TMUX1109RSVR [TI]

3pA 导通状态泄漏电流、5V、±2.5V、4:1、2 通道精密多路复用器 | RSV | 16 | -40 to 125;
TMUX1109RSVR
型号: TMUX1109RSVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3pA 导通状态泄漏电流、5V、±2.5V、4:1、2 通道精密多路复用器 | RSV | 16 | -40 to 125

复用器
文件: 总41页 (文件大小:1048K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX1109  
SCDS406 DECEMBER 2018  
TMUX1109 5 V, ±2.5 V, Low-Leakage-Current, 4:1, 2-Channel Precision Multiplexer  
1 Features  
3 Description  
The TMUX1109 is a precision complementary metal-  
oxide semiconductor (CMOS) multiplexer (MUX). The  
TMUX1109 offers differential 4:1 or dual 4:1 single-  
ended channels. Wide operating supply of 1.08 V to  
5.5 V allows for use in a broad array of applications  
from medical equipment to industrial systems. The  
device supports bidirectional analog and digital  
signals on the source (Sx) and drain (D) pins ranging  
from GND to VDD. All logic inputs have 1.8 V logic  
compatible thresholds, ensuring both TTL and CMOS  
logic compatibility when operating in the valid supply  
voltage range. Fail-Safe Logic circuitry allows  
voltages on the control pins to be applied before the  
supply pin, protecting the device from potential  
damage.  
1
Single Supply Range: 1.08 V to 5.5 V  
Dual Supply Range: ±2.75 V  
Low Leakage Current: 3 pA  
Low Charge Injection: 1 pC  
Low On-Resistance: 1.8 Ω  
-40°C to +125°C Operating Temperature  
1.8 V Logic Compatible  
Fail-Safe Logic  
Rail to Rail Operation  
Bidirectional Signal Path  
Break-Before-Make Switching  
ESD Protection HBM: 2000 V  
The TMUX1109 is part of the precision switches and  
multiplexers family of devices. These devices have  
very low on and off leakage currents and low charge  
injection, allowing them to be used in high precision  
measurement applications. A low supply current of  
8nA and small package options enable use in  
portable applications.  
2 Applications  
Ultrasound Scanners  
Patient Monitoring & Diagnostics  
Optical Networking  
Optical Test Equipment  
Remote Radio Unit  
Device Information(1)  
Wired Networking  
PART NUMBER  
PACKAGE  
TSSOP (16)  
QFN (16)  
BODY SIZE (NOM)  
5.00 mm × 4.40 mm  
2.60 mm x 1.80 mm  
ATE Test Equipment  
TMUX1109  
Factory Automation and Industrial Controls  
Programmable Logic Controllers (PLC)  
Analog Input Modules  
(1) For all available packages, see the package option addendum  
at the end of the data sheet.  
SONAR Receivers  
Motor Drive  
Servo Drive Position Feedback  
Application Example  
Block Diagram  
REFby2  
TMUX1109  
1µF  
4 Channels per ADC  
REFby2  
(2.048V output)  
S1A  
S2A  
S3A  
S4A  
Cf1 3pF  
INN_x  
Rg1 1kΩ  
Rfil1 30.1Ω  
SxA  
Rf1 1kΩ  
+5V  
REFby2  
2.048V  
DA  
Riso1  
AINP_A  
DA  
15pF  
15pF  
10Ω  
4:1  
-
Cfil  
150pF  
Vocm  
+
-
ADC_A  
Differential  
MUX  
+
100nF  
Riso2  
10Ω  
AINM_A  
DB  
Rfil2 30.1Ω  
Rf2 1kΩ  
SxB  
S1B  
S2B  
S3B  
S4B  
INP_x  
INN_x  
Rg2 1kΩ  
Cf2 3pF  
ADS9224R  
Dual,  
Simultaneous-  
Sampling  
Low-Latency  
SAR ADC  
THS4551 (4x)  
DB  
TMUX1109  
Cf1 3pF  
Rg1 1kΩ  
Rfil1 30.1Ω  
SxA  
Rf1 1kΩ  
REFby2  
2.048V  
+5V  
Riso1  
10Ω  
15pF  
15pF  
AINP_B  
DA  
4:1  
-
1-OF-4  
DECODER  
Cfil  
150pF  
Vocm  
+
-
Differential  
MUX  
ADC_B  
+
100nF  
Riso2  
10Ω  
DB  
AINM_B  
Rfil2 30.1Ω  
Rf2 1kΩ  
SxB  
Rg2 1kΩ  
Cf2 3pF  
INP_x  
THS4551 (4x)  
A0  
A1  
EN  
TMUX1109  
4 Channels per ADC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 25  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Application ................................................. 26  
8.3 Design Requirements.............................................. 27  
8.4 Detailed Design Procedure ..................................... 27  
8.5 Application Curve.................................................... 28  
Power Supply Recommendations...................... 28  
1
2
3
4
5
6
Features.................................................................. 1  
8
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)............ 5  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)......... 7  
9
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Example .................................................... 29  
11 Device and Documentation Support ................. 30  
11.1 Documentation Support ........................................ 30  
11.2 Related Links ........................................................ 30  
11.3 Receiving Notification of Documentation Updates 30  
11.4 Community Resources.......................................... 30  
11.5 Trademarks........................................................... 30  
11.6 Electrostatic Discharge Caution............................ 30  
11.7 Glossary................................................................ 30  
6.7 Electrical Characteristics (VDD = 2.5 V ±10 %), (VSS  
=
–2.5 V ±10 %) ............................................................ 9  
6.8 Electrical Characteristics (VDD = 1.8 V ±10 %)....... 11  
6.9 Electrical Characteristics (VDD = 1.2 V ±10 %)....... 13  
6.10 Typical Characteristics.......................................... 15  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 23  
7.3 Feature Description................................................. 23  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 30  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
December 2018  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
5 Pin Configuration and Functions  
PW Package  
16-Pin TSSOP  
Top View  
RSV Package  
16-Pin QFN  
Top View  
A0  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A1  
GND  
VDD  
S1B  
S2B  
S3B  
S4B  
DB  
VSS  
S1A  
S2A  
S3A  
S4A  
DA  
VSS  
S1A  
S2A  
S3A  
1
12  
11  
10  
9
VDD  
S1B  
S2B  
S3B  
2
3
4
Not to scale  
Not to scale  
Pin Functions  
PIN  
TSSOP  
1
TYPE(1)  
DESCRIPTION  
NAME  
UQFN  
A0  
15  
I
I
Address line 0. Controls the switch configuration as shown in Table 1.  
Active high logic input. When this pin is low, all switches are turned off. When this pin is high,  
the A[1:0] address inputs determine which switch is turned on.  
EN  
2
3
16  
1
Negative power supply. This pin is the most negative power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS can be connected to ground for single supply applications.  
VSS  
P
S1A  
S2A  
S3A  
S4A  
DA  
4
5
2
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Source pin 1A. Can be an input or output.  
Source pin 2A. Can be an input or output.  
Source pin 3A. Can be an input or output.  
Source pin 4A. Can be an input or output.  
Drain pin A. Can be an input or output.  
Drain pin B. Can be an input or output.  
Source pin 4B. Can be an input or output.  
Source pin 3B. Can be an input or output.  
Source pin 2B. Can be an input or output.  
Source pin 1B. Can be an input or output.  
6
4
7
5
8
6
DB  
9
7
S4B  
S3B  
S2B  
S1B  
10  
11  
12  
13  
8
9
10  
11  
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
14  
12  
P
GND  
A1  
15  
16  
13  
14  
P
I
Ground (0 V) reference  
Address line 1. Controls the switch configuration as shown in Table 1.  
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2) (3)  
MIN  
–0.5  
–0.5  
–3.0  
–0.5  
–30  
MAX  
UNIT  
V
VDD–VSS  
6
VDD  
Supply voltage  
6
0.3  
V
VSS  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (EN, A0, A1)  
Logic control input pin current (EN, A0, A1)  
Source or drain voltage (Sx, Dx)  
Source or drain continuous current (Sx, Dx)  
Storage temperature  
6
V
30  
mA  
V
–0.5  
–30  
VDD+0.5  
30  
mA  
°C  
°C  
–65  
150  
TJ  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.08  
-2.75  
1.08  
VSS  
NOM  
MAX  
5.5  
0
UNIT  
VDD  
VSS  
Positive power supply voltage (single)  
Negative power supply voltage (dual)  
V
V
V
V
VDD - VSS Supply rail voltage difference  
5.5  
VDD  
VS or VD  
Signal path input/output voltage (source or drain pin) (Sx, Dx)  
VSEL or  
VEN  
Logic control input pin voltage  
Ambient temperature  
0
5.5  
V
TA  
–40  
125  
°C  
6.4 Thermal Information  
TMUX1109  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
118.9  
49.3  
RSV (QFN)  
16 PINS  
134.6  
74.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
65.2  
62.8  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.6  
4.3  
ΨJB  
64.6  
61.1  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
6.5 Electrical Characteristics (VDD = 5 V ±10 %)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
1.8  
4
4.5  
4.9  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.18  
0.85  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.6  
1.6  
Ω
Ω
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
–0.08 ±0.005  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = 5 V  
Switch Off  
VD = 4.5 V / 1.5 V  
VS = 1.5 V / 4.5 V  
Refer to Off-Leakage Current  
25°C  
–0.1  
±0.01  
0.1  
nA  
nA  
–40°C to +85°C  
–0.75  
0.75  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–3.5  
3.5  
nA  
VDD = 5 V  
Switch On  
VD = VS = 2.5 V  
Refer to On-Leakage Current  
25°C  
–0.025 ±0.003  
–0.3  
0.025  
0.3  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–0.75  
0.75  
nA  
VDD = 5 V  
Switch On  
VD = VS = 4.5 V / 1.5 V  
Refer to On-Leakage Current  
25°C  
–0.1  
±0.01  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–0.75  
0.75  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–3  
3
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
1.49  
0
5.5  
V
V
–40°C to +125°C  
0.87  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.008  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 4.5 V, VD is 1.5 V, and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Electrical Characteristics (VDD = 5 V ±10 %) (continued)  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 3 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
18  
19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
12  
6
VS = 3 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
19  
20  
VS = 3 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
8
9
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
–45  
–90  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–80  
135  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
7.5  
32  
pF  
pF  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
38  
pF  
6
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
6.6 Electrical Characteristics (VDD = 3.3 V ±10 %)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
4
8.75  
9.5  
Ω
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
9.75  
Ω
0.13  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
1.9  
2
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
2.2  
Ω
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
–0.05 ±0.001  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 3.3 V  
Switch Off  
VD = 3 V / 1 V  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
VS = 1 V / 3 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–2  
2
nA  
VDD = 3.3 V  
Switch On  
VD = VS = 3 V / 1 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
1.35  
0
5.5  
0.8  
V
V
–40°C to +125°C  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
25°C  
0.006  
µA  
µA  
IDD  
VDD supply current  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
1
(1) When VS is 3 V, VD is 1 V, and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Electrical Characteristics (VDD = 3.3 V ±10 %) (continued)  
at TA = 25°C, VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
15  
ns  
VS = 2 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
23  
23  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
9
14  
7
VS = 2 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
25  
25  
VS = 2 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
12  
12  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
–45  
–90  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–80  
135  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
7
pF  
pF  
32  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
38  
pF  
8
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
6.7 Electrical Characteristics (VDD = 2.5 V ±10 %), (VSS = –2.5 V ±10 %)  
at TA = 25°C, VDD = +2.5 V, VSS = –2.5 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
1.8  
4
4.5  
4.9  
Ω
Ω
VS = VSS to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
Ω
0.18  
0.85  
Ω
VS = VSS to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.4  
0.5  
Ω
Ω
Ω
VS = VSS to VDD  
ISD = 10 mA  
Refer to On-Resistance  
RON  
FLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.6  
1.6  
Ω
Ω
VDD = +2.5 V, VSS = –2.5 V  
Switch Off  
VD = +2 V / –1 V  
–0.08 ±0.005  
–0.3  
0.08  
0.3  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VS = –1 V / +2 V  
Refer to Off-Leakage Current  
–40°C to +125°C  
–0.9  
0.9  
nA  
VDD = +2.5 V, VSS = –2.5 V  
Switch Off  
VD = +2 V / –1 V  
VS = –1 V / +2 V  
Refer to Off-Leakage Current  
25°C  
–0.1  
±0.01  
±0.01  
0.1  
nA  
nA  
–40°C to +85°C  
–0.75  
0.75  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–3.5  
3.5  
nA  
VDD = +2.5 V, VSS = –2.5 V  
Switch On  
VD = VS = +2 V / –1 V  
Refer to On-Leakage Current  
25°C  
–0.1  
0.1  
nA  
nA  
ID(ON)  
–40°C to +85°C  
–0.75  
0.75  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–3  
3
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
1.2  
0
2.75  
0.73  
V
V
–40°C to +125°C  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
1
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.008  
0.008  
µA  
µA  
µA  
µA  
Logic inputs = 0 V or 2.75 V  
Logic inputs = 0 V or 2.75 V  
–40°C to +125°C  
25°C  
1
1
ISS  
VSS supply current  
–40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Electrical Characteristics (VDD = 2.5 V ±10 %), (VSS = –2.5 V ±10 %) (continued)  
at TA = 25°C, VDD = +2.5 V, VSS = –2.5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
14  
ns  
VS = 1.5 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
21  
21  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
8
14  
8
VS = 1.5 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1.5 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
21  
22  
VS = 1.5 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
11  
12  
VS = –1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–1  
–65  
–45  
–90  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–80  
135  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
7
pF  
pF  
32  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
38  
pF  
10  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
6.8 Electrical Characteristics (VDD = 1.8 V ±10 %)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
40  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
80  
80  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-Leakage Current  
–0.05 ±0.003  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 1.98 V  
Switch Off  
VD = 1.62 V / 1 V  
VS = 1 V / 1.62 V  
Refer to Off-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–2  
2
nA  
VDD = 1.98 V  
Switch On  
VD = VS = 1.62 V / 1 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
1.07  
0
5.5  
V
V
–40°C to +125°C  
0.68  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.001  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.85  
(1) When VS is 1.62 V, VD is 1 V, and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Electrical Characteristics (VDD = 1.8 V ±10 %) (continued)  
at TA = 25°C, VDD = 1.8 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
28  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
48  
48  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
16  
28  
16  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
48  
48  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
27  
27  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–0.5  
–65  
–45  
–90  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–80  
135  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
7
pF  
pF  
32  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
38  
pF  
12  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
6.9 Electrical Characteristics (VDD = 1.2 V ±10 %)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
70  
Ω
VS = 0 V to VDD  
RON  
On-resistance  
ISD = 10 mA  
Refer to On-Resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
105  
105  
Ω
Ω
0.4  
Ω
VS = 0 V to VDD  
ISD = 10 mA  
Refer to On-Resistance  
On-resistance matching between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
1.5  
Ω
Ω
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-Leakage Current  
–0.05 ±0.003  
–0.1  
0.05  
0.1  
nA  
nA  
–40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
–40°C to +125°C  
–0.5  
0.5  
nA  
VDD = 1.32 V  
Switch Off  
VD = 1 V / 0.8 V  
VS = 0.8 V / 1 V  
Refer to Off-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
–40°C to +85°C  
ID(OFF) Drain off leakage current(1)  
–40°C to +125°C  
–2  
2
nA  
VDD = 1.32 V  
Switch On  
VD = VS = 1 V / 0.8 V  
Refer to On-Leakage Current  
25°C  
–0.1 ±0.005  
–0.5  
0.1  
0.5  
nA  
nA  
ID(ON)  
–40°C to +85°C  
Channel on leakage current  
IS(ON)  
–40°C to +125°C  
–2  
2
nA  
LOGIC INPUTS (EN, A0, A1)  
VIH  
VIL  
Input logic high  
Input logic low  
0.96  
0
5.5  
V
V
–40°C to +125°C  
0.36  
IIH  
IIL  
Input leakage current  
Input leakage current  
25°C  
±0.005  
µA  
µA  
IIH  
IIL  
–40°C to +125°C  
±0.05  
2
25°C  
1
pF  
pF  
CIN  
Logic input capacitance  
–40°C to +125°C  
POWER SUPPLY  
IDD VDD supply current  
25°C  
0.001  
µA  
µA  
Logic inputs = 0 V or 5.5 V  
–40°C to +125°C  
0.7  
(1) When VS is 1 V, VD is 0.8 V, and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Electrical Characteristics (VDD = 1.2 V ±10 %) (continued)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
DYNAMIC CHARACTERISTICS  
25°C  
60  
ns  
VS = 1 V  
tTRAN  
Transition time between channels RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
210  
210  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Refer to Transition Time  
28  
60  
45  
VS = 1 V  
tOPEN  
(BBM)  
Break before make time  
RL = 200 , CL = 15 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
1
Refer to Break-Before-Make  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
tON(EN) Enable turn-on time  
tOFF(EN) Enable turn-off time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
190  
190  
VS = 1 V  
RL = 200 , CL = 15 pF  
Refer to tON(EN) and tOFF(EN)  
–40°C to +85°C  
–40°C to +125°C  
150  
150  
VS = 1 V  
QC  
Charge Injection  
Off Isolation  
RS = 0 , CL = 1 nF  
Refer to Charge Injection  
25°C  
25°C  
25°C  
25°C  
–0.5  
–65  
–45  
–90  
pC  
dB  
dB  
dB  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 , CL = 5 pF  
f = 10 MHz  
Refer to Off Isolation  
RL = 50 , CL = 5 pF  
f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 , CL = 5 pF  
f = 10 MHz  
25°C  
25°C  
–80  
135  
dB  
Refer to Crosstalk  
RL = 50 , CL = 5 pF  
Refer to Bandwidth  
BW  
Bandwidth  
MHz  
CSOFF  
CDOFF  
Source off capacitance  
Drain off capacitance  
f = 1 MHz  
f = 1 MHz  
25°C  
25°C  
7
pF  
pF  
32  
CSON  
CDON  
On capacitance  
f = 1 MHz  
25°C  
38  
pF  
14  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
6.10 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
6
5
4.5  
4
VDD = 3 V  
5
TA = 85èC  
TA = 125èC  
3.5  
3
VDD = 3.63 V  
4
VDD = 4.5 V  
3
2.5  
2
VDD = 5.5 V  
2
1
0
1.5  
1
TA = 25èC  
TA = -40èC  
0.5  
0
0
1
2
3
4
5
5.5  
0
1
2
3
4
5
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D001  
D002  
TA = 25°C  
VDD = 5 V  
Figure 1. On-Resistance vs Source or Drain Voltage  
Figure 2. On-Resistance vs Temperature  
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
TA = 85èC  
TA = 125èC  
VDD = 2.25V  
VSS = -2.25V  
VDD = 2.75 V  
VSS = -2.75 V  
TA = 25èC  
TA = -40èC  
1.5  
-3  
-2  
-1  
0
1
2
3
0
0.5  
1
2
2.5  
3
3.5  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D003  
D004  
TA = 25°C  
VDD = 3.3 V  
Figure 3. On-Resistance vs Source or Drain Voltage  
Figure 4. On-Resistance vs Temperature  
40  
30  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 1.08 V  
20  
VDD = 1.98 V  
VDD = 1.32 V  
VDD = 3.63 V  
VDD = 1.32 V  
10  
0
VDD = 1.62 V  
-10  
-20  
-30  
-40  
VDD = 1.98 V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D005  
D006  
TA = 25°C  
TA = 25°C  
Figure 5. On-Resistance vs Source or Drain Voltage  
Figure 6. On-Leakage vs Source or Drain Voltage  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Typical Characteristics (continued)  
400  
1
0.75  
0.5  
300  
VDD = 2.5 V  
VSS = -2.5 V  
200  
100  
0
VDD = 5 V  
VSS = 0 V  
IS(OFF)  
0.25  
0
-100  
-200  
-300  
-400  
-0.25  
-0.5  
-0.75  
-1  
ID(OFF)  
I(ON)  
-3  
-2  
-1  
0
1
2
3
4
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Source or Drain Voltage (V)  
Temperature (èC)  
D007  
D008  
TA = 25°C  
VDD = 3.3 V  
Figure 7. On-Leakage vs Source or Drain Voltage  
Figure 8. Leakage Current vs Temperature  
3.5  
2.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 5.5 V  
1.5  
IS(OFF)  
VDD = 3.63 V  
0.5  
-0.5  
-1.5  
-2.5  
-3.5  
VDD = 1.8 V  
ID(OFF)  
ID(ON)  
VDD = 1.2 V  
-0.1  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D009  
Temperature (èC)  
D010  
VDD = 5 V  
VSEL = 5.5 V  
Figure 9. Leakage Current vs Temperature  
Figure 10. Supply Current vs Temperature  
1400  
1200  
1000  
800  
600  
400  
200  
0
20  
15  
10  
5
VDD = 3.3 V  
VSS = 0 V  
VDD = 5 V  
VSS = 0 V  
0
-5  
VDD = 3.3 V  
VDD = 5 V  
VDD = 2.5 V  
VSS = -2.5 V  
-10  
-15  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-3  
-2  
-1  
0
1
2
3
4
5
Logic Voltage (V)  
Source Voltage (V)  
D011  
D012  
TA = 25°C  
TA = -40°C to 125°C  
Figure 11. Supply Current vs Logic Voltage  
Figure 12. Charge Injection vs Source or Drain Voltage  
16  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
Typical Characteristics (continued)  
5
30  
27  
24  
21  
18  
15  
12  
9
3
VDD = 1.2 V  
1
TON  
-1  
VDD = 1.8 V  
-3  
TOFF  
6
-5  
3
0
0.5  
1
1.5  
2
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Source Voltage (V)  
Supply Voltage (V)  
D013  
D014  
TA = 25°C  
TA = 25°C  
Figure 13. Charge Injection vs Source or Drain Voltage  
Figure 14. TON (EN) and TOFF (EN) vs Supply Voltage  
20  
30  
25  
20  
15  
10  
5
16  
12  
8
TON  
TTRANSITION_FALLING  
TOFF  
4
TTRANSITION_RISING  
0
0
-60  
-30  
0
30  
60  
90  
120  
150  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Temperature (èC)  
Supply Voltage (V)  
D015  
D016  
VDD = 5 V  
TA = 25°C  
Figure 15. TON (EN) and TOFF (EN) vs Temperature  
Figure 16. TTRANSITION vs Supply Voltage  
0
-1  
-2  
-3  
-4  
-5  
-6  
1M  
10M  
100M  
Frequency (Hz)  
D018  
TA = 25°C  
Figure 17. Frequency Response  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
7 Detailed Description  
7.1 Overview  
7.1.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-resistance.  
The measurement setup used to measure RON is shown in Figure 18. Voltage (V) and current (ISD) are measured  
using this setup, and RON is computed with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
Figure 18. On-Resistance Measurement Setup  
7.1.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in Figure 19.  
VDD  
VSS  
VDD  
VSS  
S1A  
S4A  
S1A  
S2A  
S3A  
S4A  
ID (OFF)  
DA  
DA  
A
A
VD  
VD  
Is (OFF)  
VS  
VS  
Is (OFF)  
S1B  
S2B  
S3B  
S4B  
S1B  
S4B  
ID (OFF)  
A
DB  
DB  
A
VS  
VD  
VD  
GND  
GND  
VS  
Figure 19. Off-Leakage Measurement Setup  
18  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
Overview (continued)  
7.1.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. Figure 20 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
IS (ON)  
ID (ON)  
S1A  
S2A  
S3A  
S4A  
S1A  
S2A  
S3A  
S4A  
N.C.  
