TMUX1309QPWRQ1 [TI]

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control;
TMUX1309QPWRQ1
型号: TMUX1309QPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control

文件: 总43页 (文件大小:2393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX1308-Q1,TMUX1309-Q1
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel  
Multiplexers with Injection Current Control  
1 Features  
3 Description  
AEC-Q100 Qualified for Automotive Applications  
The TMUX1308-Q1 and TMUX1309-Q1 are general  
purpose complementary metal-oxide semiconductor  
(CMOS) multiplexers (MUX). The TMUX1308-Q1 is  
an 8:1, 1-channel (single-ended) mux, while the  
TMUX1309-Q1 is a 4:1, 2-channel (differential) mux.  
The devices support bidirectional analog and digital  
signals on the source (Sx) and drain (Dx) pins ranging  
– Device Temperature Grade 1: –40°C to 125°C  
Ambient Operating Temperature  
Injection Current Control  
Back-powering Protection  
– No ESD Diode Path to VDD  
Wide Supply Range: 1.62 V to 5.5 V  
Low Capacitance  
Bidirectional Signal Path  
Rail-to-Rail Operation  
1.8 V Logic Compatible  
Fail-safe Logic  
Break-before-make Switching  
Functional Safety-Capable  
Documentation Available to Aid Functional  
Safety System Design  
from GND to VDD  
.
The TMUX13xx-Q1 devices have an internal injection  
current control feature which eliminates the need for  
external diode and resistor networks typically used to  
protect the switch and keep the input signals within  
the supply voltage. The internal injection current  
control circuitry allows signals on disabled signal  
paths to exceed the supply voltage without affecting  
the signal of the enabled signal path. Additionally, the  
TMUX13xx-Q1 devices do not have any internal diode  
path to the supply pin, which eliminates the risk of  
damaging components connected to the supply pin, or  
providing unintended power to the supply rail.  
TMUX1308-Q1 - Pin Compatible with:  
– Industry Standard 4051 and 4851 Multiplexers  
TMUX1309-Q1 - Pin Compatible with:  
– Industry Standard 4052 and 4852 Multiplexers  
All logic inputs have 1.8 V logic compatible  
thresholds, ensuring both TTL and CMOS logic  
compatibility when operating with a valid supply  
voltage. Fail-Safe Logic circuitry allows voltages on  
the control pins to be applied before the supply pin,  
protecting the device from potential damage.  
2 Applications  
Analog and Digital Multiplexing and Demultiplexing  
Diagnostics and Monitoring  
Body Control Modules  
Battery Management Systems (BMS)  
HVAC Control Module  
Automotive Head Unit  
Telematics  
On-board (OBC) and Wireless Charging  
Device Information  
PART NUMBER(1)  
PACKAGE  
BODY SIZE (NOM)  
5.00 mm × 4.40 mm  
4.20 mm x 2.00 mm  
3.50 mm x 2.50 mm  
TSSOP (16)  
TMUX1308-Q1  
TMUX1309-Q1  
SOT-23-THIN (16)  
WQFN (16)  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
TMUX1308-Q1  
TMUX1309-Q1  
S0A  
S1A  
S2A  
S3A  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
DA  
DB  
D
S0B  
S1B  
S2B  
S3B  
1-OF-8  
1-OF-4  
DECODER  
DECODER  
A0  
A1  
EN  
A0 A1 A2 EN  
TMUX1308-Q1 and TMUX1309-Q1 Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
Pin Functions TMUX1308-Q1 ..........................................4  
Pin Functions TMUX1309-Q1 ..........................................6  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings........................................ 7  
7.2 ESD Ratings............................................................... 7  
7.3 Recommended Operating Conditions.........................7  
7.4 Thermal Information: TMUX1308-Q1..........................8  
7.5 Thermal Information: TMUX1309-Q1..........................8  
7.6 Electrical Characteristics.............................................9  
7.7 Logic and Dynamic Characteristics...........................10  
7.8 Timing Characteristics...............................................11  
7.9 Injection Current Coupling........................................ 12  
7.10 Typical Characteristics............................................13  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................22  
9 Application and Implementation..................................27  
9.1 Application Information............................................. 27  
9.2 Typical Application.................................................... 27  
9.3 Design Requirements............................................... 28  
9.4 Detailed Design Procedure.......................................28  
10 Power Supply Recommendations..............................29  
11 Layout...........................................................................29  
11.1 Layout Guidelines................................................... 29  
11.2 Layout Example...................................................... 30  
12 Device and Documentation Support..........................31  
12.1 Documentation Support.......................................... 31  
12.2 Related Links.......................................................... 31  
12.3 Receiving Notification of Documentation Updates..31  
12.4 Support Resources................................................. 31  
12.5 Trademarks.............................................................31  
12.6 Electrostatic Discharge Caution..............................31  
12.7 Glossary..................................................................31  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 32  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (July 2020) to Revision C (August 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Added the Typical Characteristics.................................................................................................................... 13  
Changes from Revision A (June 2020) to Revision B (July 2020)  
Page  
Added thermal information for TMUX1309-Q1................................................................................................... 8  
Changes from Revision * (December 2019) to Revision A (June 2020)  
Page  
Changed status From: Advanced Information To: Production Data ...................................................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
5 Device Comparison Table  
PRODUCT  
DESCRIPTION  
TMUX1308-Q1  
TMUX1309-Q1  
8:1, 1-Channel, single-ended multiplexer  
4:1, 2-Channel, differential multiplexer  
6 Pin Configuration and Functions  
S4  
S6  
D
1
16  
15  
14  
13  
12  
11  
10  
9
VDD  
S2  
S1  
S0  
S3  
A0  
A1  
A2  
S4  
S6  
D
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
S2  
S1  
S0  
S3  
A0  
A1  
A2  
2
3
S7  
S5  
4
S7  
S5  
5
6
N.C.  
7
N.C.  
GND  
8
Not to scale  
GND  
Figure 6-2. TMUX1308-Q1: DYY Package 16-Pin  
SOT-23-THIN Top View  
Not to scale  
Figure 6-1. TMUX1308-Q1: PW Package 16-Pin  
TSSOP Top View  
S6  
D
2
3
4
5
6
7
15  
14  
13  
12  
11  
10  
S2  
S1  
S0  
S3  
A0  
A1  
Thermal  
Pad  
S7  
S5  
N.C.  
Not to scale  
Figure 6-3. TMUX1308-Q1: BQB Package 16-Pin WQFN Top View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
Pin Functions TMUX1308-Q1  
PIN  
TYPE(1)  
DESCRIPTION(2)  
Source pin 4. Signal path can be an input or output.  
NAME  
S4  
NO.  
1
I/O  
I/O  
I/O  
I/O  
I/O  
S6  
2
Source pin 6. Signal path can be an input or output.  
Drain pin (common). Signal path can be an input or output.  
Source pin 7. Signal path can be an input or output.  
Source pin 5. Signal path can be an input or output.  
D
3
S7  
4
S5  
5
Active low logic input. When this pin is high, all switches are turned off. When this pin is low, the A[2:0]  
address inputs determine which switch is turned on as shown in Table 8-1.  
EN  
6
I
N.C.  
GND  
A2  
7
Not Connected  
Not Connected.  
8
P
I
Ground (0 V) reference  
9
Address line 2. Controls the switch configuration as shown in Table 8-1.  
Address line 1. Controls the switch configuration as shown in Table 8-1.  
Address line 0. Controls the switch configuration as shown in Table 8-1.  
Source pin 3. Signal path can be an input or output.  
Source pin 0. Signal path can be an input or output.  
Source pin 1. Signal path can be an input or output.  
Source pin 2. Signal path can be an input or output.  
A1  
10  
11  
12  
13  
14  
15  
I
A0  
I
S3  
I/O  
I/O  
I/O  
I/O  
S0  
S1  
S2  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
16  
P
Exposed thermal pad. No requirement to solder this pad, if connected it should be left floating or tied to  
GND.  
Thermal pad  
Not Connected  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to Section 8.3.6 for what to do with unused pins.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
S0B  
S2B  
DB  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
S2A  
S1A  
DA  
S0B  
S2B  
DB  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
S2A  
S1A  
DA  
S3B  
S1B  
S3B  
S1B  
S0A  
S3A  
A0  
S0A  
S3A  
A0  
N.C.  
N.C.  
GND  
A1  
GND  
A1  
Not to scale  
Figure 6-5. TMUX1309-Q1: DYY Package 16-Pin  
SOT-23-THIN Top View  
Not to scale  
Figure 6-4. TMUX1309-Q1: PW Package 16-Pin  
TSSOP Top View  
S2B  
DB  
2
3
4
5
6
7
15  
14  
13  
12  
11  
10  
S2A  
S1A  
DA  
Thermal  
Pad  
S3B  
S1B  
S0A  
S3A  
A0  
N.C.  
Not to scale  
Figure 6-6. TMUX1309-Q1: BQB Package 16-Pin WQFN Top View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
Pin Functions TMUX1309-Q1  
PIN  
TYPE(1)  
DESCRIPTION(1)  
Source pin 0 of mux B. Can be an input or output.  
NAME  
S0B  
S2B  
DB  
NO.  
1
I/O  
I/O  
I/O  
I/O  
I/O  
2
Source pin 2 of mux B. Can be an input or output.  
Drain pin (Common) of mux B. Can be an input or output.  
Source pin 3 of mux B. Can be an input or output.  
Source pin 1 of mux B. Can be an input or output.  
3
S3B  
S1B  
4
5
Active low logic input. When this pin is high, all switches are turned off. When this pin is low, the A[1:0]  
address inputs determine which switch is turned on.  
EN  
6
I
N.C.  
GND  
A1  
7
Not Connected  
Not Connected.  
8
P
I
Ground (0 V) reference  
9
Address line 1. Controls the switch configuration as shown in Table 8-2.  
Address line 0. Controls the switch configuration as shown in Table 8-2.  
Source pin 3 of mux A. Can be an input or output.  
Source pin 0 of mux A. Can be an input or output.  
Drain pin (Common) of mux A. Can be an input or output.  
Source pin 1 of mux A. Can be an input or output.  
Source pin 3 of mux A. Can be an input or output.  
A0  
10  
11  
12  
13  
14  
15  
I
S3A  
S0A  
DA  
I/O  
I/O  
I/O  
I/O  
I/O  
S1A  
S2A  
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
16  
P
Exposed thermal pad. No requirement to solder this pad, if connected it should be left floating or tied to  
GND.  
Thermal pad  
Not Connected  
(1) Refer to Section 8.3.6 for what to do with unused pins.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
–0.5  
–0.5  
–0.5  
–30  
MAX  
6
UNIT  
VDD  
Supply voltage  
VSEL or VEN  
VS or VD  
ISEL or IEN  
IS or ID (CONT)  
IS or ID (CONT)  
IGND  
Logic control input pin voltage (EN, A0, A1, A2)  
Source or drain voltage (Sx, D)  
6
V
VDD+0.5  
30  
Logic control input pin current (EN, A0, A1, A2)  
Continuous current through switch (Sx, D pins) –40°C to +85°C  
Continuous current through switch (Sx, D pins) –40°C to +125°C  
Continuous current through GND  
–50  
50  
mA  
–25  
25  
–100  
100  
500  
150  
150  
Ptot  
Total power dissipation(4)  
mW  
°C  
Tstg  
Storage temperature  
–65  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
(4) For TSSOP package: Ptot derates linearily above TA = 80°C by 7.2mW/°C.  
For SOT-23-THIN package: Ptot derates linearily above TA = 66°C by 6mW/°C.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per  
All pins  
All pins  
±2000  
±750  
AEC Q100-002(1)  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per  
AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
V
VDD  
Supply voltage  
1.62  
0
5.5  
VDD  
5.5  
50  
VS or VD  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Logic control input pin voltage (EN, A0, A1, A2)  
Continuous current through switch (Sx, D pins) –40°C to +85°C  
Continuous current through switch (Sx, D pins) –40°C to +125°C  
V
VSEL or VEN  
IS or ID (CONT)  
IS or ID (CONT)  
0
V
–50  
–25  
mA  
mA  
25  
Current per input into source or drain pins when singal voltage exceeds  
recommended operating voltage (1)  
IOK  
–50  
50  
mA  
IINJ  
Injected current into single off switch input  
Total injected current into all off switch inputs combined  
Ambient temperature  
–50  
–100  
–40  
50  
100  
125  
mA  
mA  
°C  
IINJ_ALL  
TA  
(1) If source or drain voltage exceeds VDD, or goes below GND, the pin will be shunted to GND through an internal FET, the current must  
be limited within the specified value. If Vsignal > VDD or if Vsignal < GND.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
 
