TMUX6111 [TI]

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效);
TMUX6111
型号: TMUX6111
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效)

开关
文件: 总37页 (文件大小:1699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
TMUX611x ±17V 低电容、低泄漏电流、  
精密四通道 SPST 开关  
1 特性  
3 说明  
1
宽电源电压范围:±5V ±17V(双电源),  
TMUX6111TMUX6112 TMUX6113 器件是现代  
10V 17V(但电源)  
化的互补金属氧化物半导体 (CMOS) 器件,具有四个  
独立的可选单刀单掷 (SPST) 开关。这些器件在双电源  
±5V ±17V)、单电源(10V 17V)或非对称电  
源供电时均能正常运行。所有数字输入均具有兼容晶体  
-晶体管逻辑 (TTL) 的阈值,从而确保 TTL/CMOS  
逻辑兼容性。  
所有引脚的闩锁性都能达到 100mA,符合 JESD78  
II A 级要求  
低导通电容:4.2pF  
低输入泄漏:0.5pA  
低电荷注入:0.6pC  
轨至轨运行  
逻辑 0 会打开 TMUX6111 中数字控制输入上的开关。  
要打开 TMUX6112 中的开关,则需要逻辑 1。  
TMUX6113 有两个开关的数字控制逻辑与 TMUX6111  
类似,而另外两个开关上的逻辑则与之相反。  
TMUX6113 具有先断后合开关,因此可用于交叉点开  
关应用。  
低导通电阻:120Ω  
快速开关开启时间:66ns  
先断后合开关 (TMUX6113)  
EN 引脚可连接至 VDD  
低电源电流:17µA  
人体放电模型 (HBM) ESD 保护:针对所有引脚提  
±2kV 保护  
TMUX611x 器件是德州仪器 (TI) 精密开关和多路复用  
器系列的一部分。这些器件具有非常低的泄漏电流和电  
荷注入,因此可用于高精度测量 应用中的数字输入 D  
类音频放大器。这些器件的电源电流低至 17μA,因此  
可用于便携式 应用供电的出色器件。  
行业标准 TSSOP 封装和较小的 WQFN 封装  
2 应用  
工厂自动化和工业过程控制  
可编程逻辑控制器 (PLC)  
模拟输入模块  
器件信息(1)  
器件型号  
TMUX6111  
封装  
封装尺寸(标称值)  
半导体测试设备  
电池测试设备  
TSSOP (16)  
5.00mm × 4.40mm  
TMUX6112  
TMUX6113  
WQFN (16)  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
VDD  
SW  
VSS  
VDD  
VSS  
VDD  
SW  
VSS  
SW  
S1  
D1  
D2  
D3  
D4  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
SW  
SW  
SW  
S2  
S3  
S4  
SW  
SW  
SW  
SW  
SW  
SW  
SEL1  
SEL2  
SEL3  
SEL4  
SEL1  
SEL2  
SEL3  
SEL4  
SEL1  
SEL2  
SEL3  
SEL4  
TMUX6111  
TMUX6112  
TMUX6113  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCDS383  
 
 
 
 
 
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 18  
9.3 Feature Description................................................. 18  
9.4 Device Functional Modes........................................ 19  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ............................................... 20  
10.3 Application Curves ................................................ 21  
11 Power Supply Recommendations ..................... 22  
12 Layout................................................................... 23  
12.1 Layout Guidelines ................................................. 23  
12.2 Layout Example .................................................... 23  
13 器件和文档支持 ..................................................... 24  
13.1 文档支持................................................................ 24  
13.2 相关链接................................................................ 24  
13.3 接收文档更新通知 ................................................. 24  
13.4 支持资源................................................................ 24  
13.5 ....................................................................... 24  
13.6 静电放电警告......................................................... 24  
13.7 Glossary................................................................ 24  
14 机械、封装和可订购信息....................................... 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Thermal Information.................................................. 5  
7.4 Recommended Operating Conditions....................... 5  
7.5 Electrical Characteristics (Dual Supplies: ±15 V) ..... 6  
7.6 Switching Characteristics (Dual Supplies: ±15 V)..... 7  
7.7 Electrical Characteristics (Single Supply: 12 V)........ 7  
7.8 Switching Characteristics (Single Supply: 12 V)....... 8  
7.9 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 12  
8.1 Truth Tables............................................................ 12  
Detailed Description ............................................ 13  
9.1 Overview ................................................................. 13  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (January 2019) to Revision E  
Page  
标题 中的“TMUX611x ±16.5V”更改成了“TMUX611x ±17V”................................................................................................ 1  
特性 中的宽电源电压范围:±5V ±16.5V(双电源),10V 16.5V(单电源)更改成了宽电源电压范围:±5V  
±17V(双电源),10V 17V(单电源)” ....................................................................................................................... 1  
说明 中的双电源(±5V ±16.5V)、单电源(10V 16.5V更改成了双电源(±5V ±17V)、单电源(10V  
17V................................................................................................................................................................................ 1  
Changed ±16.5-V to ±17.5-V in the Description of the Device Comparison Table................................................................ 4  
Changed recommended power supply voltage differential from 33 V to 34 V....................................................................... 5  
Changed recommended single supply voltage from 16.5 V to 17 V ...................................................................................... 5  
Changed positive and negative power supply voltage to +17 V and -17V............................................................................. 5  
The Overview From: dual supplies (±5 V to ±16.5 V) or single supply (10 V to 16.5 V) To: dual supplies (±5 V to ±17  
V) or single supply (10 V to 17 V) ........................................................................................................................................ 13  
Changed the Application Information From: 16.5 V (single supply) To: 17 V (single supply) ............................................. 20  
The Power Supply Recommendations From: wide supply range of of ±5 V to ±16.5 V (10 V to 16.5 V in single-  
supply mode) To: wide supply range of of ±5 V to ±17 V (10 V to 17 V in single-supply mode)......................................... 22  
Changes from Revision C (December 2018) to Revision D  
Page  
Changed descriptions in the Device Comparison Table to match the data sheet title........................................................... 4  
已更改 30 to correct Op-Amp terminal polarities. ........................................................................................................... 20  
Changes from Revision B (November 2018) to Revision C  
Page  
Changed units for channel current and ambient temperature................................................................................................ 6  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
Changes from Revision A (November 2018) to Revision B  
Page  
针对 TMUX6111 TMUX6113 将文档状态从产品预览 更改成了生产数据........................................................................... 1  
Changes from Original (August 2018) to Revision A  
Page  
针对 TMUX6112 将文档状态从预告信息 更改成了生产数据 .................................................................................................. 1  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
5 Device Comparison Table  
PRODUCT  
DESCRIPTION  
TMUX6111  
TMUX6112  
TMUX6113  
±17-V, Low-Capacitance, Low-Leakage-Current, Precision, Quad SPST Switches (Normally Closed)  
±17-V, Low-Capacitance, Low-Leakage-Current, Precision, Quad SPST Switches (Normally Open)  
±17-V, Low-Capacitance, Low-Leakage-Current, Precision, Quad SPST Switches (Dual Open + Dual Closed)  
6 Pin Configuration and Functions  
PW Package  
16-Pin TSSOP  
Top View  
RTE Package  
16-Pin WQFN  
Top View  
SEL1  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SEL2  
D2  
S1  
S2  
S1  
VSS  
GND  
S4  
1
2
3
4
12  
11  
10  
9
S2  
VSS  
GND  
S4  
VDD  
NC  
VDD  
NC  
S3  
Thermal  
Pad  
S3  
D4  
D3  
SEL4  
SEL3  
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
SEL1  
D1  
1
2
3
15  
16  
1
I
Logic control input 1.  
I/O  
I/O  
Drain pin 1. Can be an input or output.  
Source pin 1. Can be an input or output.  
S1  
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
4
2
P
GND  
S4  
5
6
3
4
P
I/O  
I/O  
I
Ground (0 V) reference  
Source pin 4. Can be an input or output.  
Drain pin 4. Can be an input or output.  
Logic control input 4.  
D4  
7
5
SEL4  
SEL3  
D3  
8
6
9
7
I
Logic control input 3.  
10  
11  
12  
8
I/O  
I/O  
Drain pin 3. Can be an input or output.  
Source pin 3. Can be an input or output.  
No internal connection.  
S3  
9
NC  
10  
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
13  
11  
P
S2  
14  
15  
16  
12  
13  
14  
I/O  
I/O  
I
Source pin 2. Can be an input or output.  
Drain pin 2. Can be an input or output.  
Logic control input 2.  
D2  
SEL2  
Exposed Pad. The exposed pad is electrically connected to VSS internally. Connect EP to VSS to  
achieve rated thermal and ESD performance.  
-
EP  
(1) I = input, O = output, I/O = input and output, P = power  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
VDD to VSS  
VDD to GND  
VSS to GND  
VDIG  
Supply voltage  
–0.3  
–18  
18  
V
0.3  
V
Digital input pin (SEL1, SEL2, SEL3, SEL4) voltage  
Digital input pin (SEL1, SEL2, SEL3, SEL4) current  
Analog input pin (Sx) voltage  
Analog input pin (Sx) current  
Analog output pin (D) voltage  
Analog output pin (D) current  
Ambient temperature  
GND –0.3  
–30  
VDD+0.3  
30  
V
IDIG  
mA  
V
VANA_IN  
IANA_IN  
VANA_OUT  
IANA_OUT  
TA  
VSS–0.3  
–30  
VDD+0.3  
30  
mA  
V
VSS–0.3  
–30  
VDD+0.3  
30  
mA  
°C  
°C  
°C  
–55  
140  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Thermal Information  
TMUX6111/ TMUX6112/ TMUX6113  
THERMAL METRIC  
PW (TSSOP)  
16 PINS  
111.0  
41.7  
RTE (QFN)  
16 PINS  
51.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.3  
57.2  
26.6  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.1  
1.7  
ΨJB  
56.6  
26.6  
RθJC(bot)  
N/A  
11.6  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
10  
NOM  
MAX  
34  
UNIT  
(1)  
VDD to VSS  
VDD to GND  
VDD to GND  
VSS to GND  
Power supply voltage differential  
V
V
V
V
V
Positive power supply voltage (singlle supply, VSS = 0 V)  
Positive power supply voltage (dual supply)  
Negative power supply voltage (dual supply)  
Source pins voltage  
10  
17  
5
17  
–5  
–17  
VDD  
(2)  
VS  
VSS  
(1) VDD and VSS can be any value as long as 10 V (VDD – VSS) 34 V.  
(2) VS is the voltage on all the S pins.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
VSS  
0
NOM  
MAX  
UNIT  
V
VD  
Drain pin voltage  
VDD  
VDD  
25  
VDIG  
ICH  
TA  
Digital input pin (SEL1, SEL2, SEL3, SEL4) voltage  
Channel current (TA = 25°C )  
Ambient temperature  
V
–25  
–40  
mA  
°C  
125  
7.5 Electrical Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VA  
Analog signal range  
TA = –40°C to +125°C  
VSS  
VDD  
135  
160  
210  
245  
6
V
Ω
VS = 0 V, IS = 1 mA  
120  
140  
Ω
RON  
On-resistance  
VS = ±10 V, IS = 1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
Ω
Ω
2.5  
23  
Ω
On-resistance mismatch  
between channels  
ΔRON  
VS = ±10 V, IS = 1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
9
Ω
11  
Ω
33  
Ω
VS = –10 V, 0 V, +10 V, IS  
= 1 mA  
RON_FLAT  
On-resistance flatness  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
37  
Ω
38  
Ω
RON_DRIFT On-resistance drift  
VS = 0 V  
0.52  
%/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
–0.02  
-0.14  
–1.3  
0.005  
0.02  
0.05  
0.25  
0.02  
0.05  
0.25  
0.04  
0.1  
Switch state is off, VS  
+10 V/ –10 V, VD = –10  
V/ + 10 V  
=
IS(OFF)  
ID(OFF)  
ID(ON)  
Source off leakage current(1)  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–0.02  
–0.14  
–1.3  
0.005  
0.01  
Switch state is off, VS  
+10 V/ –10 V, VD = –10  
V/ +10 V  
=
Drain off leakage current(1)  
Drain on leakage current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–0.04  
–0.25  
–1.8  
Switch state is on, VS  
+10 V/ –10 V, VD = –10  
V/ +10 V  
=
TA = –40°C to +85°C  
TA = –40°C to +125°C  
0.5  
DIGITAL INPUT (SELx pins)  
VIH  
VIL  
Logic voltage high  
Logic voltage low  
2
V
V
0.8  
Pull-down resistance on SELx  
pins  
RPD(IN)  
6
MΩ  
POWER SUPPLY  
17  
21  
22  
23  
10  
11  
12  
µA  
µA  
µA  
µA  
µA  
µA  
VA = 0 V or 3.3 V, VS = 0  
V
IDD  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
8
VA = 0 V or 3.3 V, VS = 0  
V
ISS  
VSS supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
7.6 Switching Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = -15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS = ±10 V, RL = 300 Ω , CL = 35 pF  
66  
78  
ns  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
107  
ns  
tON  
Enable turn-on time  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
117  
68  
ns  
ns  
ns  
VS = ±10 V, RL = 300 Ω , CL = 35 pF  
56  
40  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
77  
tOFF  
Enable turn-off time  
VS = ±10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
81  
ns  
ns  
Break-before-make time delay  
(TMUX6113 Only)  
VS = 10 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
tBBM  
8
QJ  
Charge injection  
Off-isolation  
VS = 0 V, RS = 0 Ω , CL = 1 nF  
0.6  
–85  
pC  
dB  
dB  
OISO  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, adjacent channel  
–100  
XTALK  
IL  
Channel-to-channel crosstalk  
Insertion loss  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, non-  
adjacentchannel  
–115  
–7.0  
–59  
dB  
dB  
dB  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
RL = 10 kΩ , CL = 5 pF, VPP= 0.62 V on VDD, f= 1  
MHz  
AC Power Supply Rejection  
Ratio  
ACPSRR  
RL = 10 kΩ , CL = 5 pF, VPP= 0.62 V on VSS, f= 1  
MHz  
–59  
800  
dB  
MHz  
%
BW  
THD  
CIN  
-3dB Bandwidth  
RL = 50 Ω , CL = 5 pF  
Total harmonic distortion +  
noise  
RL = 10k Ω , CL = 5 pF, f= 20Hz to 20kHz  
0.08  
Digital input capacitance  
Source off-capacitance  
Drain off-capacitance  
VIN = 0 V or VDD  
1.5  
1.9  
2.5  
2.4  
pF  
pF  
pF  
pF  
VS = 0 V, f = 1 MHz (PW package)  
VS = 0 V, f = 1 MHz (RTE package)  
VS = 0 V, f = 1 MHz  
3.0  
3.6  
3.1  
CS(OFF)  
CD(OFF)  
CS(ON),  
CD(ON)  
Source and drain on-  
capacitance  
VS = 0 V, f = 1 MHz  
4.2  
6.0  
pF  
7.7 Electrical Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
MIN  
TYP  
230  
5
MAX UNIT  
VA  
Analog signal range  
TA = –40°C to +125°C  
VS = 10 V, IS = 1 mA  
VSS  
VDD  
265  
355  
405  
12  
V
Ω
RON  
On-resistance  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
Ω
Ω
Ω
On-resistance mismatch  
between channels  
ΔRON  
VS = 10 V, IS = 1 mA  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
19  
Ω
23  
Ω
RON_DRIFT On-resistance drift  
Source off leakage current(1)  
VS = 0 V  
0.5  
%/°C  
nA  
nA  
nA  
–0.02  
–0.1  
-1  
0.005  
0.02  
0.04  
0.2  
Switch state is off, VS  
10 V/ 1 V, VD = 1 V/ 10 V  
=
IS(OFF)  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (Single Supply: 12 V) (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.02  
–0.1  
TYP  
0.005  
0.02  
0.04  
0.2  
nA  
nA  
nA  
nA  
nA  
nA  
Switch state is off, VS  
10 V/ 1 V, VD = 1 V/ 10 V  
=
ID(OFF)  
Drain off leakage current(1)  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
–1  
–0.04  
–0.16  
–1.4  
0.01  
0.04  
0.08  
0.4  
Switch state is on, VS  
floating, VD = 1 V/ 10 V  
=
ID(ON)  
Drain on leakage current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
DIGITAL INPUT (SELx pins)  
VIH  
VIL  
Logic voltage high  
Logic voltage low  
2
V
V
0.8  
Pull-down resistance on SELx  
pins  
RPD(EN)  
6
MΩ  
POWER SUPPLY  
13  
16  
17  
18  
µA  
µA  
µA  
VA = 0 V or 3.3 V, VS = 0  
V
IDD  
VDD supply current  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
7.8 Switching Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS = 8 V, RL = 300 Ω , CL = 35 pF  
72  
84  
ns  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
117  
ns  
tON  
Enable turn-on time  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
128  
66  
ns  
ns  
ns  
VS = 8 V, RL = 300 Ω , CL = 35 pF  
57  
47  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+85°C  
78  
tOFF  
Enable turn-off time  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
84  
ns  
ns  
Break-before-make time delay  
(TMUX6113 only)  
VS = 8 V, RL = 300 Ω , CL = 35 pF, TA = –40°C to  
+125°C  
tBBM  
17  
QJ  
Charge injection  
Off-isolation  
VS = 0 V to 12 V, RS = 0 Ω , CL = 1 nF  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
0.6  
–86  
–98  
pC  
dB  
dB  
OISO  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, adjacent channel  
XTALK  
Channel-to-channel crosstalk  
Insertion loss  
RL = 50 Ω , CL = 5 pF, f = 1 MHz, non-adjacent  
channel  
–117  
-14  
dB  
dB  
dB  
IL  
RL = 50 Ω , CL = 5 pF, f = 1 MHz  
AC Power Supply Rejection  
Ratio  
ACPSRR  
RL = 10 kΩ , CL = 5 pF, VPP= 0.62 V, f= 1 MHz  
–59  
BW  
CIN  
-3dB Bandwidth  
RL = 50 Ω , CL = 5 pF  
750  
1.6  
2.2  
2.9  
2.8  
MHz  
pF  
Digital input capacitance  
VIN = 0 V or VDD  
VS = 6 V, f = 1 MHz (PW package)  
VS = 6 V, f = 1 MHz (RTE package)  
VS = 6 V, f = 1 MHz  
3.1  
4.0  
3.5  
pF  
CS(OFF)  
Source off-capacitance  
pF  
CD(OFF)  
CS(ON)  
CD(ON)  
Drain off-capacitance  
pF  
,
Source and drain on-  
capacitance  
VS = 6 V, f = 1 MHz  
4.6  
6.3  
pF  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
7.9 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
250  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VDD= 12V  
VSS = -12V  
200  
150  
100  
50  
VDD= 13.5V  
VSS = -13.5V  
VDD= 10V  
VSS = 0V  
VDD= 12V  
VSS = 0V  
VDD= 15V  
VSS = -15V  
VDD= 16.5V  
VSS = -16.5V  
VDD= 14V  
VSS = 0V  
0
-20  
-15  
-10  
-5  
Source or Drain Voltage (V)  
0
5
10  
15  
20  
0
2
4
Source or Drain Voltage (V)  
6
8
10  
12  
14  
D001  
D002  
Dual Supply Operation (TA = 25°C)  
Single Supply Operation (TA = 25°C)  
1. On-Resistance vs Source or Drain Voltage  
2. On-Resistance vs Source or Drain Voltage  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
TA = 125èC  
TA = 85èC  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = -40èC  
TA = 25èC  
0
-15  
-10  
-5  
Source or Drain Voltage (V)  
0
5
10  
15  
0
2
4
Source or Drain Voltage (V)  
6
8
10  
12  
D003  
D004  
VDD = 15 V, VSS = –15 V  
VDD = 12 V, VSS = 0 V  
3. On-Resistance vs Source or Drain Voltage  
4. On-Resistance vs Source or Drain Voltage  
400  
200  
0
400  
200  
0
ID(OFF)-  
ID(OFF)_1V  
IS(OFF)+  
ID(OFF)_10V  
ID(ON)+  
ID(ON)_10V  
IS(OFF)+  
IS(OFF)-  
-200  
-400  
-600  
-800  
-200  
-400  
-600  
IS(OFF)_1V  
ID(ON)_10V  
ID(ON)_1V  
100 125  
ID(ON)-  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
150  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D005  
D006  
VDD = 15 V, VSS = –15 V  
5. Leakage Current vs Temperature  
VDD = 12 V, VSS = 0 V  
6. Leakage Current vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
4
9
6
VDD= 10V  
VSS = -10V  
VDD= 10V  
VSS = -10V  
2
0
VDD= 15V  
VSS = -15V  
3
0
-3  
-6  
-9  
-2  
VDD= 12V  
VSS = 0V  
VDD= 12V  
VSS = 0V  
VDD= 15V  
VSS = -15V  
-4  
-15  
-10  
-5 0  
Source Voltage (V)  
5
10  
15  
-15  
-10  
-5  
0
Drain Voltage (V)  
5
10  
15  
D007  
D008  
TA = 25°C  
TA = 25°C  
7. Charge Injection vs Source Voltage  
8. Charge Injection vs Drain Voltage  
120  
90  
60  
30  
0
0
-20  
tON (VDD= 12V, VSS= 0V)  
VDD= 15V  
VSS = -15V  
tON (VDD= 15V, VSS= -15V)  
-40  
-60  
-80  
tOFF (VDD= 12V, VSS= 0V)  
-100  
-120  
-140  
VDD= 12V  
VSS = 0V  
tOFF (VDD= 15V, VSS= -15V)  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
1E+8  
5E+8  
Ambient Temperature (èC)  
D009  
D001  
TA = 25°C  
9. Turn-On and Turn-Off Times vs Temperature  
10. Off Isolation vs Frequency  
0
100  
50  
-20  
-40  
20  
10  
5
VDD= 5V  
VSS = -5V  
Adjacent Channels  
VDD= 15V  
VSS = -15V  
2
1
-60  
-80  
0.5  
0.2  
0.1  
-100  
-120  
-140  
Non-Adjacent Channels  
0.05  
0.02  
0.01  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
1E+8  
5E+8  
1E+1  
1E+2  
1E+3  
Frequency (Hz)  
1E+4  
1E+5  
D001  
D001  
VDD = 15 V, VSS = –15 V, TA = 25°C  
TA = 25°C  
11. Crosstalk vs Frequency  
12. THD+N vs Frequency  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
-5  
0
-20  
-40  
-10  
-15  
-20  
-60  
-80  
-100  
-120  
-140  
1E+5  
1E+6  
1E+7  
Frequency(Hz)  
1E+8  
1E+9  
1E+3  
1E+4  
1E+5  
Frequency (Hz)  
1E+6  
1E+7  
D001  
D001  
VDD = 15 V, VSS = –15 V, TA = 25°C  
VDD = 15 V, VSS = –15 V, VPP= 0.62 V, TA = 25°C  
13. On Response vs Frequency  
14. ACPSRR vs Frequency  
8
8
6
4
2
CD(ON), CS(ON)  
6
4
2
0
CS(ON), CD(ON)  
CD(OFF)  
CD(OFF)  
CS(OFF)  
CS(OFF)  
0
0
-15 -12  
-9  
-6  
-3  
Source Voltage (V)  
0
3
6
9
12  
15  
2
4
6
Source Voltage (V)  
8
10  
12  
D001  
D001  
VDD = 15 V, VSS = –15 V, TA = 25°C  
15. Capacitance vs Source Voltage  
VDD = 12 V, VSS = 0 V, TA = 25°C  
16. Capacitance vs Source Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Truth Tables  
1, 2, 3and show the truth tables for the TMUX6111, TMUX6112, and TMUX6113, respectively.  
1. TMUX6111 Truth Table  
SELx  
STATE  
0
1
All Switch ON  
All Switch OFF  
2. TMUX6112 Truth Table  
SELx  
STATE  
0
1
All Switch OFF  
All Switch ON  
3. TUMUX6113 Truth Table  
SELx  
STATE  
Switch 1, 4 OFF  
Switch 2, 3 ON  
0
Switch 1, 4 ON  
Switch 2, 3 OFF  
1
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
9 Detailed Description  
9.1 Overview  
The TMUX6111, TMUX6112, and TMUX6113 are 4-channel single-pole/ single-throw (SPDT) switches that  
supports dual supplies (±5 V to ±17 V) or single supply (10 V to 17 V) operation. Each channel of the switch is  
turned on or turned off based on the state of its corresponding SELx pin. The Functional Block Diagram section  
provides a top-level block diagram of the switches.  
9.1.1 On-Resistance  
The on-resistance of the TMUX6111, TMUX6112, and TMUX6113 is the ohmic resistance across the source (Sx)  
and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol  
RON is used to denote on-resistance. The measurement setup used to measure RON is shown in 17. Voltage  
(V) and current (ICH) are measured using this setup, and RON is computed as shown in 公式 1:  
V
S
D
ICH  
VS  
17. On-Resistance Measurement Setup  
RON = V / ICH  
(1)  
9.1.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 18  
Is (OFF)  
ID (OFF)  
A
S
D
A
VS  
VD  
18. Off-Leakage Measurement Setup  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
 
 
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Overview (接下页)  
9.1.3 On-Leakage Current  
On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in  
the on state. The source pin is left floating during the measurement. 19 shows the circuit used for measuring  
the on-leakage current, denoted by ID(ON)  
.
ID (ON)  
S
D
NC  
A
NC = No Connection  
VD  
19. On-Leakage Measurement Setup  
9.1.4 Break-Before-Make Delay  
The break-before-make delay is a safety feature of the TMUX6113 switch. The TMUX6113's ON switches first  
break the connection before the OFF switches make connection. The time delay between the break and the  
make is known as break-before-make delay. 20 shows the setup used to measure break-before-make delay,  
denoted by the symbol tBBM  
.
VDD  
VSS  
3 V  
TMUX6113  
50%  
50%  
VIN  
VDD  
VSS  
VS  
VS  
0 V  
VS  
S1  
S2  
D1  
D2  
Output 1  
Output 2  
300 Ω  
35 pF  
0.9 VS  
0.9 VS  
35 pF  
Output 2  
300 Ω  
SEL1,  
SEL2  
0 V  
VS  
0.9 VS  
0.9 VS  
tBBM2  
GND  
VIN  
Output 1  
0 V  
tBBM1  
tBBM= min (tBBM2, tBBM2  
)
20. Break-Before-Make Delay Measurement Setup  
9.1.5 Turn-On and Turn-Off Time  
Turn-on time is defined as the time taken by the output of the TMUX6111, TMUX6112, and TMUX6113 to rise to  
a 90% final value after the SELx signal has risen (for NC switches) or fallen (for NO switches) to a 50% final  
value. 21 shows the setup used to measure turn-on time. Turn-on time is denoted by the symbol tON  
.
Turn off time is defined as the time taken by the output of the TMUX6111, TMUX6112, and TMUX6113 to fall to  
a 10% initial value after the SELx signal has fallen (for NC switches) or risen (for NO switches) to a 50% initial  
value. 21 shows the setup used to measure turn-off time. Turn-off time is denoted by the symbol tOFF  
.
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
Overview (接下页)  
VDD  
VSS  
3 V  
50%  
50%  
50%  
50%  
TMUX6111 VIN  
VDD  
VSS  
0 V  
3 V  
Output  
VS  
Sx  
Dx  
TMUX6112  
VIN  
SELx  
300 Ω  
35 pF  
0 V  
VS  
0.9 VS  
tON  
VIN  
GND  
tOFF  
Output  
0.1 VS  
21. Turn-On and Turn-Off Time Measurement Setup  
9.1.6 Charge Injection  
The TMUX6111, TMUX6112, and TMUX6113 have a simple transmission-gate topology. Any mismatch in  
capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source  
during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the  
device is known as charge injection, and is denoted by the symbol QINJ. 22 shows the setup used to measure  
charge injection.  
VDD  
VSS  
3 V  
TMUX6111 VIN  
VDD  
VSS  
0 V  
3 V  
Output  
Sx  
Dx  
RS  
VS  
TMUX6112  
VIN  
1 nF  
SELx  
0 V  
VS  
VIN  
GND  
VOUT  
Output  
QINJ = CL  
×
VOUT  
22. Charge-Injection Measurement Setup  
9.1.7 Off Isolation  
Off isolation is defined as the voltage at the drain pin (Dx) of the TMUX6111, TMUX6112, and TMUX6113 when  
a 1-VRMS signal is applied to the source pin (Sx) of an OFF switch. 23 shows the setup used to measure off  
isolation. Use 公式 2 to compute off isolation.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Overview (接下页)  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
Sx  
Dx  
VOUT  
SELx  
VS  
50 Ω  
50 Ω  
VIN  
GND  
23. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(2)  
9.1.8 Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk is defined as the voltage at the source pin (Sx) of an off-channel, when a 1-VRMS  
signal is applied at the source pin of an on-channel. 24 shows the setup used to measure, and 公式 3 is the  
equation used to compute, channel-to-channel crosstalk.  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
S1  
S2  
D1  
D2  
VOUT  
50 Ω  
50 Ω  
VS  
SELx  
50 Ω  
VIN  
GND  
24. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(3)  
9.1.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the  
source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the TMUX6111,  
TMUX6112, and TMUX6113. 25 shows the setup used to measure bandwidth of the switch. Use 公式 4 to  
compute the attenuation.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
Overview (接下页)  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
Sx  
Dx  
VOUT  
SELx  
VS  
50 Ω  
VIN  
GND  
25. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(4)  
9.1.10 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the  
ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux  
output. The on-resistance of the TMUX6111, TMUX6112, and TMUX6113 varies with the amplitude of the input  
signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic  
distortion plus noise is denoted as THD+N. 26 shows the setup used to measure THD+N of the TMUX6111,  
TMUX6112, and TMUX6113.  
VDD  
VSS  
VDD  
VSS  
Audio Precision  
Sx  
Dx  
RS  
VOUT  
SELx  
VS  
10k Ω  
VIN  
GND  
26. THD+N Measurement Setup  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
9.2 Functional Block Diagram  
VDD  
SW  
VSS  
VDD  
SW  
VSS  
VDD  
SW  
VSS  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
S1  
S2  
S3  
S4  
D1  
D2  
D3  
D4  
S1  
S2  
S3  
S4  
D1  
D2  
SW  
SW  
SW  
SW  
SW  
SW  
D3  
SW  
SW  
SW  
D4  
SEL1  
SEL2  
SEL3  
SEL4  
SEL1  
SEL2  
SEL3  
SEL4  
SEL1  
SEL2  
SEL3  
SEL4  
TMUX6111  
TMUX6112  
TMUX6113  
9.3 Feature Description  
9.3.1 Ultra-low Leakage Current  
The TMUX6111, TMUX6112, and TMUX6113 provide extremely low on- and off-leakage currents. The devices  
are capable of switching signals from high source-impedance inputs into a high input-impedance op amp with  
minimal offset error because of the ultralow leakage currents. 27 shows typical leakage currents of the  
devices versus temperature.  
400  
ID(OFF)-  
200  
IS(OFF)+  
ID(ON)+  
0
IS(OFF)+  
IS(OFF)-  
-200  
-400  
-600  
-800  
ID(ON)-  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D005  
27. Leakage Current vs Temperature  
9.3.2 Ultra-low Charge Injection  
The TMUX6111, TMUX6112, and TMUX6113 are implemented with simple transmission gate topology, as  
shown in 28. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output  
level change whenever the switch is opened or closed. The devices utilize special charge-injection cancellation  
circuitry that reduces the source (Sx)-to-drain (Dx) charge injection to as low as 0.6 pC at VS = 0 V, as shown in  
29.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
28. Transmission Gate Topology  
4
VDD= 10V  
VSS = -10V  
2
0
VDD= 15V  
VSS = -15V  
-2  
VDD= 12V  
VSS = 0V  
-4  
-15  
-10  
-5 0  
Source Voltage (V)  
5
10  
15  
D007  
29. Source-to-Drain Charge Injection vs Source or Drain Voltage  
9.3.3 Bidirectional and Rail-to-Rail Operation  
The TMUX6111, TMUX6112, and TMUX6113 conduct equally well from source (Sx) to drain (Dx) or from drain  
(Dx) to source (Sx). Each channel of the switches has very similar characteristics in both directions. The input  
signal to the devices swings from VSS to VDD without any significant degradation in performance. The on-  
resistance of these devices varies with input signal.  
9.4 Device Functional Modes  
Each channel of the TMUX6111, TMUX6112, and TMUX6113 is turned on or turned off based on the state of its  
corresponding SELx pin. The SELx pins are weakly pulled-down through an internal 6 MΩ resistor, allowing the  
switches to stay in a determined state when power is applies to the devices. The SELx pins can be connected to  
VDD  
.
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TMUX6111, TMUX6112, and TMUX6113 offer outstanding input/output leakage currents and ultralow charge  
injection. These devices operate up to 34 (dual supply) or 17 V (single supply), and offer true rail-to-rail input and  
output. The on-capacitance of the TMUX6111, TMUX6112, and TMUX6113 is low. These features makes the  
TMUX6111, TMUX6112, and TMUX6113 a family of precision, robust, high-performance analog multiplexer for  
high-voltage, industrial applications.  
10.2 Typical Application  
One useful application to take advantage of TMUX6111, TMUX6112, and TMUX6113's precision performance is  
the sample and hold circuit. A sample and hold circuit can be useful for an analog to digital converter (ADC) to  
sample a varying input voltage with improved reliability and stability. It can also be used to store the output  
samples from a single digital-to-analog converter (DAC) in a multi-output application. A simple sample and hold  
circuit can be realized using an analog switch like one of the TMUX6111, TMUX6112, and TMUX6113 analog  
switches.  
+15V  
VDD  
-15V  
VSS  
CH  
+15V  
œ
SW1  
+15V  
CC  
RC  
VIN1  
+
OPA2192  
VOUT1  
OPA2192  
+
SW2  
-15V  
œ
SEL1/  
SEL2  
CH  
CH  
-15V  
SEL3/  
SEL4  
GND  
+15V  
œ
+15V  
+
OPA2192  
SW3  
SW4  
RC  
CC  
VIN2  
VOUT2  
+
OPA2192  
-15V  
œ
-15V  
CH  
TMUX611x  
30. A 2-output Sample and Hold Circuit Realized Using the TMUX611x Analog Switch  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
Typical Application (接下页)  
10.2.1 Design Requirements  
The purpose of this precision design is to implement an optimized 2-output sample and hold circuit using a 4-  
channel SPST switch. The sample and hold circuit needs to be capable of supporting high voltage output swing  
up to ± 15V with minimized pedestal error and fast settling time. The overall system block diagram is illustrated in  
30.  
10.2.2 Detailed Design Procedure  
The TMUX6111, TMUX6112, or TMUX6113 switch is used in conjunction with the voltage holding capacitors  
(CH) to implement the sample and hold circuit. The basic operation is:  
1. When the switch (SW2 or SW3) is closed, it samples the input voltage and charges the holding capacitors  
(CH) to the input voltages values.  
2. When the switch (SW2 or SW3) is open, the holding capacitors (CH) holds its previous value, maintaining  
stable voltage at the amplifier output (VOUT).  
Ideally, the switch delivers only the input signals to the holding capacitors. However, when the switch gets  
toggled, some amount of charge also gets transferred to the switch output in the form of charge injection,  
resulting slight sampling error. The TMUX6111, TMUX6112, and TMUX6113 switches have excellent charge  
injection performance of only 0.6 pC, making them ideal choices for this implementation to minimize sampling  
error.  
Due to switch and capacitor leakage current, the voltage on the hold capacitors droops with time. The  
TMUX6111, TMUX6112, and TMUX6113 minimize the droops due to its ultra-low leakage performance. At 25°C,  
the TMUX6111, TMUX6112, and TMUX6113 have extremely tiny leakage current at 1 pA typical and 20 pA max.  
The TMUX6111, TMUX6112, and TMUX6113 devices also support high voltage capability. The devices support  
up to ± 17 V dual supply operation, making it an ideal solution in this high voltage sample and hold application.  
A second switch SW1 (or SW4) is also included to operate in parallel with SW2 (or SW3) to reduce pedestal  
error during switch toggling. Because both switches are driven at the same potential, they act as common-mode  
signal to the op-amp, thereby minimizing the charge injection effects caused by the switch toggling action.  
Compensation network consisting of RC and CC is also added to further reduce the pedestal error, whiling  
reducing the hold-time glitch and improving the settling time of the circuit.  
10.3 Application Curves  
TMUX6111, TMUX6112, and TMUX6113 have excellent charge injection performance of only 0.6 pC (typical),  
making them ideal choices to minimize sampling error for the sample and hold application. 31 shows the plot  
for the charge injection vs. source input voltage for TMUX6111, TMUX6112, and TMUX6113.  
4
VDD= 10V  
VSS = -10V  
2
0
VDD= 15V  
VSS = -15V  
-2  
VDD= 12V  
VSS = 0V  
-4  
-15  
-10  
-5 0  
Source Voltage (V)  
5
10  
15  
D007  
31. Charge injection vs. Source Voltage for TMUX6111, TMUX6112 and TMUX6113  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
The TMUX6111, TMUX6112, and TMUX6113 operate across a wide supply range of ±5 V to ±17 V (10 V to 17 V  
in single-supply mode). They also perform well with asymmetrical supplies such as VDD = 12 V and VSS= –5 V.  
For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 µF to 10 µF at both the  
VDD and VSS pins to ground. Always ensure the ground (GND) connection is established before supplies are  
ramped. As a best practice, it is recommended to ramp VSS first before VDD in dual or asymmetrical supply  
applications.  
The on-resistance of the devices varies with supply voltage, as illustrated in 32  
250  
VDD= 12V  
VSS = -12V  
200  
150  
100  
50  
VDD= 13.5V  
VSS = -13.5V  
VDD= 15V  
VSS = -15V  
VDD= 16.5V  
VSS = -16.5V  
0
-20  
-15  
-10  
-5  
0
5
Source or Drain Voltage (V)  
10  
15  
20  
D001  
32. On-Resistance Variation With Supply and Input Voltage  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
12 Layout  
12.1 Layout Guidelines  
33 illustrates an example of a PCB layout with the TMUX6112PW. Some key considerations are:  
Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
Keep the input lines as short as possible.  
Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
12.2 Layout Example  
Via to  
ground plane  
SEL1  
D1  
SEL2  
D2  
C
S2  
S1  
VDD  
NC  
VSS  
GND  
S4  
TMUX6112  
C
S3  
D4  
D3  
SEL4  
SEL3  
Via to  
ground plane  
33. TMUX6112PW Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
TMUX6111, TMUX6112, TMUX6113  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
《采用 e-trim™ 技术的 OPAx192 36V、精密、轨到轨输入/输出、低偏移电压、低输入偏置电流运算放大器》  
(SBOS620E)  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
TMUX6111  
TMUX6112  
TMUX6113  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TMUX6111, TMUX6112, TMUX6113  
www.ti.com.cn  
ZHCSIN7E AUGUST 2018REVISED DECEMBER 2019  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX6111PWR  
TMUX6111RTER  
TMUX6112PWR  
TMUX6112RTER  
TMUX6113PWR  
TMUX6113RTER  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
WQFN  
TSSOP  
WQFN  
TSSOP  
WQFN  
PW  
RTE  
PW  
16  
16  
16  
16  
16  
16  
2000 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
MUX6111  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
TM6111  
MUX6112  
TM6112  
MUX6113  
TM6113  
RTE  
PW  
RTE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6111PWR  
TMUX6111RTER  
TMUX6112PWR  
TMUX6112RTER  
TMUX6113PWR  
TMUX6113RTER  
TSSOP  
WQFN  
TSSOP  
WQFN  
TSSOP  
WQFN  
PW  
RTE  
PW  
16  
16  
16  
16  
16  
16  
2000  
3000  
2000  
3000  
2000  
3000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
3.3  
6.9  
3.3  
6.9  
3.3  
5.6  
3.3  
5.6  
3.3  
5.6  
3.3  
1.6  
1.1  
1.6  
1.1  
1.6  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
RTE  
PW  
RTE  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX6111PWR  
TMUX6111RTER  
TMUX6112PWR  
TMUX6112RTER  
TMUX6113PWR  
TMUX6113RTER  
TSSOP  
WQFN  
TSSOP  
WQFN  
TSSOP  
WQFN  
PW  
RTE  
PW  
16  
16  
16  
16  
16  
16  
2000  
3000  
2000  
3000  
2000  
3000  
356.0  
367.0  
356.0  
367.0  
367.0  
367.0  
356.0  
367.0  
356.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
RTE  
PW  
RTE  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX6111PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效) | PW | 16 | -40 to 125
TI

TMUX6111RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(低电平有效) | RTE | 16 | -40 to 125
TI

TMUX6112

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效)
TI

TMUX6112PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效) | PW | 16 | -40 to 125
TI

TMUX6112RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(高电平有效) | RTE | 16 | -40 to 125
TI

TMUX6113

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效)
TI

TMUX6113PWR

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效) | PW | 16 | -40 to 125
TI

TMUX6113RTER

5pA、±16.5V、1:1 (SPST)、4 通道精密模拟开关(2 个低电平有效,2 个高电平有效) | RTE | 16 | -40 to 125
TI

TMUX6119

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、单通道精密模拟开关
TI

TMUX6119DCNR

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、单通道精密模拟开关 | DCN | 8 | -40 to 125
TI

TMUX6121

5pA、±16.5V、1:1 (SPST)、2 通道精密模拟开关(高电平有效)
TI

TMUX6121DGSR

5pA、±16.5V、1:1 (SPST)、2 通道精密模拟开关(高电平有效) | DGS | 10 | -40 to 125
TI