  
t
r(CI)  
t
f(CI)  
t
c(CI)  
X2/CLKIN  
CLKOUT  
t
w(COH)  
t
f(CO)  
t
c(CO)  
t
r(CO)  
t
d(CIH-CO)  
t
w(COL)  
Figure 6−3. External Divide-by-Two Clock Timing  
46  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
6.5.3 Multiply-By-N Clock Option (PLL Enabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be multiplied by a factor of N to  
generate the internal machine cycle. The selection of the clock mode and the value of N is described in the  
clock generator section.  
When an external clock source is used, the external frequency injected must conform to specifications listed  
in Table 6−3.  
NOTE: If an external clock source is used, the CLKIN signal level should not exceed CV + 0.3 V.  
DD  
Table 6−3 and Table 6−4 assume testing over recommended operating conditions and H = 0.5t  
Figure 6−4).  
(see  
c(CO)  
Table 6−3. Multiply-By-N Clock Option Timing Requirements  
MIN  
MAX  
UNIT  
Integer PLL multiplier N (N = 1−15)  
PLL multiplier N = x.5  
12.5N 400N  
12.5N 200N  
12.5N 100N  
t
Cycle time, X2/CLKIN  
ns  
c(CI)  
PLL multiplier N = x.25, x.75  
t
t
Fall time, X2/CLKIN  
Rise time, X2/CLKIN  
8
8
ns  
ns  
f(CI)  
r(CI)  
N = Multiplication factor  
Table 6−4. Multiply-By-N Clock Option Switching Characteristics  
PARAMETER  
MIN  
12.5  
7
TYP  
MAX  
UNIT  
ns  
t
Cycle time, CLKOUT  
t
c(CI)/N  
c(CO)  
t
Delay time, X2/CLKIN high/low to CLKOUT high/low  
Fall time, CLKOUT  
10  
20  
ns  
d(CI-CO)  
t
4
4
ns  
f(CO)  
r(CO)  
w(COL)  
w(COH)  
p
t
t
t
t
Rise time, CLKOUT  
ns  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Transitory phase, PLL lock up time  
H−2  
H−2  
H + 2  
H + 2  
30  
ns  
ns  
ms  
N = Multiplication factor  
t
f(CI)  
t
r(CI)  
t
c(CI)  
X2/CLKIN  
t
d(CI-CO)  
t
f(CO)  
t
w(COH)  
t
c(CO)  
t
w(COL)  
t
tp  
r(CO)  
Unstable  
CLKOUT  
Figure 6−4. External Multiply-by-One Clock Timing  
47  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Electrical Specifications  
6.6 Memory and Parallel I/O Interface Timing  
6.6.1 Memory Read  
Table 6−5 and Table 6−6 assume testing over recommended operating conditions with MSTRB = 0 and  
H = 0.5t  
(see Figure 6−5).  
c(CO)  
Table 6−5. Memory Read Timing Requirements  
MIN  
MAX  
2H−14  
2H−14  
UNIT  
ns  
t
t
t
t
t
t
Access time, read data access from address valid  
Access time, read data access from MSTRB low  
Setup time, read data before CLKOUT low  
Hold time, read data after CLKOUT low  
a(A)M  
ns  
a(MSTRBL)  
su(D)R  
7
0
0
0
ns  
ns  
h(D)R  
Hold time, read data after address invalid  
Hold time, read data after MSTRB high  
ns  
h(A-D)R  
ns  
h(D)MSTRBH  
Address, PS, and DS timings are all included in timings referenced as address.  
Table 6−6. Memory Read Switching Characteristics  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
t
Delay time, CLKOUT low to address valid  
8
8
8
7
5
d(CLKL-A)  
t
Delay time, CLKOUT low to MSTRB low  
Delay time, CLKOUT low to MSTRB high  
Hold time, address valid after CLKOUT low  
0
ns  
d(CLKL-MSL)  
t
0
ns  
d(CLKL-MSH)  
t
0
ns  
h(CLKL-A)R  
h(CLKH-A)R  
§
t
Hold time, address valid after CLKOUT high  
0
ns  
§
Address, PS, and DS timings are all included in timings referenced as address.  
In the case of a memory read preceded by a memory read  
In the case of a memory read preceded by a memory write  
48  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
CLKOUT  
t
d(CLKL-A)  
t
h(CLKL-A)R  
A[5:0]  
t
h(A-D)R  
t
su(D)R  
t
a(A)M  
t
h(D)R  
D[15:0]  
t
h(D)MSTRBH  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
a(MSTRBL)  
MSTRB  
R/W  
PS, DS  
Figure 6−5. Memory Read  
49  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
6.6.2 Memory Write  
Table 6−7 assumes testing over recommended operating conditions with MSTRB = 0 and H = 0.5t  
(see  
c(CO)  
Figure 6−6).  
Table 6−7. Memory Write Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
t
t
Delay time, CLKOUT high to address valid  
0
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKH-A)  
§
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT low to MSTRB low  
Delay time, CLKOUT low to data valid  
Delay time, CLKOUT low to MSTRB high  
Delay time, CLKOUT high to R/W low  
Delay time, CLKOUT high to R/W high  
Delay time, R/W low to MSTRB low  
0
0
8
d(CLKL-A)  
t
8
d(CLKL-MSL)  
t
0
17  
d(CLKL-D)W  
t
0
8
d(CLKL-MSH)  
t
−1  
−2  
H − 4  
0
5
5
d(CLKH-RWL)  
t
d(CLKH-RWH)  
t
H + 2  
5
d(RWL-MSTRBL)  
t
Hold time, address valid after CLKOUT high  
h(A)W  
t
t
t
t
Hold time, write data valid after MSTRB high  
Pulse duration, MSTRB low  
H−3 H+14  
2H−5  
h(D)MSH  
w(SL)MS  
su(A)W  
Setup time, address valid before MSTRB low  
Setup time, write data valid before MSTRB high  
2H−4  
2H−14 2H+5  
su(D)MSH  
t
t
Enable time, data bus driven from R/W low  
H−5  
ns  
ns  
en(D−RWL)  
Disable time, data bus high impedance from R/W high  
0
dis(RWH−D)  
§
Address, PS, and DS timings are all included in timings referenced as address.  
In the case of a memory write preceded by a memory write  