 
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
www.ti.com  
UNIT  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
7.4 Thermal Information: TMUX1308-Q1  
TMUX1308-Q1  
DYY (SOT)  
PINS  
THERMAL METRIC(1)  
PW (TSSOP)  
PINS  
139.6  
77.2  
BQB (WQFN)  
PINS  
94.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
167.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
106.3  
92.6  
84.2  
90.0  
64.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
26.5  
17.2  
13.3  
ΨJB  
83.8  
90.0  
64.4  
RθJC(bot)  
N/A  
N/A  
42.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Thermal Information: TMUX1309-Q1  
TMUX1309-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
PINS  
139.6  
77.2  
DYY (SOT)  
PINS  
172.4  
107.0  
96.1  
BQB (WQFN)  
PINS  
94.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
92.6  
84.2  
64.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
26.5  
19.7  
13.3  
ΨJB  
83.8  
95.9  
64.4  
RθJC(bot)  
N/A  
N/A  
42.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
7.6 Electrical Characteristics  
At specified VDD ±10%  
Typical values measured at nominal VDD  
Operating free-air temperature (TA)  
–40°C to 85°C –40°C to 125°C  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
VDD  
25°C  
TYP MAX  
UNIT  
MIN  
MIN  
TYP MAX  
ANALOG SWITCH  
On-state  
1.8 V  
2.5 V  
3.3 V  
5 V  
650 1500  
1700  
670  
350  
220  
21  
1700  
670  
370  
270  
22  
VS = 0 V to VDD  
ISD = 0.5 mA  
Refer to On-Resistance  
230  
120  
75  
10  
3
600  
330  
195  
19  
RON  
switch  
Ω
Ω
resistance  
On-state  
switch  
1.8 V  
2.5 V  
3.3 V  
10  
12  
16  
VS = 0 V to VDD  
ISD = 0.5 mA  
Refer to On-Resistance  
resistance  
matching  
between  
inputs  
ΔRON  
2
8
11  
15  
5 V  
1
7
10  
14  
1.8 V  
2.5 V  
3.3 V  
5 V  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
±1  
2
–25  
–25  
–25  
–25  
–45  
–45  
–45  
–45  
–45  
–45  
–45  
–45  
25 –800  
25 –800  
25 –800  
25 –800  
45 –800  
45 –800  
45 –800  
45 –800  
45 –800  
45 –800  
45 –800  
45 –800  
14  
800  
800  
800  
800  
800  
800  
800  
800  
800  
800  
800  
800  
14  
Switch Off  
Source off-  
IS(OFF) state leakage  
current  
VD = 0.8 x VDD/ 0.2 x VDD  
VS = 0.2 x VDD/ 0.8 x VDD  
Refer to Off-Leakage  
nA  
nA  
nA  
pF  
pF  
pF  
1.8 V  
2.5 V  
3.3 V  
5 V  
Drain off-state  
leakage  
ID(OFF) current  
(common  
Switch Off  
VD = 0.8 x VDD/ 0.2 x VDD  
VS = 0.2 x VDD/ 0.8 x VDD  
Refer to Off-Leakage  
drain pin)  
1.8 V  
2.5 V  
3.3 V  
5 V  
Switch On  
Channel on-  
ID(ON)  
VD = VS = 0.8 x VDD or  
VD = VS = 0.2 x VDD  
Refer to On-Leakage  
state leakage  
IS(ON)  
current  
1.8 V  
2.5 V  
3.3 V  
5 V  
14  
14  
14  
14  
37  
37  
37  
37  
40  
40  
40  
40  
2
14  
14  
Source off  
CSOFF  
VS = VDD / 2  
f = 1 MHz  
capacitance  
2
14  
14  
2
14  
14  
1.8 V  
2.5 V  
3.3 V  
5 V  
7
37  
37  
7
37  
37  
Drain off  
CDOFF  
VS = VDD / 2  
f = 1 MHz  
capacitance  
7
37  
37  
7
37  
37  
1.8 V  
2.5 V  
3.3 V  
5 V  
11  
11  
11  
11  
40  
40  
40  
40  
CSON  
CDON  
On  
capacitance  
VS = VDD / 2  
f = 1 MHz  
40  
40  
40  
40  
POWER SUPPLY  
1.8 V  
2.5 V  
3.3 V  
5 V  
1
1
1
1
1
1
1.2  
1.5  
2
VDD supply  
current  
IDD  
Logic inputs = 0 V or VDD  
µA  
1
1.5  
3
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
7.7 Logic and Dynamic Characteristics  
At specified VDD ±10%  
Typical values measured at nominal VDD and TA = 25°C.  
Operating free-air  
temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VDD  
UNIT  
–40°C to 125°C  
MIN  
TYP  
MAX  
LOGIC INPUTS (EN, A0, A1, A2)  
1.8 V  
0.95  
1.1  
1.15  
1.25  
0
5.5  
5.5  
5.5  
5.5  
0.6  
0.7  
0.8  
0.95  
1
2.5 V  
3.3 V  
5 V  
VIH  
Input logic high  
V
V
1.8 V  
2.5 V  
3.3 V  
5 V  
0
VIL  
Input logic low  
0
0
IIH  
IIL  
Logic high input leakage current VLOGIC = 1.8 V or VDD  
All  
uA  
uA  
Logic low input leakage current  
Logic input capacitance  
VLOGIC = 0 V  
All  
–1  
VLOGIC = 0 V, 1.8 V, VDD  
f = 1 MHz  
CIN  
All  
1
2
pF  
DYNAMIC CHARACTERISTICS  
1.8 V  
2.5 V  
3.3 V  
5 V  
–0.5  
–0.5  
–1  
VS = VDD / 2  
RS = 0 Ω, CL = 100 pF  
Refer to Charge Injection  
QINJ  
Charge Injection  
Off Isolation  
Off Isolation  
Crosstalk  
pC  
–6.5  
–110  
–110  
–110  
–110  
–90  
1.8 V  
2.5 V  
3.3 V  
5 V  
VBIAS = VDD / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 100 kHz  
OISO  
OISO  
XTALK  
XTALK  
BW  
dB  
dB  
Refer to Off Isolation  
1.8 V  
2.5 V  
3.3 V  
5 V  
VBIAS = VDD / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 1 MHz  
–90  
–90  
Refer to Off Isolation  
–90  
1.8 V  
2.5 V  
3.3 V  
5 V  
–110  
–110  
–110  
–110  
–90  
VBIAS = VDD / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 100 kHz  
dB  
Refer to Crosstalk  
1.8 V  
2.5 V  
3.3 V  
5 V  
VBIAS = VDD / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
f = 1 MHz  
–90  
Crosstalk  
dB  
–90  
Refer to Crosstalk  
–90  
1.8 V  
2.5 V  
3.3 V  
5 V  
350  
VBIAS = VDD / 2  
VS = 200 mVpp  
RL = 50 Ω, CL = 5 pF  
Refer to Bandwidth  
450  
Bandwidth  
MHz  
500  
500  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
7.8 Timing Characteristics  
At specified VDD ±10%  
Typical values measured at nominal VDD  
.
Operating free-air temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VDD  
25°C  
–40°C to 85°C  
–40°C to 125°C  
UNIT  
MIN TYP MAX  
MIN TYP MAX  
MIN TYP MAX  
SWITCHING CHARACTERISTICS  
1.8 V  
2.5 V  
3.3 V  
5 V  
15  
8
30  
15  
11  
9
30  
30  
20  
20  
CL = 50 pF  
Sx to D, D to Sx  
tPD  
Propagation delay  
5
15  
15 ns  
4
10  
10  
5
CL = 15 pF  
5 V  
1.5  
44  
30  
23  
18  
15  
39  
30  
26  
24  
22  
58  
21  
15  
11  
8
4
5
1.8 V  
2.5 V  
3.3 V  
5 V  
94  
63  
51  
43  
39  
64  
45  
38  
32  
31  
80  
70  
65  
40  
15  
103  
103  
67  
RL = 10 kΩ, CL = 50 pF  
Ax to D, Ax to Sx  
Refer to Transition Time  
67  
Transition-time  
between inputs  
tTRAN  
54  
54 ns  
46  
46  
43  
75  
50  
RL = 10 kΩ, CL = 15 pF 5 V  
43  
1.8 V  
75  
RL = 10 kΩ, CL = 50 pF  
EN to D, EN to Sx  
Refer to Turn-On and  
Turn-Off Time  
2.5 V  
3.3 V  
5 V  
50  
Turnon-time from  
enable  
tON(EN)  
42  
42 ns  
37  
37  
RL = 10 kΩ, CL = 15 pF 5 V  
35  
35  
1.8 V  
85  
85  
RL = 10 kΩ, CL = 50 pF  
EN to D, EN to Sx  
Refer to Turn-On and  
Turn-Off Time  
2.5 V  
3.3 V  
5 V  
72  
72  
Turnoff time from  
enable  
tOFF(EN)  
70  
70 ns  
45  
45  
RL = 10 kΩ, CL = 15 pF 5 V  
20  
20  
1.8 V  
1
1
1
1
16  
22  
24  
33  
1
1
1
1
1
1
1
1
RL = 10 kΩ, CL = 15 pF  
Sx to D, D to Sx  
Refer to Break-Before-  
Make  
2.5 V  
3.3 V  
5 V  
