TMUX6123DGSR [TI]

5pA、±16.5V、1:1 (SPST)、2 通道精密模拟开关(1 个低电平有效,1 个高电平有效) | DGS | 10 | -40 to 125;
TMUX6123DGSR
型号: TMUX6123DGSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5pA、±16.5V、1:1 (SPST)、2 通道精密模拟开关(1 个低电平有效,1 个高电平有效) | DGS | 10 | -40 to 125

开关
文件: 总32页 (文件大小:1651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
TMUX612x ±16.5V、低电容、低漏电流、  
精密双SPST 开关  
1 特性  
3 说明  
• 宽电源电压范围±5V ±16.5V双电源10V  
16.5V单电源)  
• 所有引脚的闩锁性能都达100mAJESD78  
II A 级要求  
TMUX6121TMUX6122 TMUX6123 是现代化的互  
补金属氧化物半导体 (CMOS) 器件具有两个独立的  
可选单刀单掷 (SPST) 开关。该器件在双电源±5V 至  
±16.5V、单电源10V 16.5V或非对称电源供  
电时均能正常运行。所有数字输入均具有兼容晶体管到  
晶体管逻辑 (TTL) 的阈值这些阈值可确保 TTL 和  
CMOS 逻辑兼容性。  
• 低导通电容4.2pF  
• 低输入泄漏电流0.5pA  
• 低电荷注入0.51 pC  
• 轨到轨运行  
逻辑 1 会打开 TMUX6121 中数字控制输入上的开关。  
要打开 TMUX6122 的开关需要逻辑 0。  
TMUX6123 有一个开关的数字控制逻辑与 TMUX6121  
类似另外一个开关上的逻辑则与之相反。  
TMUX6123 具有先断后合开关因此可用于交叉点开  
关应用。  
• 低导通电阻120Ω  
• 快速开关导通时间68ns  
• 先断后合开(TMUX6123)  
SELx 引脚可连接至带集成下拉电阻器VDD  
• 逻辑电平2V VDD  
• 低电源电流16µA  
TMUX6121TMUX6122TMUX6123 是精密开关和  
多路复用器器件系列的一部分。这些器件具有非常低的  
漏电流和低电荷注入因此可用于高精度测量应用。由  
于具有 16µA 的低电源电流因此这些器件可用于便携  
式应用。  
• 人体放电模(HBM) ESD 保护所有引脚上均为  
±2kV  
• 业界通用VSSOP 封装  
2 应用  
• 工厂自动化和工业过程控制  
• 可编程逻辑控制(PLC)  
• 模拟输入模块  
ATE 测试设备  
• 数字万用表  
• 电池监控系统  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TMUX6121  
封装  
TMUX6122  
TMUX6123  
VSSOP (10)  
3.00mm × 3.00mm  
(1) 要了解所有可用封装请参见数据表末尾的封装选项附录。  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
SW  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
SW  
SW  
SW  
SEL1  
SEL2  
SEL1  
SEL2  
SEL1  
SEL2  
TMUX6121  
TMUX6122  
TMUX6123  
ALL SWITCHES SHOWN FOR A LOGIC 0 INPUT  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS398  
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................20  
9 Application and Implementation..................................21  
9.1 Application Information............................................. 21  
9.2 Typical Application.................................................... 21  
10 Power Supply Recommendations..............................23  
11 Layout...........................................................................23  
11.1 Layout Guidelines................................................... 23  
11.2 Layout Example...................................................... 23  
12 Device and Documentation Support..........................24  
12.1 Documentation Support.......................................... 24  
12.2 接收文档更新通知................................................... 24  
12.3 支持资源..................................................................24  
12.4 Trademarks.............................................................24  
12.5 Electrostatic Discharge Caution..............................24  
12.6 术语表..................................................................... 24  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................4  
6.4 Recommended Operating Conditions.........................5  
6.5 Electrical Characteristics (Dual Supplies: ±15 V)........5  
6.6 Switching Characteristics (Dual Supplies: ±15 V).......6  
6.7 Electrical Characteristics (Single Supply: 12 V)..........6  
6.8 Switching Characteristics (Single Supply: 12 V).........7  
7 Parameter Measurement Information..........................12  
7.1 Truth Tables.............................................................. 12  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................18  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2018) to Revision A (July 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SEL1  
S1  
1
2
3
4
5
10  
9
SEL2  
VDD  
GND  
NC  
D1  
8
D2  
7
S2  
6
VSS  
Not to scale  
5-1. DGS Package, 10-Pin VSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SEL1  
S1  
NO.  
1
I
Logic control input 1.  
2
I/O  
I/O  
I/O  
I/O  
Source pin 1. Can be an input or output.  
Drain pin 1. Can be an input or output.  
Drain pin 2. Can be an input or output.  
Source pin 2. Can be an input or output.  
D1  
3
D2  
4
S2  
5
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a  
decoupling capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
6
P
NC  
7
8
No Connect  
P
No internal connection.  
Ground (0 V) reference.  
GND  
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
VDD  
9
P
I
SEL2  
10  
Logic control input 2.  
(1) I = input, O = output, P = power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
36  
UNIT  
V
VDD to VSS  
VDD to GND  
VSS to GND  
VDIG  
18  
V
Supply voltage  
0.3  
18  
0.3  
V
Digital input pin (SEL1, SEL2) voltage  
Digital input pin (SEL1, SEL2) current  
Analog input pin (Sx) voltage  
Analog input pin (Sx) current  
Analog output pin (Dx) voltage  
Analog output pin (Dx) current  
Ambient temperature  
VDD+0.3  
30  
V
GND 0.3  
30  
IDIG  
mA  
V
VANA_IN  
IANA_IN  
VANA_OUT  
IANA_OUT  
TA  
VDD+0.3  
30  
VSS0.3  
30  
mA  
V
VDD+0.3  
30  
VSS0.3  
30  
mA  
°C  
°C  
°C  
140  
55  
TJ  
Junction temperature  
150  
Tstg  
Storage temperature  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX6121/ TMUX6122/  
TMUX6123  
THERMAL METRIC(1)  
DGS (VSSOP)  
UNIT  
10 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
180.7  
66.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
103.2  
11.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
101.3  
N/A  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
10  
NOM  
MAX  
33  
UNIT  
V
(1)  
VDD to VSS  
VDD to GND  
VDD to GND  
VSS to GND  
VS  
Power supply voltage differential  
Positive power supply voltage (singlle supply, VSS = 0 V)  
Positive power supply voltage (dual supply)  
Negative power supply voltage (dual supply)  
Source pins voltage(2)  
10  
16.5  
16.5  
5  
VDD  
VDD  
VDD  
25  
V
5
V
V
16.5  
VSS  
VSS  
VSS  
25  
40  
V
VD  
Drain pin voltage  
V
VSEL  
Select pin (SEL1, SEL2) voltage  
Channel current (TA = 25°C )  
V
ICH  
mA  
°C  
TA  
Ambient temperature  
125  
(1) VDD and VSS can be any value as long as 10 V (VDD VSS) 33 V.  
(2) VS is the voltage on both S pins.  
6.5 Electrical Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VA  
Analog signal range  
On-resistance  
VSS  
VDD  
135  
165  
210  
245  
6
V
TA = 40°C to +125°C  
TA = 40°C to +125°C  
VS = 0 V, IS = 1 mA  
120  
140  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
RON  
VS = ±10 V, IS = 1 mA  
VS = ±10 V, IS = 1 mA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
2.4  
22  
On-resistance mismatch  
between channels  
9
TA = 40°C to +85°C  
TA = 40°C to +125°C  
ΔRON  
11  
45  
VS = 10 V, 0 V, +10 V, IS  
= 1 mA  
47  
RON_FLAT  
On-resistance flatness  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
49  
Ω
%/°C  
nA  
RON_DRIFT On-resistance drift  
VS = 0 V  
0.5  
0.005  
0.02  
0.05  
0.2  
0.02  
0.12  
1  
Switch state is off, VS =  
+10 V/ 10 V, VD = 10 TA = 40°C to +85°C  
V/ + 10 V  
IS(OFF)  
ID(OFF)  
ID(ON)  
Source off leakage current(1)  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
TA = 40°C to +125°C  
0.005  
0.01  
0.02  
0.05  
0.2  
0.02  
0.12  
1  
Switch state is off, VS =  
+10 V/ 10 V, VD = 10 TA = 40°C to +85°C  
V/ +10 V  
Drain off leakage current(1)  
Drain on leakage current  
TA = 40°C to +125°C  
0.04  
0.1  
0.04  
0.25  
1.8  
Switch state is on, VS  
=
+10 V/ 10 V, VD = 10 TA = 40°C to +85°C  
V/ +10 V  
0.4  
TA = 40°C to +125°C  
DIGITAL INPUT (SELx pins)  
VIH  
VIL  
Logic voltage high  
Logic voltage low  
2
V
V
0.8  
Pull-down resistance on INx  
pins  
RPD(IN)  
6
MΩ  
POWER SUPPLY  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics (Dual Supplies: ±15 V) (continued)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
16  
21  
22  
23  
10  
11  
12  
µA  
µA  
µA  
µA  
µA  
µA  
IDD  
VDD supply current  
VA = 0 V or 3.3 V, VS = 0 V TA = 40°C to +85°C  
TA = 40°C to +125°C  
7
ISS  
VSS supply current  
VA = 0 V or 3.3 V, VS = 0 V TA = 40°C to +85°C  
TA = 40°C to +125°C  
(1) When VS is positive, VD is negative, and vice versa.  
6.6 Switching Characteristics (Dual Supplies: ±15 V)  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
68  
86  
ns  
ns  
VS = ±10 V, RL = 300 Ω, CL = 35 pF  
VS = ±10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+85°C  
110  
tON  
Switch turn-on time  
VS = ±10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
121  
76  
ns  
ns  
ns  
57  
VS = ±10 V, RL = 300 Ω, CL = 35 pF  
VS = ±10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+85°C  
82  
tOFF  
Switch turn-off time  
VS = ±10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
85  
ns  
ns  
Break-before-make time delay  
(TMUX6123 Only)  
VS = 10 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
tBBM  
20  
40  
QJ  
Charge injection  
Off-isolation  
0.51  
pC  
dB  
dB  
dB  
dB  
dB  
MHz  
%
VS = 0 V, RS = 0 Ω, CL = 1 nF  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
RL = 10 kΩ, CL = 5 pF, VPP= 0.62 V on VDD, f= 1 MHz  
RL = 10 kΩ, CL = 5 pF, VPP= 0.62 V on VSS, f= 1 MHz  
RL = 50 Ω, CL = 5 pF  
OISO  
XTALK  
IL  
85  
110  
7.7  
61  
61  
630  
Channel-to-channel crosstalk  
Insertion loss  
AC Power Supply Rejection  
Ratio  
ACPSRR  
BW  
3 dB Bandwidth  
THD  
Total harmonic distortion + noise  
Digital input capacitance  
Source off-capacitance  
Drain off-capacitance  
0.08  
1.2  
RL = 10 kΩ, CL = 5 pF, f= 20 Hz to 20 kHz  
VSELx = 0 V or VDD  
CIN  
pF  
CS(OFF)  
CD(OFF)  
VS = 0 V, f = 1 MHz  
1.9  
2.5  
2.6  
pF  
VS = 0 V, f = 1 MHz  
2.2  
pF  
CS(ON),  
CD(ON)  
Source and drain on-  
capacitance  
VS = 0 V, f = 1 MHz  
4.2  
5
pF  
6.7 Electrical Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
VA  
Analog signal range  
VSS  
VDD  
V
TA = 40°C to +125°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
6.7 Electrical Characteristics (Single Supply: 12 V) (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
230  
265  
355  
405  
9
Ω
Ω
Ω
Ω
Ω
RON  
On-resistance  
VS = 10 V, IS = 1 mA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
1
On-resistance mismatch  
between channels  
12  
VS = 10 V, IS = 1 mA  
VS = 0 V  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
ΔRON  
14  
Ω
%/°C  
nA  
RON_DRIFT On-resistance drift  
0.48  
0.005  
0.02  
0.04  
0.13  
0.02  
0.04  
0.13  
0.04  
0.08  
0.25  
0.02  
0.08  
0.75  
0.02  
0.08  
0.75  
0.04  
0.16  
1.5  
Switch state is off, VS = 10  
V/ 1 V, VD = 1 V/ 10 V  
IS(OFF)  
ID(OFF)  
ID(ON)  
Source off leakage current(1)  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
0.005  
0.01  
Switch state is off, VS = 10  
V/ 1 V, VD = 1 V/ 10 V  
Drain off leakage current(1)  
Drain on leakage current  
TA = 40°C to +85°C  
TA = 40°C to +125°C  
Switch state is on, VS  
=
TA = 40°C to +85°C  
TA = 40°C to +125°C  
floating, VD = 1 V/ 10 V  
DIGITAL INPUT (SELx pins)  
VIH  
VIL  
Logic voltage high  
Logic voltage low  
2
V
V
0.8  
Pull-down resistance on INx  
pins  
RPD(IN)  
6
MΩ  
POWER SUPPLY  
VA = 0 V or 3.3 V, VS = 0 V  
11  
14  
16  
17  
µA  
µA  
µA  
IDD  
VDD supply current  
VA = 0 V or 3.3 V, VS = 0 V VA = 0 V or 3.3 V, VS = 0 V  
VA = 0 V or 3.3 V, VS = 0 V  
(1) When VS is positive, VD is negative, and vice versa.  
6.8 Switching Characteristics (Single Supply: 12 V)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
74  
82  
89  
ns  
ns  
VS = 8 V, RL = 300 Ω, CL = 35 pF  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+85°C  
tON  
Switch turn-on time  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
93  
75  
83  
ns  
ns  
ns  
56  
VS = 8 V, RL = 300 Ω, CL = 35 pF  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+85°C  
tOFF  
Switch turn-off time  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
85  
ns  
ns  
Break-before-make time delay  
(TMUX6123 only)  
VS = 8 V, RL = 300 Ω, CL = 35 pF, TA = 40°C to  
+125°C  
tBBM  
20  
37  
QJ  
Charge injection  
0.14  
-85  
pC  
dB  
dB  
VS = 6 V, RS = 0 Ω, CL = 1 nF  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
OISO  
XTALK  
Off-isolation  
Channel-to-channel crosstalk  
115  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
6.8 Switching Characteristics (Single Supply: 12 V) (continued)  
at TA = 25°C, VDD = 12 V, and VSS = 0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IL  
Insertion loss  
dB  
RL = 50 Ω, CL = 5 pF, f = 1 MHz  
15  
AC Power Supply Rejection  
Ratio  
ACPSRR  
dB  
RL = 10 kΩ, CL = 5 pF, VPP= 0.62 V, f= 1 MHz  
61  
BW  
-3dB Bandwidth  
500  
1.3  
2.2  
2.5  
MHz  
pF  
RL = 50 Ω, CL = 5 pF  
VIN = 0 V or VDD  
CIN  
Digital input capacitance  
Source off-capacitance  
Drain off-capacitance  
CS(OFF)  
CD(OFF)  
CS(ON)  
CD(ON)  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
2.8  
2.8  
pF  
pF  
,
Source and drain on-  
capacitance  
VS = 6 V, f = 1 MHz  
4.8  
6.1  
pF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
250  
200  
150  
100  
50  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VDD= 13.6V  
VSS = -13.5V  
VDD= 12V  
VSS = -12V  
VDD= 14V  
VSS = 0V  
VDD= 12V  
VSS = 0V  
VDD= 15V  
VSS = -15V  
VDD= 16.5V  
VSS = -16.5V  
VDD= 10V  
VSS = 0V  
0
0
2
4
6
8
10  
Source or Drain Voltage (V)  
12  
14  
-20  
-15  
-10  
-5  
0
5
Source or Drain Voltage (V)  
10  
15  
20  
D002  
D001  
Dual Supply Operation (TA = 25°C)  
6-2. On-Resistance vs Source or Drain Voltage  
Dual Supply Operation (TA = 25°C)  
6-1. On-Resistance vs Source or Drain Voltage  
250  
700  
TA = 125èC  
TA = 85èC  
600  
500  
400  
300  
200  
100  
0
TA = 125èC  
200  
150  
100  
50  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = -40èC  
TA = 25èC  
0
-15  
-10  
-5  
Source or Drain Voltage (V)  
0
5
10  
15  
0
2
4
Source or Drain Voltage (V)  
6
8
10  
12  
D003  
D004  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-4. On-Resistance vs Source or Drain Voltage  
6-3. On-Resistance vs Source or Drain Voltage  
400  
400  
ID(OFF)+  
IS(OFF)+  
IS(ON)_10V  
ID(OFF)_1V  
200  
0
200  
0
ID(ON)+  
ID(OFF)_10V  
-200  
-400  
-600  
-800  
ID(OFF)-  
IS(OFF)_10V  
-200  
-400  
-600  
IS(OFF)-  
ID(ON)-  
IS(OFF)_1V  
ID(ON)_1V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D005  
D006  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-5. Leakage Current vs Temperature  
6-6. Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
2
7
5
VDD= 15V  
VSS = -15V  
VDD= 15V  
SS = -15V  
VDD= 12V  
VSS = 0V  
V
1
0
3
VDD= 10V  
VSS = -10V  
1
-1  
-3  
-5  
-7  
VDD= 10V  
VSS = -10V  
-1  
VDD= 12V  
VSS = 0V  
-2  
-15  
-10  
-5 0  
Source Voltage (V)  
5
10  
15  
-15  
-10  
-5  
0
Drain Voltage (V)  
5
10  
15  
D007  
D008  
TA = 25°C  
TA = 25°C  
6-7. Charge Injection vs Source Voltage  
6-8. Charge Injection vs Drain Voltage  
150  
120  
90  
60  
30  
0
0
-20  
tON(VDD= 12V, VSS= 0V)  
VDD= 12V, VSS= 0V  
-40  
tON(VDD= 15V, VSS= -15V)  
-60  
-80  
VDD= 15V, VSS= -15V  
-100  
-120  
-140  
tOFF(VDD= 15V, VSS= -15V)  
tOFF(VDD= 12V, VSS= 0V)  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
1E+8  
5E+8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D010  
D009  
TA = 25°C  
.
6-10. Off Isolation vs Frequency  
6-9. Turn-On and Turn-Off Times vs Temperature  
0
100  
50  
-20  
20  
10  
5
VDD= 5V, VSS= -5V  
VDD= 12V, VSS= 0V  
-40  
VDD= 15V, VSS= -15V  
2
1
-60  
-80  
0.5  
0.2  
0.1  
-100  
0.05  
-120  
-140  
VDD= 15V, VSS= -15V  
1E+8  
0.02  
0.01  
1E+1  
1E+2  
1E+3  
Frequency (Hz)  
1E+4  
1E+5  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
5E+8  
D012  
D011  
TA = 25°C  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-11. Crosstalk vs Frequency  
6-12. THD+N vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = 15 V (unless otherwise noted)  
-5  
0
-20  
-40  
-60  
-80  
-10  
-15  
-20  
-25  
VDD= 12V, VSS= 0V  
VDD= 15V, VSS= -15V  
-100  
1E+5  
-30  
1E+5  
2E+53E+5 5E+5  
1E+6  
Frequency (Hz)  
2E+63E+6 5E+6  
1E+7  
1E+6  
1E+7  
Frequency(Hz)  
1E+8  
1E+9  
D016  
D013  
VDD = 15 V, VSS = 15 V, VPP= 0.62 V, TA = 25°C  
6-14. ACPSRR vs Frequency  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-13. On Response vs Frequency  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
CD(ON), CS(ON)  
CS(ON), CD(ON)  
CD(OFF)  
CD(OFF)  
CS(OFF)  
CS(OFF)  
0
0
-15 -12  
-9  
-6  
-3  
Source Voltage (V)  
0
3
6
9
12  
15  
2
4
6
Source Voltage (V)  
8
10  
12  
D014  
D015  
VDD = 12 V, VSS = 0 V, TA = 25°C  
6-16. Capacitance vs Source Voltage  
VDD = 15 V, VSS = 15 V, TA = 25°C  
6-15. Capacitance vs Source Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Truth Tables  
7-1, 7-2, and 7-3 show the truth tables for the TMUX6121, TMUX6122, and TMUX6123, respectively.  
7-1. TMUX6121 Truth Table  
SELx  
STATE  
0
1
All Switch OFF  
All Switch ON  
7-2. TMUX6122 Truth Table  
SELx  
STATE  
0
1
All Switch ON  
All Switch OFF  
7-3. TMUX6123 Truth Table  
SELx  
STATE  
Switch 1 OFF  
Switch 2 ON  
0
Switch 1 ON  
Switch 2 OFF  
1
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX6121, TMUX6122, and TMUX6123 are 2-channel single-pole/ single-throw (SPDT) switches that  
support dual supplies (±5 V to ±16.5 V) or single supply (10 V to 16.5 V) operation. Each channel of the switch is  
turned on or turned off based on the state of its corresponding SELx pin. 8.2 provides a top-level block  
diagram of the switches.  
8.1.1 On-Resistance  
The on-resistance of the TMUX6121, TMUX6122, and TMUX6123 is the ohmic resistance across the source  
(Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol  
RON is used to denote on-resistance. The measurement setup used to measure RON is shown in 8-1. Voltage  
(V) and current (ICH) are measured using this setup, and RON is computed as shown in 方程1:  
V
S
D
ICH  
VS  
8-1. On-Resistance Measurement Setup  
RON = V / ICH  
(1)  
8.1.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current  
2. Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
.
The setup used to measure both off-leakage currents is shown in 8-2.  
Is (OFF)  
ID (OFF)  
A
S
D
A
VS  
VD  
8-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
8.1.3 On-Leakage Current  
On-leakage current is defined as the leakage current that flows into or out of the drain pin when the switch is in  
the on state. The source pin is left floating during the measurement. 8-3 shows the circuit used for measuring  
the on-leakage current, denoted by ID(ON)  
.
ID (ON)  
S
D
NC  
A
NC = No Connection  
VD  
8-3. On-Leakage Measurement Setup  
8.1.4 Turn-On and Turn-Off Time  
Turn-on time is defined as the time taken by the output of the TMUX6121, TMUX6122, and TMUX6123 to rise to  
a 90% final value after the SELx signal has risen (for NO switches) or fallen (for NC switches) to a 50% final  
value. 8-4 shows the setup used to measure turn-on time. Turn-on time is denoted by the symbol tON  
.
Turn off time is defined as the time taken by the output of the TMUX6121, TMUX6122, and TMUX6123 to fall to  
a 10% initial value after the SELx signal has fallen (for NO switches) or risen (for NC switches) to a 50% initial  
value. 8-4 shows the setup used to measure turn-off time. Turn-off time is denoted by the symbol tOFF  
.
VDD  
VSS  
3 V  
50%  
50%  
50%  
50%  
TMUX6122 VIN  
VDD  
VSS  
0 V  
3 V  
Output  
VS  
Sx  
Dx  
TMUX6121  
VIN  
SELx  
300 Ω  
35 pF  
0 V  
VS  
0.9 VS  
tON  
VIN  
GND  
tOFF  
Output  
0.1 VS  
8-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
8.1.5 Break-Before-Make Delay  
The break-before-make delay is a safety feature of the TMUX6123 switch. The TMUX6123's ON switches first  
break the connection before the OFF switches make connection. The time delay between the break and the  
make is known as break-before-make delay. 8-5 shows the setup used to measure break-before-make delay,  
denoted by the symbol tBBM  
.
VDD  
VSS  
3 V  
TMUX6123  
50%  
50%  
VIN  
VDD  
VSS  
VS  
VS  
0 V  
VS  
S1  
S2  
D1  
D2  
Output 1  
Output 2  
300 Ω  
35 pF  
0.9 VS  
0.9 VS  
35 pF  
Output 2  
300 Ω  
SEL1,  
SEL2  
0 V  
VS  
0.9 VS  
0.9 VS  
tBBM2  
GND  
VIN  
Output 1  
0 V  
tBBM1  
tBBM= min (tBBM2, tBBM2  
)
8-5. Break-Before-Make Delay Measurement Setup  
8.1.6 Charge Injection  
The TMUX6121, TMUX6122, and TMUX6123 have a simple transmission-gate topology. Any mismatch in  
capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source  
during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the  
device is known as charge injection, and is denoted by the symbol QINJ. 8-6 shows the setup used to  
measure charge injection.  
VDD  
VSS  
3 V  
TMUX6122 VIN  
VDD  
VSS  
0 V  
3 V  
Output  
Sx  
Dx  
RS  
VS  
TMUX6121  
VIN  
1 nF  
SELx  
0 V  
VS  
VIN  
GND  
VOUT  
Output  
QINJ = CL ×  
VOUT  
8-6. Charge-Injection Measurement Setup  
8.1.7 Off Isolation  
Off isolation is defined as the voltage at the drain pin (Dx) of the TMUX6121, TMUX6122, and TMUX6123 when  
a 1-VRMS signal is applied to the source pin (Sx) of an OFF switch. 8-7 shows the setup used to measure off  
isolation. Use 方程2 to compute off isolation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
Sx  
Dx  
VOUT  
SELx  
VS  
50 Ω  
50 Ω  
VIN  
GND  
8-7. Off Isolation Measurement Setup  
«
VOUT  
Off Isolation = 20 Log  
÷
VS  
(2)  
8.1.8 Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk is defined as the voltage at the source pin (Sx) of an off-channel, when a 1-VRMS  
signal is applied at the source pin (Sx) of an on-channel. 8-8 shows the setup used to measure, and 方程式 3  
is the equation used to compute, channel-to-channel crosstalk.  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
S1  
S2  
D1  
D2  
VOUT  
50 Ω  
50 Ω  
VS  
SELx  
50 Ω  
VIN  
GND  
8-8. Channel-to-Channel Crosstalk Measurement Setup  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(3)  
8.1.9 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the  
source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the TMUX6121, TMUX6122,  
and TMUX6123. 8-9 shows the setup used to measure bandwidth of the switch. Use 方程式 4 to compute the  
attenuation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
VDD  
VSS  
VDD  
VSS  
Network Analyzer  
Sx  
Dx  
VOUT  
SELx  
VS  
50 Ω  
VIN  
GND  
8-9. Bandwidth Measurement Setup  
«
÷
V2  
Attenuation = 20 Log  
V
1
(4)  
8.1.10 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The on-resistance of the TMUX6121, TMUX6122, and TMUX6123 varies with the amplitude of the  
input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic  
distortion plus noise is denoted as THD+N. 8-10 shows the setup used to measure THD+N of the TMUX6121,  
TMUX6122, and TMUX6123.  
VDD  
VSS  
VDD  
VSS  
Audio Precision  
Sx  
Dx  
RS  
VOUT  
SELx  
VS  
10k Ω  
VIN  
GND  
8-10. THD+N Measurement Setup  
8.1.11 AC Power Supply Rejection Ratio (AC PSRR)  
AC PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply  
voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a  
sine wave of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated  
signal is the AC PSRR. 8-11 shows the setup used to measure ACPSRR of the TMUX6121, TMUX6122, and  
TMUX6123.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
VDD  
Network Analyzer  
DC Bias  
Injector  
VSS  
VDD  
VSS  
620 mVPP  
VIN  
VBIAS  
SW  
Sx  
VOUT  
Dx  
VSEL  
10k Ω  
5 pF  
SELx  
50 Ω  
GND  
VBIAS = 0 V  
ACPSRR= 20 × Log (VOUT/ VIN  
)
8-11. AC PSRR Measurement Setup  
8.2 provides a top-level block diagram of the TMUX6121, TMUX6122, and TMUX6123. The devices are 2-  
channel, single-ended, analog switches. Each channel is turned on or turned off based on the state of the  
address lines and enable pin.  
8.2 Functional Block Diagram  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
SW  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
SW  
SW  
SW  
SEL1  
SEL2  
SEL1  
SEL2  
SEL1  
SEL2  
TMUX6121  
TMUX6122  
TMUX6123  
ALL SWITCHES SHOWN FOR A LOGIC 0 INPUT  
8.3 Feature Description  
8.3.1 Ultralow Leakage Current  
The TMUX6121, TMUX6122, and TMUX6123 provide extremely low on- and off-leakage currents. The devices  
are capable of switching signals from high source-impedance inputs into a high input-impedance op amp with  
minimal offset error because of the ultralow leakage currents. 8-12 shows typical leakage currents of the  
devices versus temperature.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
400  
200  
0
ID(OFF)+  
IS(OFF)+  
ID(ON)+  
-200  
-400  
-600  
-800  
ID(OFF)-  
IS(OFF)-  
ID(ON)-  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature (èC)  
D005  
8-12. Leakage Current vs Temperature  
8.3.2 Ultralow Charge Injection  
The TMUX6121 is implemented with simple transmission gate topology, as shown in 8-13. Any mismatch in  
the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch  
is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-13. Transmission Gate Topology  
The devices utilize special charge-injection cancellation circuitry that reduces the source (Sx)-to-drain (Dx)  
charge injection to as low as 0.51 pC at VS = 0 V, as shown in 8-14.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
2
VDD= 15V  
VSS = -15V  
VDD= 12V  
VSS = 0V  
1
0
VDD= 10V  
VSS = -10V  
-1  
-2  
-15  
-10  
-5 0  
Source Voltage (V)  
5
10  
15  
D007  
8-14. Source-to-Drain Charge Injection vs Source or Drain Voltage  
8.3.3 Bidirectional and Rail-to-Rail Operation  
The TMUX6121, TMUX6122, and TMUX6123 conduct equally well from source (Sx) to drain (Dx) or from drain  
(Dx) to source (Sx). Each channel of the switches has very similar characteristics in both directions. The input  
signal to the devices swings from VSS to VDD without any significant degradation in performance. The on  
resistance of these devices varies with input signal.  
8.4 Device Functional Modes  
Each channel of the TMUX6121, TMUX6122, and TMUX6123 is turned on or turned off based on the state of its  
corresponding SELx pin. The SELx pins are weakly pulled-down through an internal 6 MΩ resistor, allowing the  
switches to stay in a determined state when power is applies to the devices. The SELx pins can be connected to  
VDD  
.
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TMUX6121, TMUX6122, and TMUX6123 offer outstanding input/output leakage currents and ultralow  
charge injection. These devices operate up to 33 (dual supply) or 16.5 V (single supply), and offer true rail-to-rail  
input and output. The on-capacitance of the TMUX6121, TMUX6122, and TMUX6123 is low. These features  
makes the TMUX6121, TMUX6122, and TMUX6123 a family of precision, robust, high-performance analog  
multiplexer for high-voltage, industrial applications.  
9.2 Typical Application  
One useful application to take advantage of TMUX6121, TMUX6122, and TMUX6123's precision performance is  
the sample and hold circuit. A sample and hold circuit can be useful for an analog to digital converter (ADC) to  
sample a varying input voltage with improved reliability and stability. It can also be used to store the output  
samples from a single digital-to-analog converter (DAC) in a multi-output application. A simple sample and hold  
circuit can be realized using an analog switch like one of the TMUX6121, TMUX6122, and TMUX6123 analog  
switches.  
+15V  
VDD  
-15V  
VSS  
CH  
+15V  
+
SW1  
+15V  
CC  
RC  
VIN1  
+
OPA2192  
VOUT  
œ
OPA2192  
SW2  
-15V  
œ
SEL1/  
SEL2  
CH  
-15V  
GND  
TMUX612x  
9-1. A Sample and Hold Circuit Realized Using the TMUX611x Analog Switch  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
The purpose of this precision design is to implement an optimized 2-output sample and hold circuit using a 4-  
channel SPST switch. The sample and hold circuit needs to be capable of supporting high voltage output swing  
up to ± 15 V with minimized pedestal error and fast settling time. The overall system block diagram is shown in  
9-1.  
9.2.2 Detailed Design Procedure  
The TMUX6121, TMUX6122, or TMUX6123 switch is used in conjunction with the voltage holding capacitors  
(CH) to implement the sample and hold circuit. The basic operation is:  
1. When the switch SW2 is closed, it samples the input voltage and charges the holding capacitors (CH) to the  
input voltages values.  
2. When the switch SW2 is open, the holding capacitors (CH) holds its previous value, maintaining stable  
voltage at the amplifier output (VOUT  
)
Ideally, the switch delivers only the input signals to the holding capacitors. However, when the switch gets  
toggled, some amount of charge also gets transferred to the switch output in the form of charge injection,  
resulting slight sampling error. The TMUX6121, TMUX6122, and TMUX6123 switches have excellent charge  
injection performance of only 0.51 pC, making them ideal choices for this implementation to minimize sampling  
error. Due to switch and capacitor leakage current, the voltage on the hold capacitors droops with time. The  
TMUX6121, TMUX6122, and TMUX6123 minimize the droops due to its ultra-low leakage performance. At 25°C,  
the TMUX6111, TMUX6112, and TMUX6113 have extremely tiny leakage current at 0.5 pA typical and 20 pA  
maximum. The TMUX6121, TMUX6122, and TMUX6123 devices also support high voltage capability. The  
devices support up to ± 16.5 V dual supply operation, making it an ideal solution in this high voltage sample and  
hold application.  
A second switch SW1 is also included to operate in parallel with SW2 to reduce pedestal error during switch  
toggling. Because both switches are driven at the same potential, they act as common-mode signal to the op-  
amp, thereby minimizing the charge injection effects caused by the switch toggling action. Compensation  
network consisting of RC and CC is also added to further reduce the pedestal error, whiling reducing the hold-  
time glitch and improving the settling time of the circuit.  
9.2.3 Application Curve  
TMUX6121, TMUX6122, and TMUX6123 have excellent charge injection performance of only 0.51 pC (typical),  
making them ideal choices to minimize sampling error for the sample and hold application. 9-2 shows the plot  
for the charge injection versus source input voltage for TMUX6121, TMUX6122, and TMUX6123.  
2
VDD= 15V  
VSS = -15V  
VDD= 12V  
VSS = 0V  
1
0
VDD= 10V  
VSS = -10V  
-1  
-2  
-15  
-10  
-5 0  
Source Voltage (V)  
5
10  
15  
D007  
9-2. Charge Injection vs. Source Voltage for TMUX6121, TMUX6122 and TMUX6123  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The TMUX6121, TMUX6122, and TMUX6123 operate across a wide supply range of ±5 V to ±16.5 V (10 V to  
16.5 V in single-supply mode). They also perform well with asymmetrical supplies such as VDD = 12 V and VSS  
=
5 V. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 µF to 10 µF at  
both the VDD and VSS pins to ground. Always ensure the ground (GND) connection is established before  
supplies are ramped. As a best practice, it is recommended to ramp VSS first before VDD in dual or asymmetrical  
supply applications.  
The on-resistance of the TMUX6121, TMUX6122, and TMUX6123 varies with supply voltage, as shown in 图  
10-1  
250  
VDD= 13.6V  
VSS = -13.5V  
VDD= 12V  
VSS = -12V  
200  
150  
100  
VDD= 15V  
VSS = -15V  
50  
VDD= 16.5V  
VSS = -16.5V  
0
-20  
-15  
-10  
-5  
0
5
Source or Drain Voltage (V)  
10  
15  
20  
D001  
10-1. On-Resistance Variation With Supply and Input Voltage  
11 Layout  
11.1 Layout Guidelines  
11-1 shows an example of a PCB layout with the TMUX6121, TMUX6122, and TMUX6123.  
Some key considerations are:  
1. Decouple the VDD and VSS pins with a 0.1-µF capacitor, placed as close to the pin as possible. Make sure  
that the capacitor voltage rating is sufficient for the VDD and VSS supplies.  
2. Keep the input lines as short as possible.  
3. Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
4. Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
SEL1  
S1  
SEL2  
VDD  
GND  
NC  
C
C
TMUX6121  
TMUX6122  
TMUX6123  
Via to  
ground plane  
D1  
D2  
S2  
VSS  
11-1. TMUX6121 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
 
 
TMUX6121, TMUX6122, TMUX6123  
ZHCSJ87A DECEMBER 2018 REVISED JULY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, OPAx192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias  
Current Op Amp with e-trim™  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX6121 TMUX6122 TMUX6123  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX6121DGSR  
TMUX6122DGSR  
TMUX6123DGSR  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
10  
10  
10  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
1Q16  
1Q26  
1Q36  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6121DGSR  
TMUX6122DGSR  
TMUX6123DGSR  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
10  
10  
10  
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX6121DGSR  
TMUX6122DGSR  
TMUX6123DGSR  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
10  
10  
10  
2500  
2500  
2500  
366.0  
366.0  
366.0  
364.0  
364.0  
364.0  
50.0  
50.0  
50.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TMUX6136

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、2 通道精密模拟开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6136PWR

0.5pA 导通状态电容、±16.5V、2:1 (SPDT)、2 通道精密模拟开关 | PW | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6201

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 单通道精密开关(高电平有效)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6201RQXR

36-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (Active High) | RQX | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6202

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 单通道精密开关(低电平有效)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6202RQXR

36-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (active low)

| RQX | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6208

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6208PWR

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6208RUMR

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6208_V01

TMUX620x 36-V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8-V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6208_V02

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TMUX6209

TMUX620x 36 V, Low-Ron, 8:1 1-Channel and 4:1, 2-Channel Precision Multiplexers with 1.8 V Logic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI