TMUX7308F [TI]

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic;
TMUX7308F
型号: TMUX7308F
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic

文件: 总54页 (文件大小:2618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up  
Immunity and 1.8-V Logic  
1 Features  
3 Description  
Wide supply range:  
The TMUX7308F and TMUX7309F are modern  
complementary metal-oxide semiconductor (CMOS)  
analog multiplexers in 8:1 (single ended) and 4:1  
(differential) configurations. The devices work well  
with dual supplies (±5 V to ±22 V), a single supply (8  
V to 44 V), or asymmetric supplies (such as VDD = 12  
V, VSS = –5 V). The overvoltage protection is available  
in powered and powered-off conditions, making the  
TMUX7308F and TMUX7309F devices suitable for  
applications where power supply sequencing cannot  
be precisely controlled.  
– Dual supply: ±5 V to ±22 V  
– Single supply: 8 V to 44 V  
Integrated fault protection:  
Overvoltage protection, source to supplies or  
source to drain: ±85 V  
Overvoltage protection: ±60 V  
Powered-off protection: ±60 V  
Non-fault channels continue to operate  
Known state without logic inputs present  
Output clamped to the supply in overvoltage  
condition  
The device blocks fault voltage up to +60 V or –60  
V relative to ground in both powered and powered-off  
conditions. When no power supplies are present, the  
switch channels remain in the OFF state regardless of  
switch input conditions and logic control status. Under  
normal operation conditions, if the analog input signal  
level on any Sx pin exceeds the supply voltage (VDD  
or VSS) by a threshold voltage (VT), the channel turns  
OFF and the Sx pin becomes high impedance. When  
the fault channel is selected, the drain pin (D or Dx) is  
pulled to the supply (VDD or VSS) that was exceeded.  
Latch-up immune  
1.8-V Logic capable  
Fail-safe logic: up to 44 V independent of supply  
Integrated pull-down resistor on logic pins  
Break-before-make switching  
Industry standard TSSOP and  
smaller WQFN packages  
2 Applications  
Factory automation and control  
Programmable logic controllers (PLC)  
Analog input modules  
Semiconductor test equipment  
Battery test equipment  
The low capacitance, low charge injection, and  
integrated fault protection enables the TMUX7308F  
and TMUX7309F devices to be used in front end  
data acquisition applications where high performance  
and high robustness are both critical. The devices are  
available in a standard TSSOP package and smaller  
WQFN package (ideal if PCB space is limited).  
Servo drive control module  
Data acquisition systems (DAQ)  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
SW  
Device Information(1)  
S1  
S2  
S1A  
DA  
DB  
PART NUMBER  
PACKAGE  
TSSOP (16)(2)  
WQFN (16)  
BODY SIZE (NOM)  
5.00 mm × 4.40 mm  
4.00 mm × 4.00 mm  
SW  
SW  
S4A  
S1B  
TMUX7308F  
TMUX7309F  
D
SW  
SW  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
S4B  
S8  
(2) Preview package for TMUX7309F.  
A0  
A1  
A2  
EN  
A0  
A1  
EN  
Fault Detection/  
Switch Driver/  
Logic Decoder  
Fault Detection/  
Switch Driver/  
Logic Decoder  
TMUX7308F  
TMUX7309F  
Functional Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Thermal Information....................................................6  
7.4 Recommended Operating Conditions.........................6  
7.5 Electrical Characteristics (Global)...............................6  
7.6 ±15 V Dual Supply: Electrical Characteristics.............7  
7.7 ±20 V Dual Supply: Electrical Characteristics...........10  
7.8 12 V Single Supply: Electrical Characteristics.......... 13  
7.9 36 V Single Supply: Electrical Characteristics.......... 16  
7.10 Typical Characteristics............................................19  
8 Parameter Measurement Information..........................26  
8.1 On-Resistance.......................................................... 26  
8.2 Off-Leakage Current................................................. 26  
8.3 On-Leakage Current................................................. 27  
8.4 Input and Output Leakage Current Under  
8.9 Fault Recovery Time.................................................30  
8.10 Charge Injection......................................................31  
8.11 Off Isolation............................................................. 31  
8.12 Crosstalk.................................................................32  
8.13 Bandwidth............................................................... 33  
8.14 THD + Noise........................................................... 33  
9 Detailed Description......................................................34  
9.1 Overview...................................................................34  
9.2 Functional Block Diagram.........................................34  
9.3 Feature Description...................................................34  
9.4 Device Functional Modes..........................................37  