Break before make  
time  
tBBM  
ns  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
7.9 Injection Current Coupling  
At specified VDD ±10%  
Typical values measured at nominal VDD and TA = 25°C.  
-40°C to 125°C  
PARAMETER  
VDD  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
INJECTION CURRENT COUPLING  
1.8 V  
0.01  
0.05  
0.1  
1
1
3.3 V  
5 V  
RS ≤ 3.9 kΩ IINJ ≤ 1 mA  
1
1.8 V  
3.3 V  
5 V  
0.01  
0.3  
2
IINJ ≤ 10  
RS ≤ 3.9 kΩ  
mA  
3
0.06  
0.05  
0.05  
0.1  
4
Maximum shift of output voltage  
of enabled analog input  
ΔVOUT  
mV  
1.8 V  
3.3 V  
5 V  
2
RS ≤ 20 kΩ IINJ ≤ 1 mA  
2
2
1.8 V  
3.3 V  
5 V  
0.05  
0.05  
0.02  
15  
15  
15  
IINJ ≤ 10  
RS ≤ 20 kΩ  
mA  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
7.10 Typical Characteristics  
at TA = 25°C, VDD = 5 V (unless otherwise noted)  
270  
370  
320  
270  
220  
170  
120  
70  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
220  
170  
120  
70  
20  
20  
0
0.5  
1
1.5  
2
2.5  
VS or VD - Source or Drain Voltage (V)  
3
3.5  
0
1
2
3
VS or VD - Source or Drain Voltage (V)  
4
5
D002  
D001  
VDD = 3.3 V  
VDD = 5 V  
Figure 7-2. On-Resistance vs Temperature  
Figure 7-1. On-Resistance vs Temperature  
530  
700  
TA = 125èC  
VDD = 5 V  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
480  
TA = 85èC  
VDD = 3.3 V  
VDD = 2.5 V  
VDD = 1.8 V  
TA = 25èC  
TA = -40èC  
430  
380  
330  
280  
230  
180  
130  
80  
30  
0
0.5  
1
VS or VD - Source or Drain Voltage (V)  
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
VS or VD - Source or Drain Voltage (V)  
3
3.5  
4
4.5  
5
D003  
D005  
VDD = 2.5 V  
TA = 25°C  
Figure 7-3. On-Resistance vs Temperature  
Figure 7-4. On-Resistance vs Source or Drain  
Voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
15  
14  
13  
12  
11  
10  
9
VDD = 5.5 V  
VDD = 5 V  
VDD = 3.3 V  
VDD = 1.8 V  
CON  
CSOFF  
CDOFF  
8
7
6
5
4
3
2
1
0
0.3  
0
0.5  
1
1.5  
2
2.5  
3
Logic Voltage (V)  
3.5  
4
4.5  
5
5.5  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
VS or VD - Source or Drain Voltage (V)  
2.4  
2.7  
3
D006  
D013  
Figure 7-5. Supply Current vs Logic Voltage  
VDD = 3.3 V  
Figure 7-6. Capacitance vs Source Voltage  
80  
VDD = 5.5 V  
VDD = 5 V  
VDD = 3.3 V  
VDD = 1.8 V  
TON(EN)  
TOFF(EN)  
100m  
70  
10m  
1m  
60  
50  
40  
30  
20  
10  
100m  
10m  
1m  
100n  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D012  
D007  
TA = 25°C  
VDD = 3.3 V  
Figure 7-7. Supply Current vs Input Switching  
Frequency  
Figure 7-8. TON(EN) and TOFF(EN) vs Temperature  
50  
40  
Transiton_Falling  
Transiton_Rising  
Transiton_Falling  
Transiton_Rising  
45  
40  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
1.5  
2
2.5  
3
Supply Voltage (V)  
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D008  
D009  
TA = 25°C  
TA = 25°C  
Figure 7-9. TTRANSITION vs Supply Voltage  
Figure 7-10. TTRANSITION vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
-4  
-20  
-30  
-40  
-5  
-6  
-7  
-8  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-9  
100k  
10k  
100k  
1M 10M  
Frequency (Hz)  
100M  
1G  
1M  
10M  
Frequency (Hz)  
100M  
D00114  
D010  
TA = 25°C , VDD = 3.3 V  
TA = 25°C  
Figure 7-12. Xtalk and Off-Isolation vs Frequency  
Figure 7-11. On Response vs Frequency  
16  
14  
12  
10  
8
VDD = 5 V  
VDD = 3.3 V  
VDD = 1.8 V  
6
4
2
0
-2  
0
5
10  
15  
20  
25  
Current (mA)  
30  
35  
40  
45  
50  
D011  
D011  
VS = (VDD/2), TA = 25°C  
Figure 7-13. Injection Current vs Maximum Output Voltage shift  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
8.1.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown below. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed as shown in Figure 8-1 with RON = V / ISD  
:
V
ISD  
Sx  
D
VS  
Figure 8-1. On-Resistance Measurement Setup  
8.1.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current.  
2. Drain off-leakage current.  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in Figure 8-2.  
VDD  
VDD  
VDD  
VDD  
Is (OFF)  
S0  
S0  
A
ID (OFF)  
D
D
S6  
S7  
A
S6  
S7  
VS  
VS  
VD  
VD  
GND  
GND  
Figure 8-2. Off-Leakage Measurement Setup  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.1.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. Figure 8-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
VDD  
VDD  
IS (ON)  
S0  
S0  
S1  
A
N.C.  
ID (ON)  
S1  
D
D
A
N.C.  
S7  
S7  
Vs  
VS  
VS  
VD  
GND  
GND  
Figure 8-3. On-Leakage Measurement Setup  
8.1.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 50% after the address signal  
has risen or fallen past the 50% threshold. Figure 8-4 shows the setup used to measure transition time, denoted  
by the symbol tTRANSITION  
.
VDD  
0.1F  
VDD  
S0  
S1  
50%  
50%  
VSEL  
tr < 5ns  
tf < 5ns  
VDD  
OUTPUT  
D
0 V  
tTRAN_HIGH  
tTRAN_LOW  
RL  
CL  
S7  
Output  
50%  
50%  
A0  
A1  
0 V  
tTRAN = max ( tTRAN_HGH, tTRAN_LOW  
)
EN  
VSEL  
A2  
GND  
Figure 8-4. Transition-Time Measurement Setup  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.1.5 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. Figure 8-5 shows  
the setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
S0  
Input Select  
(VSEL  
VDD  
tr < 5ns  
tf < 5ns  
OUTPUT  
)
D
S1-S6  
S7  
0 V  
RL  
CL  
90%  
Output  
0 V  
tBBM_1  
tBBM_2  
A0  
A1  
tBBM = min ( tBBM_1, tBBM_2  
)
EN  
VSEL  
A2  
GND  
Figure 8-5. Break-Before-Make Delay Measurement Setup  
8.1.6 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 10% after the enable has risen  
past the 50% threshold. The 10% measurement is utilized to provide the timing of the device, system level timing  
can then account for the time constant added from the load resistance and load capacitance. Figure 8-6 shows  
the setup used to measure transition time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 90% after the enable has fallen  
past the 50% threshold. The 90% measurement is utilized to provide the timing of the device, system level timing  
can then account for the time constant added from the load resistance and load capacitance. Figure 8-6 shows  
the setup used to measure transition time, denoted by the symbol tOFF(EN)  
.
VDD  
0.1F  
VDD  
tf < 5ns  
50%  
50%  
tr < 5ns  
VEN  
S0  
S1  
VDD  
OUTPUT  
D
0 V  
RL  
CL  
S7  
tON  
tOFF  
(EN)  
(EN)  
90%  
A0  
A1  
EN  
OUTPUT  
0 V  
VEN  
A2  
10%  
GND  
Figure 8-6. Turn-On and Turn-Off Time Measurement Setup  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.1.7 Charge Injection  
The TMUX1308-Q1 and TMUX1309-Q1 device have a transmission-gate topology. Any mismatch in capacitance  