In the case of a memory write preceded by an I/O cycle  
50  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
CLKOUT  
A[5:0]  
t
d(CLKH-A)  
t
d(CLKL-A)  
t
h(A)W  
t
d(CLKL-D)W  
t
h(D)MSH  
t
su(D)MSH  
D[15:0]  
MSTRB  
R/W  
t
d(CLKL-MSL)  
t
dis(RWH-D)  
t
d(CLKL-MSH)  
t
su(A)W  
t
t
d(CLKH-RWL)  
d(CLKH-RWH)  
t
t
w(SL)MS  
en(D-RWL)  
t
d(RWL-MSTRBL)  
PS, DS  
Figure 6−6. Memory Write  
51  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
6.6.3 I/O Read  
Table 6−8 and Table 6−9 assume testing over recommended operating conditions, IOSTRB = 0, and  
H = 0.5t (see Figure 6−7).  
c(CO)  
Table 6−8. I/O Read Timing Requirements  
MIN  
MAX  
3H−17  
3H−17  
UNIT  
ns  
t
t
t
t
t
Access time, read data access from address valid  
a(A)IO  
Access time, read data access from IOSTRB low  
Setup time, read data before CLKOUT high  
Hold time, read data after CLKOUT high  
Hold time, read data after IOSTRB high  
ns  
a(ISTRBL)IO  
su(D)IOR  
9
0
0
ns  
ns  
h(D)IOR  
ns  
h(ISTRBH-D)R  
Address and IS timings are included in timings referenced as address.  
Table 6−9. I/O Read Switching Characteristics  
PARAMETER  
MIN  
0
MAX  
UNIT  
ns  
t
Delay time, CLKOUT low to address valid  
8
5
5
8
d(CLKL-A)  
t
Delay time, CLKOUT high to IOSTRB low  
Delay time, CLKOUT high to IOSTRB high  
−2  
−2  
0
ns  
d(CLKH-ISTRBL)  
t
ns  
d(CLKH-ISTRBH)  
t
Hold time, address after CLKOUT low  
ns  
h(A)IOR  
Address and IS timings are included in timings referenced as address.  
CLKOUT  
t
t
h(A)IOR  
d(CLKL-A)  
A[5:0]  
t
h(D)IOR  
t
su(D)IOR  
t
a(A)IO  
D[15:0]  
t
h(ISTRBH-D)R  
t
a(ISTRBL)IO  
t
d(CLKH-ISTRBH)  
t
d(CLKH-ISTRBL)  
IOSTRB  
R/W  
IS  
Figure 6−7. Parallel I/O Port Read  
52  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
6.6.4 I/O Write  
Table 6−10 assumes testing over recommended operating conditions, IOSTRB = 0, and H = 0.5t  
(see  
c(CO)  
Figure 6−8).  
Table 6−10. I/O Write Switching Characteristics  
PARAMETER  
MIN MAX  
UNIT  
t
Delay time, CLKOUT low to address valid  
0
8
5
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
Delay time, CLKOUT high to IOSTRB low  
Delay time, CLKOUT high to write data valid  
Delay time, CLKOUT high to IOSTRB high  
Delay time, CLKOUT low to R/W low  
Delay time, CLKOUT low to R/W high  
−2  
d(CLKH-ISTRBL)  
t
H−5 H+14  
d(CLKH-D)IOW  
t
−2  
0
5
8
8
d(CLKH-ISTRBH)  
t
d(CLKL-RWL)  
d(CLKL-RWH)  
t
t
t
t
t
0
Hold time, address valid after CLKOUT low  
0
8
ns  
ns  
ns  
ns  
h(A)IOW  
Hold time, write data after IOSTRB high  
Setup time, write data before IOSTRB high  
Setup time, address valid before IOSTRB low  
H−3 H+11  
h(D)IOW  
H−11  
H−2  
H+1  
H+2  
su(D)IOSTRBH  
su(A)IOSTRBL  
Address and IS timings are included in timings referenced as address.  
CLKOUT  
t
su(A)IOSTRBL  
t
h(A)IOW  
t
d(CLKL-A)  
A[5:0]  
t
d(CLKH-D)IOW  
t
h(D)IOW  
D[15:0]  
t
d(CLKH-ISTRBL)  
t
d(CLKH-ISTRBH)  
t
su(D)IOSTRBH  
IOSTRB  
R/W  
t
t
d(CLKL-RWH)  
d(CLKL-RWL)  
IS  
Figure 6−8. Parallel I/O Port Write  
53  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Electrical Specifications  
6.7 Ready Timing for Externally Generated Wait States  
Table 6−11 assumes testing over recommended operating conditions and H = 0.5t  
through Figure 6−12).  
(see Figure 6−9  
c(CO)  
Table 6−11. Ready Timing Requirements for Externally Generated Wait States  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Setup time, READY before CLKOUT low  
Hold time, READY after CLKOUT low  
7
su(RDY)  
−2  
ns  
h(RDY)  
Valid time, READY after MSTRB low  
4H−11  
5H−11  
ns  
v(RDY)MSTRB  
h(RDY)MSTRB  
v(RDY)IOSTRB  
h(RDY)IOSTRB  
Hold time, READY after MSTRB low  
4H−4  
5H−3  
ns  
Valid time, READY after IOSTRB low  
ns  
Hold time, READY after IOSTRB low  
ns  
The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by READY,  
at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.  
CLKOUT  
A[5:0]  
t
su(RDY)  
t
h(RDY)  
READY  
MSTRB  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
Wait State  
Generated  
by READY  
Wait States  
Generated Internally  
Figure 6−9. Memory Read With Externally Generated Wait States  
54  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
CLKOUT  
A[5:0]  
D[15:0]  
READY  
MSTRB  
t
h(RDY)  
t
su(RDY)  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
Wait States  
Generated Internally  
Wait State Generated  
by READY  
Figure 6−10. Memory Write With Externally Generated Wait States  
CLKOUT  
A[5:0]  
READY  
IOSTRB  
t
h(RDY)  
t
su(RDY)  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
Wait State Generated  
by READY  
Wait  
States  
Generated  
Internally  
Figure 6−11. I/O Read With Externally Generated Wait States  
55  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
CLKOUT  
A[5:0]  
D[15:0]  
READY  
t
h(RDY)  
t
su(RDY)  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
IOSTRB  
Wait State Generated  
by READY  
Wait States  
Generated  
Internally  
Figure 6−12. I/O Write With Externally Generated Wait States  
56  
SPRS199B  
October 2002 − Revised October 2004  
 