A
DA  
DA  
N.C.  
A
VS  
VD  
VS  
VS  
IS (ON)  
ID (ON)  
S1B  
S2B  
S3B  
S4B  
S1B  
S2B  
S3B  
S4B  
A
N.C.  
DB  
DB  
N.C.  
A
VS  
VD  
GND  
GND  
VS  
VS  
Figure 20. On-Leakage Measurement Setup  
7.1.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device, system level timing can then account for the time constant added from the load resistance and load  
capacitance. Figure 21 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1F  
0.1F  
VDD  
VSS  
VDD  
ADDRESS  
DRIVE  
S1A  
S2A  
S3A  
S4A  
tf < 5ns  
tr < 5ns  
VS  
VIH  
OUTPUT  
DA  
DB  
(VSEL  
)
VIL  
0 V  
CL  
RL  
S1B  
S2B  
S3B  
S4B  
VS  
tTRANSITION  
tTRANSITION  
OUTPUT  
RL  
CL  
90%  
OUTPUT  
A0  
A1  
VSEL  
10%  
GND  
0 V  
Figure 21. Transition-Time Measurement Setup  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Overview (continued)  
7.1.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. Figure 22 shows  
the setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1F  
0.1F  
VSS  
VDD  
VDD  
S1A  
S2A  
S3A  
S4A  
VS  
ADDRESS  
DRIVE  
OUTPUT  
DA  
DB  
tr < 5ns  
tf < 5ns  
(VSEL  
)
CL  
RL  
0 V  
S1B  
S2B  
S3B  
S4B  
VS  
OUTPUT  
RL  
90%  
Output  
CL  
tBBM  
1
tBBM 2  
0 V  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
A0  
A1  
VSEL  
GND  
Figure 22. Break-Before-Make Delay Measurement Setup  
7.1.6 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device, system level timing  
can then account for the time constant added from the load resistance and load capacitance. Figure 23 shows  
the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device, system level timing  
can then account for the time constant added from the load resistance and load capacitance. Figure 23 shows  
the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1F  
0.1F  
VDD  
tf < 5ns  
tr < 5ns  
VSS  
VDD  
ENABLE  
DRIVE  
S1A  
S2A  
S3A  
S4A  
VIH  
VS  
(VEN  
)
OUTPUT  
DA  
DB  
VIL  
CL  
RL  
0 V  
S1B  
S2B  
S3B  
S4B  
VS  
OUTPUT  
RL  
tOFF (EN)  
tON  
(EN)  
CL  
90%  
EN  
OUTPUT  
0 V  
VEN  
GND  
10%  
Figure 23. Turn-On and Turn-Off Time Measurement Setup  
20  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
Overview (continued)  
7.1.7 Charge Injection  
The TMUX1109 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted  
by the symbol QC. Figure 24 shows the setup used to measure charge injection from source (Sx) to drain (D).  
VDD  
VSS  
0.1F  
0.1F  
VSS  
VDD  
S1A  
S2A  
S3A  
S4A  
VS  
VDD  
VEN  
OUTPUT  
CL  
DA  
DB  
VOUT  
0 V  
S1B  
S2B  
S3B  
S4B  
VS  
OUTPUT  
Output  
VOUT  
VOUT  
CL  
VS  
QC = CL  
×
VOUT  
EN  
VEN  
GND  
Figure 24. Charge-Injection Measurement Setup  
7.1.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. Figure 25 shows the setup used to measure and the equation used to compute  
off isolation.  
VDD  
VSS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
VSS  
VDD  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
50Q  
SX/DX  
GND  
RL  
50Q  
Figure 25. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
21  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Overview (continued)  
7.1.9 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. Figure 26 shows the setup used to measure, and the equation used to  
compute crosstalk.  
VDD  
VSS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
VSS  
VDD  
DA  
S1A  
VOUT  
RL  
RL  
50Q  
50Q  
VS  
DB  
S1B  
RL  
50Q  
50Q  
SXA / SX  
B
VSIG  
RL  
50Q  
GND  
Figure 26. Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
7.1.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. Figure 27  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
VSS  
VDD  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
GND  
Figure 27. Bandwidth Measurement Setup  
22  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
7.2 Functional Block Diagram  
The TMUX1109 is an 4:1, differential (2-channel), multiplexer. Each switch is turned on or off based on the state  
of the address lines and enable pin.  
TMUX1109  
S1A  
S2A  
S3A  
DA  
S4A  
S1B  
S2B  
S3B  
DB  
S4B  
1-OF-4  
DECODER  
A0  
A1  
EN  
Figure 28. TMUX1109 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Bidirectional Operation  
The TMUX1109 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
7.3.2 Rail to Rail Operation  
The valid signal path input/output voltage for TMUX1109 ranges from VSS to VDD  
.
7.3.3 1.8 V Logic Compatible Inputs  
The TMUX1109 has 1.8-V logic compatible control for all logic control inputs. The logic input thresholds scale  
with supply but still provide 1.8-V logic control when operating at 5.5 V supply voltage. 1.8-V logic level inputs  
allows the TMUX1109 to interface with processors that have lower logic I/O rails and eliminates the need for an  
external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations  
refer to Simplifying Design with 1.8 V logic Muxes and Switches  
7.3.4 Fail-Safe Logic  
The TMUX1109 supports Fail-Safe Logic on the control input pins (EN, A0, A1) allowing for operation up to 5.5 V  
above VSS, regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied  
before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity  
by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the TMUX1109 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the TMUX1109 with VDD = 1.2 V while allowing the select pins to interface with a logic level  
of another device up to 5.5 V.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
Feature Description (continued)  
7.3.5 Ultra-low Leakage Current  
The TMUX1109 provides extremely low on-leakage and off-leakage currents. The TMUX1109 is capable of  
switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset  
error because of the ultralow leakage currents. Figure 29 shows typical leakage currents of the TMUX1109  
versus temperature.  
3.5  
2.5  
1.5  
IS(OFF)  
0.5  
-0.5  
ID(OFF)  
ID(ON)  
-1.5  
-2.5  
-3.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D009  
Figure 29. Leakage Current vs Temperature  
7.3.6 Ultra-low Charge Injection  
The TMUX1109 has a transmission gate topology, as shown in Figure 30. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
Figure 30. Transmission Gate Topology  
The TMUX1109 has special charge-injection cancellation circuitry that reduces the source-to-drain charge  
injection to as low as 1 pC at VS = 1 V as shown in Figure 31.  
24  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
Feature Description (continued)  
20  
15  
10  
5
VDD = 3.3 V  
VSS = 0 V  
VDD = 5 V  
SS = 0 V  
V
0
-5  
VDD = 2.5 V  
VSS = -2.5 V  
-10  
-15  
-20  
-3  
-2  
-1  
0
1
2
3
4
5
Source Voltage (V)  
D012  
Figure 31. Charge Injection vs Source Voltage  
7.4 Device Functional Modes  
When the EN pin of the TMUX1109 is pulled high, one of the switches is closed based on the state of the  
address lines. When the EN pin is pulled low, all the switches are in an open state regardless of the state of the  
address lines.  
7.4.1 Truth Tables  
Table 1. TMUX1109 Truth Table  
EN A1 A0 Selected Input Connected To Drain (DA, DB) Pins  
0
1
1
1
1
X(1) X(1)  
All channels are off  
S1A and S1B  
S2A and S2B  
S3A and S3B  
S4A and S4B  
0
0
1
1
0
1
0
1
(1) X denotes don't care.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TMUX1109  
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TMUX11xx family offers ulta-low input/output leakage currents and low charge injection. These devices  
operate up to 5.5 V, and offer true rail-to-rail input and output. The TMUX1109 has a low on-capacitance which  
allows faster settling time when multiplexing inputs in the time domain. These features make the TMUX11xx  
devices a family of precision, robust, high-performance analog multiplexer for low-voltage applications.  
8.2 Typical Application  
Figure 32 shows a 16-bit, simultaneous-sampling data-acquisition system. This example is typical in industrial  
applications that require sampling simultaneous signals such as Optical Modules, Analog Input Modules, and  
Motor Drive circuits for position feedback. The circuit uses eight Fully Differential Amplifiers (FDAs), a 16-bit, 3-  
MSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along with a two differential  
precision multiplexers. Refer to True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC  
Circuit for more information.  
REFby2  
1µF  
4 Channels per ADC  
REFby2  
(2.048V output)  
Cf1 3pF  
INN_x  
Rg1 1kΩ  
Rfil1 30.1Ω  
SxA  
Rf1 1kΩ  
REFby2  
2.048V  
+5V  
Riso1  
10Ω  
AINP_A  
DA  
15pF  
15pF  
4:1  
-
Cfil  
150pF  
Vocm  
+
-
ADC_A  
Differential  
MUX  
+
Riso2  
10Ω  
100nF  
AINM_A  
DB  
Rfil2 30.1Ω  
Rf2 1kΩ  
SxB  
INP_x  
INN_x  
Rg2 1kΩ  
Cf2 3pF  
ADS9224R  
Dual,  
Simultaneous-  
Sampling  
Low-Latency  
SAR ADC  
THS4551 (4x)  
TMUX1109  
Cf1 3pF  
Rg1 1kΩ  
Rfil1 30.1Ω  
SxA  
Rf1 1kΩ  
REFby2  
2.048V  
+5V  
Riso1  
10Ω  
15pF  
15pF  
AINP_B  
DA  
4:1  
-
Cfil  
150pF  
Vocm  
+
-
ADC_B  
Differential  
MUX  
+
Riso2  
10Ω  
100nF  
DB  
AINM_B  
Rfil2 30.1Ω  
Rf2 1kΩ  
SxB  
Rg2 1kΩ  
INP_x  
Cf2 3pF  
THS4551 (4x)  
TMUX1109  
4 Channels per ADC  
Figure 32. Simultaneous-Sampling ADC Circuit  
26  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
8.3 Design Requirements  
For this design example, use the parameters listed in Table 2.  
Table 2. Design Parameters  
PARAMETERS  
VALUES  
5 V  
Supply (VDD  
)
Vref  
4.096 V  
Vocm  
2.048 V  
Max Differential Voltage  
Control logic thresholds  
3.636 V  
1.8 V compatible  
8.4 Detailed Design Procedure  
The TMUX1109 can be operated without any external components except for the supply decoupling capacitors. If  
the device desired power-up state is disabled, the enable pin should have a weak pull-down resistor and be  
controlled by the MCU via GPIO. All inputs being muxed to the ADC must fall within the recommend operating  
conditions of the TMUX1109 including signal range and continuous current. System level design and component  
selection are made according to True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC  
Circuit.  
1. The ADS9224R was selected because of the dual simultaneous sampling and high throughput (3-MSPS).  
2. The TMUX1109 4:1 (2x) multiplexer was selected to support 4 differential inputs for each ADC.  
3. Find ADC full-scale range, resolution and common-mode range specifications.  
4. Determine the linear range of the FDA (THS4551) based on common-mode and output swing specification.  
5. Select COG capacitors for all filter capacitors at the ADC input to minimize distortion.  
6. Select the FDA gain resistors RF1,2 , RG1,2. Use 0.1% 20ppm/°C film resistors or better for good accuracy,  
low gain drift and to minimize distortion.  
7. Introduction to SAR ADC Front-End Component Selection covers the methods for selecting the charge  
bucket circuit Rfil1, Rfil1 and Cfil. These component values are dependent on the amplifier bandwidth, data  
converter sampling rare, and data converter design. The values shown here will give good settling and AC  
performance for the amplifier and data converter in this example. If the design is modified, a different RC  
filter must be selected.  
8. The THS4551 is commonly used in high-speed precision fully differential SAR applications as it has sufficient  
bandwidth to settle to charge kickback transients from the ADC input sampling, and multiplexer charge  
injection and provides the common-mode level shifting to the voltage range of the SAR ADC.  
9. The TMUX1109 is used in high-speed precision fully differential SAR applications as it has sufficient  
bandwidth, low charge injection, and low on-resistance and capacitance. Low capacitance supports fast  
switching between channels and allows the system to settle within required precision in the specified timing.  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TMUX1109  
 
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
8.5 Application Curve  
Charge injection impacts system performance and settling characteristics of the charge bucket circuit. A  
multiplexer with low charge injection and a flat response across input voltage allows the system to settle to the  
required precision during the ADC acquisition period. Figure 33 shows the flat charge injection of the TMUX1109  
at multiple supply voltages.  
20  
15  
10  
5
VDD = 3.3 V  
VSS = 0 V  
VDD = 5 V  
SS = 0 V  
V
0
-5  
VDD = 2.5 V  
VSS = -2.5 V  
-10  
-15  
-20  
-3  
-2  
-1  
0
1
2
3
4
5
Source Voltage (V)  
D012  
TA = 25°C  
Figure 33. Charge Injection vs Source Voltage  
9 Power Supply Recommendations  
The TMUX1109 operates across a wide supply range of 1.08 V to 5.5 V, or ±2.5 V. Do not exceed the absolute  
maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD and  
SS  
supplies to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD and  
VSS to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using  
low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
28  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
 
TMUX1109  
www.ti.com  
SCDS406 DECEMBER 2018  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners.Figure 34 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
1W min.  
W
Figure 34. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-  
hole pins are not recommended at high frequencies.  
Figure 35 illustrates an example of a PCB layout with the TMUX1109. Some key considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
10.2 Layout Example  
Via to GND plane  
A1  
A0  
C
C
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
GND  
VDD  
S1B  
S2B  
EN  
VSS  
S1A  
S2A  
TMUX1109  
S3B  
S4B  
DB  
S3A  
S4A  
DA  
Figure 35. TMUX1109 Layout Example  
Copyright © 2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TMUX1109  
 
 
TMUX1109  
SCDS406 DECEMBER 2018  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit.  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers.  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.  
Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches.  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers.  
Texas Instruments, QFN/SON PCB Attachment.  
Texas Instruments, Quad Flatpack No-Lead Logic Packages.  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 Trademarks  
E2E is a trademark of Texas Instruments.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
30  
Submit Documentation Feedback  
Copyright © 2018, Texas Instruments Incorporated  
Product Folder Links: TMUX1109  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX1109PWR  
TMUX1109RSVR  
ACTIVE  
ACTIVE  
TSSOP  
UQFN  
PW  
16  
16  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TM1109  
1D1  
RSV  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1109PWR  
TMUX1109RSVR  
TSSOP  
UQFN  
PW  
16  
16  
2000  
3000  
330.0  
178.0  
12.4  
13.5  
6.9  
2.1  
5.6  
2.9  
1.6  
8.0  
4.0  
12.0  
12.0  
Q1  
Q1  
RSV  
0.75  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1109PWR  
TMUX1109RSVR  
TSSOP  
UQFN  
PW  
16  
16  
2000  
3000  
356.0  
189.0  
356.0  
185.0  
35.0  
36.0  
RSV  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TMUX1111

3pA 导通状态泄漏电流、5V、1:1 (SPST)、4 通道精密开关(4 个低电平有效)
TI

TMUX1111PWR

3pA 导通状态泄漏电流、5V、1:1 (SPST)、4 通道精密开关(4 个低电平有效) | PW | 16 | -40 to 125
TI

TMUX1111RSVR

3pA 导通状态泄漏电流、5V、1:1 (SPST)、4 通道精密开关(4 个低电平有效) | RSV | 16 | -40 to 125
TI

TMUX1112

3pA 导通状态泄漏电流、5V、1:1 (SPST)、4 通道精密开关(4 个高电平有效)
TI

TMUX1112PWR

3pA 导通状态泄漏电流、5V、1:1 (SPST)、4 通道精密开关(4 个高电平有效) | PW | 16 | -40 to 125
TI

TMUX1112RSVR

3pA 导通状态泄漏电流、5V、1:1 (SPST)、4 通道精密开关(4 个高电平有效) | RSV | 16 | -40 to 125
TI

TMUX1113

3pA、5V、1:1 (SPST)、4 通道精密开关(2 个低电平有效,2 个高电平有效)
TI

TMUX1113PWR

3pA、5V、1:1 (SPST)、4 通道精密开关(2 个低电平有效,2 个高电平有效) | PW | 16 | -40 to 125
TI

TMUX1113RSVR

3pA、5V、1:1 (SPST)、4 通道精密开关(2 个低电平有效,2 个高电平有效) | RSV | 16 | -40 to 125
TI

TMUX1119

3pA 导通状态泄漏电流、5V、2:1 (SPDT)、单通道精密多路复用器
TI

TMUX1119DBVR

3pA 导通状态泄漏电流、5V、2:1 (SPDT)、单通道精密多路复用器 | DBV | 6 | -40 to 125
TI

TMUX1119DCKR

3pA 导通状态泄漏电流、5V、2:1 (SPDT)、单通道精密多路复用器 | DCK | 6 | -40 to 125
TI