between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling  
or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known  
as charge injection, and is denoted by the symbol QC. Figure 8-7 shows the setup used to measure charge  
injection from source (Sx) to drain (D).  
VDD  
0.1F  
VDD  
VDD  
S0  
VS  
VEN  
S5  
S6  
S7  
OUTPUT  
D
0 V  
VOUT  
CL  
Output  
VOUT  
VS  
QC = CL  
×
VOUT  
EN  
A0  
A1  
VEN  
A2  
GND  
Figure 8-7. Charge-Injection Measurement Setup  
8.1.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. Figure 8-8 shows the setup used to measure, and the equation to compute off  
isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Q  
S
VSIG  
D
VOUT  
RL  
SX  
50Q  
GND  
RL  
50Q  
Figure 8-8. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.1.9 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. Figure 8-9 shows the setup used to measure, and the equation used to  
compute crosstalk.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
S1  
VOUT  
RL  
D
50Q  
VS  
RL  
S2  
50Q  
50Q  
VSIG  
SX  
RL  
GND  
50Q  
Figure 8-9. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
8.1.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. Figure  
8-10 shows the setup used to measure bandwidth.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
50Q  
VSIG  
D
VOUT  
RL  
50Q  
SX  
GND  
RL  
50Q  
Figure 8-10. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(3)  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.1.11 Injection Current Control  
Injection current is measured at the change in output of the enabled signal path when an current is injected into  
a disabled signal path. Figure 8-11 shows the setup used to measure Injection current control.  
VDD  
Any OFF input  
VINPUT_2 < GND or  
VINPUT_2 > VDD  
VINPUT_2  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
IINJ  
VOUT = VINPUT_1 ûVOUT  
D
VOUT  
VINPUT_1  
S7  
RS  
VS  
EN  
A0 A1 A2  
Figure 8-11. Injection current Measurement Setup  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.2 Functional Block Diagram  
The TMUX1308-Q1 is an 8:1, single-ended (1-channel), mux. The TMUX1309-Q1 is a 4:1, differential (2-  
channel) mux. Each channel is turned on or turned off based on the state of the address lines and enable pin.  
TMUX1308-Q1  
TMUX1309-Q1  
S0A  
S1A  
S2A  
S3A  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
DA  
DB  
D
S0B  
S1B  
S2B  
S3B  
1-OF-8  
1-OF-4  
DECODER  
DECODER  
A0  
A1  
EN  
A0 A1 A2 EN  
Figure 8-12. TMUX1308-Q1 and TMUX1309-Q1 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX1308-Q1 and TMUX1309-Q1 devices conduct equally well from source (Sx) to drain (Dx) or from  
drain (Dx) to source (Sx). Each signal path has very similar characteristics in both directions so they can be used  
as both multiplexers and demultiplexer to supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input and output voltage for the TMUX1308-Q1 and TMUX1309-Q1 ranges from GND to  
VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX1308-Q1 and TMUX1309-Q1 support 1.8-V logic compatible control for all logic control inputs. The  
logic input thresholds scale with supply but still provide 1.8-V logic control when operating at 5.5-V supply  
voltage. 1.8-V logic level inputs allows the multiplexers to interface with processors that have lower logic I/O rails  
and eliminates the need for an external voltage translator, which saves both space and BOM cost. The current  
consumption of the TMUX1308-Q1 and TMUX1309-Q1 devices increase when using 1.8-V logic with higher  
supply voltage. For more information on 1.8-V logic implementations refer to Simplifying Design with 1.8 V logic  
Muxes and Switches.  
8.3.4 Fail-Safe Logic  
The TMUX1308-Q1 and TMUX1309-Q1 device have Fail-Safe Logic on the control input pins (EN, A0, A1, and  
A2) allowing for operation up to 5.5-V, regardless of the state of the supply pin. This feature allows voltages on  
the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic  
minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For  
example, the Fail-Safe Logic feature allows the select pins of the TMUX1308-Q1 and TMUX1309-Q1 to be  
ramped to 5.5-V while VDD = 0-V. Additionally, the feature enables operation of the multiplexers with VDD = 1.8-V  
while allowing the select pins to interface with a logic level of another device up to 5.5-V, eliminating the potential  
need for an external voltage translator.  
8.3.5 Injection Current Control  
Injection current is the current that is being forced into a pin by an input voltage (VIN) higher than the positive  
supply (VDD + ∆V) or lower than ground (VSS). The current flows through the input protection diodes into  
whichever supply of the device potentially compromising the accuracy and reliability of the system. Injected  
currents can come from various sources depending on the application.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
Harsh environments and applications with long cabling, such as in factory automation and automotive  
systems, may be susceptible to injected currents from switching or transient events  
Other self-contained systems can also be subject to injected current if the input signal is coming from various  
sensors or current sources  
Injected Current Impact: Typical CMOS switches have ESD protection diodes on the inputs and outputs. These  
diodes not only serve as ESD protection but also provide a voltage clamp to prevent the inputs or outputs going  
above VDD or below GND/VSS. When current is injected into the pin of a disabled signal path, a small amount of  
current goes thorough the ESD diode but most of the current goes through conduction to the Drain. If forward  
diode voltage of the ESD diode (VF) is greater than the PMOS threshold voltage (VT), the PMOS of all OFF  
switches turns ON and there would be undesirable subthreshold leakage between the source and the drain that  
can lift the OFF source pins up also. Figure 8-13 shows a simplified diagram of typical CMOS switch and  
associated injected current path:  
Logic D ecode  
Block  
Injected current into  
unselected switch input  
n
S0  
Som ec urrent goes  
through ESD  
M ost c urrent goes through  
as conduc ti on  
p
ESD  
S1  
S2  
S3  
Drain voltage  
VDD + VF (ESD)  
D
S4  
ESD  
S5  
S6  
Logic D ecode  
Block  
n
S7  
Selected switch input  
p
ESD  
VDD (PMOS gate voltage)  
Figure 8-13. Simplified diagram of typical CMOS switch and Associated Injected Current Path  
It is quite difficult to cut off these current paths. The drain pin can never be allowed to exceed the voltage above  
VDD by more than a VT. Analog pins can be protected against current injection by adding external components  
like Schottky diode from Drain pin to ground to clamp the drain voltage at < VDD + VT to cut off the current path.  
Change in RON due to Current Injection: Because the ON resistance of the enabled FET switch is impacted by  
the change in the supply rail, when the drain pin voltage exceeds the supply voltage by more than a VT, an error  
in the output signal voltage can be expected. This undesired change in the output can cause issues related to  
false trigger events and incorrect measurement readings, potentially compromising the accuracy and reliability of  
the system. As shown in Figure 8-14, S2 is the enabled signal path that is conducting a signal from S2 pin to D  
pin. Because there is an injected current at the disabled S1 pin, the voltage at that pin increases above the  
supply voltage and the ESD protection diode is forward biased, shifting the power supply rail. This shift in supply  
voltage alters the RON of the internal FET switches, causing a ∆V error on the output at the D pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
VDD  
+ûV error  
VD  
VS2  
II/O  
OFF  
S1  
D
-ûV error  
ON  
S2  
VS2  
Figure 8-14. Injected Current Impact on RON  
To avoid the complications of added external protection to your system, the TMUX1308-Q1 and TMUX1309-Q1  
devices have an internal injection current control feature which eliminates the need for external diode/resistor  
networks typically used to protect the switch and keep the input signals within the supply voltage. The internal  
injection current control circuitry allows signals on disabled signal paths to exceed the supply voltage without  
affecting the signal of the enabled signal path. The injection current control circuitry also protects the TMUX13xx-  
Q1 from currents injected into disabled signal paths without impacting the enabled signal path, which typical  
CMOS switches do not support. Additionally, the TMUX1308-Q1 and TMUX1309-Q1 do not have any internal  
diode paths to the supply pin, which eliminates the risk of damaging components connected to the supply pin, or  
providing unintended power to the system supply rail. Figure 8-12 shows a simplified diagram of one signal path  
for the TMUX13xx-Q1 devices and the associated injection current circuit.  
Logic D ecode  
Block  
n
Control  
Control  
p
ESD  
ESD  
Circuitry  
Circuitry  
Simplified injection curr ent circuitry  
Simplified injection curr ent circuitry  
Figure 8-15. Simplified Diagram of Injection Current Control  
The injection current control circuitry is independently controlled for each source or drain pin (Sx, D). The control  
circuitry for a particular pin is enabled when that input is disabled by the logic pins and the injected current  
causes the voltage at the pin to be above VDD or below GND. The injection current circuit includes a FET to  
shunt undesired current to GND in the case of overvoltage or injected current events. Each injection current  
circuit is rated to handle up to 50 mA, however the device can support a maximum current of 100 mA at any  
given time. Depending on the system application, a series limiting resistor may be needed and must be sized  
appropriately. Figure 8-15 shows the TMUX13xx-Q1 protection circuitry with an injected current at an input pin.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
Logic D ecode  
Block  
Injected current into  
unselected switch input  
n
Control  
Circuitry  
Control  
Circuitry  
p
ESD  
ESD  
IIN J  
Simplified injection curr ent circuitry  
Simplified injection curr ent circuitry  
Figure 8-16. Injected Current at Input Pin  
Figure 8-17 shows an example of using a series limiting resistor in the case of an overvoltage event.  
Logic D ecode  
Block  
VIN PU T > VDD or  
VIN PU T < GND  
n
RLIM  
Control  
Control  
p
VIN PU T  
ESD  
ESD  
Circuitry  
Circuitry  
Simplified injection curr ent circuitry  
Simplified injection curr ent circuitry  
Figure 8-17. Over-voltage Event with Series Resistor  
If the voltage at the source or drain pins is greater than VDD, or less than GND, the protection FET will be turned  
on for any disabled signal path and shunt the pin the GND. In this event, a series resistor is needed to limit the  
total current injected into the device to be less than 100 mA. Two example scenarios are:  
8.3.5.1 TMUX13xx-Q1 is Powered and the Input Signal is Greater Than VDD (VDD = 5 V, VINPUT = 5.5 V).  
A typical CMOS switch would have an internal ESD diode to the supply pin rated for about ≈30 mA that would be  
turned on and a series limited resistor would be needed. However, any conducted current would be injected into  
the supply rail potentially damaging the system, unexpectedly turning on other devices on the same supply rail,  
or requiring additional components for protection. The TMUX13xx-Q1 implementation also handles this scenario  
with a series limiting resistor, however, the current path is now to GND which doesn’t have the same issues as  
the current injected into the supply rail.  
8.3.5.2 TMUX13xx-Q1 is Unpowered and the Input Signal has a Voltage Present (VDD = 0 V, VINPUT = 3 V)  
Many CMOS switches are unable to support a voltage at the input without a valid supply voltage present  
otherwise the voltage will be coupled from input to output and could damage downstream devices or impact  
power-sequencing. The TMUX13xx-Q1 circuitry can handle an input signal present without a supply voltage  
while minimizing power transfer from the input to output of the switch. By limiting the output voltage coupling to  
400 mV the TMUX1308-Q1 and TMUX1309-Q1 help reduce the chance of conduction through any downstream  
ESD diodes.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
8.3.6 Device Functional Modes  
When the EN pin of the TMUX1308-Q1 is pulled low, one of the switches is closed based on the state of the  
address lines. Similarly, when the EN pin of the TMUX1309-Q1 is pulled low, two of the switches are closed  
based on the state of the address lines. When the EN pin is pulled high, all the switches are in an open state  
regardless of the state of the address lines.  
Unused logic control pins must be tied to GND or VDD in order to ensure the device does not consume additional  
current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx and Dx)  
should be connected to GND.  
8.3.7 Truth Tables  
Table 8-1 and Table 8-2 show the truth tables for the TMUX1308-Q1 and TMUX1309-Q1 respectively.  
Table 8-1. TMUX1308-Q1 Truth Table  
Selected Signal Path Connected To Drain  