Electrical Specifications  
6.8 HOLD and HOLDA Timings  
Table 6−12 and Table 6−13 assume testing over recommended operating conditions and H = 0.5t  
Figure 6−13).  
(see  
c(CO)  
Table 6−12. HOLD and HOLDA Timing Requirements  
MIN  
4H+7  
7
MAX  
UNIT  
t
t
Pulse duration, HOLD low  
ns  
ns  
w(HOLD)  
Setup time, HOLD low/high before CLKOUT low  
su(HOLD)  
Table 6−13. HOLD and HOLDA Switching Characteristics  
PARAMETER  
MIN  
MAX  
3
UNIT  
ns  
t
t
t
t
t
t
Disable time, address, PS, DS, IS high impedance from CLKOUT low  
Disable time, R/W high impedance from CLKOUT low  
Disable time, MSTRB, IOSTRB high impedance from CLKOUT low  
Enable time, address, PS, DS, IS from CLKOUT low  
Enable time, R/W enabled from CLKOUT low  
dis(CLKL-A)  
dis(CLKL-RW)  
dis(CLKL-S)  
en(CLKL-A)  
en(CLKL-RW)  
en(CLKL-S)  
3
ns  
3
ns  
2H+7  
2H+7  
2H+7  
ns  
ns  
Enable time, MSTRB, IOSTRB enabled from CLKOUT low  
ns  
0
0
8
8
ns  
ns  
ns  
Valid time, HOLDA low after CLKOUT low  
t
t
v(HOLDA)  
Valid time, HOLDA high after CLKOUT low  
Pulse duration, HOLDA low duration  
2H  
w(HOLDA)  
CLKOUT  
t
t
su(HOLD)  
su(HOLD)  
t
w(HOLD)  
HOLD  
t
t
v(HOLDA)  
v(HOLDA)  
t
w(HOLDA)  
HOLDA  
t
dis(CLKL-A)  
t
en(CLKL-A)  
A[5:0]  
PS, DS, IS  
D[15:0]  
R/W  
t
t
t
t
dis(CLKL-RW)  
dis(CLKL-S)  
dis(CLKL-S)  
en(CLKL-RW)  
t
en(CLKL-S)  
MSTRB  
IOSTRB  
t
en(CLKL-S)  
Figure 6−13. HOLD and HOLDA Timings (HM = 1)  
57  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Electrical Specifications  
6.9 Reset, BIO, Interrupt, and MP/MC Timings  
Table 6−14 assumes testing over recommended operating conditions and H = 0.5t  
Figure 6−15, and Figure 6−16).  
(see Figure 6−14,  
c(CO)  
Table 6−14. Reset, BIO, Interrupt, and MP/MC Timing Requirements  
MIN  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, RS after CLKOUT low  
Hold time, BIO after CLKOUT low  
Hold time, INTn, NMI, after CLKOUT low  
Hold time, MP/MC after CLKOUT low  
0
−2  
h(RS)  
h(BIO)  
−3  
h(INT)  
0
h(MPMC)  
w(RSL)  
‡§  
Pulse duration, RS low  
4H+5  
2H+4  
4H  
2H−1  
4H  
2H+1  
4H  
8
Pulse duration, BIO low, synchronous  
Pulse duration, BIO low, asynchronous  
w(BIO)S  
w(BIO)A  
w(INTH)S  
w(INTH)A  
w(INTL)S  
w(INTL)A  
w(INTL)WKP  
su(RS)  
Pulse duration, INTn, NMI high (synchronous)  
Pulse duration, INTn, NMI high (asynchronous)  
Pulse duration, INTn, NMI low (synchronous)  
Pulse duration, INTn, NMI low (asynchronous)  
Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup  
Setup time, RS before X2/CLKIN low  
5
Setup time, BIO before CLKOUT low  
7
12  
12  
su(BIO)  
Setup time, INTn, NMI, RS before CLKOUT low  
Setup time, MP/MC before CLKOUT low  
8
su(INT)  
10  
su(MPMC)  
The external interrupts (INT0−INT3, NMI) are synchronized to the core CPU by way of a two-flip-flop synchronizer which samples these inputs  
with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1-0-0 sequence at the timing that is  
corresponding to three CLKOUT sampling sequences.  
If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, RS must be held low for at least 50 µs to ensure synchronization  
and lock-in of the PLL.  
§
Note that RS may cause a change in clock frequency, therefore changing the value of H.  
Divide-by-two mode  
X2/CLKIN  
t
su(RS)  
t
w(RSL)  
RS, INTn, NMI  
CLKOUT  
BIO  
t
su(INT)  
t
h(RS)  
t
su(BIO)  
t
h(BIO)  
t
w(BIO)S  
Figure 6−14. Reset and BIO Timings  
58  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
CLKOUT  
t
t
su(INT)  
t
h(INT)  
su(INT)  
INTn, NMI  
t
w(INTH)A  
t
w(INTL)A  
Figure 6−15. Interrupt Timing  
CLKOUT  
RS  
t
h(MPMC)  
t
su(MPMC)  
MP/MC  
Figure 6−16. MP/MC Timing  
59  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
6.10 Interrupt Acknowledge (IACK) Timings  
Table 6−15 assumes testing over recommended operating conditions and H = 0.5t  
(see Figure 6−17).  
c(CO)  
Table 6−15. Interrupt Acknowledge (IACK) Switching Characteristics  
PARAMETER  
Delay time, CLKOUT low to IACK low  
Delay time , CLKOUT low to IACK high  
Delay time, address valid to IACK low  
Hold time, IACK high after address invalid  
MIN  
0
MAX  
UNIT  
ns  
t
9
6
2
d(CLKL-IACKL)  
t
t
t
t
1
ns  
d(CLKL-IACKH)  
d(A)IACK  
ns  
−2  
ns  
h(A)IACK  
Pulse duration, IACK low  
2H−1  
ns  
w(IACKL)  
CLKOUT  
A[5:0]  
t
t
d(CLKL-IACKH)  
d(CLKL-IACKL)  
t
h(A)IACK  
t
