TMS370C736A [TI]

8-BIT MICROCONTROLLER; 8位微控制器
TMS370C736A
型号: TMS370C736A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER
8位微控制器

微控制器
文件: 总48页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
FZ AND FN PACKAGES  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on  
a Single Device  
– Mask-ROM Devices for High-Volume  
Production  
– One-Time-Programmable (OTP) EPROM  
Devices for Low-Volume Production  
– Reprogrammable-EPROM Devices for  
Prototyping Purposes  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 16K Bytes  
6
5
4
3
2
1 44 43 42 41 40  
39  
AN3  
AN4  
A5  
7
A4  
8
38  
37  
36  
35  
34  
33  
32  
31  
AN5  
A3  
9
AN6  
A2  
10  
11  
12  
13  
14  
15  
16  
17  
AN7  
A1  
– EPROM: 16K Bytes  
D6/CP6  
D7/CP5  
D4/CP4  
D5/CP1  
OP1/CP3  
OP2/CP2  
A0  
– Data EEPROM: 256 Bytes  
– Static RAM: 256 Bytes Usable as  
Registers  
– Standby RAM With Separate Power  
Supply Pin: 256 Bytes  
MC  
RESET  
SPICLK  
30 SPISOMI  
29 SPISIMO  
18 19 20 21 22 23 24 25 26 27 28  
Flexible Operating Features  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
– Clock Options  
– Divide-by-1 (2 MHz–5 MHz SYSCLK)  
Phase-Locked Loop (PLL)  
– Divide-by-4 (0.5 MHz–5 MHz SYSCLK)  
Serial Peripheral Interface (SPI)  
– Variable-Length High-Speed Shift  
Register  
– Supply Voltage (V ) 5 V ±10%  
CC  
– Synchronous Master/Slave Operation  
Programmable Acquisition and Control  
Timer (PACT) Module  
– Input Capture on up to Six Pins, Four of  
Which Can Have a Programmable  
Prescaler  
– One Input Capture Pin Can Drive an 8-Bit  
Event Counter  
– Up to Eight Timer-Driven Outputs  
– Interaction Between Event Counter and  
Timer Activity  
– 18 Independent Interrupt Vectors  
– Watchdog With Selectable Time-Out  
Period  
– Asynchronous Mini Serial  
Communication Interface (Mini SCI)  
Flexible Interrupt Handling  
– Two Software-Programmable Interrupt  
Levels  
Eight Channel 8-Bit Analog-to-Digital  
Converter 1 (ADC1)  
TMS370 Series Compatibility  
– Register-to-Register Architecture  
– 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
– Instructions Upwardly Compatible With  
All TMS370 Devices  
CMOS/TTL Compatible I/O Pins/Packages  
– All Peripheral Function Pins Software  
Configurable for Digital I/O  
– 16 Bidirectional Pins, Nine Input Pins  
– 44-Pin Plastic and Ceramic Leaded Chip  
Carrier (LCC) Packages  
Workstation/PC-Based Development  
System  
– C Compiler and C Source Debugger  
– Real-Time In-Circuit Emulation  
– Multi-Window User Interface  
– Microcontroller Programmer  
– Global- and Individual-Interrupt Masking  
– Programmable Rising- or Falling-Edge  
Detect  
– Individual-Interrupt Vectors  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
Pin Descriptions  
44 PINS  
DESCRIPTION  
I/O  
NAME  
NO.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
34  
35  
36  
37  
38  
39  
40  
41  
I / O  
Port A is a general-purpose bidirectional I/O port.  
D3  
27  
14  
15  
12  
13  
Port D is a general-purpose bidirectional port. Also configurable as SYSCLK (see Note 1)  
PACT input capture 4 (see Note 2)  
PACT input capture 1 (see Note 2)  
PACT input capture 6 (see Note 2)  
PACT input capture 5 (see Note 2)  
D4/CP4  
D5/CP1  
D6/CP6  
D7/CP5  
I / O  
AN0/E0  
AN1/E1  
AN2/E2  
AN3/E3  
AN4/E4  
AN5/E5  
AN6/E6  
AN7/E7  
4
5
6
7
8
9
10  
11  
ADC1 analog input pins (AN0AN7)/port E digital input pins (E0E7)  
Port E can be programmed individually as a general-purpose digital input pin if it is not used as ADC1 analog  
input or positive reference input.  
I
I
INT1  
28  
External interrupt (non-maskable or maskable)/general-purpose input pin  
OP1/CP3  
OP2/CP2  
OP3  
OP4  
OP5  
OP6  
OP7  
OP8  
16  
17  
21  
22  
23  
24  
25  
26  
PACT PWM output 1/input capture 3 (see Note 3)  
PACT output pin 2/input capture 2 (see Note 3)  
PACT PWM output 3  
PACT PWM output 4  
PACT PWM output 5  
PACT PWM output 6  
PACT PWM output 7  
PACT PWM output 8  
O
SCIRXD  
SCITXD  
19  
20  
I
O
PACT mini SCI data receive input pin  
PACT mini SCI data transmit output pin  
SPISOMI  
SPISIMO  
SPICLK  
30  
29  
31  
SPI slave output pin, master input pin/general-purpose bidirectional pin  
SPI slave input pin, master output pin/general-purpose bidirectional pin  
SPI bidirectional serial clock pin/general-purpose bidirectional pin  
I / O  
System reset bidirectional pin; as input pin, RESET initializes the microcontroller; as open-drain output,  
RESET indicates that an internal failure was detected by watchdog or oscillator fault circuit.  
RESET  
MC  
32  
33  
I / O  
I
Mode control input pin; enables EEPROM write protection override (WPO) mode, also EPROM V  
PP  
XTAL2/CLKIN  
XTAL1  
43  
44  
I
O
Internal oscillator crystal input/External clock source input  
Internal oscillator output for crystal  
V
V
V
V
V
1
18  
2
3
42  
Positive supply voltage for digital logic and digital I/O pins  
Ground reference for digital logic and digital I/O pins  
ADC1 positive supply voltage and optional positive reference input  
ADC1 ground supply and low reference input pin  
CC1  
SS1  
CC3  
SS3  
Positive supply voltage pin for standby RAM  
CCSTBY  
I = input, O = output  
NOTES: 1. D3 can be configured as SYSCLK by appropriately programming the DPORT1 and DPORT2 registers.  
2. These digital I/O buffers are connected internally to some of the PACT module’s input capture pins. This allows the microcontroller  
to read the level on the input capture pin, or if the port D pin is configured as an output, to generate a capture. Be careful to leave  
the port D pin configured as an input if the corresponding input capture pin is being driven by external circuitry.  
3. CP2 and CP3 are connected internally to OP2 and OP1. CP2 and CP3 can be used only to capture OP2 and OP1, respectively and  
not as external capture inputs.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
functional block diagram  
E0-E7  
or  
AN0-AN7  
XTAL2/  
CLKIN  
INT1  
XTAL1  
MC  
RESET  
Clock Options:  
Divide-By-4 or  
Divide-By-1 (PLL)  
V
V
CC3  
System  
Control  
A-to-D  
Converter 1  
Interrupts  
SS3  
Serial  
Peripheral  
Interface  
SPISOMI  
SPISIMO  
SPICLK  
RAM  
Register File  
256 Bytes  
Standby RAM  
256 Bytes  
CPU  
V
CCSTBY  
CP1  
Program Memory  
ROM: 16K Bytes  
EPROM: 16K Bytes  
.
.
Data EEPROM  
256 Bytes  
CP6  
OP1  
PACT  
.
.
OP8  
128 BYTES  
Dual Port  
RAM  
SCITXD  
SCIRXD  
Mini SCI  
Watchdog  
V
CC1  
Port A  
8
Port D  
5
V
SS1  
description  
The TMS370C036, TMS370C736, and SE370C736 devices are members of the TMS370 family of single-chip  
8-bit microcontrollers. Unless otherwise noted, the term TMS370Cx36 refers to these devices. The TMS370  
family provides cost-effective real-time system control through advanced peripheral-function modules and  
various on-chip memory configurations.  
The TMS370Cx36 family of devices uses high-performance silicon-gate CMOS EPROM and EEPROM  
technologies. Low operating power, wide operating temperature range, and noise immunity of CMOS  
technology coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370Cx36 devices attractive for system designs for automotive electronics, industrial motors, computer  
peripheral controls, telecommunications, and consumer applications.  
All TMS370Cx36 devices contain the following on-chip peripheral modules:  
Programmable acquisition and control timer (PACT)  
Asynchronous mini SCI  
PACT watchdog timer  
Serial peripheral interface (SPI)  
Eight channel, 8-bit analog-to-digital converter 1 (ADC1)  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
description (continued)  
Table 1 provides a memory configuration overview of the TMS370Cx36 devices.  
Table 1. Memory Configurations  
PROGRAM MEMORY  
(BYTES)  
DATA MEMORY  
(BYTES)  
DEVICE  
44 PIN PACKAGES  
ROM  
EPROM  
RAM  
EEPROM  
TMS370C036A  
TMS370C736A  
16K  
512  
512  
512  
256  
FN – PLCC  
FN – PLCC  
FZ – CLCC  
16K  
16K  
256  
SE370C736A  
256  
System evaluators and development are for use only in prototype environment, and their reliability has not been characterized.  
The suffix letter A appended to the device names in Table 1 indicates the configuration of the devices. ROM  
or EPROM devices have different configurations as indicated in Table 2. ROM devices with the suffix letter A  
are configured through a programmable contact during manufacture.  
Table 2. Suffix Letter Configuration  
DEVICE  
CLOCK  
LOW-POWER MODE  
Enabled  
EPROM A  
ROM A  
Divide-by-4 (Standard oscillator)  
Divide-by-4 or Divide-by-1 (PLL)  
Enabled or disabled  
Refer to the “device numbering conventions” section for device nomenclature and to the “device part numbers” section for ordering.  
The 16K bytes of mask-programmable ROM in the associated TMS370Cx36 devices are replaced in the  
TMS370C736 with 16K bytes of EPROM. All other available memory and on-chip peripherals are identical. The  
OTP (TMS370C736) and reprogrammable (SE370C736) devices are available.  
The TMS370C736 OTP device is available in a plastic package. This microcontroller is effective to use for  
immediate production updates for other members of the TMS370Cx36 family or for low-volume production runs  
when the mask charge or cycle time for the low-cost mask ROM devices is not practical.  
The SE370C736 has a windowed ceramic package to allow reprogramming of the program EPROM memory  
during the development/prototyping phase of design. The SE370C736 device allows quick updates to  
breadboards and prototype systems while iterating initial designs.  
The TMS370Cx36 family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In  
the STANDBY mode, the internal oscillator, the PACT counter, and PACT’s first command/definition entry  
remain active. This allows the PACT module to bring the device out of STANDBY mode. In the HALT mode, all  
device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both  
low-power modes.  
The TMS370Cx36 features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370Cx36 family is fully  
instruction-set-compatible, providing easy transition between members of the family.  
The TMS370Cx36 has a PACT module that acts as a timer coprocessor by gathering timing information on input  
signals and controlling output signals with little or no intervention by the CPU. The coprocessor nature of this  
module allows for levels of flexibility and power not found in traditional microcontroller timers.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
description (continued)  
TheTMS370Cx36familyprovidesthesystemdesignerwithaneconomical, efficientsolutiontoreal-timecontrol  
applications. The PACT compact development tool (CDT ) meets the challenge of efficiently developing the  
software and hardware required to design the TMS370Cx36 into an ever-increasing number of complex  
applications. The application source code can be written in assembly and C language, and the output code can  
be generated by the linker. Precise real-time in-circuit emulation and extensive symbolic debug and analysis  
tools ensure efficient software and hardware implementation as well as a reduced time-to-market cycle.  
The TMS370Cx36 family together with the TMS370 PACT CDT370, BP programmer, software tools,  
SE370C736reprogrammable devices, comprehensive product documentation, and customer support provides  
a complete solution to the needs of the system designer.  
central processing unit (CPU)  
TheCPUontheTMS370Cx36deviceisthehigh-performance8-bitTMS370CPUmodule. Thex36implements  
an efficient register-to-register architecture that eliminates the conventional accumulator bottleneck. The  
complete ’x36 instruction map is shown in Table 16.  
The ’370Cx36 CPU architecture provides the following components:  
CPU registers:  
A stack pointer (SP) that points to the last entry in the memory stack  
A status register (ST) that monitors the operation of the instructions and contains the global interrupt-enable  
bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
A memory map that includes:  
256-byte general-purpose RAM that can be used for data memory storage, program instructions, general  
purpose register, or the stack  
256-byte general-purpose standby RAM, which is powered through a separate V  
pin to protect the  
CCSTBY  
memory against power failures on the main V  
pins  
CC1  
128-byte dual-port RAM that contains the capture registers, the circular buffer, and a command/definition  
area  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions, and  
EEPROM/EPROM programming control  
256-byte EEPROM module, that provides in-circuit programmability and data retention in power-off  
conditions  
16K-byte ROM or 16K-byte EPROM  
CDT is a trademark of Texas Instruments Incorporated.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Figure 1 Illustrates the CPU registers and memory blocks.  
Program Counter  
15  
0
Legend:  
Stack Pointer (SP)  
7
0
C=Carry  
N=Negative  
Status Register (ST)  
Z=Zero  
C
7
N
6
Z
5
V
4
IE2 IE1  
V=Overflow  
IE2=Level 2 interrupts Enable  
IE1=Level 1 interrupts Enable  
3
2
1
0
RAM (Includes up to 256-Byte Registers File)  
0000h  
0000h  
R0(A)  
R1(B)  
256-Byte RAM  
00FFh  
0100h  
Reserved  
0001h  
0002h  
0003h  
017Fh  
0180h  
01FFh  
0200h  
02FFh  
0300h  
0FFFh  
1000h  
10BFh  
10C0h  
128-Byte PACT Dual-Port RAM  
256-Byte Standby RAM  
R2  
R3  
Reserved  
Peripheral File  
Reserved  
1EFFh  
1F00h  
R127  
R255  
256-Byte Data EEPROM  
007Fh  
1FFFh  
2000h  
Reserved  
3FFFh  
4000h  
16K-Byte ROM/EPROM  
7F9Bh  
7F9Ch  
Interrupts and Reset Vectors;  
Trap Vectors  
7FFFh  
8000h  
00FFh  
Reserved  
FFFFh  
Reserved means the address space is reserved for future expansion.  
Figure 1. Programmer’s Model  
stack pointer (SP)  
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read/write memory. Typically, the stack  
is used to store the return address on subroutine calls as well as the ST contents during interrupt sequences.  
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed  
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the  
on-chip RAM.  
status register (ST)  
The ST monitors the operation of the instructions and contains the global interrupt-enable bits. The ST includes  
four status bits (condition flags) and two interrupt-enable bits.  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional-jump instructions) use the status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
The ST, status-bit notation, and status-bit definitions are shown in Table 3.  
Table 3. Status Registers  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contain the most significant byte (MSbyte) and least significant byte (LSbyte) of a 16-bit address.  
During reset, the contents of the reset vector (7FFEh, 7FFFh) are loaded into the PC. The PCH (MSbyte of the  
PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is loaded with the  
contents of memory location 7FFFh. Figure 2 shows this operation using an example value of 4000h as the  
contents of the reset vector.  
Program Counter (PC)  
Memory  
PCH  
40  
PCL  
00  
0000h  
40  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx36 architecture is based on the Von Neuman architecture, where the program memory and data  
memory share a common address space. All peripheral input/output is memory mapped in this same common  
address space. As shown in Figure 3, the TMS370Cx36 provides memory-mapped RAM, ROM, EPROM, data  
EEPROM, I/O pins, peripheral functions, and system-interrupt vectors.  
The peripheral file contains all I/O port control, peripheral status and control, EEPROM, EPROM, and  
system-wide control functions. The peripheral file is located between 1000h to 107Fh and is divided logically  
into eight peripheral file frames of 16 bytes each. The eight PF frames consist of five control frames and three  
reserved frames.Each on-chip peripheral is assigned to a separate frame through which peripheral control and  
data information are passed.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Peripheral File Control Registers  
Reserved  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
0000h  
System Control  
256-Byte RAM  
Digital Port Control  
00FFh  
0100h  
017Fh  
0180h  
Reserved  
SPI Peripheral Control  
PACT Peripheral Control  
1040h104Fh  
1050h105Fh  
1060h106Fh  
1070h107Fh  
128-Byte PACT Dual-Port RAM  
256-Byte PACT Standby RAM  
01FFh  
0200h  
Reserved  
Reserved  
02FFh  
0300h  
Reserved  
ADC1 Peripheral Control  
0FFFh  
1000h  
Vectors  
Peripheral File  
10BFh  
10C0h  
PACT Interrupt 1-18  
Trap 15–0  
7F9Ch7FBFh  
7FC0h7FDFh  
7FE0h7FEBh  
7FECh7FEDh  
7FEEh7FF5h  
7FF6h7FF7h  
Reserved  
1EFFh  
Reserved  
1F00h  
1FFFh  
2000h  
256-Byte Data EEPROM  
ADC1  
Reserved  
Reserved  
3FFFh  
4000h  
7F9Bh  
7F9Ch  
16K-Byte ROM/EPROM  
Serial Peripheral Interface  
Reserved  
Interrupts and Reset Vectors;  
Trap and PACT Vectors  
7FF8h7FFBh  
7FFFh  
8000h  
Interrupt 1  
Reset  
7FFCh7FFDh  
7FFEh7FFFh  
Reserved  
FFFFh  
Reserved means that the address space is reserved for future expansion.  
Figure 3. TMS370Cx36 Memory Map  
RAM/register file (RF)  
Locations within the RAM address space can serve as the RF, general-purpose read/write memory, program  
memory, or the stack instructions. The TMS370Cx36 devices contain 256 bytes of internal RAM,  
memory-mapped beginning at location 0000h (R0) and continuing through location 00FFh (R255) which is  
shown in Figure 1.  
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the  
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.  
dual-port RAM  
The upper 128 bytes of the register files can be used by the PACT module to contain commands and definitions  
as well as timer values. Any RAM not used by PACT can be used as an additional CPU register or as  
general-purpose memory.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
standby RAM module  
The 256 byte standby RAM is general-purpose and powered through a separate V  
pin. The data stored  
CCSTBY  
in this memory is protected against power failures on the main V  
pins.  
CC1  
The standby RAM data is saved if the power failure on the main V  
pins is detected externally and an external  
CC1  
reset is generated when V  
falls below 4.3 V (see Figure 4). The external reset must remain low during the  
CC1  
entire power failures. The falling edge of the reset signal is internally detected to set the standby RAM in  
low-power HALT mode. After the next power up, the RESET pin must be pulled high to get out of the HALT mode  
of the standby RAM. In halt mode, the standby RAM consumes only leakage current.  
4.3 Volt  
V
CC1  
RESET  
Standby RAM Locked in Halt Mode  
Figure 4. Standby RAM Locked in Halt Mode  
peripheral file (PF)  
The TMS370Cx36 control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or P for a decimal designator. For example, the system-control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 4  
lists the TMS370Cx36 PF address map.  
Table 4. TMS370Cx36 Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P06F  
P070P07F  
P080P0FF  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h106Fh  
1070h107Fh  
1080h10FFh  
Reserved  
System and EPROM/EEPROM control registers  
Digital I/O port control registers  
SPI registers  
PACT registers  
Reserved  
Analog-to-digital converter 1 registers  
Reserved  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
data EEPROM  
The TMS370Cx36 devices, containing 256 bytes of data EEPROM, have a memory mapped beginning at  
location 1F00h and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by  
the data EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm  
examples are available in the TMS370 Family User’s Guide (literature number SPNU127) or the  
TMS370FamilyDataManual(literaturenumberSPNS014B). ThedataEEPROMfeaturesincludethefollowing:  
Programming:  
Bit-, byte-, and block-write/erase modes.  
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the DEECTL located in the PF frame  
beginning at location P01A. See Table 5.  
In-circuit programming capability. There is no need to remove the device to program.  
Write protection. Writes to the data EEPROM are disabled during the following conditions.  
Reset. All programming of the data EEPROM module is halted.  
Write protection active. There is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write protection can be overridden by applying 12 V to MC.  
Table 5. Data EEPROM and PROGRAM EPROM Control Registers Memory Map  
ADDRESS  
P01A  
SYMBOL  
DEECTL  
NAME  
Data EEPROM Control Register  
Reserved  
P01B  
P01C  
EPCTLL  
Program EPROM Control Register – Low Array  
program EPROM  
The TMS370C736 device contains 16K bytes of EPROM mapped, beginning at location 4000h and continuing  
through location 7FFFh as shown in Figure 3. Reading the program EPROM modules is identical to reading  
other internal memory. During programming, the EPROM is controlled by the EPROM control register  
(EPCTLL). The program EPROM module features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register: EPROM programming is controlled by the EPROM control register (EPCTLL) located  
in the peripheral file (PF) frame at location P01C as shown in Table 5.  
Write protection: Writes to the program EPROM are disabled under the following conditions:  
Reset: All programming to the EPROM module is halted  
Low-power modes  
13 V not applied to MC  
Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments (TI ), and addresses 7FECh through 7FFFh are reserved  
for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located between addresses 7FC0h and  
7FDFh.  
TI is a trademark of Texas Instruments Incorporated.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
program ROM  
The program ROM consists of 16K bytes of mask programmable read-only memory. The program ROM is used  
for permanent storage of data or instructions. Programming of the mask ROM is performed at the time of device  
fabrication. Refer to Figure 3 for ROM memory map.  
system reset  
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx36 CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
generated internally, while one (RESET pin) is controlled externally. These actions are as follows:  
PACT watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD  
key register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370  
User’s Guide (literature number SPNU127) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside of the recommended operating range.  
See the TMS370 User’s Guide (literature number SPNU127) for more information.  
External RESET pin. A low level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 User’s Guide (literature number SPNU127) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x36 device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs or the RESET pin is held low, then the  
reset logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator-fault flag (OSC FLT FLAG, SCCR0.4) and the cold-start flag  
(COLD START, SCCR0.7) to determine the source of the reset. A reset does not clear these flags.Table 6 lists  
the reset sources. If none of the sources indicated in Table 6 caused the reset, then the RESET pin was pulled  
low by the external hardware or the PACT module’s watchdog.  
Table 6. Reset Sources  
REGISTER  
SCCR0  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
COLD START  
OSC FLT FLAG  
SOURCE OF RESET  
Cold (power-up)  
Oscillator out of range  
P010  
P010  
7
4
1010h  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Registers A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments, and addresses 7FECh through 7FFFh are reserved for  
interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located between addresses 7FC0h and  
7FDFh.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software-programmable interrupt structure permits flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure  
incorporates two priority levels as shown in Figure 5. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be masked independently by the global interrupt mask bits (IE1 and IE2) of  
the ST.  
PACT  
GROUP 3  
Cmd/Def Entry 7  
GROUP 2  
GROUP 1  
Default Timer  
Overflow  
CP1 Edge  
CP2 Edge  
CP3 Edge  
CP4 Edge  
CP5 Edge  
CP6 Edge  
Circular Buffer  
Cmd/Def Entry 6  
Cmd/Def Entry 5  
Cmd/Def Entry 4  
Cmd/Def Entry 3  
Cmd/Def Entry 2  
Cmd/Def Entry 1  
Cmd/Def Entry 0  
SCI TXINT  
SCI RXINT  
PACT 3 PRI  
PACT 2 PRI  
PACT 1 PRI  
AD INT  
ADC1  
SPI INT  
EXT INT1  
CPU  
INT1  
SPI  
NMI  
Priority  
Logic  
INT1 PRI  
STATUS REG  
AD PRI  
SPI PRI  
IE1  
IE2  
Level 1 INT  
Level 2 INT  
Enable  
Figure 5. Interrupt Control  
Each system interrupt is configured independently to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is selectively configured on either the high- or  
low-priority-interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
interrupts (continued)  
chains is performed within the peripheral modules to support interrupt expansion for future modules. Pending  
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and  
priority conditions.  
The TMS370Cx36 has 21 hardware system interrupts (plus RESET) as shown in Table 7. Each system interrupt  
has a dedicated vector located in program memory through which control is passed to the interrupt service  
routines. A system interrupt may have multiple interrupt sources. All of the interrupt sources are individually  
maskable by local interrupt enable control bits in the associated peripheral file. Each interrupt source FLAG bit  
is individually readable for software polling or for determining which interrupt source generated the associated  
system interrupt.  
Twenty of the system interrupts are generated by on-chip peripheral functions, and one external interrupt is  
supported. Software configuration of the external interrupts is performed through the INT1 control register in  
peripheral file frame 1. Each external interrupt is individually software configurable for input polarity (rising or  
falling edge) for ease of system interface. External interrupt INT1 is software configurable as either a maskable  
or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked by the individual-  
or global-enable mask bits. The INT1 NMI bit is protected during non-privileged operation and, therefore, should  
be configured during the initialization sequence following reset. To maximize pin flexibility, external interrupt  
INT1 can be software configured as a general-purpose input pin if the interrupt function is not required.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
interrupts (continued)  
Table 7. Hardware System Interrupts  
PRIORITY  
IN  
GROUP  
INTERRUPT  
SOURCE  
INTERRUPT  
FLAG  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
MODULE  
PRIORITY  
OSC FLT FLG  
External RESET  
Watchdog Overflow  
Oscillator Fault  
COLD START  
(No Flag)  
OSC FLT FLAG  
RESET  
RESET  
7FFEh, 7FFFh  
1
INT1  
SPI  
External Interrupt 1  
INT1 FLAG  
INT1  
7FFCh, 7FFDh  
7FF6h, 7FF7h  
2
3
SPI RX/TX Complete  
SPI INT FLAG  
SPIINT  
Buffer Half/Full  
Interrupt Flag  
PACT Circular Buffer  
BUFINT  
7FB0h, 7FB1h  
1
PACT CP6 Event  
PACT CP5 Event  
PACT CP4 Event  
PACT CP3 Event  
PACT CP2 Event  
PACT CP1 Event  
CP6 INT FLAG  
CP5 INT FLAG  
CP4 INT FLAG  
CP3 INT FLAG  
CP2 INT FLAG  
CP1 INT FLAG  
CP6INT  
CP5INT  
CP4INT  
CP3INT  
CP2INT  
CP1INT  
7FB2h, 7FB3h  
7FB4h, 7FB5h  
7FB6h, 7FB7h  
7FB8h, 7FB9h  
7FBAh, 7FBBh  
7FBCh, 7FBDh  
2
3
4
5
6
7
PACT (Group 1)  
4
5
Default Timer  
Overflow  
DEFTIM OVRFL INT  
FLAG  
POVRL  
INT  
7FBEh, 7FBFh  
8
PACT SCI Rx Int  
PACT RX RDY  
PRXINT  
PTXINT  
CDINT 0  
CDINT 1  
CDINT 2  
CDINT 3  
CDINT 4  
CDINT 5  
CDINT 6  
CDINT 7  
ADINT  
7F9Eh, 7F9Fh  
7F9Ch, 7F9Dh  
7FA0h, 7FA1h  
7FA2h, 7FA3h  
7FA4h, 7FA5h  
7FA6h, 7FA7h  
7FA8h, 7FA9h  
7FAAh, 7FABh  
7FACh, 7FADh  
7FAEh, 7FAFh  
7FECh, 7FEDh  
1
2
1
2
3
4
5
6
7
8
PACT (Group 2)  
PACT SCI Tx Int  
PACT TX RDY  
PACT Cmd/Def Entry 0  
PACT Cmd/Def Entry 1  
PACT Cmd/Def Entry 2  
PACT Cmd/Def Entry 3  
PACT Cmd/Def Entry 4  
PACT Cmd/Def Entry 5  
PACT Cmd/Def Entry 6  
PACT Cmd/Def Entry 7  
ADC1 Conversion Complete  
CMD/DEF INT 0 FLAG  
CMD/DEF INT 1 FLAG  
CMD/DEF INT 2 FLAG  
CMD/DEF INT 3 FLAG  
CMD/DEF INT 4 FLAG  
CMD/DEF INT 5 FLAG  
CMD/DEF INT 6 FLAG  
CMD/DEF INT 7 FLAG  
AD INT FLAG  
PACT (Group 3)  
6
7
ADC1  
Relative priority within an interrupt level  
Release microcontroller from STANDBY and HALT low-power modes  
privileged operation and EEPROM write protection override  
The TMS370Cx36 family is designed with significant flexibility to enable the designer to software-configure the  
system and peripherals to meet the requirements of a variety of applications. The nonprivileged mode of  
operation ensures the integrity of the system configuration, once it is defined for an application. Following a  
hardware reset, the TMS370Cx36 operates in the privileged mode, where all peripheral file registers have  
unrestricted read/write access, and the application program configures the system during the initialization  
sequence following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is  
set to 1 to enter the nonprivileged mode, disabling write operations to specific configuration-control bits within  
the PF. Table 8 lists the control bits shown in the table which are write-protected during the nonprivileged mode  
and must be configured by software prior to exiting the privileged mode.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write protection override (continued)  
Table 8. Privilege Bits  
REGISTER  
CONTROL BIT  
PF AUTO WAIT  
NAME  
LOCATION  
P010.5  
P010.6  
SCCRO  
OSC POWER  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P03F.5  
P03F.6  
P03F.7  
SPI ESPEN  
SPI PRIORITY  
SPI STEST  
SPIPRI  
P040.0  
P040.1  
P040.2  
P040.3  
P040.4  
PACT PRESCALE SELECT 0  
PACT PRESCALE SELECT 1  
PACT PRESCALE SELECT 2  
PACT PRESCALE SELECT 3  
FAST MODE SELECT  
PACTSCR  
P04F.0  
P04F.1  
P04F.2  
P04F.3  
P04F.4  
P04F.5  
P04F.7  
PACT WD PRESCALE SELECT 0  
PACT WD PRESCALE SELECT 1  
PACT MODE SELECT  
PACT GROUP 3 PRIORITY  
PACT GROUP 2 PRIORITY  
PACT GROUP 1 PRIORITY  
PACT STEST  
PACTPRI  
ADPRI  
P07F.5  
P07F.6  
P07F.7  
AD ESPEN  
AD PRIORITY  
AD STEST  
The privilege bits are shown in a bold typeface and shaded areas in the  
system configuration registers section of Table 10.  
low-power and IDLE modes  
The TMS370Cx36 devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact when  
the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls the low-power mode selection.  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;  
however, the oscillator, internal clocks, the PACT counter, and the first PACT command entry remain active in  
all modules. System processing is suspended until a qualified interrupt (hardware RESET or external interrupt  
on INT1) is detected.  
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx36 is placed in its lowest power consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET or external interrupt on the INT1) is detected. The  
power-down mode-selection bits are summarized in Table 9.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
Table 9. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
X = Don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6-7 bits is ignored. In addition, if an IDLE instruction is executed when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method for always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI is generated always, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPU registers (SP, PC, and ST), I/O pin direction and output data, and status registers of all on-chip peripheral  
functions. Since all CPU instruction processing is stopped during the STANDBY and HALT modes, the clocking  
of the WD timer is inhibited.  
clock modules  
The ’x36 family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and  
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the  
manufacturing process of a TMS370 microcontroller. The ’x36 masked-ROM devices offer both options to meet  
system engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’736A  
EPROM has only the divide-by-4.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 provides a one-to-one match of the external resonator frequency (CLKIN) to the internal system  
clock (SYSCLK) frequency, whereas the divide-by-4 produces a SYSCLK which is one-fourth the frequency of  
the external resonator. Inside of the divide-by-1 module, the frequency of the external resonator is multiplied  
by four, and the clock module then divides the resulting signal by four to provide the four-phased internal system  
clock signals. The resulting SYSCLK is equal to the resonator frequency. These are formulated as follows:  
external resonator frequency  
4
CLKIN  
4
Divide-by-4 option : SYSCLK  
Divide-by-1 option : SYSCLK  
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the reduced EMI. The harmonics of low-speed  
resonators extend through fewer of the emissions spectrum than the harmonics of faster resonators. The  
divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a steeper  
decay of emissions produced by the oscillator.  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
system configuration registers  
Table 10 contains system-configuration and control functions and registers for controlling EEPROM  
programming. The privileged bits are shown in a bold typeface and shaded areas.  
Table 10. Peripheral File Frame 1: System-Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P012  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
INT1  
P018  
P019  
P01A  
P01B  
P01C  
Reserved  
Reserved  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
EPCTLL  
Reserved  
VPPS  
P01D  
P01E  
P01F  
Reserved  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
digital port control registers  
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 11showsthespecific  
addresses, registers, and control bits within this peripheral file frame. Table 12 shows the port configuration  
register setup.  
Table 11. Peripheral File Frame 2: Digital Port-Control Registers  
PF  
P020  
P021  
P022  
P023  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
Reserved  
BIT 2  
BIT 1  
BIT 0  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 12. Port Configuration Register Setup  
abcd  
00q1  
abcd  
00y0  
PORT  
PIN  
A
D
0 – 7  
3 – 7  
Data out q  
Data out q  
Data In y  
Data In y  
a = Port x Control Register 1  
b = Port x Control Register 2  
c = Data  
d = Direction  
serial peripheral interface  
The SPI is a high-speed synchronous serial I/O port that allows a serial bit stream of programmed length (one  
to eight bits) to be shifted into and out of the device at a programmable bit transfer rate. The SPI normally is  
used for communications between the microcontroller and external peripherals or another microcontroller.  
Typical applications include external I/O or peripheral expansion by way of devices such as shift registers,  
display drivers, and A/D converters. Multi-device communications are supported by the master/slave operation  
of the SPI. The SPI module features include the following:  
Three external pins  
SPISOMI: SPI slave output/master input pin or general-purpose bidirectional I/O pin  
SPISIMO: SPI slave input/master output pin or general-purpose bidirectional I/O pin  
SPICLK: SPI serial clock pin or general-purpose bidirectional I/O pin  
Two operational modes: Master and slave  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
serial peripheral interface (continued)  
Baud rate: Eight different programmable rates  
Maximum baud rate in master mode: 2.5M bps at 5-MHz SYSCLK  
SYSCLK  
2
SPI BAUD RATE  
2b  
where b=bit rate in SPICCR.5-3 (range 0–7)  
Maximum baud rate in slave mode: 625K bps at 5-MHz SYSCLK  
for maximum slave SPI BAUD RATE < SYSCLK/8  
Data word format: one to eight data bits  
Simultaneous receiver and transmitter operations (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Seven SPI module control registers located in control register frame beginning at address P030h  
The SPI module-control registers are listed in Table 13.  
Table 13. SPI Module-Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI BIT  
RATE2  
SPI BIT  
RATE1  
SPI BIT  
RATE0  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
P030  
SPICCR  
RECEIVER  
OVERRUN  
SPI INT  
FLAG  
MASTER/  
SLAVE  
SPI INT  
ENA  
P031  
TALK  
SPICTL  
P032  
to  
Reserved  
P036  
P037  
P038  
P039  
RCVD7  
SDAT7  
RCVD6  
SDAT6  
RCVD5  
SDAT5  
RCVD4  
SDAT4  
RCVD3  
RCVD2  
SDAT2  
RCVD1  
SDAT1  
RCVD0  
SDAT0  
SPIBUF  
SPIDAT  
RESERVED  
SDAT3  
P03A  
to  
Reserved  
P03C  
SPICLK  
DATA IN  
SPICLK  
DATA OUT  
SPICLK  
FUNCTION  
SPICLK  
DATA DIR  
P03D  
P03E  
P03F  
SPIPC1  
SPIPC2  
SPIPRI  
SPISIMO  
DATA IN  
SPISIMO  
DATA OUT  
SPISIMO  
FUNCTION  
SPISIMO  
DATA DIR  
SPISOMI  
DATA IN  
SPISOMI  
DATA OUT  
SPISOMI  
FUNCTION  
SPISOMI  
DATA DIR  
SPI  
STEST  
SPI  
PRIORITY  
SPI  
ESPEN  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
serial peripheral interface (continued)  
The SPI block diagram is illustrated in Figure 6.  
RECEIVER  
SPIBUF.7-0  
OVER RUN  
SPIBUF Buffer  
SPICTL.7  
Register  
SPIPRI.6  
8
0
1
Level 1 INT  
Level 2 INT  
SPICTL.0  
SPI INT FLAG  
SPICTL.6  
SPIINT ENA  
SPIPC2.7-4  
SPIDAT  
Data Register  
SPISIMO  
SPICTL.1  
TALK  
SPIDAT.7-0  
SPIPC2.3-0  
SPISOMI  
State Control  
SPICCR.2-0  
MASTER/SLAVE  
SPI CHAR  
SPICTL.2  
2
1
0
SPIPC1.3-0  
SPICLK  
System  
Clock  
SPICCR.6  
CLOCK POLARITY  
SPICCR.5-3  
5
4
3
SPI BIT RATE  
The block diagram is shown in slave mode.  
Figure 6. SPI Block Diagram  
programmable acquisition and control timer (PACT) module  
Traditionally, timers in microcontrollers provide limited capture and compare functions consuming significant  
CPU processing power and leading to inaccurate timings due to interrupt latencies. The programmable  
acquisition and control timer (PACT) acts as a coprocessor combining configurable capture and compare  
features, within a flexible dual-port RAM, able to run real-time tasks with little or no CPU intervention. The PACT  
structure allows concatenation of tasks, thus enabling the CPU to perform data manipulation while the PACT  
module both captures and outputs real-time-related information. Since all the PACT control information is held  
within the dual-port Ram, the CPU can access these parameters quickly.  
To use the PACT, the user must set up three distinct areas of memory. The first is the dual-port RAM, which  
contains the capture area, the commands, and the timer definitions. The second is the peripheral frame. The  
third is an area near the end of the program memory which holds the interrupt vectors of PACT.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
programmable acquisition and control timer (PACT) module (continued)  
The PACT module features include the following:  
Input-capture functions on up to six input pins (CP1 to CP6), depending on the mode selected:  
Mode A: CP1–2 are dedicated capture, CP3–6 are circular buffer capture, and CP6 is also an event pin.  
Mode B: CP1–4 are dedicated capture, CP5–6 are circular buffer capture, and CP6 is also an event pin.  
Multiple timer-driven outputs on eight pins (OP1 to OP8)  
Standard compare command: set or clear an output pin whenever the timer/counter is equal to a certain  
value  
Virtual timers: enable variations of the PWM’s period and provides periodic interrupts to the processor.  
Double event-compare command: comparisons of the 8-bit event counter with two event-compare  
values and the actions that can be performed are based on each value:  
Event-compare 1 matching the event counter: sets or resets the selected output pin (OP1–OP8),  
generates interrupt, and generates a 32-bit capture into the circular buffer.  
Event-compare 2 matching the event counter: sets or resets the selected output pin (OP1–OP8),  
generates interrupt, generates a 32-bit capture into the circular buffer, and resets the 20-bit default  
timer.  
Offset timer definition-time from last event:  
Generates an interrupt when the maximum event count is reached  
Stores the 16-bit virtual timer in the circular buffer on each event  
Stores the 20-bit default timer and 8-bit event counter in the circular buffer when the maximum  
event count is reached  
Resets the 20-bit hardware default timer when the maximum event count is reached.  
Conditional-compare command has a timer-compare value and an event-compare value.  
Generates an interrupt when the event-compare value equals the event counter and the  
timer-compare value equals the last defined timer  
Sets or clears one of the seven output pins (OP1–OP7) when the event compare value equals the  
event counter and the timer-compare value equals the last defined timer  
Baud rate timer definition: runs the mini-serial communications port built into the PACT module.  
Configurable timer overflow rates  
One 8-bit event counter driven by CP6  
Up to 20-bit timer capability  
Interaction between event counter and timer activity  
Register-based organization allowing direct access to timer parameters by the CPU  
18 independent interrupt vectors with two priority levels  
Integrated, configurable watchdog with selectable time-out period  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
programmable acquisition and control timer (PACT) module (continued)  
Mini-serial communications interface works as a simplified full duplex universal asychronous  
receiver/transmitter (UART) with independent setup of baud rate for receive and transmit lines.  
Asynchronous communications mode  
Asynchronous Baud  
1
–2  
(Max Virtual Timer Value) (4) (PACT Resolution)  
where PACT Resolution = SYSCLK × Prescale Value  
PACT block diagram  
The PACT module block diagram is illustrated in Figure 7.  
PACT PRESCALED CLOCK  
20-Bit Timer/Counter  
Prescale  
8-Bit Event Counter  
Watchdog Timer  
CP1  
CP2  
Dedicated Capture Register 1  
Dedicated Capture Register 2  
Dedicated Capture Register 3  
Dedicated Capture Register 4  
Reset  
CP3  
CP4  
CP5  
CP6  
3-Bit Prescaler  
MODE  
Circular Buffer  
(32–Bit Captures)  
OPT1  
OPT2  
OPT3  
OPT4  
OPT5  
OPT6  
OPT7  
OPT8  
Outputs  
EVENT ONLY  
Command/Definition Area  
Command Analyzer  
and  
Output Controller  
Int Level 1  
Int Level 2  
SCITXD  
Mini SCI  
SCIRXD  
Figure 7. PACT Block diagram  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
PACT control registers  
The PACT module is controlled and accessed through registers in peripheral frame 4. These registers are listed  
in Table 14. The bits in shaded boxes are privileged mode bits; that is, they can be written to only in theprivileged  
mode.  
Table 14. PACT Control Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
PACT  
BIT 1  
PACT  
BIT 0  
PACT  
REG  
DEFTIM  
OVRFL  
INT ENA  
DEFTIM  
OVRFL  
INT FLAG  
FAST  
MODE  
SELECT  
PACT  
PRESCALE  
SELECT3  
CMD/DEF  
AREA ENA  
P040  
PRESCALE PRESCALE  
SELECT2  
PRESCALE PACTSCR  
SELECT0  
SELECT1  
CMD/DEF  
AREA  
INT ENA  
CMD/DEF  
AREA  
CMD/DEF  
AREA  
CMD/DEF  
AREA  
CMD/DEF  
AREA  
P041  
P042  
P043  
CDSTART  
CDEND  
START BIT 5 START BIT 4 START BIT 3 START BIT 2  
CMD/DEF  
AREA  
END BIT 6  
CMD/DEF  
AREA  
END BIT 5  
CMD/DEF  
AREA  
END BIT 4  
CMD/DEF  
AREA  
END BIT 3  
CMD/DEF  
AREA END  
BIT 2  
1
BUFFER  
POINTER  
BIT 5  
BUFFER  
POINTER  
BIT 4  
BUFFER  
POINTER  
BIT 3  
BUFFER  
POINTER  
BIT 2  
BUFFER  
POINTER  
BIT 1  
1
BUFPTR  
P044  
P045  
Reserved  
PACT  
RXRDY  
PACT  
TXRDY  
PACT  
PARITY  
PACT SCI  
RX INT ENA TX INT ENA  
PACT SCI  
PACT SCI  
SW RESET  
PACT FE  
SCICTLP  
RXBUFP  
TXBUFP  
PSTATE  
PACT  
RXDT7  
PACT  
RXDT6  
PACT  
RXDT5  
PACT  
PACT  
PACT  
RXDT2  
PACT  
RXDT1  
PACT  
RXDT0  
P046  
P047  
P048  
P049  
RXDT4  
RXDT3  
PACT  
TXDT7  
PACT  
TXDT6  
PACT  
TXDT5  
PACT  
PACT  
PACT  
TXDT2  
PACT  
TXDT1  
PACT  
TXDT0  
TXDT4  
TXDT3  
PACT OP8  
STATE  
PACT OP7  
STATE  
PACT OP6  
STATE  
PACT OP5  
STATE  
PACT OP4  
STATE  
PACT OP3  
STATE  
PACT OP2  
STATE  
PACT OP1  
STATE  
CMD/DEF  
INT 7 FLAG INT 6 FLAG  
CMD/DEF  
CMD/DEF  
INT 5 FLAG  
CMD/DEF  
CMD/DEF  
CMD/DEF  
INT 2 FLAG  
CMD/DEF  
INT 1 FLAG  
CMD/DEF  
INT 0 FLAG  
CDFLAGS  
INT 4 FLAG  
INT 3 FLAG  
CP2 CAPT  
RISING  
EDGE  
CP2 CAPT  
FALLING  
EDGE  
CP1 CAPT  
RISING  
EDGE  
CP1 CAPT  
FALLING  
EDGE  
CP2 INT  
ENA  
CP2 INT  
FLAG  
CP1 INT  
ENA  
CP1 INT  
FLAG  
P04A  
P04B  
P04C  
CPCTL1  
CPCTL2  
CPCTL3  
CP4 CAPT  
RISING  
EDGE  
CP4 CAPT  
FALLING  
EDGE  
CP3 CAPT  
RISING  
EDGE  
CP3 CAPT  
FALLING  
EDGE  
CP4 INT  
ENA  
CP4 INT  
FLAG  
CP3 INT  
ENA  
CP3 INT  
FLAG  
CP6 CAPT  
RISING  
EDGE  
CP6 CAPT  
FALLING  
EDGE  
CP5 CAPT  
RISING  
EDGE  
CP5 CAPT  
FALLING  
EDGE  
CP6 INT  
ENA  
CP6 INT  
FLAG  
CP5 INT  
ENA  
CP5 INT  
FLAG  
INPUT  
CAPT  
PRESCALE  
SELECT 3  
INPUT  
CAPT  
PRESCALE  
SELECT 2  
INPUT  
CAPT  
PRESCALE  
SELECT 1  
BUFFER  
P04D HALF/FULL  
INT ENA  
BUFFER  
HALF/FULL  
INT FLAG  
EVENT  
COUNTER  
SW RESET  
CP6 EVENT  
ONLY  
OP/ SET/CLR  
SELECT  
CPPRE  
WDRST  
P04E  
WATCHDOG REST KEY  
PACT  
GROUP 1  
PRIORITY  
PACT  
GROUP 2  
PRIORITY  
PACT  
GROUP 3  
PRIORITY  
PACT  
MODE  
SELECT  
PACT WD  
PRESCALE  
SELECT 1  
PACT WD  
PRESCALE PACTPRI  
SELECT 0  
PACT  
P04F  
PACT  
SUSPEND  
STEST  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 module  
The analog-to-digital converter 1 (ADC1) module is an 8-bit, successive approximation converter with internal  
sample-and-hold circuitry. The module has four multiplexed analog input channels that allow the processor to  
convert the voltage levels from up to eight different sources. The ADC1 module features include the following:  
Minimum conversion time: 32.8 µs at 5-MHz SYSCLK  
Ten external pins:  
Eight analog-input channels (AN0AN7), any of which can be software-configured as digital inputs  
(E0E7) when not needed as analog channels  
AN1AN7 also can be configured as positive-input voltage reference.  
V
V
: ADC1 module high-voltage reference input  
CC3  
: ADC1 module low-voltage reference input  
SS3  
The ADDATA register, which contains the digital result of the last ADC1 conversion.  
ADC1 operations can be accomplished through either interrupt-driven or polled algorithms.  
Six ADC1 module control registers located in the control-register frame beginning at address 1070h  
The ADC1 module control registers are listed in Table 15.  
Table 15. ADC1 Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
AD INT  
ENA  
P071  
P072  
AD READY  
ADSTAT  
ADDATA  
A/D Conversion Data Register  
RESERVED  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 module (continued)  
The ADC1 module block diagram is illustrated in Figure 8.  
Port E Input  
Port E Data  
ENA 0  
AN 0  
ADENA.0  
SAMPLE  
START  
CONVERT  
START  
ADIN.0  
2
1
0
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ADCTL.2–0  
ADCTL.6  
ADCTL.7  
Port E Input  
ENA 1  
Port E Data  
AN 1  
AD INPUT SELECT  
ADENA.1  
ADIN.1  
Port E Input  
ENA 2  
Port E Data  
AN 2  
ADENA.2  
ADIN.2  
Port E Input  
ENA 3  
Port E Data  
AN 3  
ADENA.3  
ADIN.3  
ADDATA.7–0  
A/D  
Port E Input  
ENA 4  
Port E Data  
AN 4  
A-to-D  
Conversion  
Data Register  
ADENA.4  
ADIN.4  
Port E Input  
ENA 5  
AD READY  
ADSTAT.2  
Port E Data  
AN 5  
ADENA.5  
ADIN.5  
AD PRIORITY  
0
Level 1 INT  
ADPRI.6  
Port E Input  
ENA 6  
Port E Data  
AN 6  
1
Level 2 INT  
ADENA.6  
ADIN.6  
5
4
3
ADCTL.5–3  
Port E Input  
ENA 7  
AD INT FLAG  
ADSTAT.1  
Port E Data  
AN 7  
REF VOLTS SELECT  
ADENA.7  
ADIN.7  
ADSTAT.0  
AD INT ENA  
V
CC3  
V
SS3  
Figure 8. ADC1 Block Diagram  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
instruction set overview  
Table 16 provides an opcode to instruction cross reference of all 73 instructions and 274 opcodes of the  
‘370Cx36 instruction set. The numbers at the top of this table represent the most significant nibble (MSN) of  
the opcode while the numbers at the left side of the table represent the least significant nibble (LSN). The  
instruction of these two opcode nibbles contains the mnemonic, operands, and byte/cycle particular to that  
opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 16. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC /  
TST A  
1/9  
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 01-0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
Table 16. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 01-0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ instructions  
have a relative address as the last operand.  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C-compiler, a linker, CDT and an  
EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Includes extensive macro capability  
Provides high-speed operation  
Includes format conversion utilities for popular formats  
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3  
or Sun-4 )  
Generate assembly code for the TMS370 that can be inspected easily  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables direct reference the TMS370’s port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (Compact Development Tool) PACT real-time in-circuit emulation  
Base (Part Number EDSCDT37P – for PC, requires cable)  
Cable for 44-pin PLCC (Part No. EDSTRG44PLCC36)  
EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Includes compatibility to upload/download program and data memory  
Execute programs and software routines  
Includes 1024-sample trace buffer  
Includes single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
Microcontroller programmer  
Base (Part No. TMDS3760500A – for PC, requires programmer head)  
Single unit head for 44-pin PLCC (Part No. TMDS3780512A)  
PC-based, window/function-key-orienteduserinterfaceforeaseofuseandrapidlearningenvironment  
HP700 is a trademark of Hewlett Packard, Incorporated.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Incorporated.  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
device numbering conventions  
Figure 9 illustrates the numbering and symbol nomenclature for the TMS370Cx36 family.  
TMS 370 C 7 36  
A FN T  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator (window EPROM) that is used for  
prototyping purpose.  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
0 = Mask ROM  
7 = EPROM  
Device Type:  
36 = x36 device containing the following modules:  
– Analog-to-Digital Converter 1  
– Serial Peripheral Interface  
– Programmable Acquisition and  
Control Timer (PACT)  
Memory Size:  
6 = 16K bytes  
Temperature Ranges:  
A = –40°C to 85°C  
L =  
0°C to 70°C  
T = –40°C to 105°C  
Packages:  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog or  
– A hard watchdog or  
– A simple watchdog  
The clock can be either:  
– Divide-by-4 clock or  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled or  
– Disabled  
A = For EPROM device, a standard watchdog, a divide-by-  
4 clock, and low-power modes are enabled  
Figure 9. TMS370Cx36 Family Nomenclature  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
device part numbers  
Table 17 provides a listing of all the ’x36 devices available. The device part number nomenclature is designed  
to assist ordering. Upon ordering, the customer must specify not only the device part number, but also the clock  
and watchdog timer options desired. Each device can have only one of the three possible watchdog timer  
options and one of the two clock options. The options to be specified pertain solely to orders involving ROM  
devices.  
Table 17. Device Part Numbers  
DEVICE PART NUMBERS  
FOR 44 PINS (LCC)  
TMS370C036AFNA  
TMS370C036AFNL  
TMS370C036AFNT  
TMS370C736AFNT  
SE370C736AFZT  
System evaluators are for use in prototype environment, and their  
reliability has not been characterized.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
new code release form  
Figure 10 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customermust provide ”print” to TI w/NCRF for approvalbefore ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 10. Sample New Code Release Form  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
Table 18. Peripheral File Frame Compilation  
Table 18 is a collection of all the peripheral file frames used in the ’Cx36 (provided for a quick reference).  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
System Configuration Registers  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
P011  
P012  
SCCR0  
SCCR1  
SCCR2  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
INT1  
P018  
P019  
P01A  
P01B  
P01C  
Reserved  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
EPCTLL  
Reserved  
Reserved  
VPPS  
P01D  
P01E  
P01F  
Digital Port Control Registers  
P020  
P021  
P022  
P023  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
SPI Module Control Register Memory Map  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI BIT  
RATE2  
SPI BIT  
RATE1  
SPI BIT  
RATE0  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
P030  
P031  
SPICCR  
SPICTL  
RECEIVER  
OVERRUN  
SPI INT  
FLAG  
MASTER/  
SLAVE  
SPI INT  
ENA  
TALK  
P032  
to  
Reserved  
P036  
P037  
P038  
P039  
RCVD7  
SDAT7  
RCVD6  
SDAT6  
RCVD5  
SDAT5  
RCVD4  
SDAT4  
RCVD3  
Reserved  
SDAT3  
RCVD2  
SDAT2  
RCVD1  
SDAT1  
RCVD0  
SDAT0  
SPIBUF  
SPIDAT  
To configure D3 as SYSCLK, set port D register 2 = 08h.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
Table 18. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SPI Module Control Register Memory Map (Continued)  
P03A  
to  
Reserved  
P03C  
SPICLK  
DATA IN  
SPICLK  
DATA OUT  
SPICLK  
FUNCTION  
SPICLK  
DATA DIR  
P03D  
P03E  
P03F  
SPIPC1  
SPIPC2  
SPIPRI  
SPISIMO  
DATA IN  
SPISIMO  
DATA OUT  
SPISIMO  
FUNCTION  
SPISIMO  
DATA DIR  
SPISOMI  
DATA IN  
SPISOMI  
DATA OUT  
SPISOMI  
FUNCTION  
SPISOMI  
DATA DIR  
SPI  
STEST  
SPI  
PRIORITY  
SPI  
ESPEN  
PACT Module Register Memory Map  
DEFTIM  
OVRFL  
INT ENA  
DEFTIM  
OVRFL  
INT FLAG  
FAST  
MODE  
SELECT  
PACT  
PACT  
PACT  
PACT  
PRESCALE  
SELECT0  
CMD/DEF  
AREA ENA  
P040  
P041  
PRESCALE PRESCALE PRESCALE  
SELECT3  
PACTSCR  
CDSTART  
SELECT2  
SELECT1  
CMD/DEF  
AREA  
START  
BIT 5  
CMD/DEF  
AREA  
START  
BIT 4  
CMD/DEF  
AREA  
START  
BIT 3  
CMD/DEF  
AREA  
START  
BIT 2  
CMD/DEF  
AREA  
INT ENA  
CMD/DEF  
AREA  
END BIT 6  
CMD/DEF  
AREA  
END BIT 5  
CMD/DEF  
AREA  
END BIT 4  
CMD/DEF  
AREA  
END BIT 3  
CMD/DEF  
AREA END  
BIT 2  
P042  
P043  
1
CDEND  
BUFFER  
POINTER  
BIT 5  
BUFFER  
POINTER  
BIT 4  
BUFFER  
POINTER  
BIT 3  
BUFFER  
POINTER  
BIT 2  
BUFFER  
POINTER  
BIT 1  
1
BUFPTR  
P044  
P045  
Reserved  
PACT SCI  
PACT  
RXRDY  
PACT  
TXRDY  
PACT  
PARITY  
PACT SCI  
PACT SCI SW  
RESET  
PACT FE  
SCICTLP  
RX INT ENA TX INT ENA  
PACT  
RXDT7  
PACT  
RXDT6  
PACT  
RXDT5  
PACT  
RXDT4  
PACT  
RXDT3  
PACT  
RXDT2  
PACT  
RXDT1  
P046  
P047  
P048  
P049  
PACT RXDT0 RXBUFP  
PACT TXDT0 TXBUFP  
PACT  
TXDT7  
PACT  
TXDT6  
PACT  
TXDT5  
PACT  
TXDT4  
PACT  
TXDT3  
PACT  
TXDT2  
PACT  
TXDT1  
PACT OP8  
STATE  
PACT OP7  
STATE  
PACT OP6  
STATE  
PACT OP5  
STATE  
PACT OP4  
STATE  
PACT OP3  
STATE  
PACT OP2  
STATE  
PACT OP1  
PSTATE  
STATE  
CMD/DEF  
INT 7 FLAG  
CMD/DEF  
INT 6 FLAG  
CMD/DEF  
INT 5 FLAG  
CMD/DEF  
INT 4 FLAG  
CMD/DEF  
INT 3 FLAG  
CMD/DEF  
INT 2 FLAG  
CMD/DEF  
INT 1 FLAG  
CMD/DEF  
CDFLAGS  
INT 0 FLAG  
CP2 CAPT  
RISING  
EDGE  
CP2 CAPT  
FALLING  
EDGE  
CP1 CAPT  
RISING  
EDGE  
CP1 CAPT  
FALLING  
EDGE  
CP2 INT  
ENA  
CP2 INT  
FLAG  
CP1 INT  
ENA  
CP1 INT  
FLAG  
P04A  
P04B  
P04C  
CPCTL1  
CPCTL2  
CPCTL3  
CP4 CAPT  
RISING  
EDGE  
CP4 CAPT  
FALLING  
EDGE  
CP3 CAPT  
RISING  
EDGE  
CP3 CAPT  
FALLING  
EDGE  
CP4 INT  
ENA  
CP4 INT  
FLAG  
CP3 INT  
ENA  
CP3 INT  
FLAG  
CP6 CAPT  
RISING  
EDGE  
CP6 CAPT  
FALLING  
EDGE  
CP5 CAPT  
RISING  
EDGE  
CP5 CAPT  
FALLING  
EDGE  
CP6 INT  
ENA  
CP6 INT  
FLAG  
CP5 INT  
ENA  
CP5 INT  
FLAG  
INPUT  
CAPT  
PRESCALE  
SELECT 3  
INPUT  
CAPT  
PRESCALE  
SELECT 2  
INPUT  
CAPT  
PRESCALE  
SELECT 1  
BUFFER  
P04D HALF/FULL  
INT ENA  
BUFFER  
HALF/FULL  
INT FLAG  
EVENT  
COUNTER  
SW RESET  
CP6 EVENT  
ONLY  
OP/ SET/CLR  
SELECT  
CPPRE  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
Table 18. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
PACT Module Register Memory Map (Continued)  
P04E  
P04F  
WATCHDOG RESET KEY  
WDRST  
PACT  
GROUP 1  
PRIORITY  
PACT  
PACT  
PACT  
MODE  
SELECT  
PACT WD  
PRESCALE  
SELECT 1  
PACT WD  
PRESCALE  
SELECT 0  
PACT  
STEST  
PACT  
SUSPEND  
GROUP 2  
PRIORITY  
GROUP 3  
PRIORITY  
PACTPRI  
ADC1 Module Control Register Memory Map  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
P071  
P072  
AD READY  
AD INT ENA  
ADSTAT  
ADDATA  
ADC1 Conversion Data Register  
RESERVED  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range,V  
(see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC1  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC)  
Output clamp current, I  
OK  
O
O
CC  
Continuous output current per buffer, I (V = 0 to V ) (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC)  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
SS  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature, T : L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 4. Unless otherwise noted, all voltage values are with respect to V  
.
SS1  
5. Electrical characteristics are specified with all output buffers loaded with specified I current. Exceeding the specified I current in  
O
O
any buffer can affect the levels on other buffers.  
recommended operating conditions  
MIN  
4.5  
3
NOM  
MAX  
UNIT  
V
Supply voltage (see Note 4)  
5
5.5  
5.5  
5.5  
5.5  
5.5  
0.3  
0.8  
0.3  
V
V
CC1  
RAM data-retention supply voltage (see Note 6)  
Standby RAM supply voltage  
V
4.5  
3
5
V
CCSTBY  
Standby RAM data retention supply voltage (see Note 6)  
Analog supply voltage (see Note 4)  
Analog supply ground  
V
V
4.5  
– 0.3  
5
0
V
V
V
V
CC3  
SS3  
All pins except MC  
Low-level input voltage  
V
SS1  
V
IL  
MC, normal operation  
V
SS1  
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC1  
V
IH  
High-level input voltage  
V
XTAL2/CLKIN  
0.8 V  
0.7 V  
V
V
CC1  
CC1  
CC1  
RESET  
CC1  
13  
EEPROM write protect override (WPO)  
11.7  
12  
V
MC  
MC (mode control) voltage  
EPROM programming voltage (V  
Microcomputer  
L version  
)
13  
13.2  
13.5  
0.3  
70  
V
PP  
V
SS1  
0
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
85  
°C  
T version  
105  
NOTES: 4. Unless otherwise noted, all voltage values are with respect to V  
.
SS1  
6. RESET must be externally activated when V  
CC1  
or SYSCLK is not within the recommended operating range.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Low-level output voltage  
All outputs  
I
I
= 1.4 mA  
0.4  
V
OL  
OL  
All outputs  
except PACT  
outputs  
= 50 µA  
0.9 V  
OH  
CC1  
CC1  
V
OH  
High-level output voltage  
V
PACT outputs  
All outputs  
I
I
= 50 µA  
0.7 V  
OH  
= 2 mA  
2.4  
OH  
0 V V 0.3 V  
10  
50  
µA  
µA  
µA  
µA  
µA  
mA  
µA  
mA  
I
0.3 V < V < V  
– 0.3 V  
I
CC1  
MC  
I
I
Input current  
V
V
–0.3 < V < V  
+0.3 V  
CC1  
10  
CC1  
I
+0.3 V < V < 13 V  
650  
± 10  
CC1  
I
I/O pins  
0 V <V < V  
I
CC1  
= 0.4 V  
I
I
Low-level output current  
High-level output current  
All outputs  
V
OL  
V
OH  
V
OH  
1.4  
– 50  
– 2  
OL  
= 0.9 V  
= 2.4 V  
CC1  
All outputs  
OH  
Supply current (operating mode)  
OSC POWER bit = 0  
See Notes 7 and 8  
SYSCLK = 5 MHz  
36  
7
45  
12  
mA  
mA  
µA  
Supply current (STANDBY mode)  
OSC POWER bit = 0  
See Notes 7 and 8  
SYSCLK = 5 MHz  
I
I
CC1  
See Notes 7 and 8  
XTAL2/CLKIN < 0.2 V  
Supply current (HALT mode)  
5
30  
Standby RAM supply current (operating mode OSC SYSCLK = 5 MHz  
POWER bit = 0) = 4.5 V  
1
1.5  
mA  
CCSTBY  
V
CCSTBY  
NOTES: 7. Single chip mode, ports configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2V.  
CC1  
8. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5-MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3  
(see Note A)  
C1  
(see Note A)  
C2  
Crystal/Ceramic  
Resonator  
(see Note B)  
External  
Clock Signal  
(see Note A)  
NOTES: A. The values of C1 and C2 are typically 15 pF and C3 value is typically 50 pF. See the manufacturer’s recommendations for ceramic  
resonators.  
B. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
Figure 11. Recommended Crystal/Clock Connections  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 12. Typical Output Load Circuit (See Note A)  
V
CC  
V
CC  
Pin Data  
300 Ω  
30 Ω  
6 kΩ  
Output  
Enable  
I/O  
INT1  
20 Ω  
20 Ω  
GND  
GND  
Figure 13. Typical Buffer Circuitry  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
AR  
B
CI  
M
S
Array  
Byte  
XTAL2/CLKIN  
Master mode  
Slave mode  
SC  
SYSCLK  
SPISIMO  
SPISOMI  
SPICLK  
SIMO  
SOMI  
SPC  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
su  
v
w
setup time  
valid time  
pulse duration (width)  
r
rise time  
The following additional letters are used with these meanings:  
H
L
V
High  
Low  
Valid  
All timings are measured between high and low measurement points as indicated in Figure 14 and Figure 15.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 14. XTAL2/CLKIN Measurement Points  
Figure 15. General Measurement Points  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
external clocking requirements for clock divided by 4 (see Note 9 and Figure 16)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 10)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
0.5  
SYSCLK = CLKIN/4  
NOTES: 9. For V and V , refer to recommended operating conditions.  
IL IH  
10. This pulse may be either a high pulse, as illustrated below, which extends from the earliest valid high to the final valid high in an  
XTAL2/CLKIN cycle or a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 16. External Clock Timing for Divide-by-4  
external clocking requirements for clock divided by 1 (PLL) (see Note 9 and Figure 17)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 10)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
5
SYSCLK = CLKIN/1  
NOTES: 9. For V and V , refer to recommended operating conditions.  
IL IH  
10. This pulse can be either a high pulse, as illustrated below, which extends from the earliest valid high to the final valid high in an  
XTAL2/CLKIN cycle or a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
4
2
3
SYSCLK  
Figure 17. External Clock Timing for Divide-by-1  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Note 11 and Figure 18)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide by 4  
Divide by 1  
5
t
c
Cycle time, SYSCLK (system clock)  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5 t –20  
0.5 t  
c
ns  
ns  
w(SCL)  
c
0.5 t  
0.5 t + 20  
c
w(SCH)  
c
NOTE 11: t = system clock cycle time = 1/SYSCLK  
c
5
7
6
SYSCLK  
Figure 18. SYSCLK Timing  
general purpose output signal switching time requirements (see Figure 19)  
MIN  
TYP  
30  
MAX  
UNIT  
t
t
Rise time  
Fall time  
ns  
ns  
r
30  
f
t
r
t
f
Figure 19. Signal Switching Timing  
recommended EEPROM timing requirements for programming  
MIN  
MAX  
UNIT  
ms  
t
t
Pulse duration, programming signal to ensure valid data is stored (byte mode)  
Pulse duration, programming signal to ensure valid data is stored (array mode)  
10  
20  
w(PGM)B  
ms  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN  
TYP  
5.5  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
CC  
Supply voltage at MC pin  
13.2  
30  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide by 4  
Divide by 1  
0.5  
2
SYSCLK  
System clock  
MHz  
5
recommended EPROM timing requirements for programming  
MIN  
TYP  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 12)  
0.40  
0.50  
3
ms  
w(EPGM)  
NOTE 12: Programming pulse is active when both EXE (EPCTL.0) and V  
(EPCTL.6) are set.  
PPS  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
SPI master mode external timing characteristics and requirements (see Note 11 and Figure 20)  
NO.  
38  
39  
40  
41  
42  
43  
MIN  
2t  
MAX  
256t  
UNIT  
ns  
t
t
t
t
t
t
Cycle time, SPICLK  
c(SPC)M  
c
c
Pulse duration, SPICLK low  
t
– 45  
– 55  
0.5t  
0.5t  
+45  
+45  
ns  
w(SPCL)M  
c
c
c(SPC)  
Pulse duration, SPICLK high  
t
ns  
w(SPCH)M  
c(SPC)  
50  
Delay time, SPISIMO valid after SPICLK low (polarity = 1)  
Valid time, SPISIMO data valid after SPICLK high (polarity =1)  
Setup time, SPISOMI to SPICLK high (polarity = 1)  
– 65  
ns  
d(SPCL-SIMOV)M  
v(SPCH-SIMO)M  
su(SOMI-SPCH)M  
t
– 50  
ns  
w(SPCH)  
0.25 t + 150  
c
ns  
Valid time, SPISOMI data valid after SPICLK high  
(polarity = 1)  
44  
t
0
ns  
v(SPCH-SOMI)M  
NOTE 11: t = system clock cycle time = 1/SYSCLK  
c
38  
40  
39  
SPICLK  
41  
42  
Data Valid  
SPISIMO  
43  
44  
Data Valid  
SPISOMI  
The diagram is for polarity = 1. SPICLK is inverted when polarity = 0.  
Figure 20. SPI Master External Timing  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
SPI slave mode external timing characteristics and requirements (see Note 11 and Figure 21)  
NO.  
45  
46  
47  
48  
49  
50  
51  
MIN  
8t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SPICLK  
c(SPC)S  
c
Pulse duration, SPICLK low  
4t – 45 0.5t  
c
+45  
+45  
ns  
w(SPCL)S  
c(SPC)S  
Pulse duration, SPICLK high  
4t – 45 0.5t  
c
ns  
w(SPCH)S  
c(SPC)S  
+ 130  
Delay time, SPISOMI valid after SPICLK low (polarity = 1)  
Valid time, SPISOMI data valid after SPICLK high (polarity =1)  
Setup time, SPISIMO to SPICLK high (polarity = 1)  
Valid time, SPISIMO data after SPICLK high (polarity = 1)  
3.25t  
ns  
d(SPCL-SOMIV)S  
v(SPCH-SOMI)S  
su(SIMO-SPCH)S  
v(SPCH-SIMO)S  
c
t
ns  
w(SPCH)S  
0
ns  
3t + 100  
C
ns  
NOTE 11: t = system clock cycle time = 1/SYSCLK  
c
45  
47  
46  
SPICLK  
48  
49  
Data Valid  
SPISIMO  
50  
51  
Data Valid  
SPISOMI  
The diagram is for polarity = 1. SPICLK is inverted when polarity = 0.  
Figure 21. SPI Slave External Timing  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
ADC1 converter  
The ADC1 converter has a separate power bus for its analog circuitry. These pins are referred to as V  
and  
CC3  
V
. The purpose is to enhance ADC1 performance by preventing digital switching noise of the logic circuitry  
SS3  
that can be present on V  
given with respect to V  
and V  
from coupling into the ADC1 analog stage. All ADC1 specifications are  
SS1  
CC1  
unless otherwise noted.  
SS3  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bits (256 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes  
Output conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00 for V V  
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 t  
; FF for V V  
)
I
SS3  
I
ref  
c
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
4.5  
5
5.5  
V
V
Analog supply voltage  
Analog ground  
V
CC3  
V
–0.3  
CC1  
V
+0.3  
CC1  
V
–0.3  
SS1  
V
+0.3  
SS1  
V
V
V
SS3  
V
ref  
Non-V  
CC3  
reference  
2.5  
V
V
+ 0.1  
CC3  
CC3  
Analog input for conversion  
V
V
ref  
SS3  
V
ref  
must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.  
operating characteristics over recommended ranges operating conditions  
PARAMETER  
MIN  
MAX  
±1.5  
±0.9  
2
UNIT  
LSB  
LSB  
mA  
µA  
Absolute accuracy  
V
V
= 5.5 V  
= 5.5 V  
V
= 5.1 V  
= 5.1 V  
CC3  
ref  
‡§  
Differential/integral linearity error  
V
ref  
CC3  
Converting  
I
Analog supply current  
CC3  
Nonconverting  
5
I
I
Input current, AN0AN7  
Input charge current  
0 V V 5.5 V  
2
µA  
I
I
1
mA  
kΩ  
ref  
SYSCLK 3 MHz  
24  
10  
Z
Source impedance of V  
ref  
ref  
3 MHz < SYSCLK 5 MHz  
kΩ  
§
Absolute resolution = 20 mV. At V = 5 V, this is one LSB. As V decreases, LSB size decreases; therefore, the absolute accuracy and  
differential/integral linearity errors in terms of LSBs increase.  
Excluding quantization error of 1/2 LSB  
ref  
ref  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
ADC1 converter (continued)  
The ADC1 module allows complete freedom in design of the sources for the analog inputs. The period of the  
sample time is user-defined so that the high-impedance can be accommodated without penalty to the  
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC1 control register  
(ADCTL.6) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START,  
ADCTL.7) is set to 1. After a hold time, the converter will reset the SAMPLE START and CONVERT START bits,  
signaling that a conversion has started and that the analog signal can be removed.  
analog timing requirements (see Figure 22)  
MIN  
MAX  
UNIT  
ns  
t
t
t
Setup time, analog to sample command  
0
su(S)  
h(AN)  
w(S)  
Hold time, analog input from start of conversion  
Pulse duration, sample time per kilo-of source impedance  
18t  
ns  
c
1
µs/kΩ  
The value given is valid for a signal with a source impedance > 1 k. If the source impedance is < 1 k, use a minimum sampling time of 1µs.  
Analog Stable  
Analog In  
t
su(S)  
Sample Start  
Convert Start  
t
h(AN)  
t
w(S)  
Figure 22. Analog Timing  
Table 19 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 19. TMS370Cx36 Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C036AFNA  
TMS370C036AFNL  
TMS370C036AFNT  
TMS370C736AFNT  
FN – 44 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 44 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C736AFZT  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx36  
8-BIT MICROCONTROLLER  
SPNS039B – JANUARY 1996 – REVISED FEBRUARY 1997  
J-LEADED CERAMIC CHIP CARRIER  
Seating Plane  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
A
B
1
0.120 (3,05)  
26  
4
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TMS370C736AFNA

8-BIT, OTPROM, MICROCONTROLLER, PQCC44
TI

TMS370C736AFNT

8-BIT MICROCONTROLLER
TI

TMS370C736AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

TMS370C742

CMOS EEPROM/EPROM Technologies on a Single Device
TI

TMS370C742A

8-BIT MICROCONTROLLER
TI

TMS370C742AFNA

8-Bit Microcontroller
ETC

TMS370C742AFNL

8-Bit Microcontroller
ETC

TMS370C742AFNT

CMOS EEPROM/EPROM Technologies on a Single Device
TI

TMS370C742AFNTG4

8-Bit Microcontroller 44-PLCC -40 to 105
TI

TMS370C742AN2A

8-Bit Microcontroller
ETC

TMS370C742AN2L

8-Bit Microcontroller
ETC

TMS370C742ANA

8-Bit Microcontroller
ETC