TMUX6104 [TI]

5pA 导通状态电容、±16.5V、4:1、单通道精密模拟多路复用器;
TMUX6104
型号: TMUX6104
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5pA 导通状态电容、±16.5V、4:1、单通道精密模拟多路复用器

复用器
文件: 总30页 (文件大小:893K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
TMUX6104 36V、低电容、低泄漏电流、  
精密 4:1 模拟多路复用器  
1 特性  
3 说明  
1
低导通电容:5pF  
TMUX6104 是一款现代互补金属氧化物半导体  
(CMOS) 模拟多路复用器,可提供 4:1 单端多路复用。  
这些器件在双电源(±5V ±16.5V)、单电源(10V  
16.5V)或不对称电源(例如 VDD = 12VVSS = –  
5V)供电情况下运行良好。所有数字输入均具有兼容  
晶体管到晶体管逻辑 (TTL) 的阈值,这些阈值可确保  
TTL CMOS 逻辑兼容性。  
低输入泄漏:5pA  
低电荷注入:0.35pC  
轨至轨运行  
宽电压范围:±5V ±16.5V(双电源)或 10V 至  
16.5V(单电源)  
低导通电阻:125Ω  
转换时间:88ns  
TMUX6104 会根据地址引脚 (A0/A1) 和使能引脚 (EN)  
的状态将四个输入中的一个 (Sx) 多路复用为共模输出  
(D)。每个开关在“ON”位置时在两个方向上表现得都很  
好,而且支持最高到电源的输入信号范围。在 OFF 状  
态下,则会阻止最高到电源的信号电平。所有开关都具  
有先断后合 (BBM) 开关操作。  
先断后合开关操作  
EN 引脚与 VDD 相连(集成下拉电阻器)  
逻辑电平:2V VDD  
低电源电流:17µA  
ESD 保护 HBM2000V  
符合行业标准的薄型小外形尺寸 (TSSOP) 封装:  
TMUX6104 器件是德州仪器 (TI) 精密开关和多路复用  
器系列的一部分。该系列器件具有非常低的泄漏电流和  
电荷注入,因此可用于高精度测量 应用中。这些器件  
的电源电流低至 17μA,因此可用于便携式 应用。  
2 应用  
工厂自动化和工业过程控制  
可编程逻辑控制器 (PLC)  
模拟输入模块  
器件信息(1)  
自动测试设备 (ATE)  
数字万用表  
器件型号  
TMUX6104  
封装  
封装尺寸(标称值)  
TSSOP (14)  
5.00mm × 4.40mm  
电池监控系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
简化原理图  
Bridge Sensor  
+
-
Thermocouple  
GND  
Gain / Filter  
Network  
PGA  
ADC  
Multiplexer  
Current  
Sensing  
TMUX6104  
Photo  
LED  
Detector  
Optical Sensor  
Copyright © 2018, Texas Instruments Incorporated  
Analog Inputs  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS376  
 
 
 
 
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
9.1 Application Information............................................ 21  
9.2 Typical Application ................................................. 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Thermal Information.................................................. 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Electrical Characteristics (Dual Supplies: ±15 V) ..... 5  
6.6 Switching Characteristics (Dual Supplies: ±15 V)..... 6  
6.7 Electrical Characteristics (Single Supply: 12 V)........ 6  
6.8 Switching Characteristics (Single Supply: 12 V)....... 7  
6.9 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 11  
7.1 Truth Table.............................................................. 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 文档支持................................................................ 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 术语表 ................................................................... 25  
13 机械、封装和可订购信息....................................... 25  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (February 2018) to Revision A  
Page  
将器件状态从预告信息 更改为生产数据.................................................................................................................................. 1  
2
版权 © 2018, Texas Instruments Incorporated  
 
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
5 Pin Configuration and Functions  
PW Package  
14-Pin TSSOP  
Top View  
A0  
EN  
VSS  
S1  
S2  
D
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
A1  
GND  
VDD  
S3  
S4  
NC  
NC  
NC  
8
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
A0  
NO.  
1
I
I
Address line 0  
Address line 1  
A1  
14  
6
D
I/O  
Drain pin. Can be an input or output.  
Active high digital input. When this pin is low, all switches are turned off. When this pin is  
high, the A0 and A1 logic inputs determine which switch is turned on.  
EN  
2
I
GND  
NC  
S1  
13  
7, 8, 9  
4
P
Ground (0 V) reference  
No Connect  
No internal connection  
I/O  
I/O  
I/O  
I/O  
Source pin 1. Can be an input or output.  
Source pin 2. Can be an input or output.  
Source pin 3. Can be an input or output.  
Source pin 4. Can be an input or output.  
S2  
5
S3  
11  
S4  
10  
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
VDD  
12  
3
P
P
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
Copyright © 2018, Texas Instruments Incorporated  
3
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
VDD to VSS  
VDD to GND  
VSS to GND  
VDIG  
Supply voltage  
–0.3  
–18  
18  
V
0.3  
V
Digital input pin (EN, A0, A1) voltage  
Digital input pin (EN, A0, A1) current  
Analog input pin (Sx) voltage  
Analog input pin (Sx) current  
Analog output pin (D) voltage  
Analog output pin (D) current  
Ambient temperature  
GND –0.3  
–30  
VDD+0.3  
30  
V
IDIG  
mA  
V
VANA_IN  
IANA_IN  
VANA_OUT  
IANA_OUT  
TA  
VSS–0.3  
–30  
VDD+0.3  
30  
mA  
V
VSS–0.3  
–30  
VDD+0.3  
30  
mA  
°C  
°C  
°C  
–55  
125  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX6104  
THERMAL METRIC(1)  
PW (TSSOP)  
14 PINS  
122.4  
52.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
65.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.1  
ΨJB  
64.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
10  
10  
5
NOM  
MAX  
33  
UNIT  
(1)  
VDD to VSS  
Power supply voltage differential  
V
V
V
V
VDD to GND  
VDD to GND  
VSS to GND  
Positive power supply voltage (singlle supply, VSS = 0 V)  
Positive power supply voltage (dual supply)  
Negative power supply voltage (dual supply)  
16.5  
16.5  
–16.5  
–5  
(1) VDD and VSS can be any value as long as 10 V (VDD – VSS) 33 V.  
4
Copyright © 2018, Texas Instruments Incorporated  
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
VSS  
VSS  
0
NOM  
MAX  
VDD  
VDD  
VDD  
25  
UNIT  
V
(2)  
VS  
Source pins voltage  
VD  
Drain pin voltage  
V
VDIG  
ICH  
TA  
Digital input pin (EN, A0, A1) voltage  
Channel current (TA = 25°C )  
Ambient temperature  
V
–25  
–40  
mA  
°C  
125  
(2) VS is the voltage on all the S pins.  
6.5 Electrical Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VA  
Analog signal range  
TA = –40°C to +125°C  
VSS  
VDD  
170  
200  
230  
250  
6
V
Ω
VS = 0 V, IS = 1 mA  
125  
145  
Ω
RON  
On-resistance  
VS = ±10 V, IS = 1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
Ω
Ω
1.5  
26  
Ω
On-resistance mismatch  
between channels  
ΔRON  
VS = ±10 V, IS = 1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
9
Ω
11  
Ω
45  
Ω
VS = –10 V, 0 V, +10 V, IS  
= 1 mA  
RON_FLAT  
On-resistance flatness  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
53  
Ω
58  
Ω
RON_DRIFT On-resistance drift  
VS = 0 V  
0.5  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
–0.02  
–0.13  
–1  
0.005  
0.02  
0.05  
0.5  
Switch state is off, VS  
+10 V/ –10 V, VD = –10  
V/ + 10 V  
=
IS(OFF)  
ID(OFF)  
ID(ON)  
Source off leakage current(1)  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–0.05  
–0.14  
–1  
0.01  
0.01  
0.05  
0.1  
Switch state is off, VS  
+10 V/ –10 V, VD = –10  
V/ +10 V  
=
Drain off leakage current(1)  
Drain on leakage current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
0.5  
–0.07  
–0.27  
–2  
0.07  
0.15  
1
Switch state is on, VS  
+10 V/ –10 V, VD = –10  
V/ +10 V  
=
TA = –40°C to +85°C  
TA = –40°C to +125°C  
DIGITAL INPUT (EN, Ax pins)  
VIH  
Logic voltage high  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
2
V
V
VIL  
Logic voltage low  
0.8  
RPD(EN)  
Pull-down resistance on EN pin  
6
MΩ  
POWER SUPPLY  
17  
24  
25  
27  
12  
13  
15  
µA  
µA  
µA  
µA  
µA  
µA  
VA = 0 V or 3.3 V, VS = 0  
V, VEN = 3.3 V  
IDD  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
7
VA = 0 V or 3.3 V, VS = 0  
V, VEN = 3.3 V  
ISS  
VSS supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
5
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
MAX UNIT  
6.6 Switching Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VS = ±10 V, RL = 300 Ω , CL = 35 pF  
85  
120  
130  
ns  
ns  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
tON  
Enable turn-on time  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
140  
65  
ns  
ns  
ns  
VS = ±10 V, RL = 300 Ω , CL = 35 pF  
53  
88  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
70  
tOFF  
Enable turn-off time  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
75  
125  
135  
ns  
ns  
ns  
VS = 10 V, RL = 300 Ω , CL = 35 pF  
VS = 10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
tTRAN  
Transition time  
VS = 10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
145  
ns  
ns  
VS = 10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
tBBM  
Break-before-make time delay  
30  
50  
VS = 0 V, RS = 0 Ω , CL = 1 nF  
–0.35  
–0.41  
–86  
pC  
pC  
dB  
QJ  
Charge injection  
Off-isolation  
VS = –15 V to 15 V, RS = 0 Ω , CL = 1 nF  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
OISO  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, non-adjacent  
channels  
–105  
dB  
XTALK  
IL  
Channel-to-channel crosstalk  
Insertion loss  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, adjacent channels  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
–87  
–7  
dB  
dB  
RL = 10 kΩ , CL = 5 pF, VPP= 0.62 V on VDD, f= 1  
MHz  
–52  
dB  
AC Power Supply Rejection  
Ratio  
ACPSRR  
RL = 10 kΩ , CL = 5 pF, VPP= 0.62 V on VSS, f= 1  
MHz  
–49  
500  
dB  
MHz  
%
BW  
-3dB Bandwidth  
RL = 50 Ω , CL = 5 pF  
Total harmonic distortion +  
noise  
THD + N  
RL = 10k Ω , CL = 5 pF, f= 20Hz to 20kHz  
0.08  
CIN  
Digital input capacitance  
Source off-capacitance  
Drain off-capacitance  
VIN = 0 V or VDD  
1.2  
1.6  
3.8  
pF  
pF  
pF  
CS(OFF)  
CD(OFF)  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
2.3  
4.2  
CS(ON),  
CD(ON)  
Source and drain on-  
capacitance  
VS = 0 V, f = 1 MHz  
5.0  
6.5  
pF  
6.7 Electrical Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
MIN  
TYP  
235  
2.4  
MAX UNIT  
VA  
Analog signal range  
TA = –40°C to +125°C  
VS = 10 V, IS = 1 mA  
TA = –40°C to +125°C  
VSS  
VDD  
345  
400  
440  
12  
V
Ω
RON  
On-resistance  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
Ω
Ω
Ω
On-resistance mismatch  
between channels  
ΔRON  
VS = 10 V, IS = 1 mA  
VS = 0 V  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
19  
Ω
23  
Ω
RON_DRIFT On-resistance drift  
0.47  
%/°C  
6
Copyright © 2018, Texas Instruments Incorporated  
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Electrical Characteristics (Single Supply: 12 V) (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.02  
–0.1  
TYP  
MAX UNIT  
0.005  
0.02  
0.05  
0.4  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
Switch state is off, VS  
10 V/ 1 V, VD = 1 V/ 10 V  
=
IS(OFF)  
ID(OFF)  
ID(ON)  
Source off leakage current(1)  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–0.8  
–0.03  
–0.1  
0.01  
0.01  
0.03  
0.08  
0.4  
Switch state is off, VS  
10 V/ 1 V, VD = 1 V/ 10 V  
=
Drain off leakage current(1)  
Drain on leakage current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–0.8  
–0.05  
–0.2  
0.05  
0.15  
0.8  
Switch state is on, VS  
floating, VD = 1 V/ 10 V  
=
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–1.6  
DIGITAL INPUT (EN, Ax pins)  
VIH  
Logic voltage high  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
2
V
V
VIL  
Logic voltage low  
0.8  
RPD(EN)  
Pull-down resistance on EN pin  
6
MΩ  
POWER SUPPLY  
12  
18  
19  
21  
µA  
µA  
µA  
VA = 0 V or 3.3 V, VS = 0  
V , VEN = 3.3 V  
IDD  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
6.8 Switching Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS = 8 V, RL = 300 Ω , CL = 35 pF  
91  
125  
ns  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
135  
ns  
tON  
Enable turn-on time  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
145  
60  
ns  
ns  
ns  
VS = 8 V, RL = 300 Ω , CL = 35 pF  
52  
94  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
70  
tOFF  
Enable turn-off time  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
77  
127  
140  
ns  
ns  
ns  
VS = 8 V, RL = 300 Ω , CL = 35 pF  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
tTRAN  
Transition time  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
150  
ns  
ns  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
tBBM  
Break-before-make time delay  
30  
55  
VS = 6 V, RS = 0 Ω , CL = 1 nF  
–0.2  
–0.2  
–86  
pC  
pC  
dB  
QJ  
Charge injection  
Off-isolation  
VS = 0 V to 12 V, RS = 0 Ω , CL = 1 nF  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
OISO  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, non-adjacent  
channels  
–107  
dB  
XTALK  
Channel-to-channel crosstalk  
Insertion loss  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, adjacent channels  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
–87  
–14  
dB  
dB  
IL  
AC Power Supply Rejection  
Ratio  
ACPSRR  
BW  
RL= 10 kΩ , CL = 5 pF, VPP= 0.62 V, f= 1 MHz  
RL = 50 Ω , CL = 5 pF  
–51  
400  
dB  
-3dB Bandwidth  
MHz  
Copyright © 2018, Texas Instruments Incorporated  
7
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Switching Characteristics (Single Supply: 12 V) (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
1.9  
4.6  
MAX UNIT  
CIN  
Digital input capacitance  
Source off-capacitance  
Drain off-capacitance  
VIN = 0 V or VDD  
pF  
CS(OFF)  
CD(OFF)  
CS(ON)  
CD(ON)  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
2.3  
5.3  
pF  
pF  
,
Source and drain on-  
capacitance  
VS = 6 V, f = 1 MHz  
6.3  
7.5  
pF  
8
版权 © 2018, Texas Instruments Incorporated  
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
6.9 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
VDD= 5V  
VSS = -5V  
VDD= 12V  
VSS = -12V  
VDD= 13.5V  
VSS = -13.5V  
VDD= 6V  
VSS = -6V  
VDD= 15V  
VSS = -15V  
VDD= 16.5V  
VSS = -16.5V  
VDD= 7V  
VSS = -7V  
0
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-8  
-6  
-4  
-2  
0
2
4
6
8
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D001  
D002  
TA = 25°C  
TA = 25°C  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Source or Drain Voltage  
700  
600  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
TA= 125èC  
TA= 85èC  
VDD= 10V  
VSS = 0V  
VDD= 12V  
VSS = 0V  
TA= 25èC  
VDD= 14V  
VSS = 0V  
TA= -40èC  
-15 -10  
0
-20  
0
2
4
6
8
10  
12  
14  
-5  
0
5
10  
15  
20  
Source or Drain Voltage (V)  
Source or Drain Voltage (V)  
D003  
D004  
TA = 25°C  
VDD = 15 V, VSS = –15 V  
3. On-Resistance vs Source or Drain Voltage  
4. On-Resistance vs Source or Drain Voltage  
700  
600  
500  
400  
300  
200  
100  
0
800  
TA = 125èC  
600  
400  
200  
0
ID(OFF)+  
ID(ON)+  
IS(OFF)+  
TA = 85èC  
-200  
-400  
-600  
-800  
IS(OFF)-  
ID(OFF)-  
TA = -40èC  
TA = 25èC  
ID(ON)-  
0
2
4
6
8
10  
12  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Source or Drain Voltage (V)  
Ambient Temperature (èC)  
D005  
D006  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = –15 V  
6. Leakage Current vs Temperature  
5. On-Resistance vs Source or Drain Voltage  
版权 © 2018, Texas Instruments Incorporated  
9
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
600  
2
1
ID(OFF)_10V  
400  
VDD= 12V  
VSS = 0V  
VDD= 10V  
VSS = -10V  
IS(OFF)_10V  
200  
0
ID(ON)_10V  
0
IS(OFF)_1V  
ID(OFF)_1V  
ID(ON)_1V  
-200  
-400  
-600  
-1  
VDD= 15V  
VSS = -15V  
-2  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-15  
-10  
-5  
0
5
10  
15  
Ambient Temperature (èC)  
Source Voltage (V)  
D007  
D008  
VDD = 12 V, VSS = 0 V  
Source-to-drain, TA = 25°C  
7. Leakage Current vs Temperature  
8. Charge Injection vs Source Voltage  
9
6
150  
120  
90  
60  
30  
0
tON(VDD= 12V, VSS= 0V)  
tON(VDD= 15V, VSS= -15V)  
VDD= 10V  
VSS = -10V  
3
CS (5 V/div)  
0
-3  
-6  
-9  
VDD= 12V  
VSS = 0V  
VOUT (5 V/div)  
VDD= 15V  
VSS = -15V  
tOFF(VDD= 12V, VSS= 0V)  
tOFF(VDD= 15V, VSS= -15V)  
-15  
-10  
-5  
0
5
10  
15  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Drain Voltage (V)  
Ambient Temperature (èC)  
D009  
D010  
Drain-to-source, TA = 25°C  
9. Charge Injection vs Drain Voltage  
10. Turn-On and Turn-Off Times vs Temperature  
0
-20  
0
-20  
-40  
-40  
Adjacent Channel to D  
Adjacent Channels  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
Non-Adjacent Channels  
Non-Adjacent Channel to D  
1E+5  
1E+6  
1E+7  
1E+8  
5E+8  
1E+5  
1E+6  
1E+7  
1E+8  
5E+8  
Frequency (Hz)  
Frequency (Hz)  
D011  
D012  
VDD = 15 V, VSS = –15 V, TA = 25°C  
VDD = 15 V, VSS = –15 V, TA = 25°C  
11. Off Isolation vs Frequency  
12. Crosstalk vs Frequency  
10  
版权 © 2018, Texas Instruments Incorporated  
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Typical Characteristics (接下页)  
-5  
-10  
-15  
-20  
-25  
-30  
100  
VDD= 15V  
VSS= -15V  
VDD= 5V  
VSS= -5V  
10  
1
0.1  
0.01  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency(Hz)  
D013  
D014  
TA = 25°C  
VDD = 15 V, VSS = –15 V, TA = 25°C  
13. THD+N vs Frequency  
14. On Response vs. Frequency  
10  
8
10  
9
8
7
6
5
4
3
2
1
CD(ON), CS(ON)  
CS(ON), CD(ON)  
CD(OFF)  
6
CD(OFF)  
4
CS(OFF)  
CS(OFF)  
2
0
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
0
2
4
6
8
10  
12  
Source Voltage (V)  
Source Voltage (V)  
D015  
D016  
VDD = 15 V, VSS = –15 V, TA = 25°C  
15. Capacitance vs Source Voltage  
VDD = 12 V, VSS = 0 V, TA = 25°C  
16. Capacitance vs Source Voltage  
7 Parameter Measurement Information  
7.1 Truth Table  
1. TMUX6104 Truth Table  
EN  
0
A1  
X(1)  
A0  
X(1)  
0
STATE  
All channels are off  
1
0
Channel 1  
Channel 2  
Channel 3  
Channel 4  
1
0
1
1
1
0
1
1
1
(1) X denotes don't care..  
版权 © 2018, Texas Instruments Incorporated  
11  
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
8.1.1 On-Resistance  
The on-resistance of the TMUX6104 is the ohmic resistance across the source (Sx) and drain (D) pins of the  
device. The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown in 17. Voltage (V) and current (ICH) are  
measured using this setup, and RON is computed as shown in 公式 1:  
V
S
D
ICH  
VS  
17. On-Resistance Measurement Setup  
RON = V / ICH  
(1)  
8.1.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 18  
Is (OFF)  
ID (OFF)  
A
S
D
A
VS  
VD  
18. Off-Leakage Measurement Setup  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Overview (接下页)  
8.1.3 On-Leakage Current  
On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in  
the on state. The source pin is left floating during the measurement. 19 shows the circuit used for measuring  
the on-leakage current, denoted by ID(ON)  
.
ID (ON)  
A
S
D
NC  
NC = No Connection  
VD  
19. On-Leakage Measurement Setup  
8.1.4 Transition Time  
Transition time is defined as the time taken by the output of the TMUX6104 to rise (to 90% of the transition) or  
fall (to 10% of the transition) after the digital address signal has fallen or risen to 50% of the transition. 20  
shows the setup used to measure transition time, denoted by the symbol tTRAN  
.
VDD  
VSS  
VDD  
VSS  
SW  
S1  
VS1  
SW  
S2  
3 V  
Output  
D
SW  
SW  
tr < 20 ns  
tf < 20 ns  
S3  
S4  
50%  
50%  
VIN  
0 V  
VS  
300 Ω  
35 pF  
VS4  
0.9 VS  
tTRAN  
Ax  
tTRAN  
2
1
Output  
EN  
0.1 VS  
2.0V  
VIN  
tTRAN = max ( tTRAN 1, tTRAN 2)  
GND  
20. Transition-Time Measurement Setup  
版权 © 2018, Texas Instruments Incorporated  
13  
 
 
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Overview (接下页)  
8.1.5 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the TMUX6104 is  
switching. The TMUX6104 output first breaks from the on-state switch before making the connection with the  
next on-state switch. The time delay between the break and the make is known as break-before-make delay. 图  
21 shows the setup used to measure break-before-make delay, denoted by the symbol tBBM  
.
VDD  
VSS  
VDD  
VSS  
SW  
SW  
SW  
SW  
S1  
S2  
VS  
3 V  
Output  
D
VIN  
S3  
S4  
0 V  
VS  
300 Ω  
35 pF  
Ax  
0.8 VS  
Output  
0 V  
EN  
tBBM  
1
tBBM 2  
2.0V  
VIN  
GND  
tBBM = min ( tBBM 1, tBBM 2)  
21. Break-Before-Make Delay Measurement Setup  
8.1.6 Turn-On and Turn-Off Time  
Turn-on time is defined as the time taken by the output of the TMUX6104 to rise to a 90% final value after the  
enable signal has risen to a 50% final value. 22 shows the setup used to measure turn-on time. Turn-on time  
is denoted by the symbol tON (EN)  
.
Turn off time is defined as the time taken by the output of the TMUX6104 to fall to a 10% initial value after the  
enable signal has fallen to a 50% initial value. 22 shows the setup used to measure turn-off time. Turn-off time  
is denoted by the symbol tOFF (EN)  
.
VDD  
VSS  
VDD  
VSS  
SW  
SW  
SW  
SW  
S1  
S2  
VS  
3 V  
Output  
D
50%  
50%  
VIN  
S3  
S4  
0 V  
300 Ω  
35 pF  
VS  
0.9 VS  
Ax  
tOFF (EN)  
0.1 VS  
tON (EN)  
Output  
EN  
VIN  
GND  
22. Turn-On and Turn-Off Time Measurement Setup  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Overview (接下页)  
8.1.7 Charge Injection  
The TMUX6104 have a simple transmission-gate topology. Any mismatch in capacitance between the NMOS  
and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the  
gate signal. The amount of charge injected into the source or drain of the device is known as charge injection,  
and is denoted by the symbol QINJ. 23 shows the setup used to measure charge injection from source (Sx) to  
drain (D).  
VDD  
VSS  
3 V  
0 V  
VDD  
VSS  
VIN  
SW  
SW  
SW  
SW  
S1  
S2  
VS  
Output  
NC  
NC  
D
S3  
S4  
Output  
VS  
VOUT  
QINJ = CL ×  
VOUT  
1 nF  
NC  
Ax  
EN  
2.0V  
VIN  
GND  
23. Charge-Injection Measurement Setup  
8.1.8 Off Isolation  
Off isolation is defined as the voltage at the drain pin (D) of the TMUX6104 when a 1-VRMS signal is applied to  
the source pin (Sx) of an off-channel. 24 shows the setup used to measure off isolation. Use 公式 2 to  
compute off isolation.  
VDD  
VSS  
Network Analyzer  
VDD  
VSS  
SW  
SW  
SW  
SW  
S1  
S2  
NC  
NC  
50 Ω  
S3  
S4  
D
VS  
NC  
VOUT  
Ax  
EN  
50 Ω  
VIN  
2.0V  
GND  
24. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(2)  
15  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Overview (接下页)  
8.1.9 Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk is defined as the voltage at the source pin (Sx) of an off-channel, when a 1-VRMS  
signal is applied at the source pin (Sx) of an on-channel. 25 shows the setup used to measure, and 公式 3 is  
the equation used to compute, channel-to-channel crosstalk.  
VDD  
VSS  
Network Analyzer  
VDD  
VSS  
SW  
SW  
SW  
SW  
S1  
S2  
VOUT  
D
S3  
S4  
NC  
NC  
VS  
50 Ω  
50 Ω  
Ax  
VIN  
EN  
2.0V  
GND  
25. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(3)  
8.1.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the  
source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the TMUX6104. 26 shows  
the setup used to measure bandwidth of the mux. Use 公式 4 to compute the attenuation.  
VDD  
VSS  
Network Analyzer  
VDD  
VSS  
SW  
SW  
SW  
SW  
S1  
S2  
NC  
NC  
S3  
S4  
D
VS  
NC  
VOUT  
Ax  
EN  
50 Ω  
VIN  
2.0V  
GND  
26. Bandwidth Measurement Setup  
#PPAJQ=PEKJ = 20 × .KC (8  
)
176  
8
5
(4)  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Overview (接下页)  
8.1.11 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the  
ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux  
output. The on-resistance of the TMUX6104 varies with the amplitude of the input signal and results in distortion  
when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as  
THD+N.  
VDD  
VSS  
VDD  
VSS  
Audio Precision  
SW  
SW  
SW  
SW  
S1  
S2  
NC  
NC  
RS  
VS  
S3  
S4  
NC  
VOUT  
D
10k Ω  
Ax  
EN  
VIN  
2.0V  
GND  
27. THD+N Measurement Setup  
8.1.12 AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply  
voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine  
wave of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is  
the AC PSRR.  
VDD  
Network Analyzer  
DC Bias  
Injector  
VSS  
VDD  
VSS  
SW  
SW  
SW  
SW  
VBIAS  
620 mVPP  
S1  
S2  
NC  
S3  
S4  
D
NC  
NC  
VIN  
VOUT  
10k Ω  
5 pF  
Ax  
EN  
50 Ω  
VIN  
2.0V  
GND  
VBIAS = 0 V  
PSRR= 20 × Log (VOUT/ VIN  
)
28. AC PSRR Measurement Setup  
版权 © 2018, Texas Instruments Incorporated  
17  
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Overview (接下页)  
The Functional Block Diagram section provides a top-level block diagram of the TMUX6104. The TMUX6104 is a  
4-channel, single-ended, analog multiplexer. Each channel is turned on or turned off based on the state of the  
address lines and enable pin.  
8.2 Functional Block Diagram  
TMUX6104  
S1  
S2  
D
S3  
S4  
1-of-4  
Decoder  
A0  
A1  
EN  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Ultralow Leakage Current  
The TMUX6104 provide extremely low on- and off-leakage currents. The TMUX6104 is capable of switching  
signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error  
because of the ultralow leakage currents. 29 shows typical leakage currents of the TMUX6104 versus  
temperature.  
800  
600  
ID(OFF)+  
ID(ON)+  
IS(OFF)+  
400  
200  
0
-200  
-400  
-600  
-800  
IS(OFF)-  
ID(OFF)-  
ID(ON)-  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D006  
29. Leakage Current vs Temperature  
8.3.2 Ultralow Charge Injection  
The TMUX6104 is implemented with simple transmission gate topology, as shown in 30. Any mismatch in the  
stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is  
opened or closed.  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
Feature Description (接下页)  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
30. Transmission Gate Topology  
The TMUX6119 utilizes special charge-injection cancellation circuitry that reduces the source (Sx) to drain (D)  
charge injection to as low as –0.35 pC at VS = 0 V, and –0.41 pC in the full signal range, as shown in 31.  
2
VDD= 12V  
VSS = 0V  
1
0
VDD= 10V  
VSS = -10V  
-1  
VDD= 15V  
VSS = -15V  
-2  
-15  
-10  
-5  
0
5
10  
15  
Source Voltage (V)  
D008  
31. Source-to-Drain Charge Injection vs Source Voltage  
The drain (D)-to-source (Sx) charge injection becomes important when the device is used as a demultiplexer  
(demux), where the drain (D) becomes the input and the source (Sx) becomes the output. 32 shows the drain-  
to-source charge injection across the full signal range.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
9
6
VDD= 10V  
VSS = -10V  
3
CS (5 V/div)  
0
-3  
VDD= 12V  
VSS = 0V  
VOUT (5 V/div)  
VDD= 15V  
VSS = -15V  
-6  
-9  
-15  
-10  
-5  
0
5
10  
15  
Drain Voltage (V)  
D009  
32. Drain-to-Source Charge Injection vs Drain Voltage  
8.3.3 Bidirectional and Rail-to-Rail Operation  
The TMUX6104 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
TMUX6104 channel has very similar characteristics in both directions. The valid analog signal for TMUX6104  
ranges from VSS to VDD. The input signal to the TMUX6104 swings from VSS to VDD without any significant  
degradation in performance.  
8.4 Device Functional Modes  
When the EN pin of the TMUX6104 is pulled high, one of the four switches is closed based on the state of the  
address pins (A0 and A1). When the EN pin is pulled low, all four switches remain open irrespective of the state  
of the address pins. The EN pin is weakly pull-down internally through a 6 MΩ resistor; thereby, setting each  
channel to the open state if the EN pin is not actively driven. The address pins are also weakly pulled-down  
through an internal 6 MΩ resistor, allowing channel 1 (S1 to D) to be selected by default when EN pin is driven  
high. Both the EN pin and the address pins can be connected to VDD (as high as 16.5 V).  
20  
版权 © 2018, Texas Instruments Incorporated  
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TMUX6104 offers outstanding input/output leakage currents and ultralow charge injection. These devices  
operate up to 33 V, and offer true rail-to-rail input and output. The on-capacitance of the TMUX6104 is very low.  
These features makes the TMUX6104 a precision, robust, high-performance analog multiplexer for high-voltage,  
industrial applications.  
9.2 Typical Application  
33 shows a 16-bit, differential, 4-channel, multiplexed, data-acquisition system. This example is typical in  
industrial applications that require low distortion and a high-voltage input. The circuit uses the ADS8864, a 16-bit,  
400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along with a precision,  
high-voltage, signal-conditioning front end, and a 4-channel single-ended mux. This TI Precision Design details  
the process for optimizing the precision, high-voltage, front-end drive circuit using the TMUX6104 and OPA192 to  
achieve excellent dynamic performance and linearity with the ADS8864.  
Bridge Sensor  
+
Thermocouple  
GND  
Gain / Filter  
Network  
OPA192  
-
ADS8864  
Multiplexer  
Current  
Sensing  
TMUX6104  
Photo  
Detector  
LED  
Optical Sensor  
Copyright © 2018, Texas Instruments Incorporated  
Analog Inputs  
33. 16-Bit Precision Multiplexed Data-Acquisition System for High-Voltage Inputs With Lowest  
Distortion  
版权 © 2018, Texas Instruments Incorporated  
21  
 
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1 Design Requirements  
The primary objective is to design a ±15 V, single-ended, 4-channel, multiplexed, data-acquisition system with  
lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10-kHz, full-scale, pure, sine-wave  
input. The design requirements for this block design are:  
System supply voltage: ±15 V  
ADC supply voltage: 3.3 V  
ADC sampling rate: 400 kSPS  
ADC reference voltage (REFP): 4.096 V  
System input signal: A high-voltage differential input signal with a peak amplitude of 15 V and frequency  
(fIN) of 10 kHz are applied to each differential input of the mux.  
9.2.2 Detailed Design Procedure  
The purpose of this precision design is to design an optimal, high-voltage, multiplexed, data-acquisition system  
for highest system linearity and fast settling. The overall system block diagram is illustrated in 33. The circuit  
is a multichannel, data-acquisition signal chain consisting of an input low-pass filter, mux, mux output buffer, and  
attenuating SAR ADC driver. The architecture allows fast sampling of multiple channels using a single ADC,  
providing a low-cost solution. This design systematically approaches each analog circuit block to achieve a 16-bit  
settling for a full-scale input stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel.  
9.2.3 Application Curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
œ0.2  
œ0.4  
œ0.6  
œ0.8  
œ1.0  
0
5
10  
15  
20  
œ20  
œ15  
œ10  
œ5  
C030  
ADC Differential Peak-to-Peak Input (V)  
34. ADC 16-Bit Linearity Error for the Multiplexed Data-Acquisition Block  
22  
版权 © 2018, Texas Instruments Incorporated  
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
10 Power Supply Recommendations  
The TMUX6104 operates across a wide supply range of ±5 V to ±16.5 V (10 V to 16.5 V in single-supply mode).  
The device also perform well with unsymmetric supplies such as VDD = 12 V and VSS= –5 V. For reliable  
operation, use a supply decoupling capacitor ranging between 0.1 µF to 10 µF at both the VDD and VSS pins to  
ground.  
The on-resistance of the TMUX6104 varies with supply voltage, as illustrated in 35  
250  
200  
150  
100  
50  
VDD= 12V  
VSS = -12V  
VDD= 13.5V  
VSS = -13.5V  
VDD= 15V  
VSS = -15V  
VDD= 16.5V  
VSS = -16.5V  
0
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Source or Drain Voltage (V)  
D001  
35. On-Resistance Variation With Supply and Input Voltage  
版权 © 2018, Texas Instruments Incorporated  
23  
 
TMUX6104  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
36 illustrates an example of a PCB layout with the TMUX6104.  
Some key considerations are:  
1. Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
2. Keep the input lines as short as possible.  
3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Via to  
ground plane  
AO  
EN  
A1  
GND  
VDD  
S3  
C
Via to  
ground plane  
VSS  
S1  
S2  
TMUX6104  
S4  
D
NC  
NC  
NC  
Copyright © 2018, Texas Instruments Incorporated  
36. TMUX6104 Layout Example  
24  
版权 © 2018, Texas Instruments Incorporated  
 
TMUX6104  
www.ti.com.cn  
ZHCSHO7A FEBRUARY 2018REVISED SEPTEMBER 2018  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
《支持双极输入范围的 ADS8664 12 位、500kSPS4 通道和 8 通道单电源 SAR ADC(SBAS492)  
《采用 e-Trim™ 技术的 OPA192 36V、轨至轨输入/输出、低失调电压、低输入偏置电流运算放大器》  
(SBOS620)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX6104PWR  
ACTIVE  
TSSOP  
PW  
14  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
MUX6104  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6104PWR  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TMUX6104PWR  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX6104PWR

5pA 导通状态电容、±16.5V、4:1、单通道精密模拟多路复用器 | PW | 14 | -40 to 125
TI

TMUX6111

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效)
TI

TMUX6111PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效) | PW | 16 | -40 to 125
TI

TMUX6111RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效) | RTE | 16 | -40 to 125
TI

TMUX6112

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效)
TI

TMUX6112PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效) | PW | 16 | -40 to 125
TI

TMUX6112RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效) | RTE | 16 | -40 to 125
TI

TMUX6113

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效)
TI

TMUX6113PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效) | PW | 16 | -40 to 125
TI

TMUX6113RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效) | RTE | 16 | -40 to 125
TI

TMUX6119

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、单通道精密模拟开关
TI

TMUX6119DCNR

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、单通道精密模拟开关 | DCN | 8 | -40 to 125
TI