d(A)IACK  
t
w(IACKL)  
IACK  
MSTRB  
Figure 6−17. IACK Timings  
60  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
6.11 External Flag (XF) and TOUT Timings  
Table 6−16 assumes testing over recommended operating conditions and H = 0.5t  
Figure 6−19).  
(see Figure 6−18 and  
c(CO)  
Table 6−16. External Flag (XF) and TOUT Switching Characteristics  
PARAMETER  
MIN  
−1  
MAX  
UNIT  
Delay time, CLKOUT low to XF high  
8
8
t
ns  
d(XF)  
Delay time, CLKOUT low to XF low  
−1  
t
t
t
Delay time, CLKOUT low to TOUT high  
Delay time, CLKOUT low to TOUT low  
Pulse duration, TOUT  
0
0
11  
9
ns  
ns  
ns  
d(TOUTH)  
d(TOUTL)  
w(TOUT)  
2H−1  
CLKOUT  
t
d(XF)  
XF  
Figure 6−18. XF Timing  
CLKOUT  
TOUT  
t
t
d(TOUTL)  
d(TOUTH)  
t
w(TOUT)  
Figure 6−19. TOUT Timing  
61  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Electrical Specifications  
6.12 Multichannel Buffered Serial Port (McBSP) Timing  
6.12.1 McBSP Transmit and Receive Timings  
Table 6−17 and Table 6−18 assume testing over recommended operating conditions and H = 0.5t  
Figure 6−20 and Figure 6−21).  
(see  
c(CO)  
Table 6−17. McBSP Transmit and Receive Timing Requirements  
MIN  
4H  
2H−1  
20  
0
MAX UNIT  
t
t
Cycle time, BCLKR/X  
BCLKR/X ext  
BCLKR/X ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKR/X ext  
BCLKR/X ext  
ns  
ns  
c(BCKRX)  
Pulse duration, BCLKR/X high or BCLKR/X low  
w(BCKRX)  
t
t
t
t
t
t
Setup time, external BFSR high before BCLKR low  
Hold time, external BFSR high after BCLKR low  
Setup time, BDR valid before BCLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(BFRH-BCKRL)  
h(BCKRL-BFRH)  
su(BDRV-BCKRL)  
h(BCKRL-BDRV)  
su(BFXH-BCKXL)  
h(BCKXL-BFXH)  
−3  
4
17  
0
0
Hold time, BDR valid after BCLKR low  
8
20  
0
Setup time, external BFSX high before BCLKX low  
Hold time, external BFSX high after BCLKX low  
−4  
5
t
t
Rise time, BCLKR/X  
Fall time, BCLKR/X  
8
8
ns  
ns  
r(BCKRX)  
f(BCKRX)  
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
62  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
Table 6−18. McBSP Transmit and Receive Switching Characteristics  
PARAMETER  
MIN  
MAX UNIT  
t
t
Cycle time, BCLKR/X  
BCLKR/X int  
BCLKR/X int  
4H  
ns  
c(BCKRX)  
Pulse duration, BCLKR/X high  
Pulse duration, BCLKR/X low  
D − 3  
D + 2  
ns  
w(BCKRXH)  
t
BCLKR/X int  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
C − 3  
C + 2  
ns  
ns  
ns  
w(BCKRXL)  
−3  
7
6
13  
6
t
Delay time, BCLKR high to internal BFSR valid  
Delay time, BCLKX high to internal BFSX valid  
d(BCKRH-BFRV)  
0
t
t
t
ns  
ns  
ns  
d(BCKXH-BFXV)  
dis(BCKXH-BDXHZ)  
d(BCKXH-BDXV)  
5
19  
6
1
Disable time, BCLKX high to BDX high impedance following last data  
bit of transfer  
7
13  
6
0
§
Delay time, BCLKX high to BDX valid  
Delay time, BFSX high to BDX valid  
DXENA = 0  
5
19  
BFSX int  
BFSX ext  
1
2
t
ns  
d(BFXH-BDXV)  
7
18  
ONLY applies when in data delay 0 (XDATDLY = 00b) mode  
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
T = BCLKRX period = (1 + CLKGDV) * 2H  
C = BCLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
The transmit delay enable (DXENA) and A-bis mode (ABIS) features of the McBSP are not implemented on the TMS320UC5405.  
Minimum delay times also represent minimum output hold times.  
§
63  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
t
t
t
c(BCKRX)  
w(BCKRXH)  
w(BCKRXL)  
t
r(BCKRX)  
BCLKR  
t
d(BCKRH−BFRV)  
t
t
r(BCKRX)  
d(BCKRH−BFRV)  
BFSR (int)  
BFSR (ext)  
t
su(BFRH−BCKRL)  
t
h(BCKRL−BFRH)  
t
h(BCKRL−BDRV)  
t
su(BDRV−BCKRL)  
BDR  
(RDATDLY=00b)  
Bit (n−1)  
(n−2)  
(n−3)  
(n−4)  
t
su(BDRV−BCKRL)  
t
h(BCKRL−BDRV)  
BDR  
(RDATDLY=01b)  
Bit (n−1)  
(n−2)  
(n−3)  
t
su(BDRV−BCKRL)  
t
h(BCKRL−BDRV)  
BDR  
(RDATDLY=10b)  
Bit (n−1)  
(n−2)  
Figure 6−20. McBSP Receive Timings  
t
t
c(BCKRX)  
w(BCKRXH)  
t
r(BCKRX)  
t
f(BCKRX)  
t
w(BCKRXL)  
BCLKX  
BFSX (int)  
BFSX (ext)  
t
d(BCKXH−BFXV)  
t
d(BCKXH−BFXV)  
t
su(BFXH−BCKXL)  
t
h(BCKXL−BFXH)  
t
d(BFXH−BDXV)  
t
t
d(BCKXH−BDXV)  
BDX  
Bit 0  
Bit 0  
Bit (n−1)  
(n−2)  
(n−3)  
(n−4)  
(n−3)  
(n−2)  
(XDATDLY=00b)  
d(BCKXH−BDXV)  
BDX  
(XDATDLY=01b)  
Bit (n−1)  
(n−2)  
t
t
d(BCKXH−BDXV)  
dis(BCKXH−BDXHZ)  
BDX  
(XDATDLY=10b)  
Bit 0  
Bit (n−1)  
Figure 6−21. McBSP Transmit Timings  
64  
SPRS199B  
October 2002 − Revised October 2004  
 
Electrical Specifications  
6.12.2 McBSP General-Purpose I/O Timing  
Table 6−19 and Table 6−20 assume testing over recommended operating conditions (see Figure 6−22).  
Table 6−19. McBSP General-Purpose I/O Timing Requirements  
MIN  
9
MAX UNIT  
t
t
Setup time, BGPIOx input mode before CLKOUT high  
ns  
ns  
su(BGPIO-COH)  
Hold time, BGPIOx input mode after CLKOUT high  
0
h(COH-BGPIO)  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
Table 6−20. McBSP General-Purpose I/O Switching Characteristics  
PARAMETER  
MIN  
MAX UNIT  
t
Delay time, CLKOUT high to BGPIOx output mode  
0
5
ns  
d(COH-BGPIO)  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
t
t
d(COH-BGPIO)  
su(BGPIO-COH)  
CLKOUT  
t
h(COH-BGPIO)  
BGPIOx Input  
mode  
BGPIOx Output  
mode  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
Figure 6−22. McBSP General-Purpose I/O Timings  
65  
October 2002 − Revised October 2004  
SPRS199B  
 
 
Electrical Specifications  
6.12.3 McBSP as SPI Master or Slave Timing  
Table 6−21 to Table 6−28 assume testing over recommended operating conditions and H = 0.5t  
Figure 6−23, Figure 6−24, Figure 6−25, and Figure 6−26).  
(see  
c(CO)  
Table 6−21. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
16  
4
MAX  
t
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX low  
Setup time, BFSX low before BCLKX high  
− 12H  
12H + 5  
10  
ns  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXL-BDRV)  
su(BFXL-BCKXH)  
c(BCKX)  
t
Cycle time, BCLKX  
12H  
32H  
ns  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 6−22. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
§
t
t
t
Hold time, BFSX low after BCLKX low  
T − 4 T + 5  
C − 6 C + 4  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXH-BDXV)  
Delay time, BFSX low to BCLKX high  
Delay time, BCLKX high to BDX valid  
−3  
7
6H + 6 10H + 20  
Disable time, BDX high impedance following last data bit from  
BCLKX low  
t
C − 2 C + 3  
ns  
dis(BCKXL-BDXHZ)  
Disable time, BDX high impedance following last data bit from  
BFSX high  
t
t
2H+ 8  
4H −3  
6H + 21  
8H + 21  
ns  
ns  
dis(BFXH-BDXHZ)  
Delay time, BFSX low to BDX valid  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
c(BCKX)  
MSB  
LSB  
t
su(BFXL-BCKXH)  
BCLKX  
BFSX  
t
h(BCKXL-BFXL)  
t
d(BFXL-BCKXH)  
t
dis(BFXH-BDXHZ)  
t
d(BFXL-BDXV)  
t
t
d(BCKXH-BDXV)  
dis(BCKXL-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXL)  
t
h(BCKXL-BDRV)  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 6−23. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
66  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
Table 6−23. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
16  
4
MAX  
t
t
t
t
Setup time, BDR valid before BCLKX high  
Hold time, BDR valid after BCLKX high  
Setup time, BFSX low before BCLKX high  
Cycle time, BCLKX  
− 12H  
12H + 5  
10  
ns  
ns  
ns  
ns  
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
su(BFXL-BCKXH)  
c(BCKX)  
12H  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 6−24. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
§
t
t
t
Hold time, BFSX low after BCLKX low  
C −4 C + 5  
T − 6 T + 4  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXL-BDXV)  
Delay time, BFSX low to BCLKX high  
Delay time, BCLKX low to BDX valid  
−3  
7
6H + 6 10H + 20  
6H +7 10H + 21  
Disable time, BDX high impedance following last data bit from  
BCLKX low  
t
0
6
ns  
ns  
dis(BCKXL-BDXHZ)  
t
Delay time, BFSX low to BDX valid  
D − 2 D + 4  
4H −3  
8H + 21  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
§
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
t
c(BCKX)  
MSB  
su(BFXL-BCKXH)  
LSB  
BCLKX  
t
t
d(BFXL-BCKXH)  
h(BCKXL-BFXL)  
BFSX  
t
t
t
d(BCKXL-BDXV)  
d(BFXL-BDXV)  
dis(BCKXL-BDXHZ)  
BDX  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXH)  
t
h(BCKXH-BDRV)  
BDR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 6−24. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
67  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
Table 6−25. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
16  
4
MAX  
t
t
t
t
Setup time, BDR valid before BCLKX high  
Hold time, BDR valid after BCLKX high  
Setup time, BFSX low before BCLKX low  
Cycle time, BCLKX  
− 12H  
12H + 5  
10  
ns  
ns  
ns  
ns  
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
su(BFXL-BCKXL)  
c(BCKX)  
12H  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 6−26. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
§
t
t
t
Hold time, BFSX low after BCLKX high  
T − 4 T + 5  
D − 6 D + 4  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXL-BDXV)  
Delay time, BFSX low to BCLKX low  
Delay time, BCLKX low to BDX valid  
− 3  
7
6H + 6 10H + 20  
Disable time, BDX high impedance following last data bit from  
BCLKX high  
t
D − 2 D + 3  
ns  
dis(BCKXH-BDXHZ)  
Disable time, BDX high impedance following last data bit from  
BFSX high  
t
t
2H + 7  
4H − 3  
6H + 21  
8H + 21  
ns  
ns  
dis(BFXH-BDXHZ)  
Delay time, BFSX low to BDX valid  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
t
c(BCKX)  
su(BFXL-BCKXL)  
LSB  
MSB  
BCLKX  
BFSX  
t
h(BCKXH-BFXL)  
t
d(BFXL-BCKXL)  
t
t
d(BFXL-BDXV)  
dis(BFXH-BDXHZ)  
t
t
t
d(BCKXL-BDXV)  
dis(BCKXH-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
(n-2)  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 6−25. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
68  
SPRS199B  
October 2002 − Revised October 2004  
 
Electrical Specifications  
Table 6−27. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
16  
4
MAX  
t
t
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX low  
Setup time, BFSX low before BCLKX low  
Cycle time, BCLKX  
− 12H  
12H + 5  
10  
ns  
ns  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXL-BDRV)  
su(BFXL-BCKXL)  
c(BCKX)  
12H  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 6−28. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
§
t
t
t
Hold time, BFSX low after BCLKX high  
D − 4 D + 5  
T − 6 T + 4  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXH-BDXV)  
Delay time, BFSX low to BCLKX low  
Delay time, BCLKX high to BDX valid  
− 3  
7
6H + 6 10H + 20  
6H +7 10H + 21  
Disable time, BDX high impedance following last data bit from  
BCLKX high  
t
0
6
ns  
ns  
dis(BCKXH-BDXHZ)  
t
Delay time, BFSX low to BDX valid  
C − 2 C + 4  
4H − 3  
8H + 21  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
§
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
t
su(BFXL-BCKXL)  
c(BCKX)  
MSB  
LSB  
BCLKX  
t
t
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
BFSX  
t
t
t
t
d(BCKXH-BDXV)  
dis(BCKXH-BDXHZ)  
d(BFXL-BDXV)  
BDX  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
su(BDRV-BCKXL)  
t
h(BCKXL-BDRV)  
BDR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 6−26. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
69  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
6.13 Host-Port Interface Timing (HPI8)  
Table 6−29 and Table 6−30 assume testing over recommended operating conditions and H = 0.5t  
(see  
c(CO)  
Figure 6−27 through Figure 6−30). In the following tables, DS refers to the logical OR of HCS, HDS1, and  
HDS2. HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.). HAD stands for HCNTL0, HCNTL1,  
and HR/W. GPIO refers to the HD pins when they are configured as general-purpose input/outputs.  
NOTE: During all cycles, DS should not be driven high to complete the cycle until HRDY is  
high. In the case of a read cycle, HDx should also be valid before rising DS.  
Table 6−29. HPI8 Mode Timing Requirements  
MIN  
5
MAX  
UNIT  
ns  
t
t
Setup time, HBIL valid before DS low  
Hold time, HBIL valid after DS low  
su(HBV-DSL)  
6
ns  
h(DSL-HBV)  
t
t
t
t
t
t
t
Setup time, HAS low before DS low  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(HSL-DSL)  
Pulse duration, DS low  
20  
10  
12  
8
w(DSL)  
Pulse duration, DS high  
w(DSH)  
Setup time, HDx valid before DS high, HPI write  
Hold time, HDx valid after DS high, HPI write  
su(HDV-DSH)  
h(DSH-HDV)W  
su(GPIO-COH)  
h(GPIO-COH)  
Setup time, HDx input valid before CLKOUT high, HDx configured as general-purpose input  
Hold time, HDx input valid after CLKOUT high, HDx configured as general-purpose input  
9
−3  
70  
SPRS199B  
October 2002 − Revised October 2004  
 
 
Electrical Specifications  
Table 6−30. HPI8 Mode Switching Characteristics  
PARAMETER  
MIN  
5
MAX  
UNIT  
t
Enable time, HD driven from DS low  
21  
ns  
en(DSL-HD)  
Case 1a: Memory accesses when  
DMAC is active in 16-bit mode and  
18H + 21 − t  
w(DSH)  
t
< 18H  
w(DSH)  
Case 1b: Memory accesses when  
DMAC is active in 16-bit mode and  
21  
26H + 21 − t  
21  
t
18H  
w(DSH)  
Case 1c: Memory access when  
DMAC is active in 32-bit mode and  
w(DSH)  
t
< 26H  
Delay time, DS low to HDx valid for  
first byte of an HPI read  
w(DSH)  
t
ns  
d(DSL-HDV1)  
Case 1d: Memory access when  
DMAC is active in 32-bit mode and  
t
26H  
w(DSH)  
Case 2a: Memory accesses when  
10H + 21 − t  
21  
w(DSH)  
DMAC is inactive and t  
< 10H  
w(DSH)  
Case 2b: Memory accesses when  
DMAC is inactive and t 10H  
w(DSH)  
Case 3: Register accesses  
21  
21  
9
t
t
t
t
Delay time, DS low to HDx valid for second byte of an HPI read  
Hold time, HDx valid after DS high, for a HPI read  
Valid time, HDx valid after HRDY high  
ns  
ns  
ns  
ns  
d(DSL-HDV2)  
h(DSH-HDV)R  
v(HYH-HDV)  
d(DSH-HYL)  
5
12  
21  
Delay time, DS high to HRDY low (see Note 1)  
Case 1a: Memory accesses when  
DMAC is active in 16-bit mode  
18H + 21  
26H + 21  
10H + 21  
ns  
ns  
Case 1b: Memory accesses when  
DMAC is active in 32-bit mode  
t
Delay time, DS high to HRDY high  
d(DSH-HYH)  
Case 2: Memory accesses when  
DMAC is inactive  
ns  
Case 3: Write accesses to HPIC  
register (see Note 2)  
6H + 21  
19  
5
ns  
ns  
ns  
t
t
t
Delay time, HCS low/high to HRDY low/high  
Delay time, CLKOUT high to HRDY high  
Delay time, CLKOUT high to HINT change  
d(HCS-HRDY)  
)
d(COH-HYH  
5
d(COH-HTX)  
d(COH-GPIO)  
Delay time, CLKOUT high to HDx output change. HDx is configured as a  
general-purpose output.  
t
9
ns  
NOTES: 1. The HRDY output is always high when the HCS input is high, regardless of DS timings.  
2. This timing applies to the first byte of an access, when writing a one to the DSPINT bit or HINT bit of the HPIC register. All other writes  
to the HPIC occur asynchronously, and do not cause HRDY to be deasserted.  
DMAC stands for direct memory access (DMA) controller. The HPI8 shares the internal DMA bus with the DMAC, thus HPI8 access times are  
affected by DMAC activity.  
71  
October 2002 − Revised October 2004  
SPRS199B  
 
Electrical Specifications  
Second Byte  
First Byte  
Second Byte  
HAS  
t
su(HBV-DSL)  
t
su(HSL-DSL)  
HAD  
Valid  
Valid  
t
su(HBV-DSL)  
t
h(DSL-HBV)  
HBIL  
HCS  
t
w(DSH)  
t
w(DSL)  
HDS  
t
d(DSH-HYH)  
t
d(DSH-HYL)  
HRDY  
t
en(DSL-HD)  
t
d(DSL-HDV2)  
t
d(DSL-HDV1)  
t
h(DSH-HDV)R  
HD READ  
Valid  
Valid  
Valid  
t
su(HDV-DSH)  
t
v(HYH-HDV)  
t
h(DSH-HDV)W  
HD WRITE  
Valid  
Valid  
Valid  
t
d(COH-HYH)  
CLKOUT  
HAD refers to HCNTL0, HCNTL1, and HR/W.  
When HAS is not used (HAS always high)  
Figure 6−27. Using HDS to Control Accesses (HCS Always Low)  
72  
SPRS199B  
October 2002 − Revised October 2004  
 
Electrical Specifications  
Second Byte  
First Byte  
Second Byte  
HCS  
HDS  
t
d(HCS-HRDY)  
HRDY  
Figure 6−28. Using HCS to Control Accesses  
CLKOUT  
t
d(COH-HTX)  
HINT  
Figure 6−29. HINT Timing  
CLKOUT  
t
su(GPIO-COH)  
t
h(GPIO-COH)  
GPIOx Input Mode  
t
d(COH-GPIO)  
GPIOx Output Mode  
GPIOx refers to HD0, HD1, HD2, ...HD7, when the HD bus is configured for general-purpose input/output (I/O).  
Figure 6−30. GPIOx Timings  
73  
October 2002 − Revised October 2004  
SPRS199B  
 
Mechanical Data  
7
Mechanical Data  
Table 7−1 and Table 7−2 show the thermal resistance characteristics for the GQW (PBGA) and ZQW (PBGA)  
mechanical packages.  
Table 7−1. Thermal Resistance Characteristics for GQW  
PARAMETER  
GQW PACKAGE  
UNIT  
R
36.24  
°C/W  
Θ
JA  
JC  
R
17.93  
°C/W  
Θ
Based on a JEDEC 2s2p-style (high-k) board with 0 linear feet per minute (lfm) airflow.  
Table 7−2. Thermal Resistance Characteristics for ZQW  
PARAMETER  
ZQW PACKAGE  
UNIT  
R
36.24  
°C/W  
Θ
JA  
JC  
R
17.93  
°C/W  
Θ
Based on a JEDEC 2s2p-style (high-k) board with 0 linear feet per minute (lfm) airflow.  
The following mechanical package diagram(s) reflect the most up-to-date mechanical data released for these  
designated device(s).  
74  
SPRS199B  
October 2002 − Revised October 2004  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TMS320UC5405GQW  
ACTIVE  
BGA MI  
CROSTA  
R JUNI  
OR  
GQW  
143  
250  
TBD  
SNPB  
Level-3-220C-168HR  
TMS320UC5405ZQW  
ACTIVE  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQW  
143  
250  
Pb-Free  
(RoHS)  
SNAGCU  
Level-3-260C-168HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  

相关型号:

TMS320UC5409

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409-80

Digital Signal Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TMS320UC5409GGU

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409GGU-80

Digital Signal Processor 144-BGA MICROSTAR -40 to 100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409GGU-80

16-BIT, 20MHz, OTHER DSP, PBGA144, PLASTIC, BGA-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

TMS320UC5409GGUR

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409GGUR80

Digital Signal Processor 144-BGA MICROSTAR -40 to 100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409PGE

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409PGE-80

Digital Signal Processor 144-LQFP -40 to 100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UC5409PGER

16-BIT, 40MHz, OTHER DSP, PQFP144, PLASTIC, QFP-144

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UVC5402

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMS320UVC5402GGU

FIXED-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI