TMS470R1B1M_12 [TI]

16/32-Bit RISC Flash Microcontroller; 16位/ 32位RISC闪存微控制器
TMS470R1B1M_12
型号: TMS470R1B1M_12
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16/32-Bit RISC Flash Microcontroller
16位/ 32位RISC闪存微控制器

闪存 微控制器
文件: 总60页 (文件大小:547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
FEATURES  
Twelve Communication Interfaces:  
– Two Serial Peripheral Interfaces (SPIs)  
– 255 Programmable Baud Rates  
High-Performance Static CMOS Technology  
TMS470R1x 16/32-Bit RISC Core  
(ARM7TDMI™)  
– Three Serial Communication Interfaces  
(SCIs)  
224 Selectable Baud Rates  
– 60-MHz System Clock (Pipeline Mode)  
– Independent 16/32-Bit Instruction Set  
– Open Architecture With Third-Party Support  
– Built-In Debug Module  
Asynchronous/Isosynchronous Modes  
– Two High-End CAN Controllers (HECC)  
32-Mailbox Capacity  
Integrated Memory  
– 1M-Byte Program Flash  
Fully Compliant With CAN Protocol,  
Version 2.0B  
Two Banks With 16 Contiguous Sectors  
– 64K-Byte Static RAM (SRAM)  
– Memory Security Module (MSM)  
– JTAG Security Module  
– Five Inter-Integrated Circuit (I2C) Modules  
Multi-Master and Slave Interfaces  
Up to 400 Kbps (Fast Mode)  
7- and 10-Bit Address Capability  
High-End Timer Lite (HET)  
Operating Features  
– Low-Power Modes: STANDBY and HALT  
– Industrial Temperature Range  
470+ System Module  
– 12 Programmable I/O Channels:  
12 High-Resolution Pins  
– High-Resolution Share Feature (XOR)  
– High-End Timer RAM  
– 32-Bit Address Space Decoding  
– Bus Supervision for Memory/Peripherals  
– Digital Watchdog (DWD) Timer  
– Analog Watchdog (AWD) Timer  
– Enhanced Real-Time Interrupt (RTI)  
– Interrupt Expansion Module (IEM)  
– System Integrity and Failure Detection  
– ICE Breaker  
64-Instruction Capacity  
External Clock Prescale (ECP) Module  
– Programmable Low-Frequency External  
Clock (CLK)  
12-Channel, 10-Bit Multi-Buffered ADC  
(MibADC)  
– 64-Word FIFO Buffer  
Direct Memory Access (DMA) Controller  
– 32 Control Packets and 16 Channels  
– Single- or Continuous-Conversion Modes  
– 1.55 µs Minimum Sample and Conversion  
Time  
Zero-Pin Phase-Locked Loop (ZPLL)-Based  
Clock Module With Prescaler  
– Calibration Mode and Self-Test Features  
Flexible Interrupt Handling  
– Multiply-by-4 or -8 Internal ZPLL Option  
– ZPLL Bypass Mode  
Expansion Bus Module (EBM)  
– Supports 8- and 16-Bit Expansion Bus  
Memory Interface Mappings  
– 42 I/O Expansion Bus Pins  
46 Dedicated General-Purpose I/O (GIO) Pins  
and 47 Additional Peripheral I/Os  
Sixteen External Interrupts  
On-Chip Scan-Base Emulation Logic, IEEE  
Standard 1149.1(1) (JTAG) Test-Access Port  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ARM7TDMI is a trademark of Advanced RISC Machines Limited (ARM).  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2006, Texas Instruments Incorporated  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
144-Pin Plastic Low-Profile Quad Flatpack  
(PGE Suffix)  
(1)  
The test-access port is compatible with the IEEE Standard  
1149.1-1990, IEEE Standard Test-Access Port and Boundary  
Scan Architecture specification. Boundary scan is not  
supported on this device.  
TMS470R1B1M 144-Pin PGE Package Without Expansion Bus (Top View)  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
AD  
109  
HET[1]  
HET[2]  
GIOE[6]  
REFHI  
AD  
REFLO  
110  
111  
112  
V
V
CCAD  
V
V
SSAD  
CCIO  
ADIN[4] 113  
ADIN[3] 114  
ADIN[2] 115  
ADIN[1] 116  
ADIN[0] 117  
PORRST 118  
SSIO  
GIOE[5]  
HET[3]  
HET[4]  
GIOE[4]  
HET[5]  
SPI2SCS  
GIOE[3]  
SPI2ENA  
SPI2SIMO  
GIOE[2]  
SPI2SOMI  
SPI2CLK  
CAN2HTX  
CAN2HRX  
GIOC[4]  
GIOC[3]  
119  
120  
RST 121  
V
SS  
122  
123  
V
CC  
TEST 124  
GIOH[5]  
GIOC[2]  
GIOA[4]/INT[4]  
GIOC[1]  
125  
126  
127  
128  
129  
130  
131  
V
V
CC  
V
V
SS  
CC  
SS  
SCI2CLK  
SCI2RX  
SCI2TX  
SCI1CLK  
GIOE[1]  
SCI1RX  
SCI1TX  
GIOE[0]  
GIOB[0]  
GIOD[0]  
I2C4SDA  
I2C4SCL  
GIOD[1]  
I2C5SDA  
I2C5SCL  
V
CCP  
FLTP2 132  
GIOA[3]/INT[3]  
GIOA[2]/INT[2]  
GIOC[0]  
133  
134  
135  
GIOA[1]/INT[1]/ECLK 136  
V
V
137  
138  
139  
140  
141  
142  
143  
CCIO  
SSIO  
GIOH[0]  
GIOG[7]  
GIOA[0]/INT[0]  
GIOG[6]  
GIOG[5]  
TRST 144  
2
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
TMS470R1B1M 144-Pin PGE Package With Expansion Bus (Top View)  
AD  
109  
110  
111  
112  
72 HET[1]  
71 HET[2]  
70 EBDATA[6]  
REFHI  
AD  
REFLO  
V
V
CCAD  
69  
68  
V
V
SSAD  
CCIO  
ADIN[4] 113  
ADIN[3] 114  
ADIN[2] 115  
ADIN[1] 116  
ADIN[0] 117  
PORRST 118  
EBCS[6] 119  
EBCS[5] 120  
RST 121  
SSIO  
67 EBDATA[5]  
66 HET[3]  
65 HET[4]  
64 EBDATA[4]  
63 HET[5]  
62 SPI2SCS  
61 EBDATA[3]  
60 SPI2ENA  
59 SPI2SIMO  
58 EBDATA[2]  
57 SPI2SOMI  
56 SPI2CLK  
55 CAN2HTX  
54 CAN2HRX  
V
SS  
122  
123  
V
CC  
TEST 124  
EBHOLD 125  
EBWR[1] 126  
GIOA[4]/INT[4]  
127  
EBWR[0] 128  
53  
52  
V
V
CC  
V
V
129  
130  
131  
SS  
CC  
SS  
51 SCI2CLK  
50 SCI2RX  
V
CCP  
FLTP2 132  
49 SCI2TX  
GIOA[3]/INT[3]  
GIOA[2]/INT[2]  
133  
134  
48 SCI1CLK  
47 EBDATA[1]  
EBOE 135  
GIOA[1]/INT[1]/ECLK 136  
46 SCI1RX  
45 SCI1TX  
V
V
137  
138  
44 EBDATA[0]  
43 EBDMAREQ[0]  
42 EBADDR[0]  
41 EBADDR[23]/EBADDR[15]  
40 EBADDR[24]/EBADDR[16]  
39 EBADDR[1]  
38 EBADDR[26]/EBADDR[18]  
37 EBADDR[25]/EBADDR[17]  
CCIO  
SSIO  
EBADDR[22]/EBADDR[14] 139  
EBADDR[21]/EBADDR[13] 140  
GIOA[0]/INT[0]  
141  
EBADDR[20]/EBADDR[12] 142  
EBADDR[19]/EBADDR[11] 143  
TRST 144  
3
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
DESCRIPTION  
The TMS470R1B1M(1) devices are members of the Texas Instruments TMS470R1x family of general-purpose  
16/32-bit reduced instruction set computer (RISC) microcontrollers. The B1M microcontroller offers high  
performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a  
high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views  
memory as a linear collection of bytes numbered upwards from zero. The TMS470R1B1M utilizes the big-endian  
format where the most significant byte of a word is stored at the lowest numbered byte and the least significant  
byte at the highest numbered byte.  
High-end embedded control applications demand more performance from their controllers while maintaining low  
costs. The B1M RISC core architecture offers solutions to these performance and cost demands while  
maintaining low power consumption.  
The B1M devices contain the following:  
ARM7TDMI 16/32-Bit RISC CPU  
TMS470R1x system module (SYS) with 470+ enhancements  
1M-byte flash  
64K-byte SRAM  
Zero-pin phase-locked loop (ZPLL) clock module  
Digital watchdog (DWD) timer  
Analog watchdog (AWD) timer  
Enhanced real-time interrupt ( RTI) module  
Interrupt expansion module (IEM)  
Memory security module (MSM)  
JTAG security module  
Two serial peripheral interface (SPI) modules  
Three serial communications interface (SCI) modules  
Two high-end CAN controllers (HECC)  
Five inter-integrated circuit (I2C) modules  
10-bit multi-buffered analog-to-digital converter (MibADC), with 12 input channels  
High-end timer lite (HET) controlling 12 I/Os  
External clock prescale (ECP)  
Expansion bus module (EBM)  
Up to 93 I/O pins  
The functions performed by the 470+ system module (SYS) include:  
Address decoding  
Memory protection  
Memory and peripherals bus supervision  
Reset and abort exception management  
Prioritization for all internal interrupt sources  
Device clock control  
Parallel signature analysis (PSA)  
The enhanced real-time interrupt (RTI) module on the B1M has the option to be driven by the oscillator clock.  
The digital watchdog (DWD) is a 25-bit resettable decrementing counter that provides a system reset when the  
watchdog counter expires. This data sheet includes device-specific information such as memory and peripheral  
select assignment, interrupt priority, and a device memory map. For a more detailed functional description of the  
SYS module, see the TMS470R1x System Module Reference Guide (literature number SPNU189).  
The B1M memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte,  
half-word, and word modes.  
(1) Throughout the remainder of this document, the TMS470R1B1M will be referred to as either the full device name or as B1M.  
4
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented  
with a 32-bit-wide data bus interface. The flash operates with a system clock frequency of up to 24 MHz or 30  
MHz, depending on the input voltage. When in pipeline mode, the flash operates with a system clock frequency  
of up to 48 MHz or 60 MHz, depending on the input voltage. For more detailed information on the flash, see the  
F05 Flash section of this data sheet.  
The memory security module (MSM) and the JTAG security module prevent unauthorized access and visibility to  
on-chip memory, thereby preventing reverse engineering or manipulation of proprietary code.  
The B1M device has twelve communication interfaces: two SPIs, three SCIs, two HECCs, and five I2Cs. The  
SPI provides a convenient method of serial interaction for high-speed communications between similar  
shift-register type devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous  
communication between the CPU and other peripherals using the standard non-return-to-zero (NRZ) format. The  
HECC uses a serial, multimaster communication protocol that efficiently supports distributed real-time control  
with robust communication rates of up to 1 megabit per second (Mbps). These CAN peripherals are ideal for  
applications operating in noisy and harsh environments (e.g., industrial fields) that require reliable serial  
communication or multiplexed wiring. The I2C module is a multi-master communication module providing an  
interface between the B1M microcontroller and an I2C-compatible device via the I2C serial bus. The I2C  
supports both 100 Kbps and 400 Kbps speeds. For more detailed functional information on the SPI, SCI, and  
CAN peripherals, see the specific reference guides (literature numbers SPNU195, SPNU196, and SPNU197).  
For more detailed functional information on the I2C, see the TMS470R1x Inter-Integrated Circuit (I2C) Reference  
Guide (literature number SPNU223).  
The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications.  
The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an  
attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well suited  
for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses.  
The HET used in this device is the high-end timer lite. It has fewer I/Os than the usual 32 in a standard HET. For  
more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference Guide  
(literature number SPNU199).  
The B1M HET peripheral contains the XOR-share feature. This feature allows two adjacent HET high-resolution  
channels to be XORed together, making it possible to output smaller pulses than a standard HET. For more  
detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET) Reference  
Guide (literature number SPNU199).  
The B1M device has one 10-bit-resolution, sample-and-hold MibADC. Each of the MibADC channels can be  
converted individually or can be grouped by software for sequential conversion sequences. There are three  
separate groupings, two of which can be triggered by an external event. Each sequence can be converted once  
when triggered or configured for continuous conversion mode. For more detailed functional information on the  
MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature  
number SPNU206).  
The zero-pin phase-locked loop (ZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a  
clock-enable circuit, and a prescaler (with prescale values of 1–8). The function of the ZPLL is to multiply the  
external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK to the system  
(SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock  
(RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other B1M device modules. For more  
detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock  
Module Reference Guide (literature number SPNU212).  
NOTE:  
ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the  
continuous system clock from an external resonator/crystal reference.  
The expansion bus module (EBM) is a standalone module that supports the multiplexing of the GIO functions  
and the expansion bus interface. For more information on the EBM, see the TMS470R1x Expansion Bus Module  
(EBM) Reference Guide (literature number SPNU222).  
5
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
The B1M device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous  
external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the  
peripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the  
TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202).  
Device Characteristics  
Table 1 identifies all the characteristics of the B1M device except the SYSTEM and CPU, which are generic.  
Table 1. Device Characteristics  
DEVICE DESCRIPTION  
CHARACTERISTICS  
COMMENTS  
TMS470R1B1M  
MEMORY  
For the number of memory selects on this device, see Table 3, TMS470R1B1M Memory Selection Assignment.  
Pipeline/Non-Pipeline  
Flash is pipeline-capable.  
1M-Byte flash  
64K-Byte SRAM  
The B1M RAM is implemented in one 64K array selected by two  
memory-select signals (see Table 3, TMS470R1B1M Memory  
Selection Assignment ).  
INTERNAL MEMORY  
Memory Security Module (MSM)  
JTAG Security Module  
PERIPHERALS  
For the device-specific interrupt priority configurations, see Table 6, Interrupt Priority. And for the 1K peripheral address ranges and their  
peripheral selects, see Table 4, B1M Peripherals, System Module, and Flash Base Addresses.  
CLOCK  
ZPLL  
Zero-pin PLL has no external loop filter pins.  
Expansion Bus  
Expansion bus module with 42 pins. Supports 8- and 16-bit  
memories. See Table 7 for details.  
EBM  
GENERAL-PURPOSE I/Os  
Port A has 8 external pins; Port B has only 1 external pin; Port C  
has 5 external pins; Port D has 6 external pins; Ports E, F, and G  
each have 8 external pins; and Port H has 2 external pins.  
46 I/O  
ECP  
YES  
3 (3-pin)  
2 HECC  
2 (5-pin)  
5
SCI  
CAN (HECC and/or SCC)  
SPI (5-pin, 4-pin or 3-pin)  
I2C  
Two high-end CAN controllers  
The high-resolution (HR) SHARE feature allows even-numbered HR  
pins to share the next higher odd-numbered HR pin structures. This  
HR sharing is independent of whether or not the odd pin is available  
externally. If an odd pin is available externally and shared, then the  
odd pin can only be used as a general-purpose I/O. For more  
information on HR SHARE, see the TMS470R1x High-End Timer  
(HET) Reference Guide (literature number SPNU199).  
HET with XOR Share  
12 I/O  
HET RAM  
MibADC  
64-Instruction Capacity  
10-bit, 12-channel  
64-word FIFO  
Both the logic and registers for a full 16-channel MibADC are  
present.  
CORE VOLTAGE  
I/O VOLTAGE  
PINS  
1.8 V  
3.3 V  
144  
PACKAGES  
PGE  
6
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Functional Block Diagram  
External  
Pins  
External  
Pins  
OSCIN  
FLASH  
(1M Byte)  
2 Banks  
Memory  
Security  
Module  
(MSM)  
V
CCP  
RAM  
(64K Bytes)  
ZPLL  
OSCOUT  
PLLDIS  
FLTP2  
16 Sectors  
ADIN[11:0]  
ADEVT  
CPU Address Data Bus  
MibADC  
64−Word  
FIFO  
AD  
AD  
REFHI  
REFLO  
TRST  
TCK  
V
V
CCAD  
SSAD  
TMS470R1x CPU  
ICE Breaker  
TDI  
TDO  
HET  
64 Words  
HET[0:8;18,20,22]  
TMS  
TMS2  
RST  
CAN1HTX  
CAN1HRX  
HECC1  
HECC2  
TMS470R1x System Module  
with Enhanced RTI Module  
AWD  
(A)  
TEST  
PORRST  
CLKOUT  
CAN2HTX  
CAN2SRX  
DMA Controller  
16 Channels  
Interrupt Expansion  
Module (IEM)  
SCI1CLK  
SCI1TX  
SCI1RX  
SCI1  
SCI2  
SCC  
I2C4  
I2C5  
Digital  
Analog  
I2C4SDA  
I2C4SCL  
SCI2CLK  
SCI2TX  
SCI2RX  
Watchdog  
(DWD)  
Watchdog  
(AWD)  
I2C5SDA  
I2C5SCL  
I2C3SDA  
I2C3SCL  
I2C3  
I2C2  
I2C1  
I2C2SDA  
I2C2SCL  
SCI3  
SPI2  
SPI1  
ECP  
GIO/EBM  
I2C1SDA  
I2C1SCL  
A. The enhanced RTI module is the system module with two extra bits to disable the ZPLL while in STANDBY mode.  
7
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
CURRENT  
OUTPUT  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
HIGH-END TIMER (HET)  
HET[0]  
HET[1]  
HET[2]  
HET[3]  
HET[4]  
HET[5]  
HET[6]  
HET[7]  
HET[8]  
HET[18]  
HET[20]  
HET[22]  
73  
72  
71  
66  
65  
63  
9
Timer input capture or output compare. The  
HET[8:0,18,20,22] applicable pins can be programmed  
as general-purpose input/output (GIO) pins. All are  
high-resolution pins.  
The high-resolution (HR) SHARE feature allows even  
HR pins to share the next higher odd HR pin  
structures. This HR sharing is independent of whether  
or not the odd pin is available externally. If an odd pin  
is available externally and shared, then the odd pin  
can only be used as a general-purpose I/O. For more  
information on HR SHARE, see the TMS470R1x  
High-End Timer (HET) Reference Guide (literature  
number SPNU199).  
3.3 V  
2 mA -z  
IPD (20 µA)  
11  
12  
15  
18  
19  
HIGH-END CAN CONTROLLER (HECC)  
CAN1HRX  
CAN1HTX  
CAN2HRX  
CAN2HTX  
83  
84  
54  
55  
5-V tolerant  
3.3 V  
4 mA  
2 mA -z  
4 mA  
HECC1 receive pin or GIO pin  
IPU (20 µA)  
IPU (20 µA)  
HECC1 transmit pin or GIO pin  
HECC2 receive pin or GIO pin  
HECC2 transmit pin or GIO pin  
5-V tolerant  
3.3 V  
2 mA -z  
STANDARD CAN CONTROLLER (SCC)  
SCC receive pin. The CANSRX signal is only  
connected to the pad and not to a package pin. For  
reduced power consumption in low power mode,  
CANSRX should be driven output LOW.  
CANSRX  
CANSTX  
-
-
5-V tolerant  
3.3 V  
4 mA  
SCC transmit pin. The CANSTX signal is only  
connected to the pad and not to a package pin. For  
reduced power consumption in low power mode,  
CANSTX should be driven output LOW.  
2 mA -z  
IPU (20 µA)  
GENERAL-PURPOSE I/O (GIO)  
GIOA[0]/INT[0]  
141  
136  
134  
133  
127  
98  
GIOA[1]/INT[1]/ECLK  
GIOA[2]/INT[2]  
General-purpose input/output pins. GIOA[7:0]/INT[7:0]  
are interrupt-capable pins.  
GIOA[3]/INT[3]  
5-V tolerant  
4 mA  
GIOA[1]/INT[1]/ECLK pin is multiplexed with the  
external clock-out function of the external clock  
prescale (ECP) module.  
GIOA[4]/INT[4]  
GIOA[5]/INT[5]  
GIOA[6]/INT[6]  
78  
GIOA[7]/INT[7]  
79  
GIOB[0]/EBDMAREQ0  
GIOC[0]/EBOE  
43  
135  
128  
126  
120  
119  
GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0],  
GIOG[7:0], and GIOH[5,0] are multiplexed with the  
expansion bus module.  
GIOC[1]/EBWR[0]  
GIOC[2]/EBWR[1]  
GIOC[3]/EBCS[5]  
GIOC[4]/EBCS[6]  
3.3 V  
2 mA -z  
IPD (20 µA)  
See Table 7.  
(1) PWR = power, GND = ground, REF = reference voltage, NC = no connect  
(2) All I/O pins, except RST , are configured as inputs while PORRST is low and immediately after PORRST goes high.  
(3) IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST  
state.)  
8
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
INTERNAL  
PULLUP/  
CURRENT  
OUTPUT  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NAME  
NO.  
GIOD[0]/EBADDR[0]  
GIOD[1]/EBADDR[1]  
GIOD[2]/EBADDR[2]  
GIOD[3]/EBADDR[3]  
GIOD[4]/EBADDR[4]  
GIOD[5]/EBADDR[5]  
GIOE[0]/EBDATA[0]  
GIOE[1]/EBDATA[1]  
GIOE[2]/EBDATA[2]  
GIOE[3]/EBDATA[3]  
GIOE[4]/EBDATA[4]  
GIOE[5]/EBDATA[5]  
GIOE[6]/EBDATA[6]  
GIOE[7]/EBDATA[7]  
42  
39  
35  
30  
27  
23  
44  
47  
58  
61  
64  
67  
70  
77  
GIOF[0]/INT[8]/  
EBADDR[6]/EBDATA[8]  
80  
82  
89  
90  
93  
96  
99  
100  
20  
10  
8
GIOF[1]/INT[9]/  
EBADDR[7]/EBDATA[9]  
GIOF[2]/INT[10]/  
EBADDR[8]/EBDATA[10]  
GIOF[3]/INT[11]/  
EBADDR[9]/EBDATA[11]  
GIOB[0], GIOC[4:0], GIOD[5:0], GIOE[7:0:], GIOF[7:0],  
GIOG[7:0], and GIOH[5,0] are multiplexed with the  
expansion bus module.  
GIOF[4]/INT[12]/  
EBADDR[10]/EBDATA[12]  
3.3 V  
2 mA -z  
IPD (20 µA)  
GIOF[7:0]/INT[15:8] are interrupt-capable pins.  
See Table 7.  
GIOF[5]/INT[13]/  
EBADDR[11]/EBDATA[13]  
GIOF[6]/INT[14]/  
EBADDR[12]/EBDATA[14]  
GIOF[7]/INT[15]/  
EBADDR[13]/EBDATA[15]  
GIOG[0]/EBADDR[14]/  
EBADDR[6]  
GIOG[1]/EBADDR[15]/  
EBADDR[7]  
GIOG[2]/EBADDR[16]/  
EBADDR[8]  
GIOG[3]/EBADDR[17]/  
EBADDR[9]  
6
GIOG[4]/EBADDR[18]/  
EBADDR[10]  
3
GIOG[5]/EBADDR[19]/  
EBADDR[11]  
143  
142  
140  
GIOG[6]/EBADDR[20]/EB  
ADDR[12]  
GIOG[7]/EBADDR[21]/  
EBADDR[13]  
GIOH[0]/EBADDR[22]/  
EBADDR[14]  
139  
125  
GIOH[5]/EBHOLD  
9
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
CURRENT  
OUTPUT  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC)  
MibADC event input. Can be programmed as a GIO  
pin.  
ADEVT  
101  
2 mA -z  
IPD (20 µA)  
ADIN[0]  
ADIN[1]  
ADIN[2]  
ADIN[3]  
ADIN[4]  
ADIN[5]  
ADIN[6]  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
ADIN[11]  
ADREFHI  
ADREFLO  
VCCAD  
117  
116  
115  
114  
113  
108  
107  
106  
105  
104  
103  
102  
109  
110  
3.3 V  
MibADC analog input pins  
3.3 VREF  
GND REF  
MibADC module high-voltage reference input  
MibADC module low-voltage reference input  
MibADC analog supply voltage  
111 3.3-V PWR  
VSSAD  
112  
GND  
MibADC analog ground reference  
SERIAL PERIPHERAL INTERFACE 1 (SPI1)  
SPI1 clock. SPI1CLK can be programmed as a GIO  
SPI1CLK  
SPI1ENA  
SPI1SCS  
4
2
1
pin.  
SPI1 chip enable. Can be programmed as a GIO pin.  
SPI1 slave chip select. Can be programmed as a GIO  
pin.  
5-V tolerant  
4 mA  
SPI1 data stream. Slave in/master out. Can be  
programmed as a GIO pin.  
SPI1SIMO  
SPI1SOMI  
5
7
SPI1 data stream. Slave out/master in. Can be  
programmed as a GIO pin.  
SERIAL PERIPHERAL INTERFACE 2 (SPI2)  
SPI2 clock. Can be programmed as a GIO pin.  
SPI2CLK  
SPI2ENA  
56  
60  
SPI2 chip enable. Can be programmed as a GIO pin.  
SPI2 slave chip select. Can be programmed as a GIO  
pin.  
SPI2SCS  
SPI2SIMO  
SPI2SOMI  
62  
59  
57  
5-V tolerant  
4 mA  
SPI2 data stream. Slave in/master out. Can be  
programmed as a GIO pin.  
SPI2 data stream. Slave out/master in. Can be  
programmed as a GIO pin.  
INTER-INTEGRATED CIRCUIT 1 (I2C1)  
I2C1 serial data pin or GIO pin  
I2C1 serial clock pin or GIO pin  
INTER-INTEGRATED CIRCUIT 2 (I2C2)  
I2C2 serial data pin or GIO pin  
I2C2 serial clock pin or GIO pin  
I2C1SDA  
I2C1SCL  
87  
88  
5-V tolerant  
5-V tolerant  
4 mA  
I2C2SDA  
I2C2SCL  
94  
95  
4 mA  
10  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
CURRENT  
OUTPUT  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
INTER-INTEGRATED CIRCUIT 3 (I2C3)  
I2C3 serial data pin or GIO pin  
I2C3 serial clock pin or GIO pin  
INTER-INTEGRATED CIRCUIT 4 (I2C4)  
I2C4 serial data pin or GIO pin  
I2C4 serial clock pin or GIO pin  
INTER-INTEGRATED CIRCUIT 5 (I2C5)  
I2C5 serial data pin or GIO pin  
I2C5 serial clock pin or GIO pin  
ZERO-PIN PHASE-LOCKED LOOP (ZPLL)  
I2C3SDA  
I2C3SCL  
29  
28  
5-V tolerant  
5-V tolerant  
4 mA  
I2C4SDA  
I2C4SCL  
41  
40  
4 mA  
I2C5SDA  
I2C5SCL  
38  
37  
5-V tolerant  
1.8 V  
4 mA  
OSCIN  
33  
32  
Crystal connection pin or external clock input  
External crystal connection pin  
OSCOUT  
2 mA  
Enable/disable the ZPLL. The ZPLL can be bypassed  
and the oscillator becomes the system clock. If not in  
bypass mode, TI recommends that this pin be  
connected to ground or pulled down to ground by an  
external resistor.  
PLLDIS  
97  
3.3 V  
IPD (20 µA)  
SERIAL COMMUNICATIONS INTERFACE 1 (SCI1)  
SCI1 clock. SCI1CLK can be programmed as a GIO  
pin.  
SCI1CLK  
SCI1RX  
SCI1TX  
48  
46  
45  
3.3 V  
5-V tolerant  
3.3 V  
2 mA -z  
4 mA  
IPD (20 µA)  
SCI1 data receive. SCI1RX can be programmed as a  
GIO pin.  
SCI1 data transmit. SCI1TX can be programmed as a  
GIO pin.  
2 mA -z  
IPU (20 µA)  
SERIAL COMMUNICATIONS INTERFACE 2 (SCI2)  
SCI2 clock. SCI2CLK can be programmed as a GIO  
pin.  
SCI2CLK  
SCI2RX  
SCI2TX  
51  
50  
49  
3.3 V  
5-V tolerant  
3.3 V  
2 mA -z  
4 mA  
IPD (20 µA)  
SCI2 data receive. SCI2RX can be programmed as a  
GIO pin.  
SCI2 data transmit. SCI2TX can be programmed as a  
GIO pin.  
2 mA -z  
IPU (20 µA)  
SERIAL COMMUNICATIONS INTERFACE 3 (SCI3)  
SCI3 clock. SCI3CLK can be programmed as a GIO  
pin.  
SCI3CLK  
SCI3RX  
SCI3TX  
24  
22  
21  
3.3 V  
5-V tolerant  
3.3 V  
2 mA -z  
4 mA  
IPD (20 µA)  
SCI3 data receive. SCI3RX can be programmed as a  
GIO pin.  
SCI3 data transmit. SCI3TX can be programmed as a  
GIO pin.  
2 mA -z  
IPU (20 µA)  
SYSTEM MODULE (SYS)  
Bidirectional pin. CLKOUT can be programmed as a  
GIO pin or the output of SYSCLK, ICLK, or MCLK.  
CLKOUT  
PORRST  
81  
3.3 V  
3.3 V  
8 mA  
Input master chip power-up reset. External VCC  
monitor circuitry must assert a power-on reset.  
118  
IPD (20 µA)  
IPU (20 µA)  
Bidirectional reset. The internal circuitry can assert a  
reset, and an external system reset can assert a  
device reset.  
On this pin, the output buffer is implemented as an  
open drain (drives low only).  
RST  
121  
3.3 V  
4 mA  
To ensure an external reset is not arbitrarily generated,  
TI recommends that an external pullup resistor be  
connected to this pin.  
11  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
CURRENT  
OUTPUT  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
WATCHDOG/REAL-TIME INTERRUPT (WD/RTI)  
Analog watchdog reset. The AWD pin provides a  
system reset if the WD KEY is not written in time by  
the system, providing an external RC network circuit is  
connected. If the user is not using AWD, TI  
recommends that this pin be connected to ground or  
pulled down to ground by an external resistor.  
AWD  
36  
3.3 V  
8 mA  
For more details on the external RC network circuit,  
see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
TEST/DEBUG (T/D)  
TCK  
TDI  
76  
74  
IPD (20 µA)  
Test clock. TCK controls the test hardware (JTAG).  
Test data in. TDI inputs serial data to the test  
instruction register, test data register, and  
programmable test address (JTAG).  
3.3 V  
8 mA  
8 mA  
IPU (20 µA)  
IPD (20 µA)  
Test data out. TDO outputs serial data from the test  
instruction register, test data register, identification  
register, and programmable test address (JTAG).  
TDO  
75  
Test enable. Reserved for internal use only. TI  
recommends that this pin be connected to ground or  
pulled down to ground by an external resistor.  
TEST  
TMS  
124  
17  
IPD (20 µA)  
IPU (20 µA)  
IPU (20 µA)  
Serial input for controlling the state of the CPU test  
access port (TAP) controller (JTAG).  
8 mA  
8 mA  
Serial input for controlling the second TAP. TI  
recommends that this pin be connected to VCCIO or  
pulled up to VCCIO by an external resistor.  
3.3 V  
TMS2  
16  
Test hardware reset to TAP1 and TAP2. IEEE  
Standard 1149-1 (JTAG) Boundary-Scan Logic. TI  
recommends that this pin be pulled down to ground by  
an external resistor.  
TRST  
144  
132  
IPD (20 µA)  
FLASH  
Flash test pad 2. For proper operation, this pin must  
not be connected [no connect (NC)].  
FLTP2  
VCCP  
NC  
NC  
131 3.3-V PWR  
Flash external pump voltage (3.3 V)  
SUPPLY VOLTAGE CORE (1.8 V)  
13  
31  
53  
VCC  
1.8-V PWR  
92  
Core logic supply voltage  
123  
130  
SUPPLY VOLTAGE DIGITAL I/O (3.3 V)  
25  
69  
VCCIO  
3.3-V PWR  
86  
Digital I/O supply voltage  
137  
12  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 2. Terminal Functions (continued)  
TERMINAL  
NAME  
INTERNAL  
PULLUP/  
CURRENT  
OUTPUT  
TYPE(1)(2)  
DESCRIPTION  
PULLDOWN(3)  
NO.  
SUPPLY GROUND CORE  
14  
34  
52  
VSS  
GND  
Core supply ground reference  
91  
122  
129  
SUPPLY GROUND DIGITAL I/O  
26  
68  
VSSIO  
GND  
Digital I/O supply ground reference  
85  
138  
13  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
B1M Device-Specific Information  
Memory  
Figure 1 shows the memory map of the B1M device.  
Memory (4G Bytes)  
0xFFFF_FFFF  
0xFFFF_FFFF  
SYSTEM with PSA, CIM, RTI,  
DEC, DMA, MMC, DWD  
System Module Control  
Registers  
0xFFFF_FD00  
0xFFFF_FC00  
0xFFFF_F700  
0xFFF8_0000  
IEM  
MSM  
Reserved  
(512K Bytes)  
0xFFF8_0000  
0xFFF7_FFFF  
Peripheral Control Registers  
(512K Bytes)  
0xFFF0_0000  
Reserved  
HET  
Reserved  
SPI1  
SCI3  
SCI2  
0xFFF7_FC00  
0xFFEF_FFFF  
Reserved  
0xFFE8_C000  
0xFFF7_F800  
0xFFF7_F600  
0xFFF7_F500  
0xFFF7_F400  
0xFFE8_BFFF  
Flash Control Registers  
0xFFE8_8000  
0xFFE8_7FFF  
0xFFE8_4021  
Reserved  
SCI1  
Reserved  
MibADC  
ECP  
0xFFE8_4020  
MPU Control Registers  
0xFFE8_4000  
0xFFF7_F000  
0xFFF7_EF00  
Reserved  
EBM  
Reserved (1 MByte)  
0xFFE0_0000  
0xFFF7_ED00  
0xFFF7_EC00  
GIO  
Reserved  
HECC2  
Reserved  
HECC1  
Reserved  
HECC2 RAM  
Reserved  
HECC1 RAM  
Reserved  
SCC  
0xFFF7_EA00  
0xFFF7_E800  
0xFFF7_E600  
0xFFF7_E400  
0xFFF7_E000  
0x7FFF_FFFF  
Reserved  
SCC RAM  
I2C4  
RAM  
0xFFF7_DC00  
0xFFF7_DB00  
0xFFF7_DA00  
0xFFF7_D900  
0xFFF7_D800  
0xFFF7_D500  
0xFFF7_D400  
0xFFF0_0000  
(64K Bytes)  
Program  
and  
Data Area  
I2C3  
I2C2  
I2C1  
FLASH  
(1M Bytes)  
2 Banks  
I2C5  
SPI2  
Reserved  
16 sectors  
HET RAM  
(1K Bytes)  
0x0000_0023  
0x0000_0020  
0x0000_001C  
0x0000_0018  
0x0000_0014  
0x0000_0010  
0x0000_000C  
0x0000_0008  
0x0000_0004  
0x0000_0000  
Reserved  
FIQ  
IRQ  
Reserved  
0x0000_0024  
0x0000_0023  
Data Abort  
Prefetch Abort  
Software Interrupt  
Undefined Instruction  
Reset  
Exception, Interrupt, and  
Reset Vectors  
0x0000_0000  
A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000.  
B. The CPU registers are not part of the memory map.  
Figure 1. TMS470R1B1M Memory Map  
14  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
memory selects  
Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined  
addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx  
and MFBALRx) that, together, define the array's starting (base) address, block size, and protection.  
The base address of each memory select is configurable to any memory address boundary that is a multiple of  
the decoded block size. For more information on how to control and configure these memory select registers,  
see the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature  
number SPNU189).  
For the memory selection assignments and the memory selected, see Table 3.  
Table 3. TMS470R1B1M Memory Selection Assignment  
MEMORY  
SELECTED  
(ALL INTERNAL)  
MEMORY  
SELECT  
MEMORY  
SIZE(1)  
MEMORY BASE ADDRESS  
REGISTER  
STATIC MEM  
CTL REGISTER  
MPU  
MSM  
0 (fine)  
1 (fine)  
2 (fine)  
3 (fine)  
4 (fine)  
FLASH/ROM  
FLASH/ROM  
RAM  
NO  
NO  
YES  
YES  
YES  
YES  
NO  
MFBAHR0 and MFBALR0  
MFBAHR1 and MFBALR1  
MFBAHR2 and MFBALR2  
MFBAHR3 and MFBALR3  
MFBAHR4 and MFBALR4  
1 M  
YES  
YES  
NO  
64 K(2)  
1 K  
RAM  
HET RAM  
SMCR1  
SMCR5  
128 MB (x8)  
512 K (x16)  
5 (coarse)  
6 (coarse)  
CS[5]/GIOC[3]  
CS[6]/GIOC[4]  
NO  
NO  
NO  
NO  
MCBAHR2 and MCBALR2  
MCBAHR3 and MCBALR3  
128 MB (x8)  
512 K (x16)  
SMCR6  
(1) x8 refers to size of memory in 8-bits; x16 refers to size of memory in 16-bits.  
(2) The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block  
size in the memory-base address register.  
JTAG security module  
The B1M device includes a JTAG security module to provide maximum security to the memory contents. The  
visible unlock code can be in the OTP sector or in the first bank of the user-programmable memory. For the  
B1M, the visible unlock code is in the OTP sector at address 0x0000_01F8.  
memory security module  
The B1M device also includes a memory security module (MSM) to provide additional security and flexibility to  
the memory contents' protection. The password for unlocking the MSM is located in the four words just before  
the flash protection keys.  
RAM  
The B1M device contains 64K-bytes of internal static RAM configurable by the SYS module to be addressed  
within the range of 0x0000_0000 to 0xFFE0_0000. This B1M RAM is implemented in one 64K-byte array  
selected by two memory-select signals. This B1M configuration imposes an additional constraint on the memory  
map for RAM; the starting addresses for both RAM memory selects cannot be offset from each other by the  
multiples of the size of the physical RAM (i.e., 64K bytes for the B1M device). The B1M RAM is addressed  
through memory selects 2 and 3.  
The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user  
finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an  
operating system while allowing access to the current task. For more detailed information on the MPU portion of  
the SYS module and memory protection, see the memory section of the TMS470R1x System Module Reference  
Guide (literature number SPNU189).  
F05 Flash  
The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a  
32-bit-wide data bus interface. The F05 flash has an external state machine for programming and erase  
functions. See the Flash read and Flash program and erase sections.  
15  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
flash protection keys  
The B1M device provides flash protection keys. These four 32-bit protection keys prevent  
program/erase/compaction operations from occurring until after the four protection keys have been matched by  
the CPU loading the correct user keys into the FMPKEY control register. The protection keys on the B1M are  
located in the last 4 words of the first 64K sector.  
flash read  
The B1M flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000 to  
0xFFE0_0000. The flash is addressed through memory selects 0 and 1.  
NOTE:  
The flash external pump voltage (VCCP) is required for all operations (program, erase,  
and read).  
flash pipeline mode  
When in pipeline mode, the flash operates with a system clock frequency of up to 60 MHz (versus a system  
clock frequency of 30 MHz in normal mode). Flash in pipeline mode is capable of accessing 64-bit words and  
provides two 32-bit pipelined words to the CPU. Also, in pipeline mode the flash can be read with no wait states  
when memory addresses are contiguous (after the initial 1- or 2-wait-state reads).  
NOTE:  
After a system reset, pipeline mode is disabled (ENPIPE bit [FMREGOPT.0] is a 0).  
In other words, the B1M device powers up and comes out of reset in non-pipeline  
mode. Furthermore, setting the flash configuration mode bit (GBLCTRL.4) will  
override pipeline mode.  
16  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
flash program and erase  
The B1M device flash contains two 512K-byte memory arrays (or banks), for a total of 1M-byte of flash, and  
consists of sixteen sectors. These sixteen sectors are sized as follows:  
SECTOR  
NO.  
MEMORY ARRAYS  
(OR BANKS)  
SEGMENT  
LOW ADDRESS  
HIGH ADDRESS  
OTP  
2K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
0x0000_0000  
0x0000_0000  
0x0001_0000  
0x0002_0000  
0x0003_0000  
0x0004_0000  
0x0005_0000  
0x0006_0000  
0x0007_0000  
0x0000_007FF  
0x0000_FFFF  
0x0001_FFFF  
0x0002_FFFF  
0x0003_FFFF  
0x0004_FFFF  
0x0005_FFFF  
0x0006_FFFF  
0x0007_FFFF  
0
1
2
3
4
5
6
7
BANK0  
(512K Bytes)  
0
1
2
3
4
5
6
7
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
64K Bytes  
0x0008_0000  
0x0009_0000  
0x000A_0000  
0x000B_0000  
0x000C_0000  
0x000D_0000  
0x000E_0000  
0x000F_0000  
0x0008_FFFF  
0x0009_FFFF  
0x000A_FFFF  
0x000B_FFFF  
0x000C_FFFF  
0x000D_FFFF  
0x000E_FFFF  
0x000F_FFFF  
BANK1  
(512K Bytes)  
The minimum size for an erase operation is one sector. The maximum size for a program operation is one 16-bit  
word.  
NOTE:  
The flash external pump voltage (VCCP) is required for all operations (program, erase,  
and read).  
Execution can occur from one bank while programming/erasing any or all sectors of another bank. However,  
execution cannot occur from any sector within a bank that is being programmed or erased.  
NOTE:  
When the OTP sector is enabled, the rest of flash memory is disabled. The OTP  
memory can only be read or programmed from code executed out of RAM.  
HET RAM  
The B1M device contains HET RAM. The HET RAM has a 64-instruction capability. The HET RAM is  
configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET  
RAM is addressed through memory select 4.  
17  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
peripheral selects and base addresses  
The B1M device uses 10 of the 16 peripheral selects to decode the base addresses of the peripherals. These  
peripheral selects are fixed and transparent to the user since they are part of the decoding scheme used by the  
SYS module.  
Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in Table 4.  
Table 4. B1M Peripherals, System Module, and Flash Base Addresses  
ADDRESS RANGE  
CONNECTING MODULE  
PERIPHERAL SELECTS  
BASE ADDRESS  
0 x FFFF_FFCC  
0 x FFFF_FF70  
0xFFFF_FF60  
0 x FFFF_FF40  
0 x FFFF_FF20  
0 x FFFF_FF00  
0 x FFFF_FE80  
0 x FFFF_FE00  
0xFFFF_FD80  
0 x FFFF_FD00  
0 x FFFF_FC00  
0 x FFFF_Fb00  
0 x FFFF_Fa00  
0 x FFFF_F800  
0xFFFF_F700  
0xFFF8_0000  
0 x FFF7_FD00  
0xFFF7_FC00  
0xFFF7_F900  
0xFFF7_F800  
0xFFF7_F700  
0xFFF7_F600  
0XFFF7_F500  
0xFFF7_F400  
0xFFF7_F100  
0xFFF7_F000  
0xFFF7_EF00  
0xFFF7_EE00  
0xFFF7_ED00  
0xFFF7_EC00  
0xFFF7_EB00  
0xFFF7_EA00  
0xFFF7_E900  
0xFFF7_E800  
0xFFF7_E700  
0xFFF7_E600  
0xFFF7_E500  
0xFFF7_E400  
0xFFF7_E100  
0xFFF7_E000  
ENDING ADDRESS  
0 x FFFF_FFFF  
0 x FFFF_FFCB  
0 x FFFF_FF6F  
0 x FFFF_FF5F  
0 x FFFF_FF3F  
0 x FFFF_FF1F  
0 x FFFF_FEFF  
0 x FFFF_FE7F  
0xFFFF_FDFF  
0 x FFFF_FD7F  
0 x FFFF_FCFF  
0 x FFFF_FBFF  
0 x FFFF_FAFF  
0 x FFFF_F9FF  
0xFFFF_F7FF  
0xFFFF_F6FF  
0xFFF7_FFFF  
0xFFF7_FCFF  
0xFFF7_FBFF  
0xFFF7_F8FF  
0xFFF7_F7FF  
0xFFF7_F6FF  
0XFFF7_F5FF  
0xFFF7_F4FF  
0xFFF7_F3FF  
0xFFF7_F0FF  
0xFFF7_EFFF  
0xFFF7_EEFF  
0xFFF7_EDFF  
0xFFF7_ECFF  
0xFFF7_EBFF  
0xFFF7_EAFF  
0xFFF7_E9FF  
0xFFF7_E8FF  
0xFFF7_E7FF  
0xFFF7_E6FF  
0xFFF7_E5FF  
0xFFF7_E4FF  
0xFFF7_E3FF  
0xFFF7_E0FF  
SYSTEM  
RESERVED  
DWD  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PSA  
CIM  
RTI  
DMA  
DEC  
RESERVED  
MMC  
IEM  
RESERVED  
RESERVED  
DMA CMD BUFFER  
MSM  
RESERVED  
RESERVED  
HET  
PS[0]  
PS[1]  
RESERVED  
SPI1  
RESERVED  
SCI3  
PS[2]  
PS[3]  
PS[4]  
SCI2  
SCI1  
RESERVED  
MibADC  
ECP  
RESERVED  
EBM  
GIO  
HECC2  
HECC1  
PS[5]  
HECC2 RAM  
HECC1 RAM  
PS[6]  
PS[7]  
RESERVED  
SCC  
18  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 4. B1M Peripherals, System Module, and Flash Base Addresses (continued)  
ADDRESS RANGE  
BASE ADDRESS  
CONNECTING MODULE  
PERIPHERAL SELECTS  
ENDING ADDRESS  
0xFFF7_DFFF  
0xFFF7_DCFF  
0xFFF7_DBFF  
0xFFF7_DAFF  
0xFFF7_D9FF  
0xFFF7_D8FF  
0xFFF7_D7FF  
0xFFF7_D5FF  
0xFFF7_D4FF  
0xFFF7_D3FF  
0xFFF7_CBFF  
0xFFF7_C7FF  
0xFFF7_BFFF  
0xFFE8_BFFF  
0xFFF8_7FFF  
0xFFE8_4023  
0xFFF8_3FFF  
RESERVED  
0xFFF7_DD00  
0xFFF7_DC00  
0xFFF7_DB00  
0xFFF7_DA00  
0xFFF7_D900  
0xFFF7_D800  
0xFFF7_D600  
0xFFF7_D500  
0xFFF7_D400  
0xFFF7_CC00  
0xFFF7_C800  
0xFFF7_C000  
0xFFF0_0000  
0xFFE8_8000  
0xFFF8_4024  
0xFFE8_4000  
0xFFF8_0000  
PS[8]  
SCC RAM  
I2C4  
I2C3  
I2C2  
PS[9]  
I2C1  
RESERVED  
I2C5  
PS[10]  
SPI2  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FLASH CONTROL REGISTERS  
RESERVED  
MPU CONTROL REGISTERS  
RESERVED  
PS[11] – PS[12]  
PS[13]  
PS[14] – PS[15]  
N/A  
N/A  
N/A  
N/A  
N/A  
19  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
direct-memory access (DMA)  
The direct-memory access (DMA) controller transfers data to and from any specified location in the B1M  
memory map (except for restricted memory locations like the system control registers area). The DMA manages  
up to 16 channels, and supports data transfer for both on-chip and off-chip memories and peripherals. The DMA  
controller is connected to both the CPU and peripheral buses, enabling these data transfers to occur in parallel  
with CPU activity and thus maximizing overall system performance.  
Although the DMA controller has two possible configurations, for the B1M device, the DMA controller  
configuration is 32 control packets and 16 channels.  
For the B1M DMA request hardwired configuration, see Table 5.  
Table 5. DMA Request Lines Connections(1)  
MODULES  
EBM  
DMA REQUEST INTERRUPT SOURCES  
DMA CHANNEL  
DMAREQ[0]  
DMAREQ[1]  
DMAREQ[2]  
DMAREQ[3]  
DMAREQ[4]  
DMAREQ[5]  
DMAREQ[6]  
DMAREQ[7]  
DMAREQ[8]  
DMAREQ[9]  
DMAREQ[10]  
DMAREQ[11]  
DMAREQ[12]  
DMAREQ[13]  
DMAREQ[14]  
DMAREQ[15]  
Expansion Bus DMA request  
EBDMAREQ[0]  
SPI1/I2C4  
SPI1/I2C4  
MibADC/I2C1  
MibADC/SCI1/I2C5  
MibADC/SCI1/I2C5  
I2C1  
SPI1 end-receive/I2C4 read  
SPI1 end-transmit/I2C4 write  
ADC EV/I2C1 read  
SPI1DMA0/I2C4DMA0  
SPI1DMA1/I2C4DMA1  
MibADCDMA0/I2C1DMA0  
MibADCDMA1/SCI1DMA0/I2C5DMA0  
MibADCDMA2/SCI1DMA1/I2C5DMA1  
I2C1DMA1  
ADC G1/SCI1 end-receive/I2C5 read  
ADC G2/SCI1 end-transmit/I2C5 write  
I2C1 write  
SCI3/SPI2  
SCI3/SPI2  
I2C2  
SCI3 end-receive/SPI2 end-receive  
SCI3 end-transmit/SPI2 end-transmit  
I2C2 read end-receive  
SCI3DMA0/SPI2DMA0  
SCI3DMA01SPI2DMA1  
I2C2DMA0  
I2C2  
I2C2 write end-transmit  
I2C3 read  
I2C2DMA1  
I2C3  
I2C3DMA0  
I2C3  
I2C3 write  
I2C3DMA1  
Reserved  
SCI2  
SCI2 end-receive  
SCI2 end-transmit  
SCI2DMA0  
SCI2DMA1  
SCI2  
(1) For DMA channels with more than one assigned request source, only one of the sources listed can be the DMA request generator in a  
given application. The device has software control to ensure that there are no conflicts between requesting modules.  
Each channel has two control packets attached to it, allowing the DMA to continuously load RAM and generate  
periodic interrupts so that the data can be read by the CPU. The control packets allow for the interrupt enable,  
and the channels determine the priority level of the interrupt.  
DMA transfers occur in one of two modes:  
Non-request mode (used when transferring from memory to memory)  
Request mode (used when transferring from memory to peripheral)  
For more detailed functional information on the DMA controller, see the TMS470R1x Direct Memory Access  
(DMA) Controller Reference Guide (literature number SPNU194).  
20  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
interrupt priority (IEM to CIM)  
Interrupt requests originating from the B1M peripheral modules (i.e., SPI1 or SPI2; SCI1 or SCI2; RTI; etc.) are  
assigned to channels within the 48-channel interrupt expansion module (IEM) where, via programmable register  
mapping, these channels are then mapped to the 32-channel central interrupt manager (CIM) portion of the SYS  
module.  
Programming multiple interrupt sources in the IEM to the same CIM channel effectively shares the CIM channel  
between sources.  
The CIM request channels are maskable so that individual channels can be selectively disabled. All interrupt  
requests can be programmed in the CIM to be of either type:  
Fast interrupt request (FIQ)  
Normal interrupt request (IRQ)  
The CIM prioritizes interrupts. The precedences of request channels decrease with ascending channel order in  
the CIM (0 [highest] and 31 [lowest] priority). For IEM-to-CIM default mapping, channel priorities, and their  
associated modules, see Table 6.  
Table 6. Interrupt Priority (IEM and CIM)  
DEFAULT CIM INTERRUPT  
MODULES  
INTERRUPT SOURCES  
IEM CHANNEL  
LEVEL/CHANNEL  
SPI1  
RTI  
SPI1 end-transfer/overrun  
0
0
COMP2 interrupt  
COMP1 interrupt  
TAP interrupt  
1
1
RTI  
2
2
RTI  
3
3
SPI2  
SPI2 end-transfer/overrun  
GIO interrupt A  
4
4
GIO  
5
5
Reserved  
HET  
6
6
HET interrupt 1  
7
7
I2C1  
I2C1 interrupt  
8
8
SCI1/SCI2  
SCI1  
SCI1 or SCI2 error interrupt  
SCI1 receive interrupt  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
I2C2  
I2C2 interrupt  
HECC1  
SCC  
HECC1 interrupt A  
SCC interrupt A  
Reserved  
MibADC  
SCI2  
MibADC end event conversion  
SCI2 receive interrupt  
DMA interrupt 0  
DMA  
I2C3  
I2C3 interrupt  
SCI1  
SCI1 transmit interrupt  
SW interrupt (SSI)  
System  
Reserved  
HET  
HET interrupt 2  
HECC1  
SCC  
HECC1 interrupt B  
SCC interrupt B  
SCI2  
SCI2 transmit interrupt  
MibADC end Group 1 conversion  
DMA Interrupt 1  
MibADC  
DMA  
GIO  
GIO interrupt B  
MibADC  
SCI3  
MibADC end Group 2 conversion  
SCI3 error interrupt  
21  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Table 6. Interrupt Priority (IEM and CIM) (continued)  
DEFAULT CIM INTERRUPT  
LEVEL/CHANNEL  
MODULES  
INTERRUPT SOURCES  
IEM CHANNEL  
Reserved  
HECC2  
HECC2  
SCI3  
31  
31  
31  
31  
31  
31  
31  
31  
32–37  
38  
HECC2 interrupt A  
HECC2 interrupt B  
SCI3 receive interrupt  
SCI3 transmit interrupt  
I2C4 interrupt  
39  
40  
SCI3  
41  
I2C4  
42  
I2C5  
I2C5 interrupt  
43  
Reserved  
44–47  
For more detailed functional information on the IEM, see the TMS470R1x Interrupt Expansion Module (IEM)  
Reference Guide (literature number SPNU211). For more detailed functional information on the CIM, see the  
TMS470R1x System Module Reference Guide (literature number SPNU189).  
22  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
expansion bus module (EBM)  
The expansion bus module (EBM) is a standalone module used to bond out both general-purpose input/output  
pins and expansion bus interface pins. This module supports the multiplexing of the GIO and the expansion bus  
interface functions. The module also supports 8- and 16- bit expansion bus memory interface mappings as well  
as mapping of the following expansion bus signals:  
27-bit address bus (EBADDR[26:0] for x8, 19-bit address bus (EBADDR[18:0] for x16  
8- or 16-bit data bus (EBDATA[7:0] or EBDATA[15:0])  
2 write strobes (EBWR[1:0])  
2 memory chip selects (EBCS[6:5])  
1 output enable (EBOE)  
1 external hold signal for interfacing to slow memories (EBHOLD)  
1 DMA request line (EBDMAREQ[0])  
Table 7 shows the multiplexing of I/O signals with the expansion bus interface signals. The mapping of these  
pins varies depending on the memory mode.  
Table 7. Expansion Bus Mux Mapping(1)  
EXPANSION BUS MODULE PINS  
GIO  
x8(2)  
x16(2)  
GIOB[0]  
GIOC[0]  
EBDMAREQ[0]  
EBOE  
EBDMAREQ[0]  
EBOE  
GIOC[2:1]  
GIOC[4:3]  
GIOD[5:0]  
GIOE[7:0]  
GIOF[7:0]  
GIOG[7:0]  
GIOH[5]  
EBWR[1:0]  
EBWR[1:0]  
EBCS[6:5]  
EBCS[6:5]  
EBADDR[5:0]  
EBDATA[7:0]  
EBADDR[13:6]  
EBADDR[21:14]  
EBHOLD  
EBADDR[5:0]  
EBDATA[7:0]  
EBDATA[15:8]  
EBADDR[13:6]  
EBHOLD  
I2C5SDA  
I2C5SCL  
I2C4SCL  
I2C4SDA  
GIOH[0]  
EBADDR[26]  
EBADDR[25]  
EBADDR[24]  
EBADDR[23]  
EBADDR[22]  
EBADDR[18]  
EBADDR[17]  
EBADDR[16]  
EBADDR[15]  
EBADDR[14]  
(1) For more detailed information, see theTMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222) and  
the TMS470R1x General Purpose Input/Output Reference Guide (literature number SPNU192).  
(2) X8 refers to size of memory in 8-bits; X16 refers to size of memory in 16-bits.  
Table 8 lists the names of the expansion bus interface signals and their functions.  
Table 8. Expansion Bus Pins  
PIN  
EBDMAREQ  
EBOE  
DESCRIPTION  
Expansion bus DMA request  
Expansion bus pin enable  
EBWR  
Expansion bus write strobe EBWR[1] controls EBDATA[15:8] and EBWR[0]  
controls EBDATA[7:0]  
EBCS  
Expansion bus chip select  
Expansion bus address pins  
Expansion bus data pins  
EBADDR  
EBDATA  
EBHOLD  
Expansion bus hold: An external device may assert this signal to add wait  
states to an expansion bus transaction.  
23  
Submit Documentation Feedback  
 
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
MibADC  
The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a  
10-bit digital value.  
The B1M MibADC module can function in two modes: compatibility mode, where its programmer's model is  
compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or in  
buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion  
group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by  
interrupts or by the DMA.  
MibADC event trigger enhancements  
The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC.  
Both group 1 and the event group can be configured for event-triggered operation, providing up to two  
event-triggered groups.  
The trigger source and polarity can be selected individually for both group1 and the event group from the  
options identified in Table 9.  
Table 9. MibADC Event Hookup Configuration  
SOURCE SELECT BITS FOR G1 OR EVENT  
EVENT #  
SIGNAL PIN NAME  
(G1SRC[1:0] OR EVSRC[1:0])  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
00  
01  
10  
11  
ADEVT  
HET18  
Reserved  
Reserved  
For group1, these event-triggered selections are configured via the group 1 source select bits (G1SRC[1:0]) in  
the AD event source register (ADEVTSRC[5:4]). For the event group, these event-triggered selections are  
configured via the event group source select bits (EVSRC[1:0]) in the AD event source register  
(ADEVTSRC[1:0]).  
For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital  
Converter (MibADC) Reference Guide (literature number SPNU206).  
24  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
JTAG Interface  
There are two main test access ports (TAPs) on the device:  
TMS470R1x CPU TAP  
Device TAP for factory test  
Some of the JTAG pins are shared among these two TAPs. The hookup is illustrated in Figure 2.  
TMS470R1x CPU  
TCK  
TRST  
TMS  
TDI  
TCK  
TRST  
TMS  
TDI  
TDO  
TDO  
Factory Test  
TCK  
TRST  
TMS  
TDI  
TMS2  
TDO  
Figure 2. JTAG Interface  
25  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
documentation support  
Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types of  
documentation available include data sheets with design specifications; complete user's guides for all devices  
and development support tools; and hardware and software applications. Useful reference documentation  
includes:  
Bulletin  
TMS470 Microcontroller Family Product Bulletin (literature number SPNB086)  
User's Guides  
TMS470R1x System Module Reference Guide (literature number SPNU189)  
TMS470R1x General Purpose Input/Output (GIO) Reference Guide (literature number SPNU192)  
TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194)  
TMS470R1x Direct Memory Access (DMA) Controller Reference Guide (literature number SPNU194)  
TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number SPNU195)  
TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196)  
TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197)  
TMS470R1x High End Timer (HET) Reference Guide (literature number SPNU199)  
TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202)  
TMS470R1x MultiBuffered Analog to Digital (MibADC) Reference Guide (literature number SPNU206)  
TMS470R1x Zero Pin Phase Locked Loop (ZPLL) Clock Module Reference Guide (literature number  
SPNU212)  
TMS470R1x Digital Watchdog Timer Reference Guide (literature number SPNU244)  
TMS470R1x Interrupt Expansion Module (IEM) Reference Guide (literature number SPNU211)  
TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214)  
TMS470R1x Class II Serial Interface A (C2SIa) Reference Guide (literature number SPNU218)  
TMS470R1x Expansion Bus Module (EBM) Reference Guide (literature number SPNU222)  
TMS470R1x Inter-Integrated Circuit (I2C) Reference Guide (literature number SPNU223)  
TMS470R1x JTAG Security Module (JSM) Reference Guide (literature number SPNU245)  
TMS470R1x Memory Security Module (MSM) Reference Guide (literature number SPNU246)  
TMS470 Peripherals Overview Reference Guide (literature number SPNU248)  
Errata Sheet  
TMS470R1B1M TMS470 Microcontrollers Silicon Errata (literature number SPNZ139)  
26  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP  
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS  
(e.g., TMS470R1B1M). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX  
TMP  
TMS  
Experimental device that is not necessarily representative of the final device's electrical  
specifications  
Final silicon die that conforms to the device's electrical specifications but has not completed quality  
and reliability verification  
Fully qualified production device  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
Figure 3 illustrates the numbering and symbol nomenclature for the TMS470R1x family.  
27  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
TMS 470 R1  
B
1M  
PGE  
A
OPTIONS  
PREFIX  
TMS = Fully Qualified Device  
FAMILY  
TEMPERATURE RANGE  
A = −40°C − 85 °C  
470 = TMS470 RISC − Embedded  
Microcontroller Family  
PACKAGE TYPE  
PGE = 144-pin Low-Profile Quad Flatpack (LQFP)  
ARCHITECTURE  
R1 = ARM7TDM1 CPU  
REVISION CHANGE  
Blank = Original  
DEVICE TYPE B  
With 1024K−Bytes Flash Memory:  
60−MHZ Frequency  
FLASH MEMORY  
1.8-V Core, 3.3-V I/O  
Flash Program Memory  
1M = 1024K−Bytes Flash Memory  
ZPLL Clock  
64K−Byte Static RAM  
1K−Byte HET RAM (64 Instructions)  
AWD  
DWD  
RTI  
10−Bit, 12−Input MibADC  
Two SPI Modules  
Three SCI Modules  
Two High−End CAN HECC  
HET, 16 Channels  
ECP  
IEM  
DMA  
Five I2C Modules  
EMB  
MSM  
Figure 3. TMS470R1x Family Nomenclature  
28  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
device identification code register  
The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash  
device, and an assigned device-specific part number (see Table 10). The B1M device identification code register  
value is 0xnA5F.  
Figure 4. TMS470 Device ID Bit Allocation Register [offset = 0xFFFF_FFF0h]  
31  
15  
16  
0
Reserved  
12  
11  
10  
9
3
2
1
VERSION  
R-K  
TF  
R/F  
R-K  
PART NUMBER  
R-K  
1
1
1
R-K  
R-1  
R-1  
R-1  
LEGEND:  
For bits 3-15: R = Read only, -K = Value constant after RESET.  
For bits 0-2: R = Read only, -1 = Value after RESET.  
Table 10. TMS470 Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value Description  
31-16 Reserved  
15-12 VERSION  
Reads are undefined and writes have no effect.  
Silicon version (revision) bits  
These bits identify the silicon version of the device.  
11  
TF  
Technology family bit  
This bit distinguishes the technology family core power supply:  
0
1
3.3 V for F10/C10 devices  
1.8 V for F05/C05 devices  
10  
R/F  
ROM/flash bit  
This bit distinguishes between ROM and flash devices:  
0
1
Flash device  
ROM device  
9-3  
2-0  
PART NUMBER  
1
Device-specific part number bits  
These bits identify the assigned device-specific part number. The assigned device-specific part  
number for the B1M device is 1001011.  
Mandatory High  
Bits 2, 1, and 0 are tied high by default.  
29  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
DEVICE ELECTRICAL SPECIFICATIONS AND TIMING PARAMETERS  
Absolute Maximum Ratings  
over operating free-air temperature range, A version (unless otherwise noted)(1)  
(2)  
Supply voltage range:  
Supply voltage range:  
Input voltage range:  
VCC  
–0.3 V to 2.5 V  
–0.3 V to 4.1 V  
– 0.3 V to 6.0 V  
–0.3 V to 4.1 V  
VCCIO, VCCAD, VCCP (flash pump)(2)  
All 5 V tolerant input pins  
All other input pins  
Input clamp current:  
IIK (VI < 0 or VI > VCCIO)  
All pins except ADIN[0:11], PORRST, TRST , TEST,  
and TCK  
±20 mA  
IIK (VI < 0 or VI > VCCAD  
)
ADIN[0:11]  
±10 mA  
Operating free-air temperature  
range, TA:  
A version  
–40°C to 85°C  
Operating junction temperature range, TJ:  
Storage temperature range, Tstg  
–40°C to 150°C  
–40°C to 150°C  
:
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to their associated grounds.  
Device Recommended Operating Conditions(1)  
MIN  
1.71  
NOM  
MAX  
2.05  
UNIT  
SYSCLK = 48 MHz  
(pipeline mode enabled)  
VCC  
Digital logic supply voltage (Core)  
V
SYSCLK = 60 MHz  
(pipeline mode enabled)  
1.81  
2.05  
VCCIO  
VCCAD  
VCCP  
VSS  
Digital logic supply voltage (I/O)  
ADC supply voltage  
3
3
3
3.6  
3.6  
3.6  
V
V
V
V
V
Flash pump supply voltage  
Digital logic supply ground  
ADC supply ground(1)  
0
VSSAD  
TA  
–0.1  
–40  
–40  
0.1  
Operating free-air temperature  
Operating junction temperature  
A version  
85 ° C  
TJ  
150 ° C  
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
.
30  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range(1)  
PARAMETER  
Vhys Input hysteresis  
TEST CONDITIONS  
MIN  
TYP(2)  
MAX  
UNIT  
0.15  
V
Low-level input  
voltage  
VIL  
VIH  
VIH  
All inputs(3)  
–0 .3  
2
0.8  
VCCIO + 0. 3  
1.8  
V
V
V
High-level input  
voltage  
All inputs  
Input threshold  
voltage  
AWD only(4)  
1.35  
IOL = IOL MAX  
IOL = 50 µA  
0.2 VCCIO  
0.2  
VOL Low-level output voltage(5)  
VOH High-level output voltage(5)  
V
IOH = IOH MIN  
IOH = 50 µA  
0.8 VCCIO  
V
VCCIO – 0.2  
VI < VSSIO – 0. 3 or VI > VCCIO  
0. 3  
+
IIC  
Input clamp current (I/O pins)(6)  
IIL Pulldown  
–2  
2
mA  
VI = VSS  
–1  
5
1
40  
–5  
1
IIH Pulldown  
IIL Pullup  
VI = VCCIO  
VI = VSS  
Input current  
(3.3 V input pins)  
–40  
–1  
–1  
–1  
1
µA  
IIH Pullup  
VI = VCCIO  
No pullup or pulldown  
VI = VSS  
II  
All other pins  
1
1
VI = VCCIO  
VI = 5 V  
5
Input current (5 V tolerant input pins)  
µA  
5
25  
50  
VI = 5.5 V  
25  
CLKOUT, AWD, TDI,  
TDO, TMS, TMS2  
8
Low-level output  
current  
RST  
4
2
4
IOL  
VOL = VOL MAX  
mA  
All other 3.3 V I/O(7)  
5 V tolerant  
CLKOUT, TDI, TDO,  
TMS, TMS2  
–8  
High-level output  
current  
RST  
–4  
–2  
–4  
IOH  
VOH = VOH MIN  
mA  
All other 3.3 V I/O(7)  
5 V tolerant  
SYSCLK = 48 MHz,  
ICLK = 24 MHz, VCC = 2.05 V  
110  
125  
mA  
mA  
VCC Digital supply current (operating mode)  
SYSCLK = 60 MHz,  
ICLK = 30 MHz, VCC = 2.05 V  
ICC  
VCC Digital supply current (standby mode)(8)(9) OSCIN = 5 MHz, VCC = 2.05 V  
VCC Digital supply current (halt mode)(8)(9)  
All frequencies, VCC = 2.05 V  
1.30  
700  
mA  
µA  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) The typical values indicated in this table are the expected values during operation under normal operating conditions: nominal VCC  
,
VCCIO, or VCCAD, room temperature.  
(3) This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST Timings section.  
(4) These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
(5) VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied.  
(6) Parameter does not apply to input-only or output-only pins.  
(7) Some of the 2 mA buffers on this device are zero-dominant buffers, as indicated by a -z in the Output Current column of the Terminal  
Functions table. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the  
resulting value will always be low.  
(8) For flash banks/pumps in sleep mode.  
(9) For reduced power consumption in low power mode, CANSRX and CANSTX should be driven output LOW.  
31  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended operating free-air temperature range  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(2)  
MAX  
UNIT  
VCCIO Digital supply current (operating mode)  
ICCIO VCCIO Digital supply current (standby mode)(9)  
VCCIO Digital supply current (halt mode)(9)  
VCCAD supply current (operating mode)  
ICCAD VCCAD supply current (standby mode)  
VCCAD supply current (halt mode)  
No DC load, VCCIO = 3.6 V(10)  
No DC load, VCCIO = 3.6 V(10)  
No DC load, VCCIO = 3.6 V(10)  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
All frequencies, VCCAD = 3.6 V  
15  
10  
10  
15  
10  
10  
mA  
µA  
µ A  
mA  
µA  
µA  
SYSCLK = 48 MHz, VCCP = 3.6 V  
read operation  
45  
mA  
SYSCLK = 60 MHz, VCCP = 3.6 V  
read operation  
55  
70  
10  
mA  
mA  
µA  
ICCP VCCP pump supply current  
VCCP = 3.6 V program and erase  
VCCP = 3.6 V standby mode  
operation(8)  
VCCP = 3.6 V halt mode  
operation(8)  
10  
µA  
CI  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
CO  
(10) I/O pins configured as inputs or outputs with no load. All pulldown inputs 0.2 V. All pullup inputs VCCIO – 0.2 V.  
Parameter Measurement Information  
IOL  
Tester Pin  
Electronics  
Output  
50  
VLOAD  
Under  
Test  
CL  
IOH  
(A)  
Where:  
I
I
= I MAX for the respective pin  
OL  
= I MIN for the respective pin  
OH  
OL  
(A)  
OH  
V
C
= 1.5 V  
LOAD  
(B)  
= 150-pF typical load-circuit capacitance  
L
A. For these values, see the "Electrical Characteristics over Recommended Operating Free-Air Temperature Range"  
table.  
B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted.  
Figure 5. Test Load Circuit  
32  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Timing Parameter Symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. To shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
CM  
CO  
ER  
ICLK  
M
Compaction, CMPCT  
CLKOUT  
RD  
Read  
RST  
RX  
Reset, RST  
SCInRX  
Erase  
Interface clock  
Master mode  
S
Slave mode  
SCInCLK  
SPInSIMO  
SPInSOMI  
SPInCLK  
System clock  
SCInTX  
SCC  
SIMO  
SOMI  
SPC  
SYS  
TX  
OSC, OSCI OSCIN  
OSCO  
P
OSCOUT  
Program, PROG  
R
Ready  
R0  
R1  
Read margin 0, RDMRGN0  
Read margin 1, RDMRGN1  
Lowercase subscripts and their meanings are:  
a
c
d
f
access time  
cycle time (period)  
delay time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
fall time  
v
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
L
High  
Low  
X
Z
Unknown, changing, or don't care level  
High impedance  
V
Valid  
33  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
External Reference Resonator/Crystal Oscillator Clock Option  
The oscillator is enabled by connecting the appropriate fundamental 4–10 MHz resonator/crystal and load  
capacitors across the external OSCIN and OSCOUT pins as shown in Figure 6a. The oscillator is a single-stage  
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement  
and HALT mode. TI strongly encourages each customer to submit samples of the device to the  
resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will  
best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
An external oscillator source can be used by connecting a 1.8-V clock signal to the OSCIN pin and leaving the  
OSCOUT pin unconnected (open) as shown in Figure 6b.  
OSCIN  
OSCOUT  
OSCIN  
OSCOUT  
External  
Clock Signal  
(toggling 0-1.8 V)  
(A)  
(A)  
C1  
C2  
Crystal  
(a)  
(b)  
A. The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Figure 6. Crystal/Clock Connection  
34  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
ZPLL AND CLOCK SPECIFICATIONS  
Timing Requirements for ZPLL Circuits Enabled or Disabled  
MIN  
4
TYP  
MAX UNIT  
f(OSC)  
Input clock frequency  
10 MHz  
ns  
tc(OSC)  
Cycle time, OSCIN  
100  
15  
tw(OSCIL)  
tw(OSCIH)  
f(OSCRST)  
Pulse duration, OSCIN low  
Pulse duration, OSCIN high  
OSC FAIL frequency(1)  
ns  
15  
ns  
53  
kHz  
(1) Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1)  
bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide  
(literature number SPNU189).  
Switching Characteristics over Recommended Operating Conditions for Clocks(1)(2)(3)  
PARAMETER  
TEST CONDITIONS(4)  
Pipeline mode enabled  
Pipeline mode disabled  
MIN  
MAX UNIT  
60(6) MHz  
24 MHz  
24 MHz  
30 MHz  
24 MHz  
30 MHz  
24 MHz  
ns  
f(SYS)  
System clock frequency(5)  
f(CONFIG)  
f(ICLK)  
System clock frequency - flash config mode  
Interface clock frequency  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
f(ECLK)  
External clock output frequency for ECP module  
16.7  
41.6  
41.6  
33.3  
41.6  
33.3  
41.6  
tc(SYS)  
Cycle time, system clock  
ns  
tc(CONFIG)  
tc(ICLK)  
Cycle time, system clock - flash config mode  
Cycle time, interface clock  
ns  
Pipeline mode enabled  
Pipeline mode disabled  
Pipeline mode enabled  
Pipeline mode disabled  
ns  
ns  
ns  
tc(ECLK)  
Cycle time, ECP module external clock output  
ns  
(1) f(SYS) = M × f(OSC)/R, where M = {8}, R = {1,2,3,4,5,6,7,8} when PLLDIS = 0. R is the system-clock divider determined by the  
CLKDIVPRE [2:0] bits in the global control register (GLBCTRL[2:0]) and M is the PLL multiplier determined by the MULT4 bit also in the  
GLBCTRL register (GLBCTRL.3).  
f(SYS) = f(OSC)/R, where R = {1,2,3,4,5,6,7,8} when PLLDIS = 1.  
f(ICLK) = f(SYS)/X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1]  
bits in the SYS module.  
(2) f(ECLK) = f(ICLK)/N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.  
(3) Only ZPLL mode is available. FM mode must not be turned on.  
(4) Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0).  
(5) Flash Vread must be set to 5 V to achieve maximum system clock frequency.  
(6) Operating VCC range for this system clock frequency is 1.81 to 2.05 V.  
35  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Switching Characteristics over Recommended Operating Conditions for External Clocks(1)(2)(3)  
(see Figure 7 and Figure 8)  
PARAMETER  
TEST CONDITIONS  
SYSCLK or MCLK(4)  
MIN  
MAX  
UNIT  
0.5tc(SYS) – tf  
tw(COL)  
tw(COH)  
tw(EOL)  
tw(EOH)  
Pulse duration, CLKOUT low  
ICLK: X is even or 1(5)  
ICLK: X is odd and not 1(5)  
SYSCLK or MCLK(4)  
0.5tc(ICLK) – tf  
ns  
0.5tc(ICLK) + 0.5tc(SYS) – tf  
0.5tc(SYS) – tr  
Pulse duration, CLKOUT high  
Pulse duration, ECLK low  
Pulse duration, ECLK high  
ICLK: X is even or 1(5)  
0.5tc(ICLK) – tr  
ns  
ns  
ns  
ICLK: X is odd and not 1(5)  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ICLK) – 0.5tc(SYS) – tr  
0.5tc(ECLK) – tf  
0.5tc(ECLK) – tf  
N is odd and X is odd and not 1  
N is even and X is even or odd  
N is odd and X is even  
0.5tc(ECLK) + 0.5tc(SYS) – tf  
0.5tc(ECLK) – tr  
0.5tc(ECLK) – tr  
N is odd and X is odd and not 1  
0.5tc(ECLK) – 0.5tc(SYS) – tr  
(1) X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module.  
(2) N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.  
(3) CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active.  
(4) Clock source bits are selected as either SYSCLK (CLKCNTL[6:5] = 11 binary) or MCLK (CLKCNTL[6:5] = 10 binary).  
(5) Clock source bits are selected as ICLK (CLKCNTL[6:5] = 01 binary).  
t
w(COH)  
CLKOUT  
t
w(COL)  
Figure 7. CLKOUT Timing Diagram  
t
w(EOH)  
ECLK  
t
w(EOL)  
Figure 8. ECLK Timing Diagram  
36  
Submit Documentation Feedback  
 
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
RST AND PORRST TIMINGS  
Timing Requirements for PORRST  
(see Figure 9)  
MIN  
MAX UNIT  
VCCPORL  
VCC low supply level when PORRST must be active during power up  
0.6  
V
V
V
V
VCC high supply level when PORRST must remain active during power up and become  
active during power down  
VCCPORH  
VCCIOPORL  
VCCIOPORH  
1.5  
VCCIO low supply level when PORRST must be active during power up  
1.1  
VCCIO high supply level when PORRST must remain active during power up and become  
active during power down  
2.75  
VIL  
Low-level input voltage after VCCIO > VCCIOPORH  
0.2 VCCIO  
0.5  
V
VIL(PORRST)  
tsu(PORRST)r  
tsu(VCCIO)r  
th(PORRST)r  
tsu(PORRST)f  
th(PORRST)rio  
th(PORRST)d  
Low-level input voltage of PORRST before VCCIO > VCCIOPORL  
Setup time, PORRST active before VCCIO > VCCIOPORL during power up  
Setup time, VCCIO >VCCIOPORL before VCC > VCCPORL  
Hold time, PORRST active after VCC > VCCPORH  
V
0
0
1
8
1
0
0
0
ms  
ms  
ms  
µs  
ms  
ms  
ns  
ns  
Setup time, PORRST active before VCC VCCPORH during power down  
Hold time, PORRST active after VCC > VCCIOPORH  
Hold time, PORRST active after VCC < VCCPORL  
tsu(PORRST)fio Setup time, PORRST active before VCC VCCIOPORH during power down  
tsu(VCCIO)f  
Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL  
VCCP /VCCIO  
VCCIOPORH  
VCCIOPORH  
VCCIO  
t
h(PORRST)rio  
t
su(VCCIO)f  
VCC  
VCC  
VCCPORH  
VCCPORH  
t
su(PORRST)f  
t
h(PORRST)r  
t
su(PORRST)fio  
t
VCCIOPORL  
VCCIOPORL  
su(PORRST)f  
VCCPORL  
VCCPORL  
t
h(PORRST)r  
VCC  
t
su(VCCIO)r  
V /V  
CCP CCIO  
t
h(PORRST)d  
t
su(PORRST)r  
VIL(PORRST)  
VIL  
VIL  
VIL  
VIL  
VIL(PORRST)  
PORRST  
NOTE: VCCIO > 1.1 V before VCC > 0.6 V  
Figure 9. PORRST Timing Diagram  
Switching Characteristics over Recommended Operating Conditions for RST(1)  
PARAMETER  
MIN  
MAX UNIT  
Valid time, RST active after PORRST inactive  
Valid time, RST active (all others)  
4112tc(OSC)  
8tc(SYS)  
tv(RST)  
tfsu  
ns  
Flash start up time, from RST inactive to fetch of first instruction from flash (flash pump  
stabilization time)  
836tc(OSC)  
ns  
(1) Specified values do NOT include rise/fall times. For rise and fall timings, see the "switching characteristics for output timings versus load  
capacitance" table.  
37  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
JTAG SCAN INTERFACE TIMING (JTAG CLOCK SPECIFICATION 10-MHz AND 50-pF LOAD ON  
TDO OUTPUT)  
MIN  
50  
MAX UNIT  
tc(JTAG)  
Cycle time, JTAG low and high period  
Setup time, TDI, TMS before TCK rise (TCKr)  
Hold time, TDI, TMS after TCKr  
ns  
ns  
tsu(TDI/TMS - TCKr)  
th(TCKr -TDI/TMS)  
th(TCKf -TDO)  
td(TCKf -TDO)  
15  
15  
ns  
Hold time, TDO after TCKf  
10  
ns  
Delay time, TDO valid after TCK fall (TCKf)  
45 ns  
T CK  
t
c(J TAG )  
t
c(J TAG )  
T M S  
T DI  
t
su(TDI /TMS Ć TCKr)  
t
h(TCKr Ć TDI /TMS)  
T DO  
t
h(TCKf Ć TDO )  
t
d(TCKf Ć TDO )  
Figure 10. JTAG Scan Timings  
38  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
OUTPUT TIMINGS  
Switching Characteristics for Output Timings versus Load Capacitance ©L)  
(see Figure 11)  
PARAMETER  
CL = 15 pF  
CL = 50 pF  
MIN  
0.5  
1.5  
3.0  
4.5  
0.5  
1.5  
3.0  
4.5  
2.5  
5
MAX UNIT  
2.5  
5.0  
ns  
tr  
tf  
tr  
Rise time, AWD, CLKOUT, TDI, TDO, TMS, TMS2  
Fall time, AWD, CLKOUT, TDI, TDO, TMS, TMS2  
Rise time, RST  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 400 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 400 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
9.0  
12.5  
2.5  
5.0  
ns  
9.0  
12.5  
8
14  
ns  
23  
9
13  
3
32  
10  
12  
3.5  
7
tr  
Rise time, 4mA, 5 V tolerant pins  
21  
28  
40  
8
ns  
ns  
9
18  
2
2.5  
8
9
tf  
Fall time, 4mA, 5 V tolerant pins  
Rise time, all other output pins  
25  
35  
45  
10  
25  
45  
65  
10  
25  
45  
65  
11  
20  
2.5  
6.0  
12  
18  
3
tr  
ns  
ns  
8.5  
16  
23  
tf  
Fall time, all other output pins  
tr  
tf  
VCC  
80%  
80%  
Output  
20%  
20%  
0
Figure 11. CMOS-Level Outputs  
39  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
INPUT TIMINGS  
Timing Requirements for Input Timings(1)  
(see Figure 12)  
MIN  
MAX UNIT  
tpw  
Input minimum pulse width  
tc(ICLK) + 10  
ns  
(1) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
tpw  
VCC  
Input  
80%  
80%  
20%  
20%  
0
Figure 12. CMOS-Level Inputs  
FLASH TIMINGS  
Timing Requirements for Program Flash(1)  
MIN  
TYP  
16  
MAX UNIT  
tprog(16-bit)  
tprog(Total)  
terase(sector)  
twec  
Half word (16-bit) programming time  
1M-byte programming time(2)  
4
200  
32  
µs  
s
8
Sector erase time  
1.7  
s
Write/erase cycles at TA = –40°C to 85°C  
Flash pump settling time from RST to SLEEP  
Initial flash pump settling time from SLEEP to STANDBY  
50000  
cycles  
ns  
tfp(RST)  
167tc(SYS)  
167tc(SYS)  
84tc(SYS)  
tfp(SLEEP)  
ns  
tfp(STANDBY) Initial flash pump settling time from STANDBY to ACTIVE  
ns  
(1) For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet.  
(2) The 1M-byte programming time includes overhead of state machine.  
40  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn MASTER MODE TIMING PARAMETERS  
SPIn Master Mode External Timing Parameters  
(CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 13)  
NO.  
MIN  
MAX  
256tc(ICLK)  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
10  
UNIT  
1
tc(SPC)M  
Cycle time, SPInCLK(4)  
100  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)M – tr  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tr  
2(5)  
3(5)  
4(5)  
5(5)  
6(5)  
7(5)  
td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0)  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1)  
10  
ns  
tc(SPC)M – 5 – tf  
tc(SPC)M – 5 – tr  
tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0)  
tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1)  
6
6
4
4
tv(SPCL-SOMI)M  
tv(SPCH-SOMI)M  
Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0)  
Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: t c(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)M = 2t c(ICLK) 100 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 13. SPIn Master Mode External Timing (CLOCK PHASE = 0)  
41  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn Master Mode External Timing Parameters  
(CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3) (see Figure 14)  
NO.  
MIN  
MAX  
UNIT  
1
tc(SPC)M  
Cycle time, SPInCLK(4)  
100  
256tc(ICLK)  
tw(SPCH)M  
tw(SPCL)M  
tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)M – tr  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tf  
0.5tc(SPC)M – tr  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
0.5tc(SPC)M + 5  
2(5)  
3(5)  
Valid time, SPInCLK high after SPInSIMO data valid  
(clock polarity = 0)  
tv(SIMO-SPCH)M  
tv(SIMO-SPCL)M  
tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
0.5tc(SPC)M – 10  
4(5)  
5(5)  
6(5)  
7(5)  
Valid time, SPInCLK low after SPInSIMO data valid  
(clock polarity = 1)  
0.5tc(SPC)M – 10  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
0.5tc(SPC)M – 5 – tr  
ns  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
0.5tc(SPC)M – 5 – tf  
Setup time, SPInSOMI before SPInCLK high  
(clock polarity = 0)  
6
6
4
4
Setup time, SPInSOMI before SPInCLK low  
(clock polarity = 1)  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) When the SPI is in master mode, the following must be true:  
For PS values from 1 to 255: t c(SPC)M (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)M = 2t c(ICLK) 100 ns.  
(5) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSIMO  
Master Out Data Is Valid  
6
Data Valid  
7
Master In Data  
Must Be Valid  
SPInSOMI  
Figure 14. SPIn Master Mode External Timing (CLOCK PHASE = 1)  
42  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn SLAVE MODE TIMING PARAMETERS  
SPIn Slave Mode External Timing Parameters  
(CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4) (see Figure 15)  
NO.  
MIN  
MAX  
UNI  
T
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
100  
256tc(ICLK)  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
2(6)  
3(6)  
Delay time, SPInCLK high to SPInSOMI valid  
(clock polarity = 0)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
tv(SPCL-SIMO)S  
tv(SPCH-SIMO)S  
6 + tr  
4(6)  
Delay time, SPInCLK low to SPInSOMI valid  
(clock polarity = 1)  
6 + tf  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
tc(SPC)S – 6 – tr  
ns  
5(6)  
6(6)  
7(6)  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
tc(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 0)  
6
6
6
6
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 1)  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(5) When the SPIn is in slave mode, the following must be true:  
For PS values from 1 to 255: t c(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)S = 2t c(ICLK) 100 ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
43  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPISOMI Data Is Valid  
SPInSOMI  
6
7
SPISIMO Data  
Must Be Valid  
SPInSIMO  
Figure 15. SPIn Slave Mode External Timing (CLOCK PHASE = 0)  
44  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
SPIn Slave Mode External Timing Parameters  
(CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(1)(2)(3)(4) (see Figure 16)  
NO.  
MIN  
MAX  
UNI  
T
1
tc(SPC)S  
Cycle time, SPInCLK(5)  
100  
256tc(ICLK)  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPInCLK high (clock polarity = 0)  
Pulse duration, SPInCLK low (clock polarity = 1)  
Pulse duration, SPInCLK low (clock polarity = 0)  
Pulse duration, SPInCLK high (clock polarity = 1)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)  
2(6)  
3(6)  
Valid time, SPInCLK high after SPInSOMI data valid  
(clock polarity = 0)  
tv(SOMI-SPCH)S  
tv(SOMI-SPCL)S  
tv(SPCH-SOMI)S  
tv(SPCL-SOMI)S  
0.5tc(SPC)S – 6 – tr  
4(6)  
Valid time, SPInCLK low after SPInSOMI data valid  
(clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Valid time, SPInSOMI data valid after SPInCLK high  
(clock polarity = 0)  
0.5tc(SPC)S – 6 – tr  
ns  
5(6)  
6(6)  
7(6)  
Valid time, SPInSOMI data valid after SPInCLK low  
(clock polarity = 1)  
0.5tc(SPC)S – 6 – tf  
Setup time, SPInSIMO before SPInCLK high  
(clock polarity = 0)  
tsu(SIMO-SPCH)  
S
6
6
6
6
Setup time, SPInSIMO before SPInCLK low  
(clock polarity = 1)  
tsu(SIMO-SPCL)  
tv(SPCH-SIMO)S  
tv(SPCL-SIMO)S  
S
Valid time, SPInSIMO data valid after SPInCLK high  
(clock polarity = 0)  
Valid time, SPInSIMO data valid after SPInCLK low  
(clock polarity = 1)  
(1) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC) (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].  
(3) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.  
(4) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(5) When the SPIn is in slave mode, the following must be true:  
For PS values from 1 to 255: t c(SPC)S (PS +1)tc(ICLK) 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.  
For PS values of 0: tc(SPC)S = 2t c(ICLK) 100 ns.  
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).  
1
SPInCLK  
(clock polarity = 0)  
2
3
SPInCLK  
(clock polarity = 1)  
4
5
SPInSOMI  
SPISOMI Data Is Valid  
6
Data Valid  
7
SPISIMO Data Must  
Be Valid  
SPInSIMO  
Figure 16. SPIn Slave Mode External Timing (CLOCK PHASE = 1)  
45  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
SCIn ISOSYNCHRONOUS MODE TIMINGS - INTERNAL CLOCK  
Timing Requirements for Internal Clock SCIn Isosynchronous Mode(1)(2)(3)  
(see Figure 17)  
(BAUD + 1)  
(BAUD + 1)  
IS EVEN OR BAUD = 0  
IS ODD AND BAUD 0  
UNIT  
MIN  
MAX  
MIN  
MAX  
Cycle time,  
SCInCLK  
tc(SCC)  
2tc(ICLK)  
224 tc(ICLK)  
3tc(ICLK)  
(224 – 1) tc(ICLK)  
ns  
ns  
ns  
Pulse duration,  
SCInCLK low  
tw(SCCL)  
tw(SCCH)  
0.5tc(SCC) – tf  
0.5tc(SCC) – tr  
0.5tc(SCC) + 5  
0.5tc(SCC) + 5  
0.5tc(SCC) + 0.5tc(ICLK) – tf  
0.5tc(SCC) – 0.5tc(ICLK) – tr  
0.5tc(SCC) + 0.5tc(ICLK)  
0.5tc(SCC) – 0.5tc(ICLK)  
Pulse duration,  
SCInCLK high  
Delay time,  
td(SCCH-TXV)  
SCInCLK high to  
SCInTX valid  
10  
10  
ns  
ns  
ns  
ns  
Valid time,  
SCInTX data  
after SCInCLK  
low  
tv(TX)  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
–tc(ICLK) + tf + 20  
tc(SCC) – 10  
tc(ICLK) + tf + 20  
–tc(ICLK) + tf + 20  
Setup time,  
SCInRX before  
SCInCLK low  
tsu(RX-SCCL)  
Valid time,  
SCInRX data  
after SCInCLK  
low  
tv(SCCL-RX)  
(1) BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers.  
(2) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.  
t
c(SCC)  
t
w(SCCH)  
t
w(SCCL)  
SCICLK  
SCITX  
SCIRX  
t
v(TX)  
t
d(SCCHĆTXV)  
Data Valid  
t
su(RXĆSCCL)  
t
v(SCCLĆRX)  
Data Valid  
A. Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the  
asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the  
SCICLK falling edge.  
Figure 17. SCIn Isosynchronous Mode Timing Diagram for Internal Clock  
46  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
SCIn ISOSYNCHRONOUS MODE TIMINGS - EXTERNAL CLOCK  
Timing Requirements for External Clock SCIn Isosynchronous Mode(1)(2)  
(see Figure 18)  
MIN  
MAX  
UNIT  
ns  
tc(SCC)  
Cycle time, SCInCLK(3)  
8tc(ICLK)  
tw(SCCH)  
tw(SCCL)  
td(SCCH-TXV)  
tv(TX)  
tsu(RX-SCCL)  
tv(SCCL-RX)  
Pulse duration, SCInCLK high  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) – 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
0.5tc(SCC) + 0.25tc(ICLK)  
2tc(ICLK) + 12 + t r  
ns  
Pulse duration, SCInCLK low  
ns  
Delay time, SCInCLK high to SCInTX valid  
Valid time, SCInTX data after SCInCLK low  
Setup time, SCInRX before SCInCLK low  
Valid time, SCInRX data after SCInCLK low  
ns  
2tc(SCC) – 10  
0
ns  
ns  
2tc(ICLK) + 10  
ns  
(1) tc(ICLK) = interface clock cycle time = 1/f(ICLK)  
(2) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.  
(3) When driving an external SCInCLK, the following must be true: tc(SCC) 8tc(ICLK)  
.
t
c(SCC)  
t
w(SCCH)  
t
w(SCCL)  
SCICLK  
SCITX  
SCIRX  
t
v(TX)  
t
d(SCCHĆTXV)  
Data Valid  
t
su(RXĆSCCL)  
t
v(SCCLĆRX)  
Data Valid  
A. Data transmission / reception characteristics for isosynchronous mode with external clocking are similar to the  
asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the  
SCICLK falling edge.  
Figure 18. SCIn Isosynchronous Mode Timing Diagram for External Clock  
47  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
I2C TIMING  
Table 11 assumes testing over recommended operating conditions.  
I2C Signals (SDA and SCL) Switching Characteristics(1)  
STANDARD MODE  
FAST MODE  
PARAMETER  
UNIT  
MIN  
75  
MAX  
MIN  
75  
MAX  
tc(I2CCLK)  
tc(SCL)  
Cycle time, I2C module clock  
Cycle time, SCL  
150  
150  
ns  
µs  
10  
2.5  
Setup time, SCL high before SDA low (for a repeated START  
condition)  
tsu(SCLH-SDAL)  
th(SCLL-SDAL)  
4.7  
4
0.6  
0.6  
µs  
µs  
Hold time, SCL low after SDA low (for a repeated START  
condition)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA-SCLH)  
th(SDA-SCLL)  
tw(SDAH)  
tr(SCL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
µs  
µs  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
pF  
Pulse duration, SCL high  
Setup time, SDA valid before SCL high  
250  
0
100  
Hold time, SDA valid after SCL low  
For I2C bus devices  
3.45(2)  
0
0.9  
Pulse duration, SDA high between STOP and START conditions  
4.7  
1.3  
(3)  
(3)  
(3)  
(3)  
Rise time, SCL  
Rise time, SDA  
Fall time, SCL  
Fall time, SDA  
1000  
1000  
300  
20+0.1Cb  
20+0.1Cb  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
300  
300  
tr(SDA)  
tf(SCL)  
tf(SDA)  
300  
tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition)  
4.0  
tw(SP)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
0
50  
(3)  
Cb  
400  
400  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices needs to be met only if the device does not stretch the low period (tw(SCLL)) of the SCL  
signal.  
(3) C b = The total capacitance of one bus line in pF. If mixed with HS=mode devices, faster fall-times are allowed.  
SDA  
t
t
w(SDAH)  
w(SP)  
t
t
su(SDA−SCLH)  
r(SCL)  
t
su(SCLH−SDAH)  
t
w(SCLL)  
t
w(SCLH)  
SCL  
t
f(SCL)  
t
)
c(SCL  
t
)
h(SCLL−SDAL  
t
h(SDA−SCLL)  
t
su(SCLH−SDAL)  
t
h(SCLL−SDAL)  
Stop  
Start  
Repeated  
Stop  
A. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL  
signal) to bridge the undefined region of the falling edge of SCL.  
B. The maximum th(SDA-SCLL) needs only be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL  
signal.  
C. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)250  
ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL  
signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line tr max + tsu(SDA-SCLH)  
.
D. Cb = total capacitance of one bus line in pF. If mixed with HS=mode devices, faster fall-times are allowed.  
Figure 19. I2C Timings  
48  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
STANDARD CAN CONTROLLER (SCC) MODE TIMINGS  
Dynamic Characteristics for the CANSTX and CANSRX Pins  
PARAMETER  
td(CANSTX) Delay time, transmit shift register to CANSTX pin(1)  
td(CANSRX) Delay time, CANSRX pin to receive shift register  
MIN  
MAX UNIT  
15  
5
ns  
ns  
(1) These values do not include the rise/fall times of the output buffer.  
49  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
EXPANSION BUS MODULE TIMING  
Expansion Bus Timing Parameters  
–40°C TJ150°C, 3.0 V V CC3.6 V (see Figure 20 and Figure 21)  
MIN  
MAX UNIT  
tc(CO)  
Cycle time, CLKOUT  
20.8  
ns  
td(COH-EBADV)  
th(COH-EBADIV)  
td(COH-EBOE)  
Delay time, CLKOUT high to EBADDR valid  
Hold time, EBADDR invalid after CLKOUT high  
Delay time, CLKOUT high to EBOE fall  
21.4  
12.4  
11.4  
11.4  
11.3  
11.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(COH-EBOEH)  
td(COL-EBWR)  
th(COL-EBWRH)  
tsu(EBRDATV-COH)  
th(COH-EBRDATIV)  
td(COL-EBWDATV)  
th(COL-EBWDATIV)  
Hold time, EBOE rise after CLKOUT high  
Delay time, CLKOUT low to write strobe (EBWR) low  
Hold time, EBWR high after CLKOUT low  
Setup time, EBDATA valid before CLKOUT high (READ)(1)  
Hold time, EBDATA invalid after CLKOUT high (READ)  
Delay time, CLKOUT low to EBDATA valid (WRITE)(2)  
Hold time, EBDATA invalid after CLKOUT low (WRITE)  
SECONDARY TIMES  
15.2  
(–14.7)  
16.1  
14.7  
td(COH-EBCS0)  
Delay, CLKOUT high to EBCS0 fall  
13.6  
13.2  
ns  
ns  
ns  
ns  
th(COH-EBCS0H)  
tsu(COH-EBHOLDL)  
tsu(COH-EBHOLDH)  
Hold, EBCS0 rise after CLKOUT high  
Setup time, EBHOLD low to CLKOUT high(1)  
Setup time, EBHOLD high to CLKOUT high(1)  
10.9  
10.5  
(1) Setup time is the minimum time under worst case conditions. Data with less setup time will not work.  
(2) Valid after CLKOUT goes low for write cycles.  
t
c(CO)  
CLKOUT  
t
h(COH-EBADIV)  
t
d(COH-EBADV)  
Valid  
EBADDR  
EBDATA  
t
h(COH-EBRDATIV)  
t
su(EBRDATV-COH)  
Valid  
t
h(COH-EBOEH)  
t
d(COH-EBOE)  
EBOE  
t
t
d(COH-EBCS0)  
h(COH-EBCS0H)  
EBCS0  
t
su(COH-EBHOLDH)  
1 Hold State  
t
su(COH-EBHOLDL)  
EBHOLD  
Figure 20. Expansion Memory Signal Timing - Reads  
50  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
t
c(CO)  
CLKOUT  
t
h(COH-EBADIV)  
t
d(COH-EBADV)  
Valid  
EBADDR  
EBDATA  
t
h(COL-EBWDATIV)  
t
d(COL-EBWDATV)  
Valid  
t
h(COL-EBWRH)  
t
d(COL-EBWR)  
EBWR  
t
d(COH-EBCS0)  
t
d(COH-EBCS0)  
EBCS0  
t
su(COH-EBHOLDH)  
t
su(COH-EBHOLDL)  
EBHOLD  
1 Hold State  
Figure 21. Expansion Memory Signal Timing - Writes  
51  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
HIGH-END TIMER (HET) TIMINGS  
Minimum PWM Output Pulse Width:  
This is equal to one high resolution clock period (HRP). The HRP is defined by the 6-bit high resolution prescale  
factor (hr), which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes.  
Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK  
For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns  
Minimum Input Pulses that Can Be Captured:  
The input pulse width must be greater or equal to the low resolution clock period (LRP), i.e., the HET loop (the  
HET program must fit within the LRP). The LRP is defined by the 3-bit loop-resolution prescale factor (lr), which  
is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32.  
Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK  
For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns  
NOTE:  
Once the input pulse width is greater than LRP, the resolution of the measurement is  
still HRP. (That is, the captured value gives the number of HRP clocks inside the  
pulse.)  
Abbreviations:  
hr = HET high resolution divide rate = 1, 2, 3,...63, 64  
lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32  
High resolution clock period = HRP = hr/SYSCLK  
Loop resolution clock period = LRP = hr*lr/SYSCLK  
52  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
MULTI-BUFFERED A-TO-D CONVERTER (MibADC)  
The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances  
the A-to-D performance by preventing digital switching noise on the logic circuitry, which could be present on V  
SS and V CC , from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to AD  
REFLO unless otherwise noted.  
Resolution  
10 bits (1024 values)  
Assured  
Monotonic  
Output conversion code  
00h to 3FFh [00 for VAI AD REFLO ; 3FF for VAI AD REFHI  
]
Table 17. MibADC Recommended Operating Conditions(1)  
MIN  
VSSAD  
VSSAD  
MAX  
VCCAD  
UNIT  
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
V
V
V
A-to-D low-voltage reference source  
Analog input voltage  
VCCAD  
VSSAD – 0.3  
VCCAD + 0.3  
Analog input clamp current(2)  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
IAIC  
–2  
2
mA  
(1) For VCCAD and VSSAD recommended operating conditions, see the "Device Recommended Operating Conditions" table.  
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.  
Table 18. Operating Characteristics over Full Ranges of Recommended Operating Conditions(1)(2)  
PARAMETER  
DESCRIPTION/CONDITIONS  
See Figure 22.  
MIN  
TYP  
MAX UNIT  
500  
RI  
CI  
Analog input resistance  
250  
Conversion  
Sampling  
10 pF  
30 pF  
Analog input capacitance  
See Figure 22.  
IAIL  
Analog input leakage current  
ADREFHI input current  
See Figure 22.  
–1  
3
1
5
µA  
IADREFHI  
ADREFHI = 3.6 V, ADREFLO = VSSAD  
ADREFHI - ADREFLO  
mA  
Conversion range over which  
specified accuracy is maintained  
CR  
3.6  
V
Difference between the actual step width  
and the ideal value. See Figure 23.  
EDNL  
Differential nonlinearity error  
Integral nonlinearity error  
±1.5 LSB  
±2 LSB  
Maximum deviation from the best straight  
line through the MibADC. MibADC transfer  
characteristics, excluding the quantization  
error. See Figure 24.  
EINL  
Maximum value of the difference between  
an analog value and the ideal midstep  
value. See Figure 25.  
E TOT  
Total error/Absolute accuracy  
±2 LSB  
(1) VCCAD = ADREFHI  
(2) 1 LSB = (ADREFHI - ADREFLO)/210 for the MibADC  
53  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
External  
MibADC  
Rs  
Ri  
Sample Switch  
Input Pin  
Sample  
Capacitor  
Parasitic  
Capacitance  
Rleak  
Vsrc  
Ci  
Figure 22. MibADC Input Equivalent Circuit  
Table 19. Multi-Buffer ADC Timing Requirements  
MIN  
0.05  
1
NOM  
MAX UNIT  
tc(ADCLK)  
td(SH)  
Cycle time, MibADC clock  
µs  
µs  
µs  
µs  
Delay time, sample and hold time  
td©)  
Delay time, conversion time  
0.55  
1.55  
(1)  
td(SHC)  
Delay time, total sample/hold and conversion time  
(1) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors; for  
more details, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206).  
The differential nonlinearity error shown in Figure 23 (sometimes referred to as differential linearity) is the  
difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
DifferentialLinearity  
Error(1/2 LSB)  
1 LSB  
0 ... 010  
DifferentialLinearity  
Error(- 1/2 LSB)  
0 ... 001  
1 LSB  
0 ... 000  
0
1
2
3
4
5
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 23. Differential Nonlinearity (DNL)  
54  
Submit Documentation Feedback  
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
The integral nonlinearity error shown in Figure 24 (sometimes referred to as linearity error) is the deviation of the  
values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
0 ... 101  
Ideal  
Transition  
Actual  
Transition  
0 ... 100  
0 ... 011  
At Transition  
011/100  
(ć 1/2 LSB)  
0 ... 010  
0 ... 001  
End-Point Lin. Error  
At Transition  
001/010 (ć 1/4 LSB)  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 24. Integral Nonlinearity (INL) Error  
The absolute accuracy or total error of an MibADC as shown in Figure 25 is the maximum value of the  
difference between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
(-1 1/4 LSB)  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Total Error  
At Step 0 ... 001  
(1/2 LSB)  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
A. 1 LSB = (ADREFHI - ADREFLO)/210  
Figure 25. Absolute Accuracy (Total) Error  
55  
Submit Documentation Feedback  
 
 
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Thermal Resistance Characteristics  
PARAMETER  
Rθ JA  
°C/W  
43  
Rθ JC  
5
56  
Submit Documentation Feedback  
TMS470R1B1M  
16/32-Bit RISC Flash Microcontroller  
www.ti.com  
SPNS109ASEPTEMBER 2005REVISED AUGUST 2006  
Revision History  
This revision history highlights the changes made to the device-specific datasheet SPNS109.  
Table 12. Revision History  
SPNS109 to SPNS109A  
Added note to PORRST Timing Diagram.  
Changed TA range to –40°C to 85°C on twec in "Timing Requirements for Program Flash" table.  
Changed twec MIN value to 50000 and deleted TYP value in "Timing Requirements for Program Flash" table.  
Changed terase(sector) TYP value to 1.7 in "Timing Requirements for Program Flash" table.  
57  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jan-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TMS470R1B1MPGEA  
TMS470R1B1MPGEAR  
NRND  
NRND  
LQFP  
LQFP  
PGE  
PGE  
144  
144  
60  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TMS470R1B512

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B512

16/32-Bit RISC Flash Microcontroller
ADI

TMS470R1B512PGE

IC,MICROCONTROLLER,32-BIT,ARM7 CPU,CMOS,QFP,144PIN,PLASTIC
TI

TMS470R1B512PGEQ

暂无描述
TI

TMS470R1B512PGEQR

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144
TI

TMS470R1B512PGET

16/32-Bit RISC Flash Microcontroller
ADI

TMS470R1B512_06

16/32-Bit RISC Flash Microcontroller
ADI

TMS470R1B768

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGE

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144
TI

TMS470R1B768PGEQ

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGET

16/32-Bit RISC Flash Microcontroller
TI

TMS470R1B768PGETR

32-BIT, FLASH, 60MHz, RISC MICROCONTROLLER, PQFP144, PLASTIC, LQFP-144
TI