EN A2 A1 A0  
(D) Pin  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
X(1) X(1) X(1)  
All channels are off  
(1) X denotes don't care.  
Table 8-2. TMUX1309-Q1 Truth Table  
Selected Signal Path Connected To Drain (DA  
EN A1 A0  
and DB) Pins  
S0A to DA  
S0B to DB  
0
0
0
0
0
1
1
0
1
0
1
S1A to DA  
S1B to DB  
S2A to DA  
S2B to DB  
S3A to DA  
S3B to DB  
0
1
X(1) X(1)  
All channels are off  
(1) X denotes don't care.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX13xx-Q1 family offers protection against injection current invents across a wide operating supply  
range (1.62 V to 5.5 V). These devices include 1.8 V logic compatible control input pins that enable operation in  
systems with 1.8 V I/O rails. Additionally, the control input pins support Fail-Safe Logic which allows for operation  
up to 5.5 V, regardless of the state of the supply pin. This feature stops the logic pins from back-powering the  
supply rail while the injection current circuitry prevents the signal path from back-powering the supply. These  
features make the TMUX13xx-Q1 a family of general purpose multiplexers and switches that can reduce system  
complexity, board size, and overall system cost.  
9.2 Typical Application  
One useful application to take advantage of the TMUX13xx-Q1 features is multiplexing various physical switches  
in a body control module (BCM) or electronic control unit (ECU). Automotive BCMs are complex systems  
designed to manage numerous functions such as lighting, door locks, windows, wipers, turn signals and many  
more inputs. The BCM monitors these physical switches and controls power to various loads within the vehicle.  
A CMOS multiplexer can be used to multiplex the inputs and minimize the number of GPIO or ADC inputs  
needed by an onboard MCU. Figure 9-1 shows a typical BCM system using the TMUX1308-Q1 to multiplex  
system inputs.  
D1  
Electronic Control Unit (ECU)  
VBAT  
V
CBUFF  
CVBAT  
Wetting Current  
Control Circuity  
FET  
FET  
RWETT  
R1  
R2  
DX  
CX  
C  
S1  
Rx  
Rx  
Logic x3  
DX  
S8  
CX  
Figure 9-1. Multiplexing BCM Inputs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
9.3 Design Requirements  
For this design example, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
VALUES  
5.0 V  
)
I/O signal range  
Control logic thresholds  
Switch inputs  
0 V to VDD (Rail to Rail)  
1.8 V compatible  
Eight  
9.4 Detailed Design Procedure  
The TMUX1308-Q1 has an internal injection current control feature which eliminates the need for external diode/  
resistor networks typically used to protect the switch and keep the input signals within the supply voltage. The  
internal injection current control circuitry allows signals on disabled signal paths to exceed the supply voltage  
without affecting the signal of the enabled signal path. Injected currents can come from various sources such as  
from long cabling in automotive systems that may be susceptible to induced currents from switching or transient  
events. Another momentary source of injected currents in BCMs are wetting currents, which are small currents  
used to prevent oxidation on metal switch contacts or wires. A switch without injection current control can have  
the measured output of the enabled signal path impacted if a current is injected into a disabled signal path. This  
undesired change in the output can cause issues related to false trigger events and incorrect measurement  
readings which can compromise the accuracy and reliability of the BCM system. Figure 9-2 shows a detailed  
BCM application.  
DBATT  
VBATT  
12 kO  
VBAT  
12V  
V
10 kO  
CBUFF  
CVBAT  
2.7 nF  
RWETT  
1.2 kO  
1.2 kO  
20 kO  
S0  
D1  
15 kO  
C  
10 nF  
10 nF  
S1  
S8  
D
20 kO  
A2  
S7  
A0  
A1  
D8  
15 kO  
Figure 9-2. Detailed BCM Application  
The BCM uses the 12 V battery voltage to provide a wetting current to each switch when the associated control  
circuitry is enabled by the micro controller. The wetting current is sized by the RWETT and the required value may  
vary depending on the type physical switch being monitoried. The 20 kΩ and 15 kΩ resistors are used in addition  
to the wetting resistor to create a voltage divider before the input of the multiplexer incase of a short to battery  
condition. The resistor values are selected to maintain the voltage at the switch signal path below VDD. The 20  
kΩ series resistor also limits the amount of injected current into the switch if an overvotlage event occurs. Diodes  
D1 through D8 are used to prevent back flow of current in case a secondary system is monitoring the same  
physical switches for backup or redundancy reasons. The 10 nF capacitors are used for initial ESD protection in  
the system and must be sized based on system level requirements.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
The logic address pins are controlled by the micro controller to cycle between the eight switch inputs in the  
system. If the parts desired power-up state is disabled, the enable pin should have a weak pull-up resistor and  
be controlled by the MCU through the GPIO.  
10 Power Supply Recommendations  
The TMUX1308-Q1 and TMUX1309-Q1 devices operate across a wide supply range of 1.62 V to 5.5 V. Note: do  
not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent  
damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from VDD to  
ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-  
impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Layout Information  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight; therefore, some traces must turn  
corners. Figure 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
Figure 11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signal’s transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
Figure 11-2 illustrates an example of a PCB layout with the TMUX1308-Q1 and TMUX1309-Q1. Some key  
considerations are:  
Decouple the VDD pin with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Via to GND plane  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
C
C
S4  
S0B  
VDD  
S2  
S1  
S0  
S3  
A0  
A1  
A2  
VDD  
S6  
D
S2B  
DB  
S2A  
S1A  
DA  
S7  
S3B  
S1B  
TMUX1308-Q1  
TMUX1309-Q1  
S5  
S0A  
S3A  
A0  
EN  
EN  
N.C.  
N.C.  
GND  
GND  
A1  
Figure 11-2. TMUX1308-Q1 and TMUX1309-Q1 Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.  
Texas Instruments, QFN/SON PCB Attachment.  
Texas Instruments, Quad Flatpack No-Lead Logic Packages.  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
TMUX1308-Q1  
TMUX1309-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
 
 
 
 
 
 
 
TMUX1308-Q1, TMUX1309-Q1  
SCDS414C – DECEMBER 2019 – REVISED AUGUST 2020  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX1308-Q1 TMUX1309-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMUX1308QBQBRQ1  
TMUX1308QBQBRQ1  
ACTIVE  
WQFN  
WQFN  
BQB  
BQB  
16  
16  
3000  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
PREVIEW  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
1308Q  
TMUX1308QDYYRQ1  
TMUX1308QPWRQ1  
TMUX1309QBQBRQ1  
TMUX1309QDYYRQ1  
TMUX1309QPWRQ1  
ACTIVE SOT-23-THN  
DYY  
PW  
16  
16  
16  
16  
16  
3000  
2000  
3000  
3000  
2000  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TMUX1308Q  
TM1308Q  
1309Q  
ACTIVE  
TSSOP  
WQFN  
Green (RoHS  
& no Sb/Br)  
PREVIEW  
BQB  
DYY  
PW  
Green (RoHS  
& no Sb/Br)  
PREVIEW SOT-23-THN  
PREVIEW TSSOP  
Green (RoHS  
& no Sb/Br)  
TMUX1309Q  
TM1309Q  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Aug-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMUX1308-Q1, TMUX1309-Q1 :  
Catalog: TMUX1308, TMUX1309  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX1308QDYYRQ1  
TMUX1308QPWRQ1  
SOT-  
23-THN  
DYY  
PW  
16  
16  
3000  
2000  
330.0  
12.4  
4.8  
3.6  
1.6  
8.0  
12.0  
Q3  
TSSOP  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX1308QDYYRQ1  
TMUX1308QPWRQ1  
SOT-23-THN  
TSSOP  
DYY  
PW  
16  
16  
3000  
2000  
336.6  
367.0  
336.6  
367.0  
31.8  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
14X 0.5  
16  
1
4.3  
4.1  
NOTE 3  
2X  
3.5  
8
9
0.31  
16X  
0.11  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224642/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
16X (1.05)  
SYMM  
16  
1
16X (0.3)  
SYMM  
14X (0.5)  
9
8
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224642/A 11/2018  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
16X (1.05)  
SYMM  
16  
1
16X (0.3)  
SYMM  
14X (0.5)  
9
8
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224642/A 11/2018  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TMUX136

具有断电保护功能的 1.4pF 导通状态电容、5V、2:1 (SPDT)、2 通道模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX136MRSER

具有断电保护功能的 1.4pF 导通状态电容、5V、2:1 (SPDT)、2 通道模拟开关 | RSE | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX136RSER

具有断电保护功能的 1.4pF 导通状态电容、5V、2:1 (SPDT)、2 通道模拟开关 | RSE | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX13XX

TMUX13xx 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX13XX-Q1

TMUX13xx-Q1 5-V, Bidirectional 8:1, 1-Channel and 4:1, 2-Channel Multiplexers with Injection Current Control

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1511

具有断电保护功能和 1.8V 输入逻辑的 5V、1:1 (SPST)、4 通道模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1511PWR

具有断电保护功能和 1.8V 输入逻辑的 5V、1:1 (SPST)、4 通道模拟开关 | PW | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1511RSVR

具有断电保护功能和 1.8V 输入逻辑的 5V、1:1 (SPST)、4 通道模拟开关 | RSV | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX154E

具有断电保护功能的 7.5pF 导通状态电容、3.3V、2:1 (SPDT)、2 通道模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX154EDGSR

具有断电保护功能的 7.5pF 导通状态电容、3.3V、2:1 (SPDT)、2 通道模拟开关 | DGS | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX154ERSWR

具有断电保护功能的 7.5pF 导通状态电容、3.3V、2:1 (SPDT)、2 通道模拟开关 | RSW | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX1574

具有断电保护功能和 1.8V 输入逻辑的 5V、2:1 (SPDT)、4 通道模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI