TMUX6234 [TI]

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关;
TMUX6234
型号: TMUX6234
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关

开关 光电二极管
文件: 总45页 (文件大小:2152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
TMUX6234 1.8V 逻辑器件36V、低导通电阻、2:1 4 通道精密开关  
1 特性  
3 说明  
• 双电源电压范围±4.5V ±18V  
• 单电源电压范围4.5V 36V  
• 低导通电阻3.6Ω  
• 低串扰-105dB  
• 低传播延迟450ps  
• 高电流支持400 mA最大值)  
• –40°C +125°C 工作温度  
1.8V 逻辑兼容输入  
失效防护逻辑  
TMUX6234 是具有低导通电阻的多通CMOS 开关。  
TMUX6234 包含四个独立控制的 SPDT 开关和一个用  
于启用或禁用全部四个通道EN 引脚。该器件支持单  
电源4.5V 36V、双电源±4.5V ±18V或非  
对称电源VDD = 18VVSS = 5V。  
TMUX6234 可在源极 (Sx) 和漏极 (D) 引脚上支持从  
VSS VDD 范围的双向模拟和数字信号。  
所有逻辑控制输入引脚均支持 1.8V VDD 的逻辑电  
当器件在宽逻辑电压范围内运行时可确保逻辑兼  
容性。失效防护逻辑电路允许先在控制引脚上施加电  
然后在电源引脚上施加电压从而保护器件免受潜  
在的损害。  
轨到轨运行  
双向信号路径  
• 先断后合开关  
2 应用  
TMUX6234 是精密开关和多路复用器器件系列的一部  
分。这些器件具有非常低的导通和关断泄漏电流以及较  
低的电荷注入因此可用于高精度测量应用。  
远程射频单(RRU)  
有源天线系mMIMO (AAS)  
可编程逻辑控制(PLC)  
模拟输入模块  
半导体测试设备  
电池测试设备  
数据采集系(DAQ)  
超声波扫描仪  
患者监护和诊断  
光纤网络  
光学测试设备  
封装信息(1)  
封装尺寸标称值)  
器件型号  
TMUX6234  
封装  
PWTSSOP206.50mm × 4.40mm  
RRQWQFN204.00mm × 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
8 V  
VDD  
RF Tx/Rx  
TMUX6234  
Output  
voltage  
DAC  
有线网络  
Channel #1  
1.8 V  
VDD  
VSS  
RF Input  
VDD  
–12 V/0 V  
Output  
voltage  
VSS  
RF Tx/Rx  
MCU  
S1A  
S1B  
0 V to 1.8 V  
DAC  
D1  
D2  
D3  
D4  
Channel #2  
1.8 V  
RF Input  
VDD  
S2A  
S2B  
–12 V/0 V  
Output  
voltage  
VSS  
MCU  
RF Tx/Rx  
DAC  
Channel #3  
S3A  
S3B  
1.8 V  
RF Input  
VDD  
–12 V/0 V  
Output  
voltage  
VSS  
RF Tx/Rx  
MCU  
0 V to 1.8 V  
DAC  
S4A  
S4B  
Channel #4  
1.8 V  
MCU  
RF Input  
–12 V/0 V  
VSS  
SEL1  
SEL2  
SEL3  
SEL4  
–12 V  
Logic Decoder  
EN  
典型应用  
TMUX6234  
简化版图表  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS442  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.9 Charge Injection........................................................23  
7.10 Off Isolation.............................................................23  
7.11 Crosstalk................................................................. 24  
7.12 Bandwidth............................................................... 24  
7.13 THD + Noise........................................................... 25  
7.14 Power Supply Rejection Ratio (PSRR)...................25  
8 Detailed Description......................................................26  
8.1 Overview...................................................................26  
8.2 Functional Block Diagram.........................................26  
8.3 Feature Description...................................................26  
8.4 Device Functional Modes..........................................28  
8.5 Truth Tables.............................................................. 28  
9 Application and Implementation..................................29  
9.1 Application Information............................................. 29  
9.2 Typical Application.................................................... 29  
10 Power Supply Recommendations..............................31  
11 Layout...........................................................................31  
11.1 Layout Guidelines................................................... 31  
11.2 Layout Example...................................................... 32  
12 Device and Documentation Support..........................33  
12.1 Documentation Support.......................................... 33  
12.2 Receiving Notification of Documentation Updates..33  
12.3 支持资源..................................................................33  
12.4 Trademarks.............................................................33  
12.5 Electrostatic Discharge Caution..............................33  
12.6 术语表..................................................................... 33  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................6  
6.5 Source or Drain Continuous Current...........................6  
6.6 36 V Single Supply: Electrical Characteristics ........... 7  
6.7 36 V Single Supply: Switching Characteristics .......... 8  
6.8 ±15 V Dual Supply: Electrical Characteristics ............9  
6.9 ±15 V Dual Supply: Switching Characteristics .........10  
6.10 12 V Single Supply: Electrical Characteristics ....... 11  
6.11 12 V Single Supply: Switching Characteristics .......12  
6.12 ±5 V Dual Supply: Electrical Characteristics ..........13  
6.13 ±5 V Dual Supply: Switching Characteristics .........14  
6.14 Typical Characteristics............................................15  
7 Parameter Measurement Information..........................19  
7.1 On-Resistance.......................................................... 19  
7.2 Off-Leakage Current................................................. 19  
7.3 On-Leakage Current................................................. 20  
7.4 Transition Time......................................................... 20  
7.5 tON(EN) and tOFF(EN) .................................................. 21  
7.6 Break-Before-Make...................................................21  
7.7 tON (VDD) Time............................................................22  
7.8 Propagation Delay.................................................... 22  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (August 2021) to Revision B (December 2022)  
Page  
PW 封装状态从预发更改为正在供........................................................................................................ 1  
Changes from Revision * (June 2021) to Revision A (August 2021)  
Page  
• 将文档状态从预告信更改为量产数.........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SEL1  
S1A  
D1  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SEL4  
S4A  
D4  
D1  
S1B  
VSS  
GND  
S2B  
1
2
3
4
5
15  
14  
13  
12  
11  
D4  
S1B  
VSS  
GND  
S2B  
D2  
S4B  
VDD  
S4B  
VDD  
S3B  
D3  
Thermal  
Pad  
S3B  
D3  
S2A  
SEL2  
S3A  
SEL3  
Not to scale  
Not to scale  
5-2. TMUX6234 RRQ Package, 20-Pin WQFN  
5-1. TMUX6234 PW Package, 20-Pin TSSOP (Top  
(Top View)  
View)  
5-1. Pin Functions TMUX6234  
PIN  
PW NO.  
TYPE(1)  
DESCRIPTION (2)  
NAME  
D1  
RRQ NO.  
3
8
1
6
I/O  
I/O  
I/O  
I/O  
Drain pin 1. Can be an input or output.  
D2  
Drain pin 2. Can be an input or output.  
Drain pin 3. Can be an input or output.  
Drain pin 4. Can be input or output  
D3  
13  
18  
11  
15  
D4  
Active low logic enable; has internal pull-down resistor. The SELx logic inputs determine  
switch connections when this pin is low (see 8.5).  
EN  
15  
18  
I
GND  
S1A  
6
2
4
20  
2
P
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Ground (0 V) reference.  
Source pin 1A. Can be an input or output.  
S1B  
4
Source pin 1B. Can be an input or output.  
S2A  
9
7
Source pin 2A. Can be an input or output.  
S2B  
7
5
Source pin 2B. Can be an input or output.  
S3A  
12  
14  
19  
17  
1
10  
12  
16  
14  
19  
8
Source pin 3A. Can be an input or output.  
S3B  
Source pin 3B. Can be an input or output.  
S4A  
Source pin 4A. Can be an input or output.  
S4B  
Source pin 4B. Can be an input or output.  
SEL1  
SEL2  
SEL3  
SEL4  
Logic control input 1; has internal pull-down resistor. Controls switch 1 (see 8.5).  
Logic control input 2; has internal pull-down resistor. Controls switch 2 (see 8.5).  
Logic control input 3; has internal pull-down resistor. Controls switch 3 (see 8.5).  
Logic control input 4, has internal pull-down resistor. Controls switch 4 (see 8.5).  
10  
11  
20  
I
9
I
17  
I
Positive power supply. This pin has the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between VDD  
and GND.  
VDD  
16  
5
13  
3
P
Negative power supply. This pin has the most negative power-supply potential. This pin  
can be connected to ground in single supply applications. Connect a decoupling capacitor  
ranging from 0.1 μF to 10 μF between VSS and GND for reliable operation.  
VSS  
P
The thermal pad is not connected internally. There is no requirement to solder this pad. If  
connected, it is recommended to leave the pad floating or tied to GND.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX6234  
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
38  
VDDVSS  
VDD  
Supply voltage  
38  
V
0.5  
38  
VSS  
0.5  
V
VSEL or VEN  
Logic control input pin voltage (SELx, EN)  
Logic control input pin current (SELx, EN)  
Source or drain voltage (SxA, SxB, Dx)  
Diode clamp current(3)  
38  
30  
V
0.5  
ISEL or IEN  
mA  
V
30  
VS or VD  
VDD+0.5  
30  
VSS0.5  
30  
IIK  
mA  
mA  
°C  
°C  
°C  
mW  
IS or ID (CONT)  
Source or drain continuous current (SxA, SxB, Dx)  
Ambient temperature  
IDC ± 10 %(4)  
150  
TA  
55  
65  
Tstg  
TJ  
Storage temperature  
150  
Junction temperature  
150  
Ptot  
Total power dissipation (QFN package)(5)  
1680  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
(5) For QFN package: Ptot derates linearily above TA = 70°C by 24.8mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX6234  
THERMAL METRIC(1)  
PW (TSSOP)  
20 PINS  
74.7  
RRQ (WQFN)  
20 PINS  
40.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.9  
24.2  
32.3  
16.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
0.2  
ΨJT  
31.7  
16.4  
ΨJB  
RθJC(bot)  
N/A  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX6234  
 
 
 
 
 
 
 
 
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
UNIT  
V
(1)  
Power supply voltage differential  
36  
36  
VDD VSS  
VDD  
Positive power supply voltage  
V
VS or VD  
VSEL or VEN  
IS or ID (CONT)  
TA  
Signal path input/output voltage (source or drain pin) (SxA, SxB, Dx)  
Address or enable pin voltage  
VDD  
V
36  
V
(2)  
Source or drain continuous current (SxA, SxB, Dx)  
Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 36 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
CONTINUOUS CURRENT PER CHANNEL  
TA = 25°C  
TA = 85°C  
235  
TA = 125°C  
130  
UNIT  
PACKAGE  
TEST CONDITIONS  
±15 V Dual Supply(1)  
360  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
+36 V Single Supply  
+12 V Single Supply  
±5 V Dual Supply  
345  
260  
255  
170  
400  
300  
300  
300  
240  
225  
177  
175  
129  
230  
190  
180  
180  
150  
128  
108  
105  
80  
PW (TSSOP)  
+5 V Single Supply  
±15 V Dual Supply(1)  
+36 V Single Supply  
+12 V Single Supply  
±5 V Dual Supply  
120  
110  
100  
100  
85  
RRQ (WQFN)  
+5 V Single Supply  
(1) Specified for nominal supply voltage only.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 36 V Single Supply: Electrical Characteristics  
VDD = +36 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
3.6  
6.2  
7.9  
9.4  
0.7  
0.8  
0.9  
1.8  
2.5  
3.1  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 30 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
1.6  
VS = 0 V to 30 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 30 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 18 V, IS = 10 mA  
Refer to On-Resistance  
0.015  
0.02  
40°C to +125°C  
/°C  
25°C  
0.4  
2
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
Switch state is off  
VS = 30 V / 1 V  
VD = 1 V / 30 V  
0.4  
2  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
Refer to Off-Leakage Current  
15  
0.5  
8
15  
0.5  
8  
0.04  
0.04  
Switch state is off  
VS = 30 V / 1 V  
VD = 1 V / 30 V  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
Refer to Off-Leakage Current  
30  
0.5  
4
30  
0.5  
4  
Switch state is on  
VS = VD = 30 V or 1 V  
Refer to On-Leakage Current  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
30  
30  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
65  
100  
110  
130  
µA  
µA  
µA  
VDD = 36 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 30 V, VD is 1 V. Or when VS is 1 V, VD is 30 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX6234  
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
MAX UNIT  
6.7 36 V Single Supply: Switching Characteristics  
VDD = +36 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
90  
170  
190  
200  
180  
200  
210  
150  
160  
170  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V  
95  
85  
40  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 18 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.15  
0.15  
0.15  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
560  
3
ps  
VD = 18 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
OISO  
XTALK  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
62  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
105  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
95  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.35  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
46  
Refer to ACPSRR  
VPP =18 V, VBIAS = 18 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0006  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
25°C  
25°C  
17  
28  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 18 V, f = 1 MHz  
25°C  
77  
pF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
3.6  
5.5  
7.1  
8.4  
0.7  
0.8  
1
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.3  
0.4  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
1.5  
1.7  
1.9  
VS = 10 V to +10 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.015  
0.01  
40°C to +125°C  
/°C  
25°C  
0.6  
2
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.6  
2  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
10  
nA  
40°C to +125°C  
10  
25°C  
0.02  
0.02  
0.8  
6
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
0.8  
6  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
30  
nA  
40°C to +125°C  
30  
25°C  
0.8  
6
nA  
nA  
nA  
0.8  
6  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
30  
30  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
42  
8
70  
80  
95  
25  
30  
40  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative. Or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX6234  
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
MAX UNIT  
6.9 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
105  
190  
200  
210  
190  
200  
210  
150  
160  
170  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
105  
80  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
50  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.16  
0.16  
0.16  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
450  
3
ps  
VD = 0 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
OISO  
XTALK  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
62  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
105  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
100  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
48  
Refer to ACPSRR  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0004  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
16  
28  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
77  
pF  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.10 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
6.2  
12  
15  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
18  
0.3  
2.4  
0.7  
0.8  
1
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
3.6  
3.9  
4.8  
VS = 0 V to 10 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 6 V, IS = 10 mA  
Refer to On-Resistance  
0.025  
0.01  
40°C to +125°C  
/°C  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
25°C  
0.4  
1
nA  
nA  
0.4  
1  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
8
nA  
40°C to +125°C  
8  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
25°C  
0.02  
0.02  
0.5  
6
nA  
nA  
0.5  
6  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
30  
nA  
40°C to +125°C  
30  
25°C  
0.5  
6
nA  
nA  
nA  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
Refer to On-Leakage Current  
0.5  
6  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
30  
30  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
33  
60  
70  
80  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 10 V, VD is 1 V. Or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX6234  
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
MAX UNIT  
6.11 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
105  
210  
230  
260  
210  
230  
260  
200  
220  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 8 V  
110  
105  
60  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.16  
0.16  
0.16  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
Off-isolation  
25°C  
25°C  
25°C  
500  
3
ps  
pC  
dB  
VD = 6 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
82  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Crosstalk  
25°C  
25°C  
dB  
dB  
62  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
105  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
130  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.5  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
48  
Refer to ACPSRR  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0016  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
19  
33  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
78  
pF  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 ±5 V Dual Supply: Electrical Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
7
13.5  
16.2  
18.5  
0.7  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
2.6  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
0.8  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.9  
3.8  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
4.2  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
4.9  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.03  
0.01  
40°C to +125°C  
/°C  
25°C  
0.5  
1
nA  
nA  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
0.5  
1  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 4.5 V / + 4.5 V  
Refer to Off-Leakage Current  
5
nA  
40°C to +125°C  
5  
25°C  
0.01  
0.01  
0.5  
3
nA  
nA  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
VD = 4.5 V / + 4.5 V  
Refer to Off-Leakage Current  
0.5  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
8
nA  
40°C to +125°C  
8  
25°C  
0.5  
3
nA  
nA  
nA  
0.5  
3  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is on  
VS = VD = ±4.5 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
8
8  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
28  
4
45  
55  
85  
10  
15  
25  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative. Or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX6234  
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
MAX UNIT  
6.13 ±5 V Dual Supply: Switching Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
120  
210  
230  
250  
220  
240  
260  
210  
230  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 3 V  
130  
120  
65  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 3 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.16  
0.16  
0.16  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
400  
1
ps  
VD = 0 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
OISO  
XTALK  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
62  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
105  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
130  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.6  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
53  
Refer to ACPSRR  
VPP = 5 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.002  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
20  
34  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
80  
pF  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.14 Typical Characteristics  
at TA = 25°C (unless otherwise noted)  
.
.
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
VDD = 15 V, VSS = -15 V  
VDD = 5 V, VSS = -5 V  
6-3. On-Resistance vs Temperature  
6-4. On-Resistance vs Temperature  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX6234  
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
VDD = 15 V, VSS = -15 V  
VDD = 36 V, VSS = 0 V  
6-7. Leakage Current vs Temperature  
6-8. Leakage Current vs Temperature  
VDD = 12 V, VSS = 0 V  
.
6-9. Leakage Current vs Temperature  
6-10. Supply Current vs Logic Voltage  
70  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 15 V, VSS = 15 V  
VDD = 5 V, VSS = 5 V  
VDD = 15 V, VSS = 15 V  
VDD = 5 V, VSS = 5 V  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
Drain Voltage (V)  
Source Voltage (V)  
.
.
6-11. Charge Injection vs Source Voltage Dual Supply  
6-12. Charge Injection vs Drain Voltage Dual Supply  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX6234  
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
.
VDD = 36 V, VSS = 0 V  
6-13. TTRANSITION vs Temperature  
6-14. TON and TOFF vs Temperature  
VDD = 15 V, VSS = -15 V, TA = 25°C .  
6-15. Off-Isolation vs Frequency  
0.005  
VDD = 15 V, VSS = -15 V .  
6-16. Crosstalk vs Frequency  
VDD = 5 V, VSS = 5 V  
VDD = 15 V, VSS = 15 V  
0.004  
0.003  
0.002  
0.001  
0.0007  
0.0005  
0.0004  
0.0003  
0.0002  
10  
100  
Frequency (Hz)  
1k  
.
.
6-17. THD+N vs Frequency (Dual Supply)  
6-18. THD+N vs Frequency (Single Supply)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX6234  
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
VDD = 15 V, VSS = -15 V .  
VDD = +15 V, VSS = -15 V  
6-19. On Response vs Frequency  
6-20. ACPSRR vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX6234  
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD  
.
V
ISD  
Sx  
Dx  
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
Source off-leakage current  
Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1A  
S1B  
S1A  
S1B  
A
D1  
D1  
A
VS  
VD  
VD  
VS  
VD  
Is (OFF)  
ID (OFF)  
S4A  
S4B  
S4A  
S4B  
D4  
A
A
D4  
VS  
VS  
GND  
GND  
VD  
VD  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX6234  
 
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
A
ID (ON)  
S1A  
S1B  
S1A  
S1B  
N.C.  
N.C.  
D1  
D1  
A
N.C.  
VS  
N.C.  
VD  
Is (ON)  
A
S4A  
S4B  
S4A  
S4B  
N.C.  
N.C.  
D4  
D4  
N.C.  
A
VS  
N.C.  
VD  
GND  
GND  
IS(ON)  
7-3. On-Leakage Measurement Setup  
ID(ON)  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal  
has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
S1A  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
D1  
Output  
CL  
S1B  
tTRANSITION  
tTRANSITION  
RL  
90%  
Output  
0 V  
S4A  
S4B  
VS  
D4  
Output  
CL  
10%  
RL  
SELx  
GND  
VSEL  
7-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7.5 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-7  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-7  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VEN  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1A  
S1B  
0 V  
VS  
D1  
D4  
Output  
CL  
tON  
tOFF  
RL  
90%  
Output  
0 V  
S4A  
S4B  
VS  
Output  
CL  
10%  
RL  
EN  
GND  
VEN  
7-5. Turn-On and Turn-Off Time Measurement Setup  
7.6 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-6 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VSEL  
tr < 20ns  
tf < 20ns  
S1A  
S1B  
VS  
0 V  
D1  
D4  
Output  
CL  
RL  
80%  
Output  
0 V  
S4A  
S4B  
VS  
tBBM  
1
tBBM 2  
Output  
CL  
RL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SELx  
GND  
VSEL  
7-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7.7 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
VDD  
VDD  
S1A  
VSS  
tr = 10 µs  
4.5 V  
Ramp  
VS  
0 V  
Output  
D1  
D4  
S1B  
tON  
RL  
CL  
90%  
Output  
0 V  
VS  
S4A  
S4B  
Output  
CL  
RL  
EN  
3 V  
SELx  
GND  
7-7. tON (VDD) Time Measurement Setup  
7.8 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-8 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
VSS  
250 mV  
0 V  
0.1 µF  
0.1 µF  
VDD  
S1A  
VSS  
Input  
(VS)  
50%  
50%  
tr < 40ps  
tf < 40ps  
50  
VS  
D1  
Output  
CL  
tPD  
1
tPD 2  
S1B  
RL  
Output  
0 V  
50%  
50%  
50  
S4A  
S4B  
VS  
D4  
Output  
CL  
tProp Delay = max ( tPD 1, tPD 2)  
RL  
GND  
7-8. Propagation Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7.9 Charge Injection  
The TMUX6234 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QINJ. 7-9 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VEN  
VDD  
VSS  
S1A  
tr < 20 ns  
tf < 20 ns  
Output  
D1  
D4  
VD  
0 V  
CL  
S1B  
Output  
Output  
CL  
Output  
VS  
VOUT  
QINJ = CL  
×
VOUT  
S4A  
S4B  
Output  
VD  
CL  
CL  
EN  
VEN  
GND  
7-9. Charge-Injection Measurement Setup  
7.10 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-10 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-10. Off Isolation Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7.11 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-11 shows the setup used to measure and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1A  
S4A  
D
50  
VOUT  
50  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-11. Crosstalk Measurement Setup  
7.12 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-12. Bandwidth Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
7.13 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion  
when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as  
THD.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S
D
40  
VOUT  
VS  
RL  
SxA / SxB / Dx  
GND  
50  
7-13. THD Measurement Setup  
7.14 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.  
7-14 shows how the decoupling capacitors reduce high frequency noise on the supply pins. This helps  
stabilize the supply and immediately filter as much of the supply noise as possible.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With & Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
VSS  
620 mVPP  
VIN  
S
VBIAS  
50 Ω  
SxA / SxB / Dx  
50 Ω  
VOUT  
D
RL  
GND  
CL  
7-14. ACPSRR Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX6234 contains four independently controlled SPDT switches with an EN pin to enable or disable all  
four switches.  
8.2 Functional Block Diagram  
VDD  
VSS  
S1A  
S1B  
D1  
D2  
D3  
D4  
S2A  
S2B  
S3A  
S3B  
S4A  
S4B  
SEL1  
SEL2  
SEL3  
SEL4  
Logic Decoder  
EN  
TMUX6234  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX6234 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input or output voltage for the TMUX6234 ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX6234 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the  
switch to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and BOM cost. Refer to Simplifying Design with 1.8 V logic Muxes and  
Switches for more information on 1.8 V logic implementations.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
 
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.4 Fail-Safe Logic  
TMUX6234 supports Fail-Safe Logic on the control input pins (EN and SELx) allowing it to operate up to 36 V,  
regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before  
the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the TMUX6234 logic input pins to ramp up to +36 V while VDD and VSS = 0 V. The logic control  
inputs are protected against positive faults of up to +36 V in powered-off condition, but do not offer protection  
against negative overvoltage conditions.  
8.3.5 Latch-Up Immune  
Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX62xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The latch-up immunity feature allows the TMUX62xx family of switches  
and multiplexers to be used in harsh environments. Refer to Using Latch Up Immune Multiplexers to Help  
Improve System Reliability for more information on latch-up immunity.  
8.3.6 Ultra-Low Charge Injection  
8-1 shows how the TMUX6234 has a transmission gate topology. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-1. Transmission Gate Topology  
The TMUX6234 contains specialized architecture to reduce charge injection on the source (Sx). To further  
reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D).  
This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on  
the drain (D) instead of the source (Sx). As a general rule of thumb, Cp should be 20x larger than the equivalent  
load capacitance on the source (Sx).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX6234  
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
The enable EN pin is an active-low logic pin that controls the connection between the source (SxA and SxB) and  
drain (Dx) pins of the device. The TMUX6234 SELx logic control inputs determine which source pin is connected  
to the drain pin for each channel. When the EN pin of the TMUX6234 is pulled low, the SELx logic control inputs  
determine which source input is selected. When the EN pin is pulled high, all of the switches are in an open state  
regardless of the state of the SELx logic control inputs. The control pins can be as high as 36 V.  
The TMUX6234 can be operated without any external components except for the supply decoupling capacitors.  
The EN and SELx pins have internal pull-down resistors of 4 MΩ. If unused, EN and SELx pins should be tied to  
GND to ensure the device does not consume additional current as highlighted in Implications of Slow or Floating  
CMOS Inputs. Unused signal path inputs (Sx or Dx) should be connected to GND.  
8.5 Truth Tables  
8-1 shows the truth tables for the TMUX6234.  
8-1. TMUX6234 Truth Table  
Selected Source Pins Connected to  
EN  
SEL1  
SEL2  
SEL3  
SEL4  
Drain Pins  
S1B to D1  
S1A to D1  
S2B to D2  
S2A to D2  
S3B to D3  
S3A to D3  
S4B to D4  
S4A to D4  
Hi-Z (OFF)  
0
0
0
0
0
0
0
0
1
0
1
X(1)  
X
X
X
X
X
0
X
X
X
X
X
X
0
X
X
X
X
X
X
X
0
1
X
X
1
X
X
X
X
X
1
X
X
(1) X means do not care.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TMUX6234 is part of the precision switches and multiplexers family of devices. The TMUX6234 offers low  
RON, low on and off leakage currents and low charge injection performance. These features makes the  
TMUX6234 a precision, robust, high-performance analog multiplexer for high-voltage, industrial applications.  
9.2 Typical Application  
One application of the TMUX6234 is for input control of a power amplifier gate driver. Utilizing a switch allows a  
system to control when the DAC is connected to the power amplifier, and can stop biasing the power amplifier by  
switching the gate voltage. The wide dual supply range of ±4.5 V to ±18 V allows the switch to work with GaN  
power amplifiers and the wide single supply range 4.5 V to 36 V works well with LDMOS power amplifiers.  
9-1 shows the TMUX6234 configured for control of a multi-channel power amplifier application.  
8 V  
VDD  
RF Tx/Rx  
TMUX6234  
Output  
voltage  
DAC  
Channel #1  
1.8 V  
RF Input  
VDD  
–12 V/0 V  
Output  
voltage  
VSS  
RF Tx/Rx  
MCU  
0 V to 1.8 V  
DAC  
Channel #2  
1.8 V  
RF Input  
VDD  
–12 V/0 V  
Output  
voltage  
VSS  
MCU  
RF Tx/Rx  
DAC  
Channel #3  
1.8 V  
RF Input  
VDD  
–12 V/0 V  
Output  
voltage  
VSS  
RF Tx/Rx  
MCU  
0 V to 1.8 V  
DAC  
Channel #4  
1.8 V  
MCU  
RF Input  
–12 V/0 V  
VSS  
–12 V  
9-1. Power Amplifier Gate Driver  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
Use the parameters listed in 9-1 for this design example.  
9-1. Design Parameters  
VALUES  
PARAMETERS  
GAN application  
LDMOS application  
Supply (VDD  
)
8 V  
Supply (VSS  
)
-12 V  
Signal range  
Control logic  
SEL1 - SEL4  
-12 V to 0 V  
0 V to 5 V  
1.8 V compatiable (up to 36 V)  
Controlled independently for each power amplifier channel  
9.2.2 Detailed Design Procedure  
The application shown in 9-1 demonstrates how to toggle between the DAC output and a low signal voltage  
for control of a power amplifier. A device such as the TMUX6234 that supports multiple supply voltage  
combinations allows the system designer to use a single switch across platforms with different power amplifier  
topologies such as GaN or LDMOS implementations. Using a multi-channel switch like the TMUX6234 allows  
the system to improve density by implementing a smaller solution size. Multiple channels of the TMUX6234 can  
be utilized to switch additional stages of a single power amplifier channel. Or multiple channel switches can be  
used on different power amplifier stages in high channel count communicaitons equipment such as a 32  
transmist (TX), 32 receive (RX) active antenna system mMIMIO (AAS). Each channel of the TMUX6234 has  
independent control signals allowing for overal system flexibility. The DAC output is utilized to bias the gate of  
the power amplifier and can be disconnected from the circuit using the select pins of the switch or the golbal  
enable pin. The TMUX6234 can support 1.8 V logic signals on the control input, allowing the device to interface  
with low logic controls of an FPGA or MCU. All inputs to the switch must fall within the recommend operating  
conditions of the TMUX6234 including signal range and continuous current. For this design with a positive  
supply of 8 V on VDD, and negative supply of -12 V on VSS, the signal range can be 8 V to -12 V. The maximum  
continuous current (IDC) is captured in the Recommended Operating Conditions table for a range of supply  
voltage cases.  
9.2.3 Application Curve  
The low on-resistance and fast switching times of TMUX6234 make this device ideal for implementing high  
channel count switching applications. 9-2 shows the plot for transition time vs temperature for the TMUX6234.  
9-2. Transition Time vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The TMUX6234 operates across a wide supply range of ±4.5 V to ±18 V (4.5 V to 36 V in single-supply mode).  
The TMUX6234 also performs well with asymmetrical supplies such as VDD = 18 V and VSS = 5 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. Use a  
supply decoupling capacitor ranging from 0.1 μF to 10 μF at the VDD and VSS pins to ground for an improved  
supply noise immunity. Place the bypass capacitors as close to the power supply pins of the device as possible  
using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer  
low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling  
purposes. For very sensitive systems or systems in harsh noise environments, avoiding the use of vias for  
connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in  
parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always  
ensure the ground (GND) connection is established before supplies are ramped.  
11 Layout  
11.1 Layout Guidelines  
A reflection can occur when a PCB trace turns a corner at a 90° angle. A reflection occurs primarily because of  
the change of width of the trace. The trace width increases to 1.414 times the width at the apex of the turn. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
11-2 illustrates an example of a PCB layout with the TMUX6234. Some key considerations are:  
Decouple the supply pins with a 0.1 µF and 1 µF capacitor, placed lowest value capacitor as close to the pin  
as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX6234  
 
 
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
11.2 Layout Example  
11-2 shows an example board layout for the TMUX6234.  
11-2. TMUX6234PW Layout Example  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
D1  
D4  
S4B  
VDD  
S3B  
D3  
S1B  
VSS  
GND  
S2B  
Via to ground plane  
11-3. TMUX6234RRQ Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX6234  
 
 
TMUX6234  
ZHCSNI4B JULY 2020 REVISED DECEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief.  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief.  
Texas Intruments, Implications of Slow or Floating CMOS Inputs application note.  
Texas Instruments, Sample & Hold Glitch Reduction for Precision Outputs Reference Design reference guide.  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief.  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report.  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit  
application report.  
Texas Instruments, Ultrasonic Water Flow Measurement design guide  
Texas Instruments, Using Latch Up Immune Multiplexers to Help Improve System Reliability application  
report.  
Texas Instruments, QFN/SON PCB Attachment applicaion report.  
Texas Instruments, Quad Flatpack No-Lead Logic Packages application report.  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX6234  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX6234PWR  
TMUX6234RRQR  
ACTIVE  
ACTIVE  
TSSOP  
WQFN  
PW  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
T234  
Samples  
Samples  
RRQ  
NIPDAU  
TMUX  
X234  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6234PWR  
TSSOP  
PW  
20  
3000  
330.0  
16.4  
6.95  
7.1  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TMUX6234PWR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RRQ0020A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.5 0.1  
2X 2  
(0.2) TYP  
SYMM  
6
10  
EXPOSED  
THERMAL PAD  
5
11  
15  
SYMM  
21  
2X 2  
16X 0.5  
1
PIN 1 ID  
0.3  
20X  
0.2  
16  
0.5  
20  
0.1  
C A B  
20X  
0.05  
0.3  
4224817/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRQ0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.5)  
SYMM  
20  
16  
SEE SOLDER MASK  
DETAIL  
20X (0.6)  
20X (0.25)  
16X (0.5)  
(1)  
1
15  
21  
SYMM  
(3.8)  
5
11  
(R0.05) TYP  
(
0.2) TYP  
VIA  
6
10  
(1)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224817/A 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRQ0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.65) TYP  
16  
20  
20X (0.6)  
20X (0.25)  
16X (0.5)  
1
15  
(0.65) TYP  
(3.8)  
21  
SYMM  
4X ( 1.1)  
11  
(R0.05) TYP  
5
10  
6
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 21  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224817/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX6234PWR

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关 | PW | 20 | -40 to 125
TI

TMUX6234RRQR

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1(SPDT)、四通道精密开关 | RRQ | 20 | -40 to 125
TI

TMUX6236

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1 (SPDT)、双通道精密开关
TI

TMUX6236RUMR

具有闩锁效应抑制和 1.8V 逻辑电平的 36V、低导通电阻、2:1 (SPDT)、双通道精密开关 | RUM | 16 | -40 to 125
TI

TMUX646

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX646NZECR

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX646ZECR

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX646_V01

TMUX646 6 GHz, 5 V, 2:1 (SPDT) 10-Channel MIPI Switch with 1.8-V Logic Support
TI

TMUX7201

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(高电平有效)
TI

TMUX7201RQXR

| RQX | 8 | -40 to 125
TI

TMUX7202

具有 1.8V 逻辑电平和闩锁效应抑制的 44V、1:1 (SPST) 单通道精密开关(低电平有效)
TI

TMUX7202RQXR

44-V, latch-up immune, 1:1 (SPST) 1 channel precision switch with 1.8V Logic (Active Low) | RQX | 8 | -40 to 125
TI