TMS320VC5409PGE [TI]

FIXED-POINT DIGITAL SIGNAL PROCESSOR; 定点数字信号处理器
TMS320VC5409PGE
型号: TMS320VC5409PGE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FIXED-POINT DIGITAL SIGNAL PROCESSOR
定点数字信号处理器

微控制器和处理器 外围集成电路 数字信号处理器
文件: 总89页 (文件大小:903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320VC5409 Fixed-Point  
Digital Signal Processor  
Data Manual  
Literature Number: SPRS082E  
April 1999 Revised February 2004  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Revision History  
REVISION HISTORY  
This data sheet revision history highlights the technical changes made to the SPRS082D device-specific data  
sheet to make it an SPRS082E revision.  
Scope: This document has been reviewed for technical accuracy; the technical content is up-to-date as of the  
specified release date with the following changes.  
PAGE(S)  
ADDITIONS/CHANGES/DELETIONS  
NO.  
All  
Several  
15  
Reformatted document into data manual format.  
Reformatted all register bit layouts.  
Added CPU Core Section 3.1.  
21  
Added RAM/ROM security restrictions to Section 3.2.4, On-Chip Memory Security.  
Replaced “CLKOUT cycle” with “CPU clock cycle” in Section 3.3.3, Hardware Timer.  
Added TRAP/INTR NUMBER (K) column to Table 317.  
Updated HOLDA description in Table 319.  
30  
40  
43  
49  
Added Section 4.1, Device and Development Tool Support Nomenclature.  
Updated GGU mechanical.  
87  
3
April 1999 Revised February 2004  
SPRS082E  
Revision History  
4
SPRS082E  
April 1999 Revised February 2004  
Contents  
Contents  
Section  
Page  
1
2
TMS320VC5409 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
11  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12  
12  
12  
14  
2.1  
2.2  
2.3  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GGU Package Layout and Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PGE Package Layout and Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
15  
15  
15  
17  
19  
20  
20  
21  
21  
21  
22  
22  
23  
23  
26  
30  
30  
32  
39  
40  
42  
3.1  
CPU Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.1.1  
3.1.2  
3.1.3  
Software Programmable WaitState Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Programmable Bank-Switching Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CPU Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.6  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
On-Chip ROM With Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
On-Chip RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
On-Chip Memory Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Relocatable Interrupt Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Extended Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.3  
On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
Parallel I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multichannel Buffered Serial Ports (McBSPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Hardware Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Peripheral Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.4  
3.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4
5
Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1 Device and Development Tool Support Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
48  
49  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
50  
50  
50  
51  
52  
53  
54  
55  
55  
57  
59  
60  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Internal Oscillator with External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Divide-By-Two/Divide-By-Four Clock Option (PLL Disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multiply-By-N Clock Option (PLL Enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory and Parallel I/O Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.7.1  
5.7.2  
5.7.3  
5.7.4  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
April 1999 Revised February 2004  
SPRS082E  
Contents  
Section  
Page  
5.8  
5.9  
5.10  
5.11  
5.12  
5.13  
Ready Timing for Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOLD and HOLDA Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reset, BIO, Interrupt, and MP/MC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings . . . . . . . . . . . . . . . . .  
External Flag (XF) and TOUT Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multichannel Buffered Serial Port (McBSP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
61  
65  
66  
68  
69  
70  
70  
73  
74  
78  
78  
82  
86  
5.13.1  
5.13.2  
5.13.3  
McBSP Transmit and Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP General-Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP as SPI Master or Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.14  
5.15  
Host-Port Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.14.1  
5.14.2  
HPI8 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HPI16 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GPIO Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
87  
87  
88  
6.1  
6.2  
Ball Grid Array Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Low-Profile Quad Flatpack Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6
SPRS082E  
April 1999 Revised February 2004  
Figures  
Page  
List of Figures  
Figure  
21  
22  
GGU Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PGE Package (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12  
14  
31  
32  
33  
34  
35  
36  
37  
38  
39  
TMS320VC5409 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h] . . .  
Software Wait-State Configuration Register (SWCR) [MMR Address 002Bh] . . . . . . . . . . . . . . . . .  
Bank-Switching Control Register (BSCR) [MMR Address 0029h] . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Extended Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5409 HPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pin Control Register (PCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sample Rate Generator Register 2 (SRGR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
15  
16  
17  
17  
20  
23  
24  
26  
29  
34  
41  
310 TMS320VC5409 DMA Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
311 IFR and IMR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
51  
52  
53  
54  
55  
56  
57  
58  
59  
3.3-V Test Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Internal Oscillator With External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
External Divide-by-Two Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
External Multiply-by-One Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
51  
52  
53  
54  
56  
58  
59  
60  
61  
62  
63  
64  
65  
67  
67  
67  
68  
69  
69  
72  
72  
73  
510 Memory Write With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
511 I/O Read With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
512 I/O Write With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
513 HOLD and HOLDA Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
514 Reset and BIO Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
515 Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
516 MP/MC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
517 IAQ and IACK Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
518 XF Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
519 TOUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
520 McBSP Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
521 McBSP Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
522 McBSP General-Purpose I/O Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7
April 1999 Revised February 2004  
SPRS082E  
Figures  
Figure  
Page  
523 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . .  
524 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . .  
525 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . .  
526 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . .  
527 Using HDS to Control Accesses (HCS Always Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
528 Using HCS to Control Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
529 HRDY Relative to CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
530 HINT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
531 Nonmultiplexed Read Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
532 Nonmultiplexed Write Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
533 GPIOx Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
74  
75  
76  
77  
80  
81  
81  
81  
84  
85  
86  
61  
62  
TMS320VC5416 144-Ball Plastic Ball Grid Array Package (GGU) . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TMS320VC5416 144-Pin Low-Profile Quad Flatpack (PGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
87  
88  
8
SPRS082E  
April 1999 Revised February 2004  
Tables  
List of Tables  
Table  
Page  
21  
Pin Assignments for the GGU (144-Pin BGA Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
13  
31  
32  
33  
34  
35  
36  
37  
38  
Software Wait-State Register (SWWSR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Software Wait-State Configuration Register (SWCR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bank-Switching Control Register Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CPU Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Standard On-Chip ROM Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bus Holder Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pin Control Register (PCR) Bit Field Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sample Rate Generator Clock Input Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sample Rate Generator Register 2 (SRGR2) Bit Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Control Registers and Subaddresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Clock Mode Settings at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Channel Interrupt Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DMA Subbank Addressed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Peripheral Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Interrupt Locations and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IFR and IMR Register Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
16  
17  
18  
19  
21  
25  
27  
29  
29  
30  
31  
36  
36  
37  
37  
39  
40  
41  
42  
39  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
51  
52  
53  
54  
55  
56  
57  
58  
Recommended Operating Conditions of Internal Oscillator With External Crystal . . . . . . . . . . . . .  
Divide-By-Two/Divide-By-Four Clock Option (PLL Disabled) Timing Requirements . . . . . . . . . . . .  
Divide-By-Two/Divide-By-Four Clock Option (PLL Disabled) Switching Characteristics . . . . . . . .  
Multiply-By-N Clock Option (PLL Enabled) Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Multiply-By-N Clock Option (PLL Enabled) Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Read Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Memory Write Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Read Port Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Read Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Parallel I/O Port Write Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ready Timing Requirements for Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . .  
Ready Switching Characteristics for Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . .  
HOLD and HOLDA Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HOLD and HOLDA Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reset, BIO, Interrupt, and MP/MC Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics . . . .  
External Flag (XF) and TOUT Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Transmit and Receive Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP Transmit and Receive Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP General-Purpose I/O Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
McBSP General-Purpose I/O Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
52  
53  
53  
54  
54  
55  
55  
57  
59  
59  
60  
61  
61  
65  
65  
66  
68  
69  
70  
71  
73  
73  
59  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
9
April 1999 Revised February 2004  
SPRS082E  
Tables  
Table  
Page  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) . . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) . . . . . .  
McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) . . . . . . . . . .  
McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) . . . . . . .  
HPI8 Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HPI8 Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HPI16 Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
HPI16 Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GPIO Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
GPIO Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
74  
74  
75  
75  
76  
76  
77  
77  
78  
79  
82  
83  
86  
86  
61  
62  
Thermal Resistance Characteristics for 144-Ball GGU Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Thermal Resistance Characteristics for 144-Ball PGE Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
87  
88  
10  
SPRS082E  
April 1999 Revised February 2004  
Features  
1
TMS320VC5409 Features  
D Advanced Multibus Architecture With Three  
Separate 16-Bit Data Memory Buses and  
One Program Memory Bus  
D Arithmetic Instructions With Parallel Store  
and Parallel Load  
D Conditional Store Instructions  
D Fast Return From Interrupt  
D 40-Bit Arithmetic Logic Unit (ALU),  
Including a 40-Bit Barrel Shifter and Two  
Independent 40-Bit Accumulators  
D On-Chip Peripherals  
Software-Programmable Wait-State  
Generator and Programmable Bank  
Switching  
On-Chip Phase-Locked Loop (PLL) Clock  
Generator With Internal Oscillator or  
External Clock Source  
D 17- × 17-Bit Parallel Multiplier Coupled to a  
40-Bit Dedicated Adder for Non-Pipelined  
Single-Cycle Multiply/Accumulate (MAC)  
Operation  
D Compare, Select, and Store Unit (CSSU) for  
the Add/Compare Selection of the Viterbi  
Operator  
Three Multichannel Buffered Serial Ports  
(McBSPs)  
Enhanced 8-Bit Parallel Host-Port  
Interface With 16-Bit Data/Addressing  
One 16-Bit Timer  
Six-Channel Direct Memory Access  
(DMA) Controller  
D Exponent Encoder to Compute an  
Exponent Value of a 40-Bit Accumulator  
Value in a Single Cycle  
D Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
D Power Consumption Control With IDLE1,  
IDLE2, and IDLE3 Instructions With  
Power-Down Modes  
D Data Bus With a Bus-Holder Feature  
D Extended Addressing Mode for 8M × 16-Bit  
Maximum Addressable External Program  
Space  
D CLKOUT Off Control to Disable CLKOUT  
D On-Chip Scan-Based Emulation Logic,  
IEEE Std 1149.1 (JTAG) Boundary Scan  
D 16K x 16-Bit On-Chip ROM  
Logic  
D 32K x 16-Bit Dual-Access On-Chip RAM  
D 12.5-ns Single-Cycle Fixed-Point  
Instruction Execution Time (80 MIPS) for  
3.3-V Power Supply (1.8-V Core)  
D Single-Instruction-Repeat and  
Block-Repeat Operations for Program Code  
D Block-Memory-Move Instructions for Better  
D 10-ns Single-Cycle Fixed-Point Instruction  
Execution Time (100 MIPS) for 3.3-V Power  
Supply (1.8-V Core)  
Program and Data Management  
D Instructions With a 32-Bit Long Word  
Operand  
D Available in a 144-Pin Plastic Thin Quad  
Flatpack (TQFP) (PGE Suffix) and a 144-Pin  
Ball Grid Array (BGA) (GGU Suffix)  
D Instructions With Two- or Three-Operand  
Reads  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible  
to damage because very small parametric changes could cause the device not to meet its published specifications.  
All trademarks are the property of their respective owners.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
11  
April 1999 Revised February 2004  
SPRS082E  
 
Introduction  
2
Introduction  
The TMS320VC5409 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5409 unless  
otherwise specified) is based on an advanced modified Harvard architecture that has one program memory  
bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree  
of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The  
basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.  
Separate program and data spaces allow simultaneous access to program instructions and data, providing  
the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle.  
Instructions with parallel store and application-specific instructions can fully utilize this architecture. In  
addition, data can be transferred between data and program spaces. Such parallelism supports a powerful  
set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle.  
In addition, the 5409 includes the control mechanisms to manage interrupts, repeated operations, and function  
calls.  
NOTE:This data manual is designed to be used in conjunction with the TMS320C54xDSP  
Functional Overview (literature number SPRU307).  
2.1 Pin Assignments  
Figure 21 illustrates the ball number and location for the 144-pin GGU ball grid array. The pin assignments  
in Table 21 lists each signal quadrant and BGA ball number for the TMS320VC5409GGU (144-pin BGA  
package) which is footprint-compatible with the LC548, LC/VC549, and VC5410 devices.The DV pins in  
DD  
are the power supply for the I/O pins while CV is the power supply for the core CPU. V is the ground for  
DD  
SS  
both the I/O pins and the core CPU.  
Figure 22 illustrates the pin number, location, and signal name for the 144-pin PGE package type.  
2.2 GGU Package Layout and Pin Assignments  
13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
Figure 21. GGU Package (Bottom View)  
TMS320C54x is a trademark of Texas Instruments.  
12  
SPRS082E  
April 1999 Revised February 2004  
 
Introduction  
Table 21. Pin Assignments for the GGU (144-Pin BGA Package)†  
SIGNAL  
QUADRANT 1  
SIGNAL  
QUADRANT 2  
SIGNAL  
QUADRANT 3  
SIGNAL  
QUADRANT 4  
BGA BALL #  
BGA BALL #  
BGA BALL #  
BGA BALL #  
V
A1  
B1  
C2  
C1  
D4  
D3  
D2  
D1  
E4  
E3  
E2  
E1  
F4  
F3  
F2  
F1  
G2  
G1  
G3  
G4  
H1  
H2  
H3  
H4  
J1  
BFSX1  
BDX1  
N13  
M13  
L12  
L13  
K10  
K11  
K12  
K13  
J10  
J11  
V
N1  
N2  
M3  
N3  
K4  
A19  
A20  
A13  
A12  
B11  
A11  
D10  
C10  
B10  
A10  
D9  
C9  
B9  
SS  
SS  
A22  
BCLKR1  
HCNTL0  
V
DV  
V
SS  
SS  
DD  
DV  
V
V
DV  
DD  
DD  
SS  
SS  
A10  
CLKMD1  
CLKMD2  
CLKMD3  
HPI16  
HD2  
BCLKR0  
BCLKR2  
BFSR0  
BFSR2  
BDR0  
D6  
HD7  
A11  
A12  
A13  
A14  
A15  
L4  
D7  
D8  
M4  
N4  
K5  
D9  
D10  
D11  
D12  
HD4  
D13  
D14  
D15  
HD5  
TOUT  
EMU0  
EMU1/OFF  
TDO  
HCNTL1  
BDR2  
L5  
J12  
J13  
H10  
H11  
H12  
H13  
G12  
G13  
G11  
G10  
F13  
F12  
F11  
F10  
E13  
E12  
E11  
E10  
D13  
D12  
D11  
C13  
C12  
C11  
B13  
B12  
M5  
N5  
K6  
CV  
BCLKX0  
BCLKX2  
A9  
DD  
HAS  
D8  
C8  
B8  
V
V
TDI  
V
L6  
SS  
SS  
SS  
TRST  
HINT  
CV  
M6  
N6  
M7  
N7  
L7  
CV  
TCK  
A8  
DD  
DD  
HCS  
HR/W  
READY  
PS  
TMS  
BFSX0  
BFSX2  
HRDY  
CV  
B7  
DD  
V
V
A7  
SS  
SS  
CV  
HDS1  
C7  
D7  
A6  
DD  
HPIENA  
DV  
K7  
V
SS  
DD  
DS  
V
V
N8  
M8  
L8  
HDS2  
DV  
SS  
SS  
IS  
CLKOUT  
HD3  
X1  
HD0  
BDX0  
BDX2  
IACK  
HBIL  
NMI  
B6  
DD  
R/W  
A0  
C6  
D6  
A5  
MSTRB  
IOSTRB  
MSC  
XF  
K8  
A1  
A2  
A3  
HD6  
A4  
A5  
A6  
A7  
A8  
A9  
X2/CLKIN  
RS  
N9  
M9  
L9  
J2  
B5  
J3  
D0  
C5  
D5  
A4  
HOLDA  
IAQ  
J4  
D1  
INT0  
INT1  
INT2  
INT3  
K9  
K1  
K2  
K3  
L1  
D2  
N10  
M10  
L10  
N11  
M11  
L11  
N12  
M12  
HOLD  
BIO  
D3  
B4  
D4  
C4  
A3  
MP/MC  
D5  
CV  
DD  
DV  
L2  
A16  
HD1  
B3  
DD  
V
L3  
V
V
CV  
DD  
C3  
A2  
SS  
SS  
SS  
BDR1  
M1  
M2  
A17  
A18  
BCLKX1  
A21  
BFSR1  
V
V
B2  
SS  
SS  
DV is the power supply for the I/O pins while CV is the power supply for the core CPU. V is the ground for both the I/O pins and the core  
DD  
DD  
SS  
CPU.  
13  
April 1999 Revised February 2004  
SPRS082E  
 
Introduction  
2.3 PGE Package Layout and Pin Assignments  
V
A22  
V
SS  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
A18  
A17  
2
SS  
3
V
SS  
DV  
DD  
4
A16  
D5  
D4  
D3  
D2  
D1  
D0  
RS  
X2/CLKIN  
X1  
A10  
HD7  
A11  
A12  
A13  
A14  
A15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
CV  
DD  
97  
HAS  
96  
V
V
SS  
SS  
DD  
95  
HD3  
CLKOUT  
94  
CV  
93  
V
SS  
HCS  
HR/W  
READY  
PS  
92  
HPIENA  
CV  
91  
DD  
90  
V
SS  
89  
TMS  
TCK  
TRST  
TDI  
DS  
88  
IS  
87  
R/W  
86  
MSTRB  
IOSTRB  
MSC  
XF  
HOLDA  
IAQ  
HOLD  
BIO  
MP/MC  
85  
TDO  
84  
EMU1/OFF  
EMU0  
TOUT  
HD2  
HPI16  
CLKMD3  
CLKMD2  
CLKMD1  
83  
82  
81  
80  
79  
78  
77  
76  
V
DV  
DD  
SS  
75  
DV  
DD  
V
BDR1  
BFSR1  
SS  
74  
BDX1  
BFSX1  
73  
NOTE: DV is the power supply for the I/O pins while CV is the power supply for the core CPU. V is the ground for both the I/O pins and  
DD  
DD  
SS  
the core CPU.  
The TMS320VC5409PGE (144-pin TQFP) package is footprint-compatible with the LC548, LC/VC549, and  
VC5410 devices.  
Figure 22. PGE Package (Top View)  
14  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3
Functional Overview  
The following functional overview is based on the block diagram in Figure 31.  
P, C, D, E Buses and Control Signals  
32K RAM  
Dual Access  
Program/Data  
16K Program  
54X cLEAD  
ROM  
MBus  
GPIO  
RHEA  
Bridge  
TI BUS  
RHEA Bus  
McBSP1  
XIO  
Enhanced XIO  
McBSP2  
McBSP3  
HPI  
HPI  
xDMA  
logic  
RHEAbus  
TIMER  
APLL  
JTAG  
Clocks  
Figure 31. TMS320VC5409 Functional Block Diagram  
3.1 CPU Core  
The TMS320VC5409 is based on the TMS320C54x (cLEAD v2) DSP core, and is completely code compatible  
with other 54x products. The core includes the following features:  
LEAD2 CPU  
Software programmable wait-state generator with bank-switching wait-state logic  
External memory interface  
Program space  
Data space  
I/O space  
Scan-based emulation logic  
3.1.1 Software Programmable WaitState Generator  
The software wait-state generator of the 5409 is similar to that of the 5410 and it can extend external bus cycles  
by up to fourteen machine cycles. Devices that require more than fourteen wait states can be interfaced using  
the hardware READY line. When all external accesses are configured for zero wait states, the internal clocks  
to the wait-state generator are automatically disabled. Disabling the wait-state generator clocks reduces the  
power consumption of the 5409.  
The software wait-state register (SWWSR) controls the operation of the wait-state generator. The 14 LSBs  
of the SWWSR specify the number of wait states (0 to 7) to be inserted for external memory accesses to five  
separate address ranges. This allows a different number of wait states for each of the five address ranges.  
Additionally, the software wait-state multiplier (SWSM) bit of the system configuration register (SCR) defines  
a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is initialized to  
provide seven wait states on all external memory accesses. The SWWSR bit fields are shown in Figure 32  
and described in Table 31.  
15  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
15  
14  
6
12  
11  
3
9
8
XPA  
I/O  
DATA  
DATA  
R/W-0  
R/W-111  
R/W-111  
7
5
2
0
DATA  
R/W111  
PROGRAM  
PROGRAM  
R/W111  
R/W111  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 32. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]  
Table 31. Software Wait-State Register (SWWSR) Bit Fields  
BIT  
RESET  
VALUE  
FUNCTION  
NO.  
NAME  
Extended program address control bit. XPA is used in conjunction with the program space fields  
(bits 0 through 5) to select the address range for program space wait states.  
15  
XPA  
0
1
I/O space. The field value (07) corresponds to the base number of wait states for I/O space accesses  
within addresses 0000FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for  
the base number of wait states.  
1412  
119  
86  
I/O  
Upper data space. The field value (07) corresponds to the base number of wait states for external  
data space accesses within addresses 8000FFFFh. The SWSM bit of the SWCR defines a  
multiplication factor of 1 or 2 for the base number of wait states.  
Data  
Data  
1
1
Lower data space. The field value (07) corresponds to the base number of wait states for external  
data space accesses within addresses 00007FFFh. The SWSM bit of the SWCR defines a  
multiplication factor of 1 or 2 for the base number of wait states.  
Upper program space. The field value (07) corresponds to the base number of wait states for external  
program space accesses within the following addresses:  
-
-
XPA = 0: x8000 xFFFFh  
53  
20  
Program  
Program  
1
1
XPA = 1: The upper program space bit field has no effect on wait states.  
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.  
Program space. The field value (07) corresponds to the base number of wait states for external  
program space accesses within the following addresses:  
-
-
XPA = 0: x0000x7FFFh  
XPA = 1: 00000FFFFFh  
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.  
The software wait-state multiplier bit of the software wait-state configuration register is used to extend the base  
number of wait states selected by the SWWSR. The SWCR bit fields are shown in Figure 33 and described  
in Table 32.  
16  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
15  
7
8
Reserved  
R/W-0  
1
0
Reserved  
R/W-0  
SWSM  
R/W0  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 33. Software Wait-State Configuration Register (SWCR) [MMR Address 002Bh]  
Table 32. Software Wait-State Configuration Register (SWCR) Bit Fields  
PIN  
RESET  
VALUE  
FUNCTION  
These bits are reserved and are unaffected by writes.  
NO.  
NAME  
151  
Reserved  
0
Software wait-state multiplier. Used to multiply the number of wait states defined in the SWWSR by a factor  
of 1 or 2.  
0
SWSM  
0
-
-
SWSM = 0: wait-state base values are unchanged (multiplied by 1).  
SWSM = 1: wait-state base values are multiplied by 2 for a maximum of 14 wait states.  
3.1.2 Programmable Bank-Switching Wait States  
The programmable bank-switching logic of the 5409 is functionally equivalent to that of the 548/549 devices.  
This feature automatically inserts one cycle when accesses cross memory-bank boundaries within program  
or data memory space. A bank-switching wait state can also be automatically inserted when accesses cross  
the data space boundary into program space.  
The bank-switching control register (BSCR) defines the bank size for bank-switching wait-states. Figure 34  
shows the BSCR and its bits are described in Table 33.  
15  
7
12  
11  
10  
8
BNKCMP  
R/W-1111  
PSDS  
R/W1  
Reserved  
R0  
3
2
1
0
Reserved  
R0  
HBH  
R/W-0  
BH  
EXIO  
R/W-0  
R/W-0  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 34. Bank-Switching Control Register (BSCR) [MMR Address 0029h]  
17  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
Table 33. Bank-Switching Control Register Fields  
BIT  
RESET  
VALUE  
FUNCTION  
NO.  
NAME  
Bank compare. BNKCMP determines the external memory-bank size. BNKCMP is used to mask the four  
MSBs of an address. For example, if BNKCMP = 1111b, the four MSBs (bits 1215) are compared, resulting  
in a bank size of 4K words. Bank sizes of 4K words to 64K words are allowed.  
1512 BNKCMP  
1111  
Program read data read access. PS-DS inserts an extra cycle between consecutive accesses of program  
read and data read or data read and program read.  
11  
PS-DS  
1
0
PS-DS = 0  
PS-DS = 1  
No extra cycles are inserted by this feature.  
One extra cycle is inserted between consecutive data and program reads.  
103  
Reserved  
These bits are reserved and are unaffected by writes.  
HPI bus holder. HBH controls the HPI bus holder feature. HBH is cleared to 0 at reset.  
8-bit Mode  
HBH = 0  
HBH = 1  
The bus holder is disabled for the HPI data bus (HD[7:0]).  
The bus holders are enabled on HD[7:0]. When not driven, the HPI data bus (HD[7:0]) is held  
in the previous logic level.  
2
HBH  
0
HPI bus holder. HBH controls the HPI bus holder feature. HBH is cleared to 0 at reset.  
16-bit Mode  
HBH = 0  
The bus holder is disabled for the HPI address bus (HA[15:0]). The HPI GPIO pins (HD[7:0])  
are held in the previous logic level.  
HBH = 1  
The bus holders are enabled on HA[15:0]. When not driven, the HPI address bus (A[15:0])  
and HPI GPIO pins (HD[7:0]) are held in the previous logic level.  
Bus holder. BH controls the data bus holder feature. BH is cleared to 0 at reset.  
BH = 0  
BH = 1  
The bus holder is disabled.  
The bus holder is enabled. When not driven, the data bus (D[15:0]) is held in the previous  
logic level.  
1
0
BH  
0
0
External bus interface off. The EXIO bit controls the external bus-off function.  
EXIO = 0  
EXIO = 1  
The external bus interface functions as usual.  
The address bus, data bus, and control signals become inactive after completing the current  
bus cycle. Note that the DROM, MP/MC, and OVLY bits in the PMST and the HM bit of ST1  
cannot be modified when the interface is disabled.  
EXIO  
18  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3.1.3 CPU Memory-Mapped Registers  
The 5409 has 27 memory-mapped CPU registers, which are mapped in data memory space addresses 0h  
to 1Fh.  
Table 34. CPU Memory-Mapped Registers  
ADDRESS  
NAME  
DESCRIPTION  
DEC  
0
HEX  
0
IMR  
IFR  
Interrupt mask register  
Interrupt flag register  
Reserved for testing  
Status register 0  
1
1
25  
6
25  
6
ST0  
ST1  
AL  
7
7
Status register 1  
8
8
Accumulator A low word (150)  
AH  
9
9
Accumulator A high word (3116)  
Accumulator A guard bits (3932)  
Accumulator B low word (150)  
Accumulator B high word (3116)  
Accumulator B guard bits (3932)  
Temporary register  
AG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
BL  
B
BH  
C
BG  
D
TREG  
TRN  
AR0  
AR1  
AR2  
AR3  
AR4  
AR5  
AR6  
AR7  
SP  
E
F
Transition register  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Auxiliary register 0  
Auxiliary register 1  
Auxiliary register 2  
Auxiliary register 3  
Auxiliary register 4  
Auxiliary register 5  
Auxiliary register 6  
Auxiliary register 7  
Stack pointer register  
BK  
Circular buffer size register  
Block repeat counter  
BRC  
RSA  
REA  
PMST  
XPC  
Block repeat start address  
Block repeat end address  
Processor mode status (PMST) register  
Extended program page register  
Reserved  
19  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.2 Memory  
The 5409 device provides both on-chip ROM and RAM memories to aid in system performance and  
integration.  
3.2.1 Memory Map  
Page 0 Program  
Page 0 Program  
Data  
Hex  
0000  
Hex  
0000  
Hex  
0000  
Memory-  
Mapped  
Registers  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
005F  
0060  
Scratch-Pad  
RAM  
007F  
0080  
007F  
0080  
007F  
0080  
On-Chip  
On-Chip  
On-Chip  
DARAM  
DARAM  
DARAM  
(OVLY = 1)  
(OVLY = 1)  
(32K words)  
External  
(OVLY = 0)  
External  
(OVLY = 0)  
7FFF  
8000  
7FFF  
8000  
7FFF  
8000  
External  
External  
BFFF  
C000  
BFFF  
C000  
External  
On-Chip ROM  
(16K Words)  
ROM  
(DROM=1)  
FEFF  
FF00  
or External  
(DROM=0)  
Reserved  
FF7F  
FF80  
FF7F  
FF80  
FEFF  
FF00  
Reserved  
(DROM=1)  
or External  
(DROM=0)  
Interrupts  
(On-Chip)  
Interrupts  
(External)  
FFFF  
FFFF  
FFFF  
MP/MC= 1  
(Microprocessor Mode)  
MP/MC= 0  
(Microcomputer Mode)  
DARAM0= 0060h 1FFFh, DARAM1= 2000h 3FFFh  
DARAM2= 4000h 5FFFh, DARAM3= 6000h 7FFFh  
Figure 35. Memory Map  
20  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3.2.2 On-Chip ROM With Bootloader  
A bootloader is available in the standard 5409 on-chip ROM. This bootloader can be used to automatically  
transfer user code from an external source to anywhere in the program memory at power up. If the MP/MC  
pin is sampled low during a hardware reset, execution begins at location FF80h of the on-chip ROM. This  
location contains a branch instruction to the start of the bootloader program. The standard 5409 bootloader  
provides different ways to download the code to accommodate various system requirements:  
Parallel from 8-bit or 16-bit-wide EPROM  
Parallel from I/O space 8-bit or 16-bit mode  
Serial boot from serial ports 8-bit or 16-bit mode  
Host-port interface boot  
SPI serial EEPROM 8-bit boot mode  
The standard on-chip ROM layout is shown in Table 35.  
Table 35. Standard On-Chip ROM Layout  
ADDRESS RANGE  
DESCRIPTION  
0x0000h 0xBFFFh External program space  
0xC000h 0xF7FFh Reserved  
0xF800h 0xFBFFh Bootloader  
0xFC00h 0xFEFFh Reserved  
0xFF00h 0xFF7Fh Reserved  
0xFF80h 0xFFFFh Interrupt vector table  
In the VC5409 ROM, 128 words are reserved for factory device-testing purposes. Application  
code to be implemented in on-chip ROM must reserve these 128 words at addresses  
FF00h–FF7Fh in program space.  
3.2.3 On-Chip RAM  
The 5409 device contains 32K × 16-bit of on-chip dual-access RAM (DARAM). The DARAM is composed of  
four blocks of 8K words each. Each block in the DARAM can support two reads in one cycle, or a read and  
a write in one cycle. The DARAM is located in the address range 0080h7FFFh in data space, and can be  
mapped into program/data space by setting the OVLY bit to one.  
3.2.4 On-Chip Memory Security  
The 5409 features a 16K-word × 16-bit on-chip maskable ROM.  
Customers can arrange to have the ROM of the 5409 programmed with contents unique to any particular  
application. A security option is available to protect a custom ROM. The ROM and ROM/RAM security options  
are available on the 5409. These security options are described in the TMS320C54x DSP Reference Set,  
Volume 1: CPU and Peripherals (literature number SPRU131). When the security options are enabled, JTAG  
emulation is inhibited or nonfunctional.  
21  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.2.5 Relocatable Interrupt Vector Table  
The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft — meaning that  
the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the  
code at the vector location. Four words are reserved at each vector location to accommodate a delayed branch  
instruction, either two 1-word instructions or one 2-word instruction, which allows branching to the appropriate  
interrupt service routine with minimal overhead.  
At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space.  
However, these vectors can be remapped to the beginning of any 128-word page in program space after  
device reset. This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register with the  
appropriate 128-word page boundary address. After loading IPTR, any user interrupt or trap vector is mapped  
to the new 128-word page.  
NOTE:The hardware reset (RS) vector cannot be remapped because a hardware reset loads  
the IPTR with 1s. Therefore, the reset vector is always fetched at location FF80h in program  
space.  
3.2.6 Extended Program Memory  
The 5409 CPU uses a paged extended memory scheme in program space to allow access of up to 8M program  
memory locations. In order to implement this scheme, the 5409 includes several features that are also present  
on the 548/549 devices:  
Twenty-three address lines, instead of sixteen  
An extra memory-mapped register, the XPC register defines the page selection. This register is  
memory-mapped into data space to address 001Eh. At a hardware reset, the XPC is initialized to 0.  
Six extra instructions for addressing extended program space. These six instructions affect the XPC.  
FB[D] pmad (23 bits) Far branch  
FBACC[D] Accu[22:0] Far branch to the location specified by the value in accumulator A or  
accumulator B  
FCALL[D] pmad (23 bits) Far call  
FCALA[D] Accu[22:0] Far call to the location specified by the value in accumulator A or  
accumulator B  
FRET[D] Far return  
FRETE[D] Far return with interrupts enabled  
In addition to these new instructions, two 54x instructions are extended to use 23 bits in the 5409:  
READA data_memory (using 23-bit accumulator address)  
WRITA data_memory (using 23-bit accumulator address)  
All other instructions, software interrupts, and hardware interrupts do not modify the XPC register and access  
only memory within the current page.  
Program memory in the 5409 is organized into 127 pages that are each 64K in length, as shown in Figure 36.  
22  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
00 0000  
1 0000  
2 0000  
7F 0000  
. . .  
Page 0  
Page 1  
Lower  
32K  
Page 2  
Lower  
32K  
Page 127  
Lower  
32K  
64K  
External  
External  
External  
. . .  
. . .  
1 7FFF  
1 8000  
2 7FFF  
2 8000  
7F 7FFF  
7F 8000  
Page 1  
Upper  
32K  
Page 2  
Upper  
32K  
Page 127  
Upper  
32K  
External  
External  
External  
. . .  
2 FFFF  
7F FFFF  
0 FFFF  
1 FFFF  
Refer to Figure 1. 5409 Memory Map.  
The Lower 32K words of pages 1 through 126 are available only when the OVLY bit is cleared to 0. If the OVLY bit is set to 1,  
the on-chip RAM is mapped to the lower 32K words of all program space pages.  
Figure 36. Extended Program Memory  
3.3 On-Chip Peripherals  
The 5409 device has the following peripherals:  
An enhanced 8-bit host-port interface (HPI8/16) with 16-bit data/addressing  
Three multichannel buffered serial ports (McBSPs)  
One hardware timer  
A clock generator with a phase-locked loop (PLL)  
A direct memory access (DMA) controller  
3.3.1 Parallel I/O Ports  
The 5409 CPU has a total of 64K I/O ports. These ports can be addressed by the PORTR instruction or the  
PORTW instruction. The IS signal indicates a read/write operation through an I/O port. The 5409 can interface  
easily with external devices through the I/O ports while requiring minimal off-chip address-decoding circuits.  
3.3.1.1 Enhanced 8-Bit Host-Port Interface (HPI8/16)  
The 5409 host-port interface, also referred to as the HPI8/16, is an enhanced version of the standard 8-bit HPI  
found on earlier 54x DSPs (542, 545, 548, and 549). The HPI8/16 is an 8-bit parallel port for interprocessor  
communication. The features of the HPI8/16 include:  
Standard features:  
Sequential transfers (with autoincrement) or random-access transfers  
Host interrupt and 54x interrupt capability  
Multiple data strobes and control pins for interface flexibility  
Enhanced features of the 5409 HPI8/16:  
Access to entire on-chip RAM through DMA bus  
Capability to continue transferring during emulation stop  
Capability to transfer 16-bit address and 16-bit data (non-multiplexed mode)  
23  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
The HPI8/16 functions as a slave and enables the host processor to access the on-chip memory of the 5409.  
A major enhancement to the 5409 HPI over previous versions is that it allows host access to the entire on-chip  
memory range of the DSP. The HPI8/16 does not have access to external memory. The host and the DSP both  
have access to the on-chip RAM at all times and host accesses are always synchronized to the DSP clock.  
If the host and the DSP contend for access to the same location, the host has priority, and the DSP waits for  
one HPI8/16 cycle. Note that since host accesses are always synchronized to the 5409 clock, an active input  
clock (CLKIN) is required for HPI8/16 accesses during IDLE states, and host accesses are not allowed while  
the 5409 reset pin is asserted.  
0000h  
Reserved  
005Fh  
0060h  
Scratch-Pad  
RAM  
007Fh  
0080h  
On-Chip RAM  
(32K x 16 Bits)  
7FFFh  
8000h  
Reserved  
FFFFh  
Figure 37. 5409 HPI Memory Map  
3.3.1.2 Standard 8-Bit Mode  
The HPI8/16 interface consists of an 8-bit bidirectional data bus and various control signals. Sixteen-bit  
transfers are accomplished in two parts with the HBIL input designating high or low byte. The host  
communicates with the HPI8 through three dedicated registers — HPI address register (HPIA), HPI data  
register (HPID), and an HPI control register (HPIC). The HPIA and HPID registers are only accessible by the  
host, and the HPIC register is accessible by both the host and the 5409. If the HPI is disabled (HPIENA = 0)  
or in HPI16 mode (HPI16 = 1), the 8-bit bidirectional data pins HD0HD7 can be used as general-purpose  
input/output (GPIO).  
3.3.1.3 16-Bit Nonmultiplexed Mode  
In nonmultiplexed mode, a host with separate address/data buses can access the HPI16 data register (HPID)  
via the HD 16-bit bidirectional data bus, and the address register (HPIA) via the 16-bit HA address bus,  
external address and data pins, A0–A15 and D0–D15, respectively. The host initiates an access with the  
strobe signals (HDS1, HDS2, HCS) and controls the direction of the access with the HR/W signal. The HPI16  
can stall host accesses via the HRDY signal. Note that the HPIC register is not available in nonmultiplexed  
mode since there are no HCNTL signals available. All host accesses initiate a DMA read or write access. The  
HPI16 nonmultiplexed mode does not support host-to-DSP and DSP-to-host interrupts. When the HPI is  
disabled or in HPI16 mode, HD0–HD7 can be configured as general-purpose input/output (GPIO). The HPI16  
pin is sampled at RESET. The HPI16 pin should never be changed while the device RESET is HIGH.  
24  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3.3.1.3.1 Host Bus Holder Configuration  
The 5409 has two bus holder control bits, BH (BSCR[1]) and HBH (BSCR[2]), to control the bus keepers of  
the address bus (A[150]), data bus (D[150]) and the HPI data bus (HD[70]). The bus keeper  
enabling/disabling is described in Table 5.  
Table 36. Bus Holder Control Bits  
HPI16 pin  
BH  
HBH  
D[150]  
A[150]  
HD[70]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
OFF  
ON  
ON  
The HPI bus holders are activated via the HBH bit in the Bank Switch Control Register (BSCR). The HBH bit  
can control bus holder behavior for both the 8-bit and 16-bit modes. In the 8-bit mode, the HBH bit controls  
the bus holders on the host data pins HD7HD0. When HBH = 1, the host data bus holders are active. When  
HBH = 0 the host data bus holders are inactive. In the 16-bit nonmultiplexed mode, the bus holders for pins  
HD7HD0 are always active; however, the HBH bit controls the host address pins A15A0. When HBH = 1,  
the host address bus holders are active. When HBH = 0, the host address bus holders are inactive.  
3.3.1.4 Operation During IDLE2  
The HPI can continue to operate during IDLE1 or IDLE2 by using special clock management logic that turns  
on relevant clocks to perform a synchronous memory access, and then turns the clocks back off to save power.  
The DSP CPU does not wake up from the IDLE mode during this process.  
25  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.3.2 Multichannel Buffered Serial Ports (McBSPs)  
The 5409 device has three high-speed, full-duplex multichannel buffered serial ports (McBSPs) that allow  
direct interface to other C54x/LC54x devices, codecs, and other devices in a system. The McBSPs are based  
on the standard serial port interface found on other 54x devices. Like its predecessors, the McBSP provides:  
Full-duplex communication  
Double-buffer data registers, which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
In addition, the McBSP has the following capabilities:  
Direct interface to:  
T1/E1 framers  
MVIP switching-compatible and ST-BUS compliant devices  
IOM-2 compliant devices  
AC97-compliant devices  
Serial peripheral interface (SPI) devices  
Multichannel transmit and receive of up to 32 channels in a 128 channel stream.  
A wide selection of data sizes including 8, 12, 16, 20, 24, or 32 bits  
µ-law and A-law companding  
Programmable polarity for both frame synchronization and data clocks  
Programmable internal clock and frame generation  
For detailed information on the standard features of the McBSP, refer to the TMS320C54x DSP Reference  
Set, Volume 5: Enhanced Peripherals, (literature number SPRU302).  
Although the BCLKS pin is not available on the 5409 PGE and GGU packages, the 5409 is capable of  
synchronization to external clock sources. BCLKX or BCLKR can be used by the sample rate generator for  
external synchronization. The sample rate clock mode extended (SCLKME) bit field is located in the PCR to  
accommodate this option.  
15  
14  
13  
XIOEN  
RW  
12  
RIOEN  
RW  
11  
10  
FSRM  
RW  
9
8
Reserved  
RW  
FSXM  
RW  
CLKXM  
RW  
CLKRM  
RW  
7
6
5
4
3
2
1
0
SCLKME  
RW  
CLKS STAT  
RW  
DX STAT  
RW  
DR STAT  
RW  
FSXP  
RW  
FSRP  
RW  
CLKXP  
RW  
CLKRP  
RW  
LEGEND: R = Read, W = Write  
Figure 38. Pin Control Register (PCR)  
26  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
Table 37. Pin Control Register (PCR) Bit Field Description  
BIT  
NAME  
FUNCTION  
15 – 14  
Reserved  
Reserved. Pins are not used.  
Transmit/Receive general-purpose I/O mode ONLY when XRST=0 in the SPCR(1/2)  
XIOEN = 0  
XIOEN = 1  
DX pin is not a general-purpose output. FSX and CLKX are not general-purpose I/Os.  
DX pin is a general-purpose output. FSX and CLKX are general-purpose I/Os. These serial port  
pins do not perform serial port operations.  
13  
12  
XIOEN  
RIOEN  
Transmit/Receive general-purpose I/O mode ONLY when RRST=0 in the SPCR(1/2)  
RIOEN = 0  
RIOEN = 1  
DR and CLKS pins are not general-purpose inputs. FSR and CLKR are not general-purpose  
I/Os.  
DR and CLKS pins are general-purpose inputs. FSR and CLKR are general-purpose I/Os.  
These serial port pins do not perform serial port operations. The CLKS pin is affected by a  
combination of RRST and RIOEN signals of the receiver.  
Transmit frame synchronization mode  
FSRM = 0  
FSRM = 1  
Frame synchronization signal derived from an external source.  
Frame synchronization is determined by the sample rate generator frame synchronization mode  
bit (FSGM) in the SRGR2.  
11  
10  
FSXM  
FSRM  
Receive frame synchronization mode  
FSRM = 0  
FSRM = 1  
Frame synchronization pulses generated by an external device. FSR is an input pin.  
Frame synchronization generated internally by the sample rate generator. FSR is an output pin  
except when GSYNC=1 in the SRGR.  
Transmitter clock mode  
CLKXM = 0  
CLKXM= 1  
Receiver/transmitter clock is driven by an external clock with CLK(R/X) as an input pin  
CLK(R/X) is an output pin and is driven by the internal sample rate generator  
9
CLKXM  
During SPI mode (CLKSTP is a non-zero value):  
CLKXM = 0  
CLKXM= 1  
McBSP is a slave and clock (CLKX) is driven by the SPI master in the system. CLKR is  
internally driven by CLKX.  
McBSP is a master and generates the clock (CLKX) to drive its receive clock (CLKR) and the  
shift clock of the SPI-compliant slaves in the system.  
Receiver clock mode  
Case 1: Digital loop-back mode is not set (DLB=0) in SPCR1.  
CLKRM = 0  
CLKRM= 1  
Receive clock (CLKR) is an input pin driven by an external clock.  
CLKR is an output pin and is driven by the internal sample rate generator  
8
CLKRM  
Case 2: Digital loop-back mode set (DLB=1) in SPCR1  
CLKRM = 0  
CLKRM= 1  
Receive clock (Not the CLKR pin) is driven by transmit clock (CLKX), which is based on CLKXM  
bit in the PCR. CLKR pin is in high-impedance mode.  
CLKR is an output pin and is driven by the transmit clock. The transmit clock is derived based  
on the CLKXM bit in the PCR.  
Sample rate clock mode extended  
7
6
SCLKME  
SCLKME = 0  
SCLKME = 1  
External clock via CLKS or CPU clock is used as a reference by the sample rate generator.  
External clock via CLKR or CLKX clock is used as a reference by the sample rate generator.  
CLKS STAT CLKS pin status. CLKS STAT reflects value on CLKS pin when selected as a general-purpose input.  
27  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
Table 37. Pin Control Register (PCR) Bit Field Description (Continued)  
BIT  
5
NAME  
FUNCTION  
DX STAT  
DR STAT  
DX pin status. DX STAT reflects value on DX pin when it is selected as a general-purpose output.  
DR pin status. DR STAT reflects value on DR pin when it is selected as a general-purpose input.  
Receive/Transmit frame synchronization polarity.  
4
3
2
FSXP  
FSRP  
FS(R/X)P = 0 Frame synchronization pulse FS(R/X) is active high  
FS(R/X)P = 1 Frame synchronization pulse FS(R/X) is active low  
Transmit clock polarity  
1
0
CLKXP  
CLKRP  
CLKXP = 0  
CLKXP = 1  
Transmit data sampled on rising edge of CLKR  
Transmit data sampled on falling edge of CLKR  
Receive clock polarity  
CLKRP = 0  
CLKRP = 1  
Receive data sampled on falling edge of CLKR  
Receive data sampled on rising edge of CLKR  
28  
SPRS082E  
April 1999 Revised February 2004  
Functional Overview  
3.3.2.1 Sample Rate Generator  
The 5409 sample rate generator has four clock input options that are only available when both the PCR and  
SRGR2 are used. Table 38 shows the sample rate generator clock input options.  
Table 38. Sample Rate Generator Clock Input Options  
SCLKME  
(PCR.7)  
CLKSM  
MODE  
(SRGR2.13)  
CLKS pin  
CPU  
0
0
1
1
0
1
0
1
CLKR pin  
CLKX pin  
15  
14  
13  
12  
11  
8
GSYNC  
R/W-0  
CLKSP  
R/W  
CLKSM  
R/W  
FSGM  
R/W  
FPER  
R/W  
7
0
FPER  
R/W  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 39. Sample Rate Generator Register 2 (SRGR2)  
Table 39. Sample Rate Generator Register 2 (SRGR2) Bit Field Descriptions  
BIT  
NAME  
FUNCTION  
Sample rate generator clock synchronization. Only used when the external clock (CLKS) drives the sample rate  
generator clock (CLKSM=0)  
GSYNC = 0  
GSYNC = 1  
The sample rate generator clock (CLKG) is free-running.  
15  
GSYNC  
CLKSP  
The sample rate generator clock (CLKG) is running. But CLKG is resynchronized and frame sync  
signal (FSG) is generated only after detecting the receive frame synchronization signal (FSR). Also,  
frame period (FPER) is a don’t care because the period is dictated by the external frame sync pulse.  
CLKS polarity clock edge select. Only used when the external clock (CLKS) drives the sample rate generator clock  
(CLKSM=0).  
14  
13  
CLKSP = 0  
CLKSP = 1  
Rising edge of CLKS generates CLKG and FSG.  
Falling edge of CLKS generates CLKG and FSG.  
McBSP sample rate generator clock mode  
SCLKME = 0  
(in PCR)  
CLKSM = 0  
CLKSM = 1  
Sample rate generator clock derived from the CLKS pin  
Sample rate generator clock derived from CPU clock  
CLKSM  
SCLKME = 1  
(in PCR)  
CLKSM = 0  
CLKSM = 1  
Sample rate generator clock derived from CLKR pin  
Sample rate generator clock derived from CLKX pin  
Sample rate generator transmit frame synchronization mode. Used when FSXM=1 in the PCR.  
12  
FSGM  
FPER  
FSGM = 0  
FSGN = 1  
Transmit frame sync signal (FSX) due to DXR(1/2) copy  
Transmit frame sync signal driven by the sample rate generator frame sync signal (FSG)  
12  
Frame period. This determines when the next frame sycn signal should become active. Range: up to 2  
1 to 4096 CLKG periods.  
;
11 0  
29  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.3.2.2 McBSP Control Registers and Subaddresses  
The control registers for the multichannel buffered serial port (McBSP) are accessed using the subbank  
addressing scheme. This allows a set or subbank of registers to be accessed through a single memory  
location. The serial port subbank address (SPSA) register is used as a pointer to select a particular register  
within the subbank. The serial port subbank data (SPSD) register is used to access (read or write) the selected  
register. Table 310 shows the McBSP control registers and their corresponding subaddresses.  
Table 310. McBSP Control Registers and Subaddresses  
McBSP0  
McBSP1  
McBSP2  
SUB  
ADDRESS  
DESCRIPTION  
NAME  
ADDRESS  
39h  
NAME  
ADDRESS  
49h  
NAME  
ADDRESS  
35h  
SPCR10  
SPCR20  
RCR10  
RCR20  
XCR10  
SPCR11  
SPCR21  
RCR11  
SPCR12  
SPCR22  
RCR12  
RCR22  
XCR12  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
Serial port control register 1  
Serial port control register 2  
Receive control register 1  
Receive control register 2  
Transmit control register 1  
Transmit control register 2  
Sample rate generator register 1  
Sample rate generator register 2  
Multichannel register 1  
39h  
49h  
35h  
39h  
49h  
35h  
39h  
RCR21  
XCR11  
49h  
35h  
39h  
49h  
35h  
XCR20  
39h  
XCR21  
SRGR11  
SRGR21  
MCR11  
MCR21  
49h  
XCR22  
35h  
SRGR10  
SRGR20  
MCR10  
MCR20  
39h  
49h  
SRGR12  
SRGR22  
MCR12  
MCR22  
35h  
39h  
49h  
35h  
39h  
49h  
35h  
39h  
49h  
35h  
Multichannel register 2  
Receive channel enable register  
partition A  
RCERA0  
RCERB0  
XCERA0  
39h  
39h  
39h  
RCERA1  
RCERB1  
XCERA1  
49h  
49h  
49h  
RCERA2  
RCERB2  
XCERA2  
35h  
35h  
35h  
0Ah  
0Bh  
0Ch  
Receive channel enable register  
partition B  
Transmit channel enable register  
partition A  
Transmit channel enable register  
partition B  
XCERB0  
PCR0  
39h  
39h  
XCERB1  
PCR1  
49h  
49h  
XCERB2  
PCR2  
35h  
35h  
0Dh  
0Eh  
Pin control register  
3.3.3 Hardware Timer  
The 5409 device features one 16-bit timing circuit with a 4-bit prescaler. The main counter of each timer is  
decremented by one every CPU clock cycle. Each time the counter decrements to 0, a timer interrupt is  
generated. The timer can be stopped, restarted, reset, or disabled by specific control bits.  
3.3.4 Clock Generator  
The clock generator provides clocks to the 5409 device, and consists of an internal oscillator and a  
phase-locked loop (PLL) circuit. The clock generator requires a reference clock input, which can be provided  
by using a crystal resonator with the internal oscillator, or from an external clock source. The reference clock  
input is then divided by two (DIV mode) to generate clocks for the 5409 device, or the PLL circuit can be used  
(PLL mode) to generate the device clock by multiplying the reference clock frequency by a scale factor,  
allowing use of a clock source with a lower frequency than that of the CPU.The PLL is an adaptive circuit that,  
once synchronized, locks onto and tracks an input clock signal.  
When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input  
signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal. Then,  
other internal clock circuitry allows the synthesis of new clock frequencies for use as master clock for the 5409  
device.  
30  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
This clock generator allows system designers to select the clock source. The sources that drive the clock  
generator are:  
A crystal resonator circuit. The crystal resonator circuit is connected across the X1 and X2/CLKIN pins  
of the 5409 to enable the internal oscillator.  
An external clock. The external clock source is directly connected to the X2/CLKIN pin, and X1 is left  
unconnected.  
The software-programmable PLL features a high level of flexibility, and includes a clock scaler that provides  
various clock multiplier ratios, capability to directly enable and disable the PLL, and a PLL lock timer that can  
be used to delay switching to PLL clocking mode of the device until lock is achieved. Devices that have a  
built-in software-programmable PLL can be configured in one of two clock modes:  
PLL mode. The input clock (X2/CLKIN) is multiplied by 1 of 31 possible ratios. These ratios are achieved  
using the PLL circuitry.  
DIV (divider) mode. The input clock is divided by 2 or 4. Note that when DIV mode is used, the PLL can  
be completely disabled in order to minimize power dissipation.  
The software-programmable PLL is controlled using the 16-bit memory-mapped (address 0058h) clock mode  
register (CLKMD). The CLKMD register is used to define the clock configuration of the PLL clock module. Upon  
reset, the CLKMD register is initialized with a predetermined value dependent only upon the state of the  
CLKMD1 CLKMD3 pins as shown in Table 311.  
Table 311. Clock Mode Settings at Reset  
CLKMD  
RESET VALUE  
CLKMD1  
CLKMD2  
CLKMD3  
CLOCK MODE  
0
0
0
0
0
1
E007h  
PLL x 15  
PLL x 10  
9007h  
0
1
1
1
1
0
1
0
1
1
0
1
0
0
0
1
1
1
4007h  
1007h  
F007h  
0000h  
F000h  
PLL x 5  
PLL x 2  
PLL x 1  
1/2 (PLL disabled)  
1/4 (PLL disabled)  
Reserved  
31  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.3.5 DMA Controller  
The 5409 direct memory access (DMA) controller transfers data between points in the memory map without  
intervention by the CPU. The DMA controller allows movements of data to and from internal program/data  
memory, internal peripherals (such as the McBSPs), and external program/data memory to occur in the  
background of CPU operation. The DMA has six independent programmable channels allowing six different  
contexts for DMA operation.  
The DMA has the following features:  
The DMA has external memory access.  
The DMA operates independently of the CPU.  
The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.  
The DMA has higher priority than the CPU for internal accesses.  
Each channel has independently programmable priorities.  
Each channel’s source and destination address registers can have configurable indexes through memory  
on each read and write transfer, respectively. The address may remain constant, be post-incremented,  
post-decremented, or be adjusted by a programmable value.  
Each internal read or write transfer may be initialized by selected sync events.  
Each DMA channel is capable of sending interrupts to the CPU.  
The DMA can perform double-word transfers (a 32-bit transfer of two 16-bit words). (Internally only)  
3.3.5.1 DMA External Access  
The 5409 DMA supports external accesses to extended program, extended data, and extended I/O memory.  
These overlay pages are only visible to the DMA controller. A maximum of two DMA channels can be used  
for external memory accesses. The DMA external accesses require 9 cycle minimums for external writes and  
13 cycle minimums for external reads.  
The control of the bus is arbitrated between the CPU and the DMA. While the DMA or CPU is in control of the  
external bus the other will be heldoff via wait states until the current transfer is complete. The DMA takes  
precedence over XIO requests. The HOLD/HOLDA feature of the 5409 affects external CPU transfers as well  
as external DMA transfers. When an external processor asserts the HOLD pin to gain control of the memory  
interface, the HOLDA signal is not asserted until all pending DMA transfers are complete. To prevent the DMA  
from blocking out the CPU or HOLD/HOLDA feature from accessing the external bus, uninterrupted burst  
transfers are not supported by the DMA. Subsequently, CPU and DMA arbitration testing is performed for  
each external bus cycle, regardless of the bus activity.  
Only two channels are available for external accesses. (One for external reads/one for external writes.)  
Single-word (16-bit) transfers are supported for external accesses.  
The DMA does not support transfers from peripherals to external memory.  
The DMA does not support transfers from external memory to the peripherals.  
The DMA does not support external to external transfers.  
The DMA does not support synchronized external transfers.  
The HM bit in the ST1 register indicates whether the processor continues internal execution when  
acknowledging an active HOLD signal.  
HM = 0, the processor continues execution from internal program memory but places its external interface  
in the high impedance state.  
HM = 1, the processor halts internal execution.  
To ensure that proper arbitration occurs, the HM bit should be set to 0 in the memory-mapped ST1 register.  
If the HM is set to 1 the processor will halt during DMA external transfers.  
32  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3.3.5.2 DMA External Transfer  
Unlike the 5410, the 5409 DMA mode control register (DMMCRx) has two additional bits; DLAXS  
(DMMCRn[5]) and SLAXS (DMMCRn[11]). These new bits specify the on/off-chip memory for the source and  
destination of the program/data/IO spaces.  
When DLAXS is set to 0 (default), the DMA does not perform an external access for the destination. When  
DLAXS is set to 1, the DMA performs an external access to the destination location.  
When SLAXS is set to 0 (default), the DMA does not perform an external access for the source. When  
DLAXS is set to 1, the DMA performs an external access from the source location.  
Two new registers are added to the 5409 DMA to support DMA accesses to/from DMA extended data memory,  
page 1 to page 127.  
The DMA extended source data page register (XSRCDP[6:0]) is located at subbank address 028h.  
The DMA extended destination data page register (XDSTDP[6:0]) is located at subbank address 029h.  
3.3.5.3 DMA Memory Map  
The DMA memory map, as shown in Figure 310, allows DMA transfers to be unaffected by the status of the  
MP/MC, DROM, and OVLY bits.  
33  
April 1999 Revised February 2004  
SPRS082E  
Functional Overview  
Data  
Program  
Data  
I/O  
Program  
Program  
Hex  
010000  
Hex  
xx0000  
Hex  
xx0000  
Hex  
0000  
Hex  
0000  
Hex  
0000  
Reserved  
DRR20  
DRR10  
DXR20  
DXR10  
001F  
0020  
0021  
0022  
0023  
0024  
Reserved  
007F  
0080  
Reserved  
002F  
0030  
0031  
0032  
DRR22  
DRR12  
DXR22  
DXR12  
0033  
0034  
DARAM  
Internal  
32K  
External  
Reserved  
0035  
0036  
0037  
0038  
RCERA2  
XCERA2  
Reserved  
0039  
003A  
003B  
003C  
RCERA0  
XCERA0  
External  
External  
External  
Reserved  
DRR21  
DRR11  
DXR21  
DXR11  
7FFF  
8000  
017FFF  
018000  
003F  
0040  
0041  
0042  
0043  
0044  
On-Chip  
ROM  
Reserved  
0049  
004A  
RCERA1  
XCERA1  
004B  
004C  
External  
BFFF  
C000  
Reserved  
005F  
0060  
Scratch-  
Pad RAM  
007F  
0080  
DARAM  
External  
7FFF  
8000  
xxFFFF  
FFFF  
FFFF  
01FFFF  
xxFFFF  
FFFF  
Page 0, 1, ... 127  
Page 0  
Page 1, 2, ... 127  
Page 5, 6, ...  
Page n  
NOTE: n = 1, 2, 3, or 4  
Figure 310. TMS320VC5409 DMA Memory Map  
3.3.5.4 DMA Priority Level  
Each DMA channel can be independently assigned high priority or low priority relative to each other. Multiple  
DMA channels that are assigned to the same priority level are handled in a round-robin manner.  
3.3.5.5 DMA Source/Destination Address Modification  
The DMA provides flexible address-indexing modes for easy implementation of data management schemes  
such as autobuffering and circular buffers. Source and destination addresses can be indexed separately and  
can be post-incremented, post-decremented, or post-incremented with a specified index offset.  
34  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3.3.5.6 DMA in Autoinitialization Mode  
The DMA can automatically reinitialize itself after completion of a block transfer. Some of the DMA registers  
can be preloaded for the next block transfer through the DMA global reload registers (DMGSA, DMGDA, and  
DMGCR). Autoinitialization allows:  
Continuous operation: Normally, the CPU would have to reinitialize the DMA immediately after the  
completion of the current block transfer; but with the global reload registers, it can reinitialize these values  
for the next block transfer any time after the current block transfer begins.  
Repetitive operation: The CPU does not preload the global reload register with new values for each block  
transfer but only loads them on the first block transfer.  
3.3.5.7 DMA Transfer Counting  
The DMA channel element count register (DMCTRx) and the frame count register (DMFRCx) contain bit fields  
that represent the number of frames and the number of elements per frame to be transferred.  
Frame count. This 8-bit value defines the total number of frames in the block transfer. The maximum  
number of frames per block transfer is 128 (FRAME COUNT= 0ffh). The counter is decremented upon  
the last read transfer in a frame transfer. Once the last frame is transferred, the selected 8-bit counter is  
reloaded with the DMA global frame reload register (DMGFR) if the AUTOINIT bit is set to 1. A frame count  
of 0 (default value) means the block transfer contains a single frame.  
Element count. This 16-bit value defines the number of elements per frame. This counter is decremented  
after the read transfer of each element. The maximum number of elements per frame is 65536  
(DMCTRn = 0FFFFh). In autoinitialization mode, once the last frame is transferred, the counter is  
reloaded with the DMA global count reload register (DMGCR).  
3.3.5.8 DMA Transfers in Double-word Mode (Internal Only)  
Double-word mode allows the DMA to transfer 32-bit words in any index mode. In double-word mode, two  
consecutive 16-bit transfers are initiated and the source and destination addresses are automatically updated  
following each transfer. In this mode, each 32-bit word is considered to be one element.  
3.3.5.9 DMA Channel Index Registers  
The particular DMA channel index register is selected by way of the SIND and DIND field in the DMA mode  
control register (DMMCRx). Unlike basic address adjustment, in conjunction with the frame index DMFRI0 and  
DMFRI1, the DMA allows different adjustment amounts depending on whether or not the element transfer is  
the last in the current frame. The normal adjustment value (element index) is contained in the element index  
registers DMIDX0 and DMIDX1. The adjustment value (frame index) for the end of the frame is determined  
by the selected DMA frame index register (either DMFRI0 or DMFRI1).  
The element index and the frame index affect address adjustment as follows:  
Element index: For all except the last transfer in the frame, the element index determines the amount to  
be added to the DMA channel for the source/destination address register (DMSRCx/DMDSTx) as  
selected by the SIND/DIND bits.  
Frame index: If the transfer is the last in a frame, the frame index is used for address adjustment as  
selected by the SIND/DIND bits. This occurs in both single-frame and multi-frame transfer.  
35  
April 1999 Revised February 2004  
SPRS082E  
Functional Overview  
3.3.5.10 DMA Interrupts  
The ability of the DMA to interrupt the CPU based on the status of the data transfer is configurable and is  
determined by the IMOD and DINM bits in the DMA channel mode control register (DMMCRn). The available  
modes are shown in Table 312.  
Table 312. DMA Interrupts  
MODE  
ABU (non-decrement)  
ABU (non-decrement)  
Multi-Frame  
DINM  
IMOD  
INTERRUPT  
1
1
1
1
0
0
0
1
0
1
X
X
At full buffer only  
At half buffer and full buffer  
At block-transfer complete (DMCTRn = DMSEFCn[7:0] = 0)  
At end of frame and end of block (DMCTRn = 0)  
No interrupt generated  
Multi-Frame  
Either  
Either  
No interrupt generated  
3.3.5.10.1 DMA Controller Synchronization Events  
The internal transfers associated with each DMA channel can be synchronized to one of several events. The  
DSYN bit field of the DMSEFCn register selects the synchronization event for a channel. The list of possible  
events and the DSYN values are shown in Table 313.  
Table 313. DMA Synchronization Events  
DSYN VALUE  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
DMA SYNCHRONIZATION EVENT  
No synchronization used  
McBSP0 receive event  
McBSP0 transmit event  
McBSP2 receive event  
McBSP2 transmit event  
McBSP1 receive event  
McBSP1 transmit event  
Reserved  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Timer interrupt event  
External interrupt 3  
Reserved  
1111b  
36  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
3.3.5.10.2 DMA Channel Interrupt Selection  
The DMA controller can generate a CPU interrupt for each of the six channels. However, due to a limit on the  
number of internal CPU interrupt inputs, channels 0, 1, 2, and 3 are multiplexed with other interrupt sources.  
DMA channels 0, 1, 2, and 3 share an interrupt line with the receive and transmit portions of the McBSP. When  
the 5409 is reset, the interrupts from these three DMA channels are deselected. The INTSEL bit field in the  
DMPREC register can be used to select these interrupts, as shown in Table 314.  
Table 314. DMA Channel Interrupt Selection  
INTSEL Value  
00b (reset)  
01b  
IMR/IFR[6]  
BRINT2  
BRINT2  
DMAC0  
IMR/IFR[7]  
BXINT2  
IMR/IFR[10]  
BRINT1  
IMR/IFR[11]  
BXINT1  
BXINT2  
DMAC2  
DMAC3  
10b  
DMAC1  
DMAC2  
DMAC3  
11b  
Reserved  
3.3.5.11 DMA Subbank Addressed Registers  
The direct memory access (DMA) controller has several control registers associated with it. The main control  
register (DMPREC) is a standard memory mapped register. However, the other registers are accessed using  
the subbank addressing scheme. This allows a set, or subbank of registers to be accessed through a single  
memory location. The DMA subbank address (DMSA) register is used as a pointer to select a particular  
register within the subbank, while the DMA subbank data (DMSDN) register or the DMA subbank data register  
with autoincrement (DMSDI) is used to access (read or write) the selected register.  
When the DMSDI register is used to access the subbank, the subbank address is automatically  
postincremented so that a subsequent access affects the next register within the subbank. This autoincrement  
feature is intended for efficient, successive accesses to several control registers. If the auto-increment feature  
is not required, the DMSDN register should be used to access the subbank. Table 315 shows the DMA  
controller subbank addressed registers and their corresponding subaddresses.  
Table 315. DMA Subbank Addressed Registers  
DMA  
SUB  
ADDRESS  
DESCRIPTION  
DMA channel 0 source address register  
NAME  
DMSRC0  
DMDST0  
DMCTR0  
DMSFC0  
DMMCR0  
DMSRC1  
DMDST1  
DMCTR1  
DMSFC1  
DMMCR1  
DMSRC2  
DMDST2  
DMCTR2  
DMSFC2  
DMMCR2  
DMSRC3  
DMDST3  
DMCTR3  
DMSFC3  
ADDRESS  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
DMA channel 0 destination address register  
DMA channel 0 element count register  
DMA channel 0 sync select and frame count register  
DMA channel 0 transfer mode control register  
DMA channel 1 source address register  
DMA channel 1 destination address register  
DMA channel 1 element count register  
DMA channel 1 sync select and frame count register  
DMA channel 1 transfer mode control register  
DMA channel 2 source address register  
DMA channel 2 destination address register  
DMA channel 2 element count register  
DMA channel 2 sync select and frame count register  
DMA channel 2 transfer mode control register  
DMA channel 3 source address register  
DMA channel 3 destination address register  
DMA channel 3 element count register  
DMA channel 3 sync select and frame count register  
37  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
Table 315. DMA Subbank Addressed Registers (Continued)  
DMA  
SUB  
DESCRIPTION  
ADDRESS  
NAME  
DMMCR3  
DMSRC4  
DMDST4  
DMCTR4  
DMSFC4  
DMMCR4  
DMSRC5  
DMDST5  
DMCTR5  
DMSFC5  
DMMCR5  
DMSRCP  
DMDSTP  
DMIDX0  
DMIDX1  
DMFRI0  
DMFRI1  
DMGSA  
ADDRESS  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
DMA channel 3 transfer mode control register  
DMA channel 4 source address register  
DMA channel 4 destination address register  
DMA channel 4 element count register  
DMA channel 4 sync select and frame count register  
DMA channel 4 transfer mode control register  
DMA channel 5 source address register  
DMA channel 5 destination address register  
DMA channel 5 element count register  
DMA channel 5 sync select and frame count register  
DMA channel 5 transfer mode control register  
DMA source program page address (common channel)  
DMA destination program page address (common channel)  
DMA element index address register 0  
DMA element index address register 1  
DMA frame index register 0  
DMA frame index register 1  
DMA global source address reload register  
DMA global destination address reload register  
DMA global count reload register  
DMGDA  
DMGCR  
DMGFR  
DMA global frame count reload register  
DMA global extended source register  
XSRCDP  
XDSTDP  
DMA global extended destination register  
38  
SPRS082E  
April 1999 Revised February 2004  
Functional Overview  
3.3.6 Peripheral Memory-Mapped Registers  
The device provides a set of memory-mapped registers associated with peripherals. Table 34 gives a list of  
CPU memory-mapped registers (MMRs) available on 5409. Table 316 shows additional peripheral MMRs  
associated with the 5409.  
Table 316. Peripheral Memory-Mapped Registers  
NAME  
ADDRESS  
20h  
DESCRIPTION  
TYPE  
McBSP #0  
McBSP #0  
McBSP #0  
McBSP #0  
Timer  
DRR20  
DRR10  
DXR20  
DXR10  
TIM  
Data receive register 2  
Data receive register 1  
Data transmit register 2  
Data transmit register 1  
Timer register  
21h  
22h  
23h  
24h  
PRD  
25h  
Timer period counter  
Timer control register  
Reserved  
Timer  
TCR  
26h  
Timer  
27h  
SWWSR  
BSCR  
28h  
Software wait-state register  
Bank-switching control register  
Reserved  
External Bus  
External Bus  
29h  
2Ah  
SWCR  
HPIC  
2Bh  
Software wait-state control register  
HPI control register  
External Bus  
HPI  
2Ch  
2Dh2Fh  
30h  
Reserved  
DRR22  
DRR12  
DXR22  
DXR12  
SPSA2  
SPSD2  
Data receive register 2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
McBSP #2  
31h  
Data receive register 1  
32h  
Data transmit register 2  
Data transmit register 2  
McBSP2 subbank address register  
McBSP2 subbank data register  
Reserved  
33h  
34h  
35h  
3637h  
38h  
SPSA0  
SPCD0  
McBSP0 subbank address register  
McBSP0 subbank data register  
Reserved  
McBSP #0  
McBSP #0  
39h  
3Ah3Bh  
3C  
GPIOCR  
GPIOSR  
General-purpose I/O pins control register  
General-purpose I/O pins status register  
Reserved  
GPIO  
GPIO  
3D  
3E3F  
40h  
DRR21  
DRR11  
DXR21  
DXR11  
Data receive register 1  
McBSP #1  
McBSP #1  
McBSP #1  
McBSP #1  
41h  
Data receive register 2  
42h  
Data transmit register 1  
Data transmit register 2  
Reserved  
43h  
44h47h  
48h  
SPSA1  
SPCD1  
McBSP1 subbank address register  
McBSP1 subbank data register  
Reserved  
McBSP #1  
McBSP #1  
49h  
4Ah53h  
54h  
DMPREC  
DMSA  
DMSDI  
DMSDN  
CLKMD  
DMA channel priority and enable control register  
DMA subbank address register  
DMA subbank data register with autoincrement  
DMA subbank data registrer  
Clock mode register  
DMA  
DMA  
DMA  
DMA  
PLL  
55h  
56h  
57h  
58h  
59h5Fh  
Reserved  
39  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.4 Interrupts  
Vector-relative locations and priorities for all internal and external interrupts are shown in Table 317.  
Table 317. Interrupt Locations and Priorities  
TRAP/INTR  
NUMBER (K)  
LOCATION  
DECIMAL  
NAME  
PRIORITY  
FUNCTION  
HEX  
00  
RS, SINTR  
0
1
0
4
1
2
Reset (hardware and software reset)  
Nonmaskable interrupt  
NMI, SINT16  
SINT17  
04  
08  
2
8
3
Software interrupt #17  
SINT18  
3
12  
0C  
10  
Software interrupt #18  
SINT19  
4
16  
Software interrupt #19  
SINT20  
5
20  
14  
Software interrupt #20  
SINT21  
6
24  
18  
Software interrupt #21  
SINT22  
7
28  
1C  
20  
Software interrupt #22  
SINT23  
8
32  
Software interrupt #23  
SINT24  
9
36  
24  
Software interrupt #24  
SINT25  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
3031  
40  
28  
Software interrupt #25  
SINT26  
44  
2C  
30  
Software interrupt #26  
SINT27  
48  
Software interrupt #27  
SINT28  
52  
34  
Software interrupt #28  
SINT29  
56  
38  
Software interrupt #29  
SINT30  
60  
3C  
40  
Software interrupt #30  
INT0, SINT0  
INT1, SINT1  
INT2, SINT2  
TINT, SINT3  
BRINT0, SINT4  
BXINT0, SINT5  
BRINT2, SINT7, DMAC0  
BXINT2, SINT6, DMAC1  
INT3, SINT8  
HINT, SINT9  
BRINT1, SINT10, DMAC2  
BXINT1, SINT11, DMAC3  
DMAC4,SINT12  
DMAC5,SINT13  
Reserved  
64  
External user interrupt #0  
External user interrupt #1  
External user interrupt #2  
Timer interrupt  
68  
44  
4
72  
48  
5
76  
4C  
50  
6
80  
7
McBSP #0 receive interrupt (default)  
McBSP #0 transmit interrupt (default)  
McBSP #2 receive interrupt (default)  
McBSP #2 transmit interrupt (default)  
External user interrupt #3  
HPI interrupt  
84  
54  
8
88  
58  
9
92  
5C  
60  
10  
11  
12  
13  
14  
15  
16  
96  
100  
104  
108  
112  
116  
120127  
64  
68  
McBSP #1 receive interrupt (default)  
McBSP #1 transmit interrupt (default)  
DMA channel 4 interrupt (default)  
DMA channel 5 interrupt (default)  
Reserved  
6C  
70  
74  
787F  
40  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
The bits of the interrupt flag register (IFR) and interrupt mask register (IMR) are arranged as shown in  
Figure 311. The function of each bit is described in Table 318.  
15  
14  
13  
12  
11  
10  
9
8
BXINT1/  
DMAC3  
BRINT1/  
DMAC2  
Reserved  
DMAC5  
DMAC4  
HINT  
INT3  
7
6
5
4
3
2
1
0
BXINT2/  
DMAC1  
BRINT2/  
DMAC0  
BXINT0  
BRINT0  
TINT  
INT2  
INT1  
INT0  
LEGEND: R = Read, W = Write, n = value present after reset  
Figure 311. IFR and IMR Registers  
Table 318. IFR and IMR Register Bit Fields  
BIT  
FUNCTION  
NUMBER  
NAME  
1514  
Reserved for future expansion  
13  
12  
11  
10  
9
DMAC5  
DMAC4  
DMA channel 5 interrupt flag/mask bit  
DMA channel 4 interrupt flag/mask bit  
McBSP1 transmit interrupt flag/mask bit  
McBSP1 receive interrupt flag/mask bit  
Host to 54x interrupt flag/mask  
BXINT1/DMAC3  
BRINT1/DMAC2  
HINT  
8
INT3  
External interrupt 3 flag/mask  
7
BXINT2/DMAC1  
BRINT2/DMAC0  
BXINT0  
McBSP2 transmit interrupt flag/mask bit  
McBSP2 receive interrupt flag/mask bit  
McBSP0 transmit interrupt flag/mask bit  
McBSP0 receive interrupt flag/mask bit  
Timer interrupt flag/mask bit  
6
5
4
BRINT0  
3
TINT  
2
INT2  
External interrupt 2 flag/mask bit  
External interrupt 1 flag/mask bit  
External interrupt 0 flag/mask bit  
1
INT1  
0
INT0  
41  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
3.5 Terminal Functions  
The 5409 signal descriptions table lists each pin name, function, and operating mode(s) for the 5409 device.  
Some of the 5409 pins can be configured for one of two functions; a primary function and a secondary function.  
The names of these pins in secondary mode are shaded in grey in the following table.  
Table 319. Terminal Functions  
INTERNAL  
PIN STATE  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
DATA SIGNALS  
A22 (MSB)  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
O/Z  
Parallel address bus A22 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. The  
lower sixteen address pins (A15 to A0) are multiplexed to address all external memory (program,  
data) or I/O while the upper seven address pins (A22 to A16) are only used to address external  
program space. These pins are placed in the high-impedance state when the hold mode is enabled,  
or when OFF is low.  
Bus holders  
available  
(A15A0)  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
(LSB)  
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
I/O/Z  
Parallel data bus D15 (MSB) through D0 (LSB). The sixteen data pins (D15 to D0) are multiplexed  
to transfer data between the core CPU and external data/program memory or I/O devices. The data  
bus is placed in the high-impedance state when not outputting or when RS or HOLD is asserted.  
The data bus also goes into the high-impedance state when OFF is low.  
D8  
D7  
D6  
D5  
D4  
D3  
Bus holders  
available  
The data bus has bus holders to reduce the static power dissipation caused by floating, unused  
pins. These bus holders also eliminate the need for external bias resistors on unused pins. When  
the data bus is not being driven by the 5409, the bus holders keep the pins at the previous logic level.  
The data bus holders on the 5409 are disabled at reset and can be enabled/disabled via the BH bit  
of the bank-switching control register (BSCR).  
D2  
D1  
D0  
(LSB)  
INITIALIZATION, INTERRUPT, AND RESET OPERATIONS  
Interrupt acknowledge signal. IACK indicates receipt of an interrupt and that the program counter  
IACK  
is fetching the interrupt vector location designated by A15A0. IACK also goes into the  
O/Z  
high-impedance state when OFF is low.  
INT0  
INT1  
INT2  
INT3  
Schmitt  
trigger  
External user interrupts. INT0INT3 are prioritized and are maskable by the interrupt mask register  
and the interrupt mode bit. INT0 INT3 can be polled and reset by way of the interrupt flag register.  
I
I = Input, O = Output, Z = High-impedance, S = Supply  
42  
SPRS082E  
April 1999 Revised February 2004  
 
Functional Overview  
Table 319. Terminal Functions (Continued)  
INTERNAL  
PIN STATE  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
INITIALIZATION, INTERRUPT, AND RESET OPERATIONS (CONTINUED)  
Schmitt  
trigger  
Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or  
the IMR. When NMI is activated, the processor traps to the appropriate vector location.  
NMI  
I
I
Reset. RS causes the DSP to terminate execution and causes a reinitialization of the CPU and  
peripherals. When RS is brought to a high level, execution begins at location 0FF80h of program  
memory. RS affects various registers and status bits.  
Schmitt  
trigger  
RS  
Microprocessor/microcomputer mode select. If active low at reset, microcomputer mode is  
selected, and the internal program ROM is mapped into the upper program memory space. If the  
pin is driven high during reset, microprocessor mode is selected, and the on-chip ROM is removed  
from program space. MP/MC is only sampled at reset, and the MP/MC bit of the PMST register can  
override the mode that is selected at reset.  
MP/MC  
I
MULTIPROCESSING SIGNALS  
Branch control. A branch can be conditionally executed when BIO is active. If low, the processor  
executes the conditional instruction. For the XC instruction, the BIO condition is sampled during the  
decode phase of the pipeline; all other instructions sample BIO during the read phase of the  
pipeline.  
Schmitt  
trigger  
BIO  
XF  
I
External flag output (latched software-programmable signal). XF is set high by the SSBX XF  
instruction, set low by the RSBX XF instruction or by loading ST1. XF is used for signaling other  
processors in multiprocessor configurations or used as a general-purpose output pin. XF goes into  
the high-impedance state when OFF is low, and is set high at reset.  
O/Z  
MEMORY CONTROL SIGNALS  
Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for  
accessing a particular external memory space. Active period corresponds to valid address  
information. DS, PS, and IS are placed into the high-impedance state in the hold mode; the signals  
also go into the high-impedance state when OFF is low.  
DS  
PS  
IS  
O/Z  
O/Z  
I
Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus  
access to data or program memory. MSTRB is placed in the high-impedance state in the hold mode;  
it also goes into the high-impedance state when OFF is low.  
MSTRB  
READY  
Data ready. READY indicates that an external device is prepared for a bus transaction to be  
completed. If the device is not ready (READY is low), the processor waits one cycle and checks  
READY again. Note that the processor performs ready detection if at least two software wait states  
are programmed. The READY signal is not sampled until the completion of the software wait states.  
Read/write signal. R/W indicates transfer direction during communication to an external device.  
R/W is normally in the read mode (high), unless it is asserted low when the DSP performs a write  
operation. R/W is placed in the high-impedance state in hold mode; it also goes into the  
high-impedance state when OFF is low.  
R/W  
O/Z  
I/O strobe signal. IOSTRB is always high unless low-level asserted to indicate an external bus  
access to an I/O device. IOSTRB is placed in the high-impedance state in the hold mode; it also  
goes into the high-impedance state when OFF is low.  
IOSTRB  
HOLD  
O/Z  
I
Hold. HOLD is asserted to request control of the address, data, and control lines. When  
acknowledged by the C54x, these lines go into the high-impedance state.  
Hold acknowledge. HOLDA indicates that the 5409 is in a hold state and that the address, data, and  
control lines are in the high-impedance state, allowing the external memory interface to be  
accessed by other devices. HOLDA also goes into the high-impedance state when OFF is low. This  
pin is driven high during reset.  
HOLDA  
MSC  
O/Z  
Microstate complete. MSC indicates completion of all software wait states. When two or more  
software wait states are enabled, the MSC pin goes low during the last of these wait states. If  
connected to the READY input, MSC forces one external wait state after the last internal wait state  
is completed. MSC also goes into the high-impedance state when OFF is low.  
O/Z  
O/Z  
Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on  
the address bus. IAQ goes into the high-impedance state when OFF is low.  
IAQ  
I = Input, O = Output, Z = High-impedance, S = Supply  
43  
April 1999 Revised February 2004  
SPRS082E  
 
Functional Overview  
Table 319. Terminal Functions (Continued)  
INTERNAL  
PIN STATE  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
OSCILLATOR/TIMER SIGNALS  
Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal  
machine cycle is bounded by rising edges of this signal. CLKOUT also goes into the  
high-impedance state when OFF is low.  
CLKOUT  
O/Z  
I
Clock mode select signals. These inputs select the mode that the clock generator is initialized to  
after reset. The logic levels of CLKMD1–CLKMD3 are latched when the reset pin is low, and the  
clock mode register is initialized to the selected mode. After reset, the clock mode can be changed  
through software, but the clock mode select signals have no effect until the device is reset again.  
CLKMD1  
CLKMD2  
CLKMD3  
Schmitt  
trigger  
Schmitt  
trigger  
Clock/oscillator input. If the internal oscillator is not being used, X2/CLKIN functions as the clock  
input.  
X2/CLKIN  
X1  
I
Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should  
be left unconnected. X1 does not go into the high-impedance state when OFF is low.  
O
Timer output. TOUT signals a pulse when the on-chip timer counts down past zero. The pulse is  
one CLKOUT cycle wide. TOUT also goes into the high-impedance state when OFF is low.  
TOUT  
O/Z  
MULTICHANNEL BUFFERED SERIAL PORT SIGNALS  
Receive clocks. BCLKR serves as the serial shift clock for the buffered serial-port receiver. Input  
from an external clock source for clocking data into the McBSP. When not being used as a clock,  
these pins can be used as general-purpose I/O by setting RIOEN = 1.  
BCLKR0  
BCLKR1  
BCLKR2  
Schmitt  
trigger  
I/O/Z  
BCLKR can be configured as an output by the way of the CLKRM bit in the PCR register.  
BDR0  
BDR1  
BDR2  
Buffered serial data receive (input) pin. When not being used as data-receive pins, these pins can  
be used as general-purpose I/O by setting RIOEN = 1.  
I
BFSR0  
BFSR1  
BFSR2  
Frame synchronization pin for buffered serial-port input data. The BFSR pulse initiates the  
receive-data process over the BDR pin.When not being used as data-receive synchronization pins,  
these pins can be used as general-purpose I/O by setting RIOEN = 1.  
I/O/Z  
Transmit clocks. Clock signal used to clock data from the transmit register. This pin can also be  
configured as an input by setting the CLKXM = 0 in the PCR register. When not being used as a  
clock, these pins can be used as general-purpose I/O by setting XIOEN = 1.  
BCLKX0  
BCLKX1  
BCLKX2  
Schmitt  
trigger  
I/O/Z  
O/Z  
These pins are placed into the high-impedance state when OFF is low.  
Buffered serial-port transmit (output) pin. When not being used as data-transmit pins, these pins  
can be used as general-purpose I/O by setting XIOEN = 1.  
BDX0  
BDX1  
BDX2  
These pins are placed into the high-impedance state when OFF is low.  
Buffered serial-port frame synchronization pin for transmitting data. The BFSX pulse initiates the  
transmit-data process over BDX pin. If RS is asserted when BFSX is configured as output, then  
BFSX is turned into input mode by the reset operation. When not being used as data-transmit  
synchronization pins, these pins can be used as general-purpose I/O by setting XIOEN = 1.  
BFSX0  
BFSX1  
BFSX2  
I/O/Z  
These pins are placed into the high-impedance state when OFF is low.  
I = Input, O = Output, Z = High-impedance, S = Supply  
44  
SPRS082E  
April 1999 Revised February 2004  
Functional Overview  
Table 319. Terminal Functions (Continued)  
INTERNAL  
PIN STATE  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
HOST-PORT INTERFACE SIGNALS  
PRIMARY  
SECONDARY  
These pins can be used to address internal memory via the HPI  
when the HPI16 pin is high. The sixteen address pins, A15 to A0,  
are multiplexed to transfer address between the core CPU and  
external data/program memory, I/O devices, or HPI in 16-bit mode.  
Bus holders  
available  
The address bus includes bus holders to reduce the static power  
dissipation caused by floating, unused pins. The bus holders also  
eliminate the need for external bias resistors on unused pins. When  
the address bus is not being driven by the 5409, the bus holders  
keep the pins at the logic level that was most recently driven. The  
address bus holders of the 5409 are disabled at reset, and can be  
enabled/disabled via the HBH bit of the BSCR.  
HA15 HA0  
I/O/Z  
A15 A0  
O/Z  
These pins can be used to read/write internal memory via the HPI  
when the HPI16 pin is high. The sixteen data pins, D15 to D0, are  
multiplexed to transfer data between the core CPU and external  
data/program memory, I/O devices, or HPI in 16-bit mode. The data  
bus is placed in the high-impedance state when not outputting or  
when RS or HOLD is asserted. The data bus also goes into the  
high-impedance state when OFF is low.  
Bus holders  
available  
HD15 HD0  
I/O/Z  
D15 D0  
O/Z  
The data bus includes bus holders to reduce the static power  
dissipation caused by floating, unused pins. The bus holders also  
eliminate the need for external bias resistors on unused pins. When  
the data bus is not being driven by the 5409, the bus holders keep  
the pins at the logic level that was most recently driven. The data  
bus holders of the 5409 are disabled at reset, and can be  
enabled/disabled via the BH bit of the BSCR.  
Parallel bidirectional data bus. When the HPI is disabled or when the HPI16 pin is high, these pins  
can also be used as general-purpose I/O pins. HD7–HD0 are placed in the high-impedance state  
when not outputting data or when OFF is low.  
Bus holders  
available  
HD7 – HD0  
I/O/Z  
The HPI data bus includes bus holders to reduce the static power dissipation caused by floating,  
unused pins. When the HPI data bus is not being driven by the 5409, the bus holders keep the pins  
at the logic level that was most recently driven. The HPI data bus holders are disabled at reset. In  
8-bit mode the bus holders can be enabled/disabled via the HBH bit of the BSCR. In 16-bit mode  
the bus holders are always active on the HD7–HD0 pins.  
HCNTL0  
HCNTL1  
Pullup  
resistor  
Control. HCNTL0 and HCNTL1 select a host access to one of the three HPI registers. The control  
inputs have internal pullup resistors that are only enabled when HPIENA = 0.  
I
I
Pullup  
resistor  
Byte identification. HBIL identifies the first or second byte of transfer. The HBIL input has an internal  
pullup resistor that is only enabled when HPIENA = 0.  
HBIL  
HCS  
Schmitt  
trigger/pullup  
resistor  
Chip select. HCS is the select input for the HPI and must be driven low during accesses. The  
chip-select input has an internal pullup resistor that is only enabled when HPIENA = 0.  
I
I
I
Schmitt  
trigger/pullup  
resistor  
HDS1  
HDS2  
Data strobe. HDS1 and HDS2 are driven by the host read and write strobes to control transfers. The  
strobe inputs have internal pullup resistors that are only enabled when HPIENA = 0.  
Schmitt  
trigger/pullup  
resistor  
Address strobe. Hosts with multiplexed address and data pins require HAS to latch the address in  
the HPIA register. HAS has an internal pullup resistor that is only enabled when HPIENA = 0.  
HAS  
I = Input, O = Output, Z = High-impedance, S = Supply  
45  
April 1999 Revised February 2004  
SPRS082E  
Functional Overview  
Table 319. Terminal Functions (Continued)  
INTERNAL  
PIN STATE  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
HOST-PORT INTERFACE SIGNALS (CONTINUED)  
Pullup  
resistor  
Read/write. HR/W controls the direction of an HPI transfer. R/W has an internal pullup resistor that  
is only enabled when HPIENA = 0.  
HR/W  
HRDY  
HINT  
I
Ready. The ready output informs the host when the HPI is ready for the next transfer. HRDY goes  
into the high-impedance state when OFF is low.  
O/Z  
O/Z  
Interrupt. This output is used to interrupt the host. When the DSP is in reset, HINT is driven high.  
The signal goes into the high-impedance state when OFF is low.  
HPI module select. HPIENA must be driven high during reset to enable the HPI. An internal  
pulldown resistor is always active and the HPIENA pin is sampled on the rising edge of RS. If  
HPIENA is left open or is driven low during reset, the HPI module is disabled. Once the HPI is  
disabled, the HPIENA pin has no effect until the 5409 is reset.  
Pulldown  
resistor  
HPIENA  
I
HPI 16-bit select pin (internal pulldown, default HPI8). HPI16 = 1 selects the non-multiplexed mode.  
The non-multiplexed mode allows hosts with separate address/data buses to access the HPI  
address range via the 16 address pins (A15–A0). 16-bit data is also accessible through pins D0  
through D15. Host-to-DSP and DSP-to-Host interrupts are not supported. There are no HPIC and  
HPIA register accesses in the non-multiplexed mode.  
Pulldown  
resistor  
HPI16  
I
The HPI16 pin is sampled at RESET. The user should never change the value of the HPI16 pin while  
the RESET signal is HIGH.  
SUPPLY PINS  
CV  
DV  
S
S
S
+V . Dedicated 1.8-V power supply for the core CPU  
DD  
DD  
DD  
+V . Dedicated 3.3-V power supply for the I/O pins  
DD  
V
Ground  
SS  
TEST PINS  
IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle.  
The changes on the test access port (TAP) of input signals TMS and TDI are clocked into the TAP  
controller, instruction register, or selected test data register on the rising edge of TCK. Changes at  
the TAP output signal (TDO) occur on the falling edge of TCK.  
Schmitt  
trigger/pullup  
resistor  
TCK  
I
Pullup  
resistor  
IEEE standard 1149.1 test data input pin with internal pullup device. TDI is clocked into the selected  
register (instruction or data) on a rising edge of TCK.  
TDI  
I
O/Z  
I
IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data)  
are shifted out of TDO on the falling edge of TCK. TDO is in the high-impedance state except when  
the scanning of data is in progress. TDO also goes into the high-impedance state when OFF is low.  
TDO  
TMS  
Pullup  
resistor  
IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is  
clocked into the TAP controller on the rising edge of TCK.  
IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system  
control of the operations of the device. If TRST is not connected or is driven low, the device operates  
in its functional mode, and the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown  
device.  
Pulldown  
resistor  
TRST  
I
I = Input, O = Output, Z = High-impedance, S = Supply  
46  
SPRS082E  
April 1999 Revised February 2004  
Functional Overview  
Table 319. Terminal Functions (Continued)  
INTERNAL  
PIN STATE  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition.  
When TRST is driven high, EMU0 is used as an interrupt to or from the emulator system and is  
defined as input/output by way of the IEEE standard 1149.1 scan system.  
EMU0  
I/O/Z  
Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt  
to or from the emulator system and is defined as input/output by way of the IEEE standard 1149.1  
scan system. When TRST is driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal,  
when active low, puts all output drivers into the high-impedance state. Note that OFF is used  
exclusively for testing and emulation purposes (not for multiprocessing applications). Therefore, for  
the OFF feature, the following apply:  
EMU1/OFF  
I/O/Z  
TRST = low  
EMU0 = high  
EMU1/OFF = low  
I = Input, O = Output, Z = High-impedance, S = Supply  
47  
April 1999 Revised February 2004  
SPRS082E  
Documentation Support  
4
Documentation Support  
Extensive documentation supports all TMS320t DSP family of devices from product announcement through  
applications development. The following types of documentation are available to support the design and use  
of the C5000 family of DSPs:  
TMS320C54xt DSP Functional Overview (literature number SPRU307)  
Device-specific data sheets (such as this document)  
Complete User Guides  
Development-support tools  
Hardware and software application reports  
The five-volume TMS320C54x DSP Reference Set (literature number SPRU210) consists of:  
Volume 1: CPU and Peripherals (literature number SPRU131)  
Volume 2: Mnemonic Instruction Set (literature number SPRU172)  
Volume 3: Algebraic Instruction Set (literature number SPRU179)  
Volume 4: Applications Guide (literature number SPRU173)  
Volume 5: Enhanced Peripherals (literature number SPRU302)  
The reference set describes in detail the TMS320C54x products currently available, and the hardware and  
software applications, including algorithms, for fixed-point TMS320 devices.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 newsletter, Details on Signal Processing, is published  
quarterly and distributed to update TMS320 customers on product information.  
Information regarding TIt DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
TMS320, TMS320C5000, and TI are trademarks of Texas Instruments.  
48  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
4.1 Device and Development Tool Support Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
TMS320 DSP devices and support tools. Each TMS320 DSP commercial family member has one of three  
prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from  
engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device’s electrical  
specifications  
TMP Final silicon die that conforms to the device’s electrical specifications but has not completed  
quality and reliability verification  
TMS Fully-qualified production device  
Support tool development evolutionary flow:  
TMDX Development support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS Fully qualified development support product  
TMX and TMP devices and TMDX developmentsupport tools are shipped with appropriate disclaimers  
describing their limitations and intended uses. Experimental devices (TMX) may not be representative of a  
final product and Texas Instruments reserves the right to change or discontinue these products without notice.  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because  
their expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
49  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5
Electrical Specifications  
5.1 Absolute Maximum Ratings  
Supply voltage I/O range, DV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.0 V  
DD  
Supply voltage core range, CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 2.4 V  
DD  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.5 V  
I
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.5 V  
O
Operating case temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 100°C  
C
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
NOTE: Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to V  
.
SS  
5.2 Recommended Operating Conditions  
MIN NOM  
MAX  
3.6  
UNIT  
V
DV  
CV  
Device supply voltage, I/O  
Device supply voltage, core  
3
3.3  
1.8  
DD  
DD  
1.71  
1.98  
V
V
V
Supply voltage, GND  
0
V
SS  
RS, INTn, NMI, BIO, BCLKR0, BCLKR1,  
BCLKR2, BCLKX0, BCLKX1, BCLKX2, HAS,  
2.2  
DV + 0.3  
DD  
HCS, HDS1, HDS2, TCK, CLKMDn, DV  
=
DD  
3.3"0.3 V  
High-level input voltage, I/O  
V
IH  
TRST  
2.5  
1.4  
2.0  
DV + 0.3  
DD  
X2/CLKIN  
All other inputs  
CV + 0.3  
DD  
DV + 0.3  
DD  
RS, INTn, NMI, X2/CLKIN, BIO, BCLKR0,  
BCLKR1, BCLKR2, BCLKX0, BCLKX1,  
BCLKX2, HAS, HCS, HDS1, HDS2, TCK,  
0.3  
0.3  
0.6  
0.8  
V
Low-level input voltage  
V
IL  
CLKMDn, DV = 3.3"0.3 V  
DD  
All other inputs  
I
I
High-level output current  
Low-level output current  
Operating case temperature  
300  
1.5  
µA  
mA  
°C  
OH  
OL  
T
40  
100  
C
Texas Instrument DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be  
designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage.  
Excessive exposure to these conditions can adversely affect the long-term reliability of the devices. System-level concerns such as bus  
contention may require supply sequencing to be implemented. In this case, the core supply should be powered up at the same time as or prior  
to the I/O buffers, and then powered down after the I/O buffers.  
50  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.3 Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
TYP  
MAX  
UNIT  
V
V
I
I
= MAX  
= MAX  
V
High-level output voltage  
Low-level output voltage  
OH  
OL  
OH  
OL  
0.4  
V
Bus holders enabled, DV = MAX,  
DD  
Input current for  
outputs in high  
impedance  
D[15:0], HD[7:0], A[15:0]  
200  
200  
V = V to DV  
I
SS  
DD  
I
µA  
IZ  
All other inputs  
X2/CLKIN  
DV = MAX, V = V to DV  
5  
5
DD  
O
SS  
DD  
40  
40  
TRST  
With internal pulldown  
With internal pulldown  
5  
5  
200  
200  
Input current  
HPIENA, HPI16  
(V = V  
I SS  
I
µA  
I
to DV  
)
DD  
With internal pullups,  
HPIENA = 0  
}
TMS, TCK, TDI, HPI  
200  
5  
5
5
All other input-only pins  
w
#
I
I
Supply current, core CPU  
CV = 1.8 V, f  
= 100 MHz, T = 25°C  
37  
mA  
DDC  
DDP  
DD  
clock  
C
w
Supply current, pins  
DV = 3.3 V, f  
= 100 MHz, T = 25°C  
45  
2
mA  
mA  
DD  
clock  
C
IDLE2  
IDLE3  
PLL × 2 mode, 50 MHz input  
Supply current,  
standby  
I
DD  
Divide-by-two mode, CLKIN stopped  
20  
µA  
C
C
Input capacitance  
Output capacitance  
5
5
pF  
pF  
i
o
§
All values are typical unless otherwise specified.  
HPI input signals except for HPIENA.  
Clock mode: PLL × 1 with external source  
This value represents the current consumption of the CPU, on-chip memory, and on-chip peripherals. Conditions include: program execution from  
on-chip RAM, with 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with program being executed.  
This value was obtained using the following conditions: external memory writes at a rate of 20 million writes per second, CLKOFF=0, full-duplex  
operation of all three McBSPs at a rate of 10 million bits per second each, and 15-pF loads on all outputs. For more details on how this calculation  
is performed, refer to the Calculation of TMS320LC54x Power Dissipation Application Report (literature number SPRA164).  
#
The following load circuit in Figure 51 was used on all outputs pins and I/O pins in input mode. All timing  
measurements in this data sheet were measured from the 5409 connection to the following load circuit.  
I
OL  
50 Ω  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where:  
I
I
= 1.5 mA (all outputs)  
= 300 µA (all outputs)  
= 1.5 V  
OL  
OH  
V
Load  
C
T
= 40-pF typical load circuit capacitance  
Figure 51. 3.3-V Test Load Circuit  
51  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.4 Internal Oscillator with External Crystal  
The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN. The frequency of CLKOUT  
is a multiple of the oscillator frequency. The multiply ratio is determined by the bit settings in the CLKMD  
register. The crystal should be in fundamental-mode operation, and parallel resonant, with an effective series  
resistance of 30 and power dissipation of 1 mW.  
The connection of the required circuit, consisting of the crystal and two load capacitors, is shown in Figure 52.  
The load capacitors, C and C , should be chosen such that the equation below is satisfied. C in the equation  
1
2
L
is the load specified for the crystal.  
C1C2  
(C1 ) C2)  
CL +  
Table 51. Recommended Operating Conditions of Internal Oscillator With External Crystal  
MIN  
MAX  
UNIT  
f
Input clock frequency  
10  
20  
MHz  
clock  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 52. Internal Oscillator With External Crystal  
52  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.5 Divide-By-Two/Divide-By-Four Clock Option (PLL Disabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of two or four  
to generate the internal machine cycle. The selection of the clock mode is described in the clock generator  
section.  
When an external clock source is used, the frequency injected must conform to specifications listed in the  
timing requirements table. Table 52 and Table 53 assumes testing over recommended operating conditions  
and H = 0.5t  
(see Figure 53).  
c(CO)  
Table 52. Divide-By-Two/Divide-By-Four Clock Option (PLL Disabled) Timing Requirements  
MIN  
MAX  
UNIT  
ns  
t
t
t
Cycle time, X2/CLKIN  
Fall time, X2/CLKIN  
Rise time, X2/CLKIN  
20  
c(CI)  
f(CI)  
r(CI)  
8
8
ns  
ns  
tw(CIL) Pulse duration, X2/CLKIN low  
tw(CIH) Pulse duration, X2/CLKIN high  
5
5
ns  
ns  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
approaching . The device is characterized at frequencies  
c(CI)  
Table 53. Divide-By-Two/Divide-By-Four Clock Option (PLL Disabled) Switching Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
Cycle time, CLKOUT  
40 2t  
c(CO)  
c(CI)  
Delay time, X2/CLKIN high to CLKOUT high/low  
Fall time, CLKOUT  
4
10  
17  
ns  
d(CIH-CO)  
f(CO)  
2
2
ns  
Rise time, CLKOUT  
ns  
r(CO)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H2  
H2  
H1  
H1  
H
H
ns  
w(COL)  
w(COH)  
ns  
This device utilizes a fully static design and therefore can operate with t  
approaching 0 Hz.  
approaching . The device is characterized at frequencies  
c(CI)  
t
t
r(CI)  
w(CIH)  
t
t
f(CI)  
w(CIL)  
t
c(CI)  
X2/CLKIN  
CLKOUT  
t
w(COH)  
t
f(CO)  
t
c(CO)  
t
r(CO)  
t
d(CIH-CO)  
t
w(COL)  
Figure 53. External Divide-by-Two Clock Timing  
53  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.6 Multiply-By-N Clock Option (PLL Enabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be multiplied by a factor of N to  
generate the internal machine cycle. The selection of the clock mode and the value of N is described in the  
clock generator section.  
When an external clock source is used, the external frequency injected must conform to specifications listed  
in the timing requirements table. Table 54 and Table 55 assumes testing over recommended operating  
conditions and H = 0.5t  
(see Figure 54).  
c(CO)  
Table 54. Multiply-By-N Clock Option (PLL Enabled) Timing Requirements  
MIN  
MAX  
200  
100  
50  
UNIT  
Integer PLL multiplier N (N = 115)  
PLL multiplier N = x.5  
20  
20  
20  
t
Cycle time, X2/CLKIN  
ns  
c(CI)  
PLL multiplier N = x.25, x.75  
t
t
Fall time, X2/CLKIN  
Rise time, X2/CLKIN  
8
8
ns  
ns  
ns  
ns  
f(CI)  
r(CI)  
tw(CIL) Pulse duration, X2/CLKIN low  
tw(CIH) Pulse duration, X2/CLKIN high  
N = Multiplication factor  
5
5
The multiplication factor and minimum X2/CLKIN cycle time should be chosen such that the resulting CLKOUT cycle time is within the specified  
range (tc(CO))  
Table 55. Multiply-By-N Clock Option (PLL Enabled) Switching Characteristics  
80  
100  
PARAMETER  
Cycle time, CLKOUT  
UNIT  
MIN  
12.5  
4
TYP  
MAX  
MIN  
10  
4
TYP  
MAX  
t
t
/N  
10  
2
t
/N  
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
ms  
c(CO)  
c(CI)  
c(CI)  
t
Delay time, X2/CLKIN high/low to CLKOUT high/low  
Fall time, CLKOUT  
17  
17  
d(CI-CO)  
t
f(CO)  
r(CO)  
w(COL)  
w(COH)  
p
t
t
t
t
Rise time, CLKOUT  
2
2
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Transitory phase, PLL lock up time  
H3  
H3  
H1  
H1  
H
H
H2  
H2  
H1  
H1  
H
H
30  
30  
N = Multiplication factor  
t
t
f(CI)  
w(CIH)  
t
t
r(CI)  
w(CIL)  
t
c(CI)  
X2/CLKIN  
t
d(CI-CO)  
t
f(CO)  
t
w(COH)  
t
c(CO)  
t
w(COL)  
t
tp  
r(CO)  
Unstable  
CLKOUT  
Figure 54. External Multiply-by-One Clock Timing  
54  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.7 Memory and Parallel I/O Interface Timing  
5.7.1 Memory Read  
External memory reads can be performed in consecutive or nonconsecutive mode under control of the  
CONSEC bit in the BSCR. Table 56 and Table 57 assume testing over recommended operating conditions  
with MSTRB = 0 and H = 0.5t  
(see Figure 55).  
c(CO)  
Table 56. Memory Read Timing Requirements  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
Access time, read data access from address valid  
2H10  
a(A)M  
Access time, read data access from MSTRB low  
Setup time, read data before CLKOUT low  
Hold time, read data after CLKOUT low  
Hold time, read data after address invalid  
Hold time, read data after MSTRB high  
2H10  
ns  
a(MSTRBL)  
su(D)R  
8
0
0
1
ns  
ns  
h(D)R  
ns  
h(A-D)R  
t
ns  
h(D)MSTRBH  
Address, PS, and DS timings are all included in timings referenced as address.  
This access timing reflects a zero wait-state timing.  
Table 57. Memory Read Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
§
t
t
Delay time, CLKOUT low to address valid  
0
0
0
0
0
0
3
3
3
3
3
3
d(CLKL-A)  
d(CLKH-A)  
Delay time, CLKOUT high (transition) to address valid  
Delay time, CLKOUT low to MSTRB low  
ns  
t
ns  
d(CLKL-MSL)  
t
Delay time, CLKOUT low to MSTRB high  
ns  
d(CLKL-MSH)  
§
t
Hold time, address valid after CLKOUT low  
ns  
h(CLKL-A)R  
h(CLKH-A)R  
t
Hold time, address valid after CLKOUT high  
ns  
§
Address, PS, and DS timings are all included in timings referenced as address.  
In the case of a memory read preceded by a memory read  
In the case of a memory read preceded by a memory write  
55  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
CLKOUT  
t
d(CLKL-A)  
t
h(CLKL-A)R  
A[22:0]  
D[15:0]  
t
h(A-D)R  
t
su(D)R  
t
a(A)M  
t
h(D)R  
t
h(D)MSTRBH  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
a(MSTRBL)  
MSTRB  
R/W  
PS, DS  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 55. Memory Read  
56  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.7.2 Memory Write  
Table 58 assumes testing over recommended operating conditions with MSTRB = 0 and H = 0.5t  
(see  
c(CO)  
Figure 56).  
Table 58. Memory Write Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
t
t
Delay time, CLKOUT high to address valid  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKH-A)  
d(CLKL-A)  
§
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT low to MSTRB low  
Delay time, CLKOUT low to data valid  
Delay time, CLKOUT low to MSTRB high  
Delay time, CLKOUT high to R/W low  
Delay time, CLKOUT high to R/W high  
Delay time, R/W low to MSTRB low  
0
3
t
0
3
d(CLKL-MSL)  
t
0
8
d(CLKL-D)W  
t
0
3
d(CLKL-MSH)  
t
0
0
4
4
d(CLKH-RWL)  
t
d(CLKH-RWH)  
t
H 2  
0
H + 1  
3
d(RWL-MSTRBL)  
t
Hold time, address valid after CLKOUT high  
h(A)W  
§
t
t
t
t
Hold time, write data valid after MSTRB high  
Pulse duration, MSTRB low  
H3  
2H2  
2H2  
H+6  
ns  
ns  
ns  
ns  
h(D)MSH  
w(SL)MS  
su(A)W  
Setup time, address valid before MSTRB low  
Setup time, write data valid before MSTRB high  
§
2H6 2H+6  
H5  
su(D)MSH  
t
t
Enable time, data bus driven after R/W low  
ns  
ns  
en(DRWL)  
dis(RWHD)  
Disable time, R/W high to data bus high impedance  
0
§
Address, PS, and DS timings are all included in timings referenced as address.  
In the case of a memory write preceded by a memory write  
In the case of a memory write preceded by an I/O cycle  
57  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
CLKOUT  
t
d(CLKH-A)  
t
d(CLKL-A)  
t
h(A)W  
A[22:0]  
D[15:0]  
MSTRB  
R/W  
t
d(CLKL-D)W  
t
h(D)MSH  
t
su(D)MSH  
t
d(CLKL-MSL)  
t
dis(RWH-D)  
t
d(CLKL-MSH)  
t
su(A)W  
t
t
d(CLKH-RWL)  
d(CLKH-RWH)  
t
t
w(SL)MS  
en(D-RWL)  
t
d(RWL-MSTRBL)  
PS, DS  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 56. Memory Write  
58  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.7.3 Parallel I/O Port Read  
Table 59 and Table 510 assume testing over recommended operating conditions, IOSTRB = 0, and  
H = 0.5t (see Figure 57).  
c(CO)  
Table 59. Parallel I/O Read Port Timing Requirements  
MIN  
MAX  
3H9  
2H8  
UNIT  
ns  
t
t
t
t
t
Access time, read data access from address valid  
a(A)IO  
Access time, read data access from IOSTRB low  
Setup time, read data before CLKOUT high  
Hold time, read data after CLKOUT high  
Hold time, read data after IOSTRB high  
ns  
a(ISTRBL)IO  
su(D)IOR  
8
0
0
ns  
ns  
h(D)IOR  
ns  
h(ISTRBH-D)R  
Address and IS timings are included in timings referenced as address.  
This access timing reflects a zero wait-state timing.  
Table 510. Parallel I/O Port Read Switching Characteristics  
PARAMETER  
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT high to IOSTRB low  
Delay time, CLKOUT high to IOSTRB high  
Hold time, address after CLKOUT low  
MIN  
MAX  
UNIT  
ns  
t
0
0
0
0
3
3
3
3
d(CLKL-A)  
t
ns  
d(CLKH-ISTRBL)  
t
ns  
d(CLKH-ISTRBH)  
t
ns  
h(A)IOR  
Address and IS timings are included in timings referenced as address.  
CLKOUT  
t
t
h(A)IOR  
d(CLKL-A)  
A[22:0]  
t
h(D)IOR  
t
su(D)IOR  
t
a(A)IO  
D[15:0]  
t
h(ISTRBH-D)R  
d(CLKH-ISTRBH)  
t
a(ISTRBL)IO  
t
t
d(CLKH-ISTRBL)  
IOSTRB  
R/W  
IS  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 57. Parallel I/O Port Read  
59  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.7.4 Parallel I/O Port Write  
Table 511 assumes testing over recommended operating conditions, IOSTRB = 0, and H = 0.5t  
Figure 58).  
(see  
c(CO)  
Table 511. Parallel I/O Port Write Switching Characteristics  
PARAMETER  
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT high to IOSTRB low  
Delay time, CLKOUT high to write data valid  
Delay time, CLKOUT high to IOSTRB high  
Delay time, CLKOUT low to R/W low  
MIN MAX  
UNIT  
t
0
0
3
3
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
d(CLKH-ISTRBL)  
t
H5  
0
H+8  
3
d(CLKH-D)IOW  
t
d(CLKH-ISTRBH)  
t
0
3
d(CLKL-RWL)  
d(CLKL-RWH)  
t
t
t
t
t
Delay time, CLKOUT low to R/W high  
0
3
Hold time, address valid after CLKOUT low  
Hold time, write data after IOSTRB high  
Setup time, write data before IOSTRB high  
Setup time, address valid before IOSTRB low  
0
H3  
H7  
H2  
3
H+7  
H+1  
H+2  
ns  
ns  
ns  
ns  
h(A)IOW  
h(D)IOW  
su(D)IOSTRBH  
su(A)IOSTRBL  
Address and IS timings are included in timings referenced as address.  
CLKOUT  
t
su(A)IOSTRBL  
t
h(A)IOW  
t
d(CLKL-A)  
A[22:0]  
t
d(CLKH-D)IOW  
t
h(D)IOW  
D[15:0]  
t
d(CLKH-ISTRBL)  
t
d(CLKH-ISTRBH)  
t
su(D)IOSTRBH  
IOSTRB  
R/W  
t
t
d(CLKL-RWH)  
d(CLKL-RWL)  
IS  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 58. Parallel I/O Port Write  
60  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.8 Ready Timing for Externally Generated Wait States  
Table 512 and Table 513 assume testing over recommended operating conditions and H = 0.5t  
Figure 59, Figure 510, Figure 511, and Figure 512).  
(see  
c(CO)  
Table 512. Ready Timing Requirements for Externally Generated Wait States  
MIN  
7
MAX  
UNIT  
t
t
t
t
t
t
Setup time, READY before CLKOUT low  
Hold time, READY after CLKOUT low  
ns  
ns  
ns  
ns  
ns  
ns  
su(RDY)  
0
h(RDY)  
Valid time, READY after MSTRB low  
4H9  
5H9  
v(RDY)MSTRB  
h(RDY)MSTRB  
v(RDY)IOSTRB  
h(RDY)IOSTRB  
Hold time, READY after MSTRB low  
4H  
5H  
Valid time, READY after IOSTRB low  
Hold time, READY after IOSTRB low  
The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states using  
READY, at least two software wait states must be programmed.  
These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.  
Table 513. Ready Switching Characteristics for Externally Generated Wait States  
PARAMETER  
Delay time, CLKOUT low to MSC low  
Delay time, CLKOUT low to MSC high  
MIN  
MAX  
UNIT  
ns  
t
0
3
d(MSCL)  
t
0
3
ns  
d(MSCH)  
The hardware wait states can be used only in conjunction with the software wait states to extend the bus cycles. To generate wait states by READY,  
at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
CLKOUT  
A[22:0]  
t
su(RDY)  
t
h(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
v(MSCH)  
t
v(MSCL)  
Wait State  
Generated  
by READY  
Wait States  
Generated Internally  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 59. Memory Read With Externally Generated Wait States  
61  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
CLKOUT  
A[22:0]  
D[15:0]  
READY  
MSTRB  
MSC  
t
h(RDY)  
t
su(RDY)  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
v(MSCH)  
t
v(MSCL)  
Wait States  
Generated Internally  
Wait State Generated  
by READY  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 510. Memory Write With Externally Generated Wait States  
62  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
CLKOUT  
A[22:0]  
READY  
IOSTRB  
MSC  
t
h(RDY)  
t
su(RDY)  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
t
v(MSCH)  
t
v(MSCL)  
Wait State Generated  
by READY  
Wait  
States  
Generated  
Internally  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 511. I/O Read With Externally Generated Wait States  
63  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
CLKOUT  
A[22:0]  
D[15:0]  
READY  
t
h(RDY)  
t
su(RDY)  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
IOSTRB  
MSC  
t
v(MSCH)  
t
v(MSCL)  
Wait State Generated  
by READY  
Wait States  
Generated  
Internally  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 512. I/O Write With Externally Generated Wait States  
64  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.9 HOLD and HOLDA Timings  
Table 514 and Table 515 assume testing over recommended operating conditions and H = 0.5t  
Figure 513).  
(see  
c(CO)  
Table 514. HOLD and HOLDA Timing Requirements  
MIN  
4H+8  
8
MAX  
UNIT  
t
t
Pulse duration, HOLD low  
ns  
ns  
w(HOLD)  
su(HOLD)  
Setup time, HOLD low/high before CLKOUT low  
Table 515. HOLD and HOLDA Switching Characteristics  
PARAMETER  
MIN  
MAX  
5
UNIT  
ns  
t
t
t
t
t
t
Disable time, address, PS, DS, IS high impedance from CLKOUT low  
Disable time, R/W high impedance from CLKOUT low  
Disable time, MSTRB, IOSTRB high impedance from CLKOUT low  
Enable time, address, PS, DS, IS from CLKOUT low  
Enable time, R/W enabled from CLKOUT low  
dis(CLKL-A)  
dis(CLKL-RW)  
dis(CLKL-S)  
en(CLKL-A)  
en(CLKL-RW)  
en(CLKL-S)  
5
ns  
5
ns  
2H+5  
2H+5  
2H+5  
ns  
ns  
Enable time, MSTRB, IOSTRB enabled from CLKOUT low  
1
0
ns  
4
4
ns  
ns  
ns  
Valid time, HOLDA low after CLKOUT low  
t
t
v(HOLDA)  
w(HOLDA)  
0
Valid time, HOLDA high after CLKOUT low  
Pulse duration, HOLDA low duration  
2H1  
CLKOUT  
t
su(HOLD)  
t
su(HOLD)  
t
w(HOLD)  
HOLD  
t
t
v(HOLDA)  
v(HOLDA)  
t
w(HOLDA)  
HOLDA  
t
dis(CLKL-A)  
t
en(CLKL-A)  
A[22:0]  
PS, DS, IS  
D[15:0]  
R/W  
t
t
dis(CLKL-RW)  
en(CLKL-RW)  
t
en(CLKL-S)  
t
t
dis(CLKL-S)  
MSTRB  
IOSTRB  
t
dis(CLKL-S)  
en(CLKL-S)  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 513. HOLD and HOLDA Timings  
65  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.10 Reset, BIO, Interrupt, and MP/MC Timings  
Table 516 assumes testing over recommended operating conditions and H = 0.5t  
Figure 515, and Figure 516).  
(see Figure 514,  
c(CO)  
Table 516. Reset, BIO, Interrupt, and MP/MC Timing Requirements  
MIN  
0
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, RS after CLKOUT low  
Hold time, BIO after CLKOUT low  
h(RS)  
0
h(BIO)  
Hold time, INTn, NMI, after CLKOUT low  
0
h(INT)  
Hold time, MP/MC after CLKOUT low  
0
h(MPMC)  
w(RSL)  
‡§  
Pulse duration, RS low  
4H+4  
2H+1  
4H  
2H+1  
4H  
2H+1  
4H  
8
Pulse duration, BIO low, synchronous  
w(BIO)S  
w(BIO)A  
w(INTH)S  
w(INTH)A  
w(INTL)S  
w(INTL)A  
w(INTL)WKP  
su(RS)  
Pulse duration, BIO low, asynchronous  
Pulse duration, INTn, NMI high (synchronous)  
Pulse duration, INTn, NMI high (asynchronous)  
Pulse duration, INTn, NMI low (synchronous)  
Pulse duration, INTn, NMI low (asynchronous)  
Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup  
Setup time, RS before X2/CLKIN low  
6
Setup time, BIO before CLKOUT low  
7
10  
10  
su(BIO)  
Setup time, INTn, NMI, RS before CLKOUT low  
Setup time, MP/MC before CLKOUT low  
8
su(INT)  
8
su(MPMC)  
The external interrupts (INT0INT3, NMI) are synchronized to the core CPU by way of a two-flip-flop synchronizer which samples these inputs  
with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 1-0-0 sequence at the timing that is  
corresponding to three CLKOUT sampling sequences.  
If the PLL mode is selected, then at power-on sequence, or at wakeup from IDLE3, RS must be held low for at least 50 µs to ensure synchronization  
and lock-in of the PLL.  
§
Note that RS may cause a change in clock frequency, therefore changing the value of H.  
Divide-by-two mode  
66  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
X2/CLKIN  
RS, INTn, NMI  
CLKOUT  
t
su(RS)  
t
w(RSL)  
t
su(INT)  
t
h(RS)  
t
su(BIO)  
t
h(BIO)  
BIO  
t
w(BIO)S  
Figure 514. Reset and BIO Timings  
CLKOUT  
t
t
su(INT)  
t
su(INT)  
h(INT)  
INTn, NMI  
t
w(INTH)A  
t
w(INTL)A  
Figure 515. Interrupt Timing  
CLKOUT  
RS  
t
h(MPMC)  
t
su(MPMC)  
MP/MC  
Figure 516. MP/MC Timing  
67  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.11 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings  
Table 517 assumes testing over recommended operating conditions and H = 0.5t  
(see Figure 517).  
c(CO)  
Table 517. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics  
PARAMETER  
Delay time, CLKOUT low to IAQ low  
MIN  
0
MAX  
UNIT  
ns  
t
3
3
1
3
3
1
d(CLKL-IAQL)  
t
t
Delay time, CLKOUT low to IAQ high  
Delay time, address valid to IAQ low  
Delay time, CLKOUT low to IACK low  
Delay time , CLKOUT low to IACK high  
Delay time, address valid to IACK low  
Hold time, IAQ high after address invalid  
Hold time, IACK high after address invalid  
Pulse duration, IAQ low  
0
ns  
d(CLKL-IAQH)  
d(A)IAQ  
ns  
t
0
0
ns  
d(CLKL-IACKL)  
t
ns  
d(CLKL-IACKH)  
d(A)IACK  
h(A)IAQ  
t
t
t
t
t
ns  
2  
2  
ns  
ns  
h(A)IACK  
w(IAQL)  
2H2  
2H2  
ns  
Pulse duration, IACK low  
ns  
w(IACKL)  
CLKOUT  
A[22:0]  
t
t
t
d(CLKL-IAQH)  
d(CLKL-IAQL)  
t
h(A)IAQ  
t
d(A)IAQ  
t
w(IAQL)  
IAQ  
t
d(CLKL-IACKH)  
d(CLKL-IACKL)  
t
h(A)IACK  
t
d(A)IACK  
t
w(IACKL)  
IACK  
MSTRB  
NOTE A: A[22:16] apply to DMA accesses to extended I/O, DATA, PROGRAM memory. The CPU has access to only extended  
PROGRAM memory.  
Figure 517. IAQ and IACK Timings  
68  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.12 External Flag (XF) and TOUT Timings  
Table 518 assumes testing over recommended operating conditions and H = 0.5t  
Figure 519).  
(see Figure 518 and  
c(CO)  
Table 518. External Flag (XF) and TOUT Switching Characteristics  
PARAMETER  
MIN  
0
MAX  
UNIT  
Delay time, CLKOUT low to XF high  
2
2
t
ns  
d(XF)  
Delay time, CLKOUT low to XF low  
0
t
t
t
Delay time, CLKOUT low to TOUT high  
Delay time, CLKOUT low to TOUT low  
Pulse duration, TOUT  
0
0
4
4
ns  
ns  
ns  
d(TOUTH)  
d(TOUTL)  
w(TOUT)  
2H  
CLKOUT  
t
d(XF)  
XF  
Figure 518. XF Timing  
CLKOUT  
TOUT  
t
t
d(TOUTL)  
d(TOUTH)  
t
w(TOUT)  
Figure 519. TOUT Timing  
69  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.13 Multichannel Buffered Serial Port (McBSP) Timing  
5.13.1 McBSP Transmit and Receive Timings  
Table 519 and Table 520 assume testing over recommended operating conditions and H = 0.5t  
Figure 520 and Figure 521).  
(see  
c(CO)  
Table 519. McBSP Transmit and Receive Timing Requirements  
MIN  
MAX  
UNIT  
t
t
Cycle time, BCLKR/X  
BCLKR/X ext  
BCLKR/X ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKR/X ext  
BCLKR/X ext  
4H  
ns  
ns  
c(BCKRX)  
w(BCKRX)  
Pulse duration, BCLKR/X or BCLKR/X high  
2H1  
0
4
0
4
0
4
7
2
7
2
7
2
t
t
t
t
t
t
Hold time, external BFSR high after BCLKR low  
Hold time, BDR valid after BCLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
h(BCKRL-BFRH)  
h(BCKRL-BDRV)  
h(BCKXL-BFXH)  
su(BFRH-BCKRL)  
su(BDRV-BCKRL)  
su(BFXH-BCKXL)  
Hold time, external BFSX high after BCLKX low  
Setup time, external BFSR high before BCLKR low  
Setup time, BDR valid before BCLKR low  
Setup time, external BFSX high before BCLKX low  
t
t
Rise time, BCKR/X  
Fall time, BCKR/X  
8
8
ns  
ns  
r(BCKRX)  
f(BCKRX)  
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are  
also inverted.  
70  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
Table 520. McBSP Transmit and Receive Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
Cycle time, BCLKR/X  
BCLKR/X int  
BCLKR/X int  
BCLKR/X int  
BCLKR int  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
4H  
c(BCKRX)  
Pulse duration, BCLKR/X high  
D3  
D+1  
ns  
w(BCKRXH)  
w(BCKRXL)  
d(BCKRH-BFRV)  
Pulse duration, BCLKR/X low  
C3  
C+1  
ns  
Delay time, BCLKR high to internal BFSR valid  
2  
0
2
6
ns  
t
t
Delay time, BCLKX high to internal BFSX valid  
ns  
ns  
d(BCKXH-BFXV)  
4
12  
7
4  
3
Disable time, BCLKX high to BDX high impedance following last data bit  
dis(BCKXH-BDXHZ)  
9
0
7
Delay time, BCLKX high to BDX valid. This applies to all bits except the first  
bit transmitted.  
4
12  
§¶  
t
ns  
d(BCKXH-BDXV)  
Delay time, BCLKX high to BDX valid.  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BFSX int  
7
DXENA = 0  
DXENA = 0  
DXENA = 0  
DXENA = 0  
Only applies to first bit transmitted when in Data Delay 1  
or 2 (XDATDLY=01b or 10b) modes  
12  
§¶  
Enable time, BCLKX high to BDX driven.  
4  
t
t
t
ns  
ns  
ns  
Only applies to first bit transmitted when in Data Delay 1  
or 2 (XDATDLY=01b or 10b) modes  
e(BCKXH-BDX)  
d(BFXH-BDXV)  
e(BFXH-BDX)  
2
§¶  
Delay time, BFSX high to BDX valid.  
2
Only applies to first bit transmitted when in Data Delay 0  
(XDATDLY=00b) mode.  
BFSX ext  
BFSX int  
12  
§¶  
Enable time, BFSX high to BDX driven.  
1  
Only applies to first bit transmitted when in Data Delay 0  
(XDATDLY=00b) mode  
BFSX ext  
2
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are  
also inverted.  
T=BCLKRX period = (1 + CLKGDV) * 2H  
C=BCLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D=BCLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
See the TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals (literature number SPRU302) for a description of the DX enable  
(DXENA) and data delay features of the McBSP.  
§
The transmit delay enable (DXENA) and A-bis mode (ABIS) features of the McBSP are not implemented on the TMS320VC5409.  
71  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
t
t
t
c(BCKRX)  
w(BCKRXH)  
w(BCKRXL)  
t
r(BCKRX)  
BCLKR  
t
d(BCKRHBFRV)  
t
t
r(BCKRX)  
d(BCKRHBFRV)  
BFSR (int)  
t
su(BFRHBCKRL)  
t
h(BCKRLBFRH)  
BFSR (ext)  
t
h(BCKRLBDRV)  
t
su(BDRVBCKRL)  
BDR  
Bit (n1)  
(n2)  
(n3)  
(n4)  
(n3)  
(RDATDLY=00b)  
t
su(BDRVBCKRL)  
t
h(BCKRLBDRV)  
BDR  
(RDATDLY=01b)  
Bit (n1)  
(n2)  
t
su(BDRVBCKRL)  
t
h(BCKRLBDRV)  
BDR  
(RDATDLY=10b)  
Bit (n1)  
(n2)  
Figure 520. McBSP Receive Timings  
t
t
c(BCKRX)  
w(BCKRXH)  
t
r(BCKRX)  
t
f(BCKRX)  
t
w(BCKRXL)  
BCLKX  
t
d(BCKXHBFXV)  
t
d(BCKXHBFXV)  
BFSX (int)  
BFSX (ext)  
t
su(BFXHBCKXL)  
t
h(BCKXLBFXH)  
t
d(BDFXHBDXV)  
t
t
t
d(BCKXHBDXV)  
e(BDFXHBDX)  
BDX  
Bit 0  
Bit (n1)  
(n2)  
(n3)  
(n4)  
(n3)  
(n2)  
(XDATDLY=00b)  
d(BCKXHBDXV)  
t
e(BCKXHBDX)  
BDX  
Bit (n1)  
(n2)  
Bit 0  
(XDATDLY=01b)  
t
t
d(BCKXHBDXV)  
dis(BCKXHBDXHZ)  
t
e(BCKXHBDX)  
BDX  
Bit 0  
Bit (n1)  
(XDATDLY=10b)  
Figure 521. McBSP Transmit Timings  
72  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
5.13.2 McBSP General-Purpose I/O Timing  
Table 521 and Table 522 assume testing over recommended operating conditions (see Figure 522).  
Table 521. McBSP General-Purpose I/O Timing Requirements  
MIN  
9
MAX  
UNIT  
ns  
t
t
Setup time, BGPIOx input mode before CLKOUT high  
su(BGPIO-COH)  
h(COH-BGPIO)  
Hold time, BGPIOx input mode after CLKOUT high  
0
ns  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
Table 522. McBSP General-Purpose I/O Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
t
Delay time, CLKOUT high to BGPIOx output mode  
10  
10  
ns  
d(COH-BGPIO)  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
t
t
su(BGPIO-COH)  
d(COH-BGPIO)  
CLKOUT  
t
h(COH-BGPIO)  
BGPIOx Input  
Mode  
BGPIOx Output  
Mode  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
Figure 522. McBSP General-Purpose I/O Timings  
73  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.13.3 McBSP as SPI Master or Slave Timing  
Table 523 to Table 530 assume testing over recommended operating conditions and H = 0.5t  
Figure 523, Figure 524, Figure 525, and Figure 526).  
(see  
c(CO)  
Table 523. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
UNIT  
MIN  
10  
0
MAX  
MIN MAX  
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX low  
12H  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXL-BDRV)  
5 + 12H  
10  
t
t
Setup time, BFSX low before BCLKX high  
Cycle time, BCLKX  
ns  
ns  
su(BFXL-BCKXH)  
c(BCKX)  
12H  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 524. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
MASTER  
SLAVE  
PARAMETER  
UNIT  
MIN  
MAX  
MIN MAX  
§
t
t
t
Hold time, BFSX low after BCLKX low  
T 4 T + 4  
C 5 C + 3  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXH-BDXV)  
Delay time, BFSX low to BCLKX high  
Delay time, BCLKX high to BDX valid  
3  
7
6H + 5 10H + 14  
Disable time, BDX high impedance following last data bit from  
BCLKX low  
t
C 2 C + 3  
ns  
dis(BCKXL-BDXHZ)  
Disable time, BDX high impedance following last data bit from  
BFSX high  
t
t
2H+ 3  
6H + 17  
8H + 17  
ns  
ns  
dis(BFXH-BDXHZ)  
d(BFXL-BDXV)  
Delay time, BFSX low to BDX valid  
4H + 2  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
c(BCKX)  
MSB  
LSB  
t
su(BFXL-BCKXH)  
BCLKX  
BFSX  
t
h(BCKXL-BFXL)  
t
d(BFXL-BCKXH)  
t
dis(BFXH-BDXHZ)  
t
d(BFXL-BDXV)  
t
t
d(BCKXH-BDXV)  
dis(BCKXL-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCLXL)  
t
h(BCKXL-BDRV)  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Figure 523. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
74  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
Table 525. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
UNIT  
MIN  
10  
0
MAX  
MIN MAX  
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX high  
12H  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXH-BDRV)  
5 + 12H  
10  
t
t
Setup time, BFSX low before BCLKX high  
Cycle time, BCLKX  
ns  
ns  
su(BFXL-BCKXH)  
c(BCKX)  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 526. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
MASTER  
SLAVE  
PARAMETER  
UNIT  
MIN  
MAX  
MIN MAX  
§
t
t
t
Hold time, BFSX low after BCLKX low  
C 4 C + 4  
T 5 T + 3  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXL-BDXV)  
Delay time, BFSX low to BCLKX high  
Delay time, BCLKX low to BDX valid  
3  
7
6H + 5 10H + 14  
6H + 3 10H + 17  
Disable time, BDX high impedance following last data bit from  
BCLKX low  
t
2  
4
ns  
ns  
dis(BCKXL-BDXHZ)  
t
Delay time, BFSX low to BDX valid  
D 1 D + 4 4H 2  
8H + 17  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
§
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
t
c(BCKX)  
MSB  
su(BFXL-BCKXH)  
LSB  
BCLKX  
t
t
d(BFXL-BCKXH)  
h(BCKXL-BFXL)  
BFSX  
t
t
t
d(BCKXL-BDXV)  
d(BFXL-BDXV)  
dis(BCKXL-BDXHZ)  
BDX  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXH)  
t
h(BCKXH-BDRV)  
BDR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 524. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
75  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
Table 527. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
UNIT  
MIN  
10  
0
MAX  
MIN MAX  
t
t
Setup time, BDR valid before BCLKX high  
Hold time, BDR valid after BCLKX high  
12H  
ns  
ns  
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
5 + 12H  
10  
t
t
Setup time, BFSX low before BCLKX low  
Cycle time, BCLKX  
ns  
ns  
su(BFXL-BCKXL)  
c(BCKX)  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 528. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
MASTER  
SLAVE  
PARAMETER  
UNIT  
MIN  
MAX  
MIN MAX  
§
t
t
t
Hold time, BFSX low after BCLKX high  
T 4 T + 4  
D 5 D + 3  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXL-BDXV)  
Delay time, BFSX low to BCLKX low  
Delay time, BCLKX low to BDX valid  
3  
7
6H + 5 10H + 14  
Disable time, BDX high impedance following last data bit from  
BCLKX high  
t
D 2 D + 3  
ns  
dis(BCKXH-BDXHZ)  
Disable time, BDX high impedance following last data bit from  
BFSX high  
t
t
2H + 3  
6H + 17  
8H + 17  
ns  
ns  
dis(BFXH-BDXHZ)  
d(BFXL-BDXV)  
Delay time, BFSX low to BDX valid  
4H 2  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
§
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
t
c(BCKX)  
su(BFXL-BCKXL)  
LSB  
MSB  
BCLKX  
BFSX  
t
h(BCKXH-BFXL)  
t
d(BFXL-BCKXL)  
t
t
d(BFXL-BDXV)  
dis(BFXH-BDXHZ)  
t
t
t
d(BCKXL-BDXV)  
dis(BCKXH-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
(n-2)  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
Figure 525. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
76  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
Table 529. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
UNIT  
MIN  
10  
0
MAX  
MIN MAX  
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX low  
12H  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXL-BDRV)  
5 + 12H  
10  
t
t
Setup time, BFSX low before BCLKX low  
Cycle time, BCLKX  
ns  
ns  
su(BFXL-BCKXL)  
c(BCKX)  
32H  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 530. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)  
MASTER  
SLAVE  
PARAMETER  
UNIT  
MIN  
MAX  
MIN MAX  
§
t
t
t
Hold time, BFSX low after BCLKX high  
D 4 D + 4  
T 5 T + 3  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXH-BDXV)  
Delay time, BFSX low to BCLKX low  
Delay time, BCLKX high to BDX valid  
3  
7
6H + 5 10H + 14  
6H + 3 10H + 17  
Disable time, BDX high impedance following last data bit from  
BCLKX high  
t
2  
4
ns  
ns  
dis(BCKXH-BDXHZ)  
t
Delay time, BFSX low to BDX valid  
C 1 C + 4 4H 2  
8H + 17  
d(BFXL-BDXV)  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
T = BCLKX period = (1 + CLKGDV) * 2H  
C = BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2H when CLKGDV is even  
D = BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2H when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
§
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
t
t
su(BFXL-BCKXL)  
c(BCKX)  
MSB  
LSB  
BCLKX  
t
t
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
BFSX  
t
t
t
dis(BCKXH-BDXHZ)  
d(BCKXH-BDXV)  
(n-2)  
d(BFXL-BDXV)  
BDX  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXL)  
t
h(BCKXL-BDRV)  
BDR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 526. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
77  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.14 Host-Port Interface Timing  
5.14.1 HPI8 Mode  
Table 531 and Table 532 assume testing over recommended operating conditions and H = 0.5t  
(see  
c(CO)  
Figure 527 through Figure 530). In the following tables, DS refers to the logical OR of HCS, HDS1, and  
HDS2. HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.). HAD stands for HCNTL0, HCNTL1,  
and HR/W.  
†‡§  
Table 531. HPI8 Mode Timing Requirements  
MIN  
5
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Setup time, HBIL valid before DS low  
Hold time, HBIL valid after DS low  
Setup time, HAS low before DS low  
Pulse duration, DS low  
su(HBV-DSL)  
h(DSL-HBV)  
5
ns  
5
ns  
su(HSL-DSL)  
w(DSL)  
20  
10  
5
ns  
Pulse duration, DS high  
ns  
w(DSH)  
Setup time, HDx valid before DS high, HPI write  
Hold time, HDx valid after DS high, HPI write  
ns  
su(HDV-DSH)  
5
ns  
h(DSH-HDV)W  
§
DS refers to the logical OR of HCS, HDS1, and HDS2.  
HDx refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.).  
GPIO refers to the HD pins when they are configured as general-purpose input/outputs.  
78  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
†‡§¶  
Table 532. HPI8 Mode Switching Characteristics  
PARAMETER  
MIN  
2
MAX  
UNIT  
t
Enable time, HD driven from DS low  
19  
ns  
en(DSL-HD)  
Case 1a: Memory accesses when  
DMAC is active in 16-bit mode and  
18H+19 – t  
19  
w(DSH)  
t
< 18H  
w(DSH)  
Case 1b: Memory accesses when  
DMAC is active in 16-bit mode and  
t
18H  
w(DSH)  
Case 1c: Memory access when  
DMAC is active in 32-bit mode and  
26H+19 – t  
19  
w(DSH)  
t
< 26H  
Delay time, DS low to HDx valid for  
first byte of an HPI read  
w(DSH)  
t
ns  
d(DSL-HDV1)  
Case 1d: Memory access when  
DMAC is active in 32-bit mode and  
t
26H  
w(DSH)  
Case 2a: Memory accesses when  
DMAC is inactive and t < 10H  
10H+19 – t  
19  
w(DSH)  
w(DSH)  
Case 2b: Memory accesses when  
DMAC is inactive and t 10H  
w(DSH)  
Case 3: Register accesses  
19  
19  
5
t
t
t
t
Delay time, DS low to HDx valid for second byte of an HPI read  
Hold time, HDx valid after DS high, for a HPI read  
Valid time, HDx valid after HRDY high  
ns  
ns  
d(DSL-HDV2)  
h(DSH-HDV)R  
v(HYH-HDV)  
d(DSH-HYL)  
3
5
Delay time, DS high to HRDY low (see Note 1)  
10  
ns  
ns  
Case 1a: Memory accesses when  
DMAC is active in 16-bit mode  
18H+10  
26H+10  
10H+10  
6H+10  
Case 1b: Memory accesses when  
DMAC is active in 32-bit mode  
ns  
ns  
t
Delay time, DS high to HRDY high  
d(DSH-HYH)  
Case 2: Memory accesses when  
DMAC is inactive  
Case 3: Write accesses to HPIC  
register (see Note 2)  
15  
2
ns  
ns  
ns  
t
t
t
Delay time, HCS low/high to HRDY low/high  
Delay time, CLKOUT high to HRDY high  
Delay time, CLKOUT high to HINT change  
d(HCS-HRDY)  
)
d(COH-HYH  
5
d(COH-HTX)  
NOTES: 1. The HRDY output is always high when the HCS input is high, regardless of DS timings.  
2. This timing applies when writing a one to the DSPINT bit or HINT bit of the HPIC register. All other writes to the HPIC occur  
asynchronously, and do not cause HRDY to be deasserted.  
DS refers to the logical OR of HCS, HDS1, and HDS2.  
HDx refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.).  
DMAC stands for direct memory access (DMA) controller. The HPI8 shares the internal DMA bus with the DMAC, thus HPI8 access times are  
affected by DMAC activity.  
§
GPIO refers to the HD pins when they are configured as general-purpose input/outputs.  
79  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
Second Byte  
First Byte  
Second Byte  
HAS  
t
su(HBV-DSL)  
t
su(HSL-DSL)  
t
h(DSL-HBV)  
Valid  
Valid  
HAD  
t
su(HBV-DSL)  
t
h(DSL-HBV)  
HBIL  
HCS  
t
w(DSH)  
t
w(DSL)  
HDS  
t
d(DSH-HYH)  
t
d(DSH-HYL)  
HRDY  
t
en(DSL-HD)  
t
d(DSL-HDV2)  
t
d(DSL-HDV1)  
t
h(DSH-HDV)R  
HD READ  
HD WRITE  
Valid  
Valid  
Valid  
t
su(HDV-DSH)  
t
v(HYH-HDV)  
t
h(DSH-HDV)W  
Valid  
Valid  
Valid  
t
d(COH-HYH)  
CLKOUT  
HAD refers to HCNTL0, HCNTL1, and HR/W.  
When HAS is not used (HAS always high)  
Figure 527. Using HDS to Control Accesses (HCS Always Low)  
80  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
Second Byte  
First Byte  
Second Byte  
HCS  
HDS  
t
d(HCS-HRDY)  
HRDY  
Figure 528. Using HCS to Control Accesses  
HRDY  
t
d(COHHYH)  
CLKOUT  
Figure 529. HRDY Relative to CLKOUT  
CLKOUT  
t
d(COH-HTX)  
HINT  
Figure 530. HINT Timing  
81  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.14.2 HPI16 Mode  
Table 533 and Table 534 assume testing over recommended operating conditions and H = 0.5t  
(see  
c(CO)  
Figure 531 through Figure 532). In the following tables, DS refers to the logical OR of HCS, HDS1, and  
HDS2, and HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.). These timings are shown  
assuming that HDS is the signal controlling the transfer. See the TMS320C54x DSP Reference Set, Volume  
5: Enhanced Peripherals (literature number SPRU302) for additional information.  
Table 533. HPI16 Mode Timing Requirements  
MIN  
5
MAX  
UNIT  
ns  
†‡  
t
t
Setup time, HAD valid before DS falling edge  
su(HBV-DSL)  
h(DSL-HBV)  
†‡  
Hold time, HAD valid after DS falling edge  
5
ns  
t
t
t
t
t
t
Setup time, HAD valid before DS falling edge  
4H+3  
ns  
ns  
ns  
ns  
ns  
ns  
su(HAV-DSL)  
h(DSH-HAV)  
su(HDV-DSH)  
h(DSH-HDV)W  
w(DSL)  
Hold time, address valid after DS rising edge  
1
3
Setup time, Dx valid before DS high (HPI write)  
Hold time, Dx valid after DS high (HPI write)  
2
Pulse duration, DS low  
20  
10  
Pulse duration, DS high  
w(DSH)  
Cycle time, DS rising edge to next DS rising  
edge  
Nonmultiplexed mode (no increment)  
with no DMA activity.  
12H  
20H  
ns  
ns  
t
c(DSH-DSH)  
Nonmultiplexed mode (no increment)  
with 16-bit DMA activity.  
(Minimum timings represent WRITEs while  
maximum timings represent READs)  
DS refers to the logical OR of HCS and HDS1 and HDS2.  
Dx refers to any of the HPI data bus pins (D0, D1, D2, etc.).  
82  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
†‡§¶  
Table 534. HPI16 Mode Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
t
Enable time, Dx driven from DS low  
6
19  
ns  
en(DSL-HD)  
Case 1a: Memory accesses when  
DMAC is active in 16-bit mode and  
18H+19 – t  
19  
w(DSH)  
t
< 18H  
w(DSH)  
Case 1b: Memory accesses when  
DMAC is active in 16-bit mode and  
t
18H  
Delay time, DS low to Dx valid for an  
HPI read  
w(DSH)  
t
t
ns  
d(DSL-HDV1)  
Case 2a: Memory accesses when  
DMAC is inactive and t < 10H  
10H+19 – t  
19  
w(DSH)  
w(DSH)  
Case 2b: Memory accesses when  
DMAC is inactive and t 10H  
w(DSH)  
Case 3: Register accesses  
19  
8
Hold time, Dx valid after DS rising edge, read  
Valid time, Dx valid before HRDY rising edge  
Delay time, DS or HCS high to HRDY low  
1
0
ns  
ns  
ns  
h(DSH-HDV)R  
6
tv  
(HYH-HDV)  
t
t
10  
d(DSH-HYL)  
Case 1: Memory access when DMAC  
is active in 16-bit mode  
18H+10  
10H+10  
Delay time, DS high to HRDY high  
(writes and autoincrement reads)  
ns  
d(DSH-HYH)  
Case 2: Memory access when DMAC  
is inactive  
t
t
Delay time, HDS or HCS low/high to HRDY low/high  
Delay time, CLKOUT high to HRDY high  
10  
2
ns  
ns  
d(DSL-HYL)  
d(COHHYH)  
NOTE: The HRDY output is always high when the HCS input is high, regardless of DS timings.  
DS refers to the logical OR of HCS, HDS1, or HDS2.  
Dx refers to any of the DPI data bus pins (D0, D1, D2, etc.).  
DMAC stands for direct memory access (DMA) controller. The HPI16 shares the internal DMA bus with the DMAC, thus HPI16 access times are  
affected by DMAC activity.  
GPIO refers to the HD pins when they are configured as general-purpose input/outputs.  
§
83  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
HCS  
t
c(DSHDSH)  
t
w(DSH)  
HDS  
t
w(DSL)  
t
su(HBVDSL)  
t
h(DSLHBV)  
HR/W  
t
t
h(DSHHAV)  
t
su(HAVDSL)  
HA[15:0]  
(A[15:0])  
Valid Address  
Valid Address  
t
d(DSLHDV1)  
h(DSHHDV)R  
t
en(DSLHD)  
D[15:0]  
HRDY  
Data Valid  
Data Valid  
t
v(HYHHDV)  
t
d(DSLHYH)  
Figure 531. Nonmultiplexed Read Timings  
84  
SPRS082E  
April 1999 Revised February 2004  
 
Documentation Support  
HCS  
HDS  
t
w(DSH)  
t
t
c(DSHDSH)  
t
t
su(HBVDSL)  
w(DSL)  
h(DSLHBV)  
HR/W  
t
su(HAVDSH)  
t
h(DSHHAV)  
HA[15:0]  
A[15:0]  
Valid Address  
Data Valid  
Valid Address  
t
su(HDVDSH)  
t
h(DSHHDV)W  
D[15:0]  
HRDY  
Data Valid  
t
d(DSHHYH)  
t
d(DSLHYL)  
Figure 532. Nonmultiplexed Write Timings  
85  
April 1999 Revised February 2004  
SPRS082E  
 
Documentation Support  
5.15 GPIO Timing Requirements  
Table 535 to Table 536 assume testing over recommended operating conditions (see Figure 533).  
Table 535. GPIO Timing Requirements  
MIN  
MAX  
UNIT  
Setup time, GPIOx input valid before CLKOUT high, GPIOx configured as  
general-purpose input.  
t
t
7
ns  
su(GPIO-COH)  
h(GPIO-COH)  
Hold time, GPIOx input valid after CLKOUT high, GPIOx configured as general-purpose  
input.  
0
ns  
Table 536. GPIO Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
Delay time, CLKOUT high to GPIOx output change. GPIOx configured as  
general-purpose output.  
t
0
6
ns  
d(COH-GPIO)  
CLKOUT  
t
su(GPIO-COH)  
t
h(GPIO-COH)  
GPIOx Input Mode  
t
d(COH-GPIO)  
GPIOx Output Mode  
GPIOx refers to HD0, HD1, HD2, ...HD7, when the HD bus is configured for general-purpose input/output (I/O).  
Figure 533. GPIOx Timings  
86  
SPRS082E  
April 1999 Revised February 2004  
 
Mechanical Data  
6
Mechanical Data  
6.1  
Ball Grid Array Mechanical Data  
GGU (SPBGAN144)  
PLASTIC BALL GRID ARRAY  
12,10  
11,90  
SQ  
9,60 TYP  
0,80  
N
M
L
K
J
H
G
F
E
D
C
B
A
A1 Corner  
1
2
3
4
5
6 7 8 9 10 11 12 13  
Bottom View  
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,08  
0,45  
0,35  
4073221-2/C 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice  
C. MicroStar BGAt configuration  
Figure 61. TMS320VC5416 144-Ball Plastic Ball Grid Array Package (GGU)  
Table 61. Thermal Resistance Characteristics for 144-Ball GGU Package  
PARAMETER  
°C/W  
R
Θ
56  
JA  
R
Θ
5
JC  
MicroStar BGA is a trademark of Texas Instruments.  
87  
April 1999 Revised February 2004  
SPRS082E  
 
Mechanical Data  
6.2  
Low-Profile Quad Flatpack Mechanical Data  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
Figure 62. TMS320VC5416 144-Pin Low-Profile Quad Flatpack (PGE)  
Table 62. Thermal Resistance Characteristics for 144-Ball PGE Package  
PARAMETER  
°C/W  
R
Θ
38  
JA  
R
Θ
5
JC  
88  
SPRS082E  
April 1999 Revised February 2004  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TMS320VC5409GGU-80  
TMS320VC5409GGU100  
TMS320VC5409PGE-80  
ACTIVE  
ACTIVE  
ACTIVE  
BGA  
GGU  
144  
144  
144  
160  
160  
TBD  
TBD  
SNPB  
SNPB  
Level-3-220C-168HR  
Level-3-220C-168HR  
BGA  
GGU  
LQFP  
PGE  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TMS320VC5409PGE100  
TMS320VC5409ZGU-80  
TMS320VC5409ZGU100  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
BGA  
BGA  
PGE  
ZGU  
ZGU  
144  
144  
144  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
160 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168HR  
160 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  

相关型号:

TMS320VC5409PGE-100

16-Bit Digital Signal Processor
ETC

TMS320VC5409PGE-80

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC5409PGE100

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC5409ZGU-80

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC5409ZGU100

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC5409ZGUR80

Fixed-Point Digital Signal Processor (DSP) 144-BGA MICROSTAR -40 to 100
TI

TMS320VC5409_16

Digital Signal Processor
TI

TMS320VC5410

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

TMS320VC5410A

Fixed-Point Digital Signal Processor
TI

TMS320VC5410A-120

Digital Signal Processor
ETC

TMS320VC5410A-160

Digital Signal Processor
ETC

TMS320VC5410AGGU12

Fixed-Point Digital Signal Processor
TI