10 Application and Implementation................................39  
10.1 Application Information........................................... 39  
10.2 Typical Application.................................................. 39  
11 Power Supply Recommendations..............................40  
12 Layout...........................................................................41  
12.1 Layout Guidelines................................................... 41  
12.2 Layout Example...................................................... 41  
13 Device and Documentation Support..........................43  
13.1 Documentation Support.......................................... 43  
13.2 Receiving Notification of Documentation Updates..43  
13.3 Support Resources................................................. 43  
13.4 Trademarks.............................................................43  
13.5 Electrostatic Discharge Caution..............................43  
13.6 Glossary..................................................................43  
14 Mechanical, Packaging, and Orderable  
Overvoltage Fault........................................................27  
8.5 Break-Before-Make Delay.........................................28  
8.6 Enable Delay Time....................................................29  
8.7 Transition Time......................................................... 29  
8.8 Fault Response Time................................................30  
Information.................................................................... 43  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (October 2021) to Revision B (December 2021)  
Page  
Changed the status of the data sheet from: Advanced Information to: Production Data ...................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
5 Device Comparison Table  
PRODUCT  
DESCRIPTION  
TMUX7308F  
TMUX7309F  
+60 V/ –60 V Tolerant, Fault-protected, Latch-up Immune, Single-Ended 8:1 Multiplexer  
+60 V/ –60 V Tolerant, Fault-protected, Latch-up Immune, 4:1, 2-Channel Multiplexer  
6 Pin Configuration and Functions  
A0  
EN  
VSS  
S1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A1  
A2  
GND  
VDD  
S5  
VSS  
S1  
1
2
3
4
12  
11  
10  
9
GND  
VDD  
S5  
Thermal  
Pad  
S2  
S2  
S3  
S6  
S3  
S6  
S4  
S7  
D
S8  
Not to scale  
Not to scale  
Figure 6-1. PW Package  
16-Pin TSSOP, Top View  
Figure 6-2. RRP Package  
16-Pin WQFN, Top View  
Table 6-1. Pin Functions: TMUX7308F  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
Logic control input address 0 (A0), has internal 4 MΩ pull-down resistor. Controls switch state  
as shown in Section 9.4.3.  
A0  
1
2
15  
I
I
Active high logic enable (EN) pin, has internal 4 MΩ pull-down resistor. The device is disabled  
and all switches become high impedance when the pin is low. When the pin is high, the Ax  
logic inputs determine individual switch states as shown in Section 9.4.3.  
EN  
16  
1
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
3
P
S1  
S2  
S3  
S4  
D
4
5
2
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Overvoltage protected source pin 1. Can be an input or output.  
Overvoltage protected source pin 2. Can be an input or output.  
Overvoltage protected source pin 3. Can be an input or output.  
Overvoltage protected source pin 4. Can be an input or output.  
Drain pin. Can be an input or output. The drain pin is not overvoltage protected.  
Overvoltage protected source pin 8. Can be an input or output.  
Overvoltage protected source pin 7. Can be an input or output.  
Overvoltage protected source pin 6. Can be an input or output.  
Overvoltage protected source pin 5. Can be an input or output.  
6
4
7
5
8
6
S8  
S7  
S6  
S5  
9
7
10  
11  
12  
8
9
10  
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
VDD  
13  
11  
P
GND  
A2  
14  
15  
12  
13  
P
I
Ground (0 V) reference  
Logic control input address 2 (A2), has internal 4 MΩ pull-down resistor. Controls switch state  
as shown in Section 9.4.3.  
Logic control input address 1 (A1), has internal 4 MΩ pull-down resistor. Controls switch state  
as shown in Section 9.4.3.  
A1  
16  
14  
I
The thermal pad is not connected internally. It is recommended that the pad be tied to GND or  
VSS for best performance.  
Thermal Pad  
P
(1) I = input, O = output, I/O = input and output, P = power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
A0  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A1  
GND  
VDD  
S1B  
S2B  
S3B  
S4B  
DB  
VSS  
S1A  
S2A  
S3A  
S4A  
DA  
VSS  
S1A  
S2A  
S3A  
1
2
3
4
12  
11  
10  
9
VDD  
S1B  
S2B  
S3B  
Thermal  
Pad  
Not to scale  
Not to scale  
Figure 6-4. RRP Package  
16-Pin WQFN, Top View  
Figure 6-3. (Preview) PW Package  
16-Pin TSSOP, Top View  
Table 6-2. Pin Functions: TMUX7309F  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP(2)  
WQFN  
Logic control input address 0 (A0), has internal 4 MΩ pull-down resistor. Controls switch state  
as shown in Section 9.4.3.  
A0  
1
2
15  
I
Active high logic enable (EN) pin, has internal 4 MΩ pull-down resistor. The device is disabled  
and all switches become high impedance when the pin is low. When the pin is high, the Ax  
logic inputs determine individual switch states as shown in Section 9.4.3.  
EN  
16  
1
I
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
3
P
S1A  
S2A  
S3A  
S4A  
DA  
4
5
2
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Overvoltage protected source pin 1A. Can be an input or output.  
Overvoltage protected source pin 2A. Can be an input or output.  
Overvoltage protected source pin 3A. Can be an input or output.  
Overvoltage protected source pin 4A. Can be an input or output.  
Drain terminal A. Can be an input or output. The drain pin is not overvoltage protected.  
Drain terminal B. Can be an input or output. The drain pin is not overvoltage protected.  
Overvoltage protected source pin 4B. Can be an input or output.  
Overvoltage protected source pin 3B. Can be an input or output.  
Overvoltage protected source pin 2B. Can be an input or output.  
Overvoltage protected source pin 1B. Can be an input or output.  
6
4
7
5
8
6
DB  
9
7
S4B  
S3B  
S2B  
S1B  
10  
11  
12  
13  
8
9
10  
11  
Positive power supply. This pin is the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and  
GND.  
VDD  
14  
12  
P
GND  
A1  
15  
16  
13  
14  
P
I
Ground (0 V) reference  
Logic control input address 1 (A1), has internal 4 MΩ pull-down resistor. Controls switch state  
as shown in Section 9.4.3.  
The thermal pad is not connected internally. It is recommended that the pad be tied to GND or  
VSS for best performance.  
Thermal Pad  
P
(1) I = input, O = output, I/O = input and output, P = power  
(2) Preview package  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
48  
UNIT  
V
VDD to VSS  
VDD to GND  
VSS to GND  
VS to GND  
VS to VDD  
VS to VSS  
VD  
Supply voltage  
–0.3  
–48  
–65  
–90  
48  
V
0.3  
65  
V
Source input pin (Sx) voltage to GND  
Source input pin (Sx) voltage to VDD  
Source input pin (Sx) voltage to VSS  
Drain pin (D or Dx) voltage  
V
V
90  
VDD+0.7  
48  
V
VSS–0.7  
GND –0.7  
–30  
V
VEN or VAx  
IEN or IAx  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (EN, A0, A1, A2)(2)  
Logic control input pin current (EN, A0, A1, A2)(2)  
Source or drain continuous current (Sx or D)  
Storage temperature  
V
30  
mA  
mA  
°C  
°C  
°C  
mW  
mW  
IDC ± 10 %(3)  
IDC ± 10 %(3)  
–65  
150  
TA  
Ambient temperature  
–55  
150  
TJ  
Junction temperature  
150  
(4)  
Ptot  
Total power dissipation (QFN)  
1600  
(5)  
Ptot  
Total power dissipation (TSSOP)  
650  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) Stresses have to be kept at or below both voltage and current ratings at all time.  
(3) Refer to Recommended Operating Conditions for IDC ratings.  
(4) For QFN package: Ptot derates linearly above TA = 70°C by 23.5 mW/°C  
(5) For TSSOP package: Ptot derates linearly above TA = 70°C by 10.1 mW/°C  
7.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic  
discharge  
V(ESD)  
V(ESD)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3500  
V
Electrostatic  
discharge  
Charged device model (CDM), per JEDEC specification JESD22-  
C101 or ANSI/ESDA/JEDEC JS-002(2)  
±750  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible if necessary precautions are taken.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible if necessary precautions are taken.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
 
 
 
 
 
 
TMUX7308F, TMUX7309F  
www.ti.com  
UNIT  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
7.3 Thermal Information  
TMUX7308F/ TMUX7309F  
THERMAL METRIC(1)  
PW (TSSOP)  
RRP (QFN)  
16 PINS  
43.0  
16 PINS  
100.4  
31.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.8  
46.4  
17.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
0.4  
ΨJB  
45.8  
17.9  
RθJC(bot)  
N/A  
4.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM MAX UNIT  
(1)  
VDD – VSS  
VDD  
Power supply voltage differential  
8
5
44  
44  
V
V
V
V
Positive power supply voltage  
VS  
Source pin (Sx) voltage (non-fault condition)  
Source pin (Sx) voltage to GND (fault condition)  
Source pin (Sx) voltage to VDD or VD (fault condition)  
Source pin (Sx) voltage to VSS or VD (fault condition)  
Drain pin (D, Dx) voltage  
VSS  
–60  
–85  
VDD  
60  
VS to GND  
(2)  
VS to VDD  
VS to VSS  
VD  
(2)  
85  
VDD  
44  
VSS  
0
V
V
VEN or VAx  
TA  
Logic control input pin voltage (EN, A0, A1, A2)  
Ambient temperature  
–40  
125 °C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
9
IDC  
Continuous current through switch  
6.5 mA  
5
(1) VDD and VSS can be any value as long as 8 V ≤ (VDD – VSS) ≤ 44 V, and the minimum VDD is met.  
(2) Under a fault condition, the potential difference between source pin (Sx) and supply pins (VDD and VSS.) or source pin (Sx) and drain  
pins (D, Dx) may not exceed 85 V.  
7.5 Electrical Characteristics (Global)  
at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
Threshold voltage for fault  
detector  
VT  
25°C  
0.7  
V
LOGIC INPUT/ OUTPUT  
VIH  
High-level input voltage  
EN, Ax pins  
EN, Ax pins  
–40°C to +125°C  
–40°C to +125°C  
1.3  
0
44  
V
V
VIL  
Low-level input voltage  
0.8  
POWER SUPPLY  
Undervoltage lockout (UVLO)  
Rising edge, single supply  
Falling edge, single supply  
Single supply  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
5.1  
5
6
6.4  
6.3  
V
V
threshold voltage (VDD – VSS  
)
VUVLO  
Undervoltage lockout (UVLO)  
5.8  
threshold voltage (VDD – VSS  
)
VDD Undervoltage  
lockout (UVLO) hysteresis  
VHYS  
0.2  
40  
V
RD(OVP)  
Drain resistance to supply rail during overvoltage event on selected source pin 25°C  
kΩ  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = –15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = –15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VS = –10 V to +10 V, IS = –1 mA  
VS = –10 V to +10 V, IS = –1 mA  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
330  
390  
8
2.5  
1.5  
On-resistance mismatch between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
12  
13  
3.5  
4
RFLAT  
On-resistance flatness  
On-resistance drift  
VS = –10 V to +10 V, IS = –1 mA  
VS = 0 V, IS = –1 mA  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
25°C  
4
RON_DRIFT  
1
Ω/°C  
nA  
VDD = 16.5 V, VSS = –16.5 V  
Switch state is off  
VS = +10 V / –10 V  
–1  
–1  
0.1  
1
1
IS(OFF)  
Source off leakage current(1)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VD = –10 V / + 10 V  
–4  
4
VDD = 16.5 V, VSS = –16.5 V  
Switch state is off  
VS = +10 V / –10 V  
–1  
0.1  
0.3  
1
ID(OFF)  
Drain off leakage current(1)  
Output on leakage current(2)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–3  
3
nA  
nA  
VD = –10 V / + 10 V  
–14  
–1.5  
–5  
14  
1.5  
5
VDD = 16.5 V, VSS = –16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
–40°C to +85°C  
–40°C to +125°C  
–22  
22  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = 16.5 V, VSS = –16.5 V  
IS(FA)  
–40°C to +125°C  
–40°C to +125°C  
±110  
±135  
µA  
µA  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V  
VDD = VSS = 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
IS(FA) Floating  
–40°C to +125°C  
±135  
±10  
µA  
nA  
25°C  
–50  
–70  
50  
70  
VS = ± 60 V, GND = 0 V,  
VDD = 16.5 V, VSS = –16.5 V, 15.5V ≤  
VD ≤ 16.5V  
Output leakage current  
during overvoltage  
ID(FA)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–90  
90  
–50  
±1  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–100  
–500  
100  
500  
nA  
µA  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
–40°C to +85°C  
–40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
–2  
–2  
± 0.6  
± 0.6  
2
2
VEN = VAx = VDD  
VEN = VAx = 0 V  
µA  
µA  
–40°C to +125°C  
25°C  
–1.1  
–1.2  
1.1  
1.2  
IIL  
Low-level input current  
–40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7308F TMUX7309F  
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = –15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = –15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
165  
265  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
285  
300  
400  
400  
420  
225  
245  
260  
ns  
ns  
ns  
350  
170  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
tRESPONSE  
tRECOVERY  
tBBM  
Fault response time  
Fault recovery time  
RL = 4 kΩ, CL= 12 pF  
300  
1.2  
ns  
µs  
ns  
pC  
RL = 4 kΩ, CL= 12 pF  
25°C  
Break-before-make time delay  
Charge injection  
VS = 10 V, RL = 4 kΩ, CL= 12 pF  
VS = 0 V, CL = 1 nF  
–40°C to +125°C  
25°C  
50  
120  
–15  
QINJ  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
–82  
–95  
dB  
dB  
dB  
Intra-channel crosstalk  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
XTALK  
Inter-channel crosstalk  
(TMUX7309F)  
–103  
–3 dB bandwidth (TMUX7308F)  
–3 dB bandwidth (TMUX7309F)  
25°C  
25°C  
150  
280  
MHz  
MHz  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
–9  
dB  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10k Ω, VS = 15 VPP, VBIAS  
= 0 V, f = 20 Hz to 20k Hz  
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0015  
3.5  
%
pF  
pF  
Input off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
Output off-capacitance  
(TMUX7308F)  
28  
CD(OFF)  
Output off-capacitance  
(TMUX7309F)  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
25°C  
25°C  
25°C  
15  
30  
17  
pF  
pF  
pF  
Input/Output on-capacitance  
(TMUX7308F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7309F)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.6 ±15 V Dual Supply: Electrical Characteristics (continued)  
VDD = +15 V ± 10%, VSS = –15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = –15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
25°C  
0.25  
0.5  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.5  
0.5  
0.4  
0.4  
0.4  
mA  
0.15  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
VSS supply current  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
GND current  
25°C  
0.075  
0.25  
25°C  
1
1
VS = ± 60 V,  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD(FA)  
VDD supply current under fault  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
0.15  
0.5  
0.5  
0.5  
VS = ± 60 V,  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VS = ± 60 V,  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND(FA)  
25°C  
0.15  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.1  
VDD = 16.5 V, VSS = –16.5 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
VSS supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
mA  
(1) When VS is positive,VD is negative. And when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.7 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = –20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = –20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VS = –15 V to +15 V, IS = –1 mA  
VS = –15 V to +15 V, IS = –1 mA  
VS = –15 V to +15 V, IS = –1 mA  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
330  
390  
8
Ω
Ω
Ω
2.5  
8
On-resistance mismatch between  
channels  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
12  
13  
10  
12  
12  
3.5  
4
RFLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
RFLAT  
On-resistance flatness  
On-resistance drift  
VS = –13.5 V to +13.5 V, IS = –1 mA  
VS = 0 V, IS = –1 mA  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
25°C  
Ω
4
RON_DRIFT  
1
Ω/°C  
nA  
VDD = 22 V, VSS = –22 V  
Switch state is off  
VS = +15 V / –15 V  
VD = –15 V / + 15 V  
–1  
–1  
0.1  
1
1
IS(OFF)  
Source off leakage current(1)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–4  
4
VDD = 22 V, VSS = –22 V  
Switch state is off  
VS = +15 V / –15 V  
VD = –15 V / + 15 V  
–1  
0.1  
0.3  
1
ID(OFF)  
Drain off leakage current(1)  
Output on leakage current(2)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–3  
3
nA  
nA  
–14  
–1.5  
–5  
14  
1.5  
5
VDD = 22 V, VSS = –22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
–40°C to +85°C  
–40°C to +125°C  
–22  
22  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = 22 V, VSS = –22 V  
IS(FA)  
–40°C to +125°C  
–40°C to +125°C  
±95  
µA  
µA  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
IS(FA) Grounded  
±135  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
IS(FA) Floating  
–40°C to +125°C  
±135  
±10  
µA  
nA  
25°C  
–50  
–70  
50  
70  
VS = ± 60 V, GND = 0V,  
VDD = 22 V, VSS = –22 V,  
–21V ≤ VD ≤ 22V  
Output leakage current  
during overvoltage  
ID(FA)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–90  
90  
–50  
±1  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–100  
–500  
100  
500  
nA  
µA  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
–40°C to +85°C  
–40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
–2.2  
–2.2  
–1.1  
–1.2  
± 0.6  
± 0.6  
2.2  
2.2  
1.1  
1.2  
VEN = VAx = VDD  
VEN = VAx = 0 V  
µA  
µA  
–40°C to +125°C  
25°C  
IIL  
Low-level input current  
–40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = –20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = –20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
175  
300  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
325  
350  
400  
400  
420  
245  
270  
285  
ns  
ns  
ns  
350  
170  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VS = 10 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
tRESPONSE  
tRECOVERY  
tBBM  
Fault response time  
Fault recovery time  
RL = 4 kΩ, CL= 12 pF  
300  
1.2  
ns  
µs  
ns  
pC  
RL = 4 kΩ, CL= 12 pF  
25°C  
Break-before-make time delay  
Charge injection  
VS = 10 V, RL = 4 kΩ, CL= 12 pF  
VS = 0 V, CL = 1 nF, RS = 0 Ω  
–40°C to +125°C  
25°C  
50  
120  
–17  
QINJ  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
–85  
–95  
dB  
Intra-channel crosstalk  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
XTALK  
dB  
Inter-channel crosstalk  
(TMUX7309F)  
–103  
–3 dB bandwidth (TMUX7308F)  
–3 dB bandwidth (TMUX7309F)  
25°C  
25°C  
150  
285  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 0 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
–9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10k Ω, VS = 20 VPP, VBIAS  
= 0 V, f = 20 Hz to 20k Hz  
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0015  
3.5  
%
Input off-capacitance  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
pF  
Output off-capacitance  
(TMUX7308F)  
28  
CD(OFF)  
pF  
pF  
Output off-capacitance  
(TMUX7309F)  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
f = 1 MHz, VS = 0 V  
25°C  
25°C  
25°C  
14  
30  
16  
Input/Output on-capacitance  
(TMUX7308F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7309F)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.7 ±20 V Dual Supply: Electrical Characteristics (continued)  
VDD = +20 V ± 10%, VSS = –20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = –20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
25°C  
0.25  
0.5  
VDD = 22 V, VSS = –22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.5  
0.5  
0.4  
0.4  
0.4  
mA  
0.15  
VDD = 22 V, VSS = –22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
VSS supply current  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VDD = 22 V, VSS = –22 V,VAx = 0 V, 5 V,  
or VDD, VEN = 5 V or VDD  
IGND  
GND current  
25°C  
0.075  
0.25  
25°C  
1
1
VS = ± 60 V,  
VDD = 22 V, VSS = –22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD(FA)  
VDD supply current under fault  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
0.15  
0.5  
0.5  
0.5  
VS = ± 60 V,  
VDD = 22 V, VSS = –22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
VS = ± 60 V,VDD = 22 V, VSS = –22 V,VAx  
= 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND(FA)  
25°C  
0.15  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 22 V, VSS = –22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.1  
VDD = 22 V, VSS = –22 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
VSS supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
(1) When VS is positive,VD is negative. And when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. And when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.8 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
RON  
RON  
RON  
On-resistance  
On-resistance  
On-resistance  
VS = 0 V to 7.8 V, IS = –1 mA  
VS = 0 V to 7.8 V, IS = –1 mA  
VS = 0 V to 7.8 V, IS = –1 mA  
25°C  
180  
250  
330  
390  
8
–40°C to +85°C  
–40°C to +125°C  
25°C  
2.5  
7
On-resistance mismatch between  
channels  
ΔRON  
VS = 0 V to 7.8 V, IS = –1 mA  
VS = 0 V to 7.8 V, IS = –1 mA  
–40°C to +85°C  
–40°C to +125°C  
25°C  
12  
13  
30  
45  
75  
7
RFLAT  
On-resistance flatness  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
RFLAT  
On-resistance flatness  
On-resistance drift  
VS = 1 V to 7.8 V, IS = –1 mA  
VS = 6 V, IS = –1 mA  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
25°C  
8
8
RON_DRIFT  
1
Ω/°C  
nA  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
–1  
–1  
0.1  
1
1
IS(OFF)  
Source off leakage current(1)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VD = 1 V / 10 V  
–4  
4
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
–1  
0.1  
0.3  
1
ID(OFF)  
Drain off leakage current(1)  
Output on leakage current(2)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–3  
3
nA  
nA  
VD = 1 V / 10 V  
–14  
–1.5  
–5  
14  
1.5  
5
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
IS(ON)  
ID(ON)  
–40°C to +85°C  
–40°C to +125°C  
–22  
22  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = ± 60 V, GND = 0 V,  
VDD = 13.2 V, VSS = 0 V  
IS(FA)  
–40°C to +125°C  
–40°C to +125°C  
±145  
±135  
µA  
µA  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
IS(FA) Floating  
–40°C to +125°C  
±135  
±10  
µA  
nA  
25°C  
–50  
–70  
50  
70  
VS = ± 60 V, GND = 0 V,  
VDD = 13.2 V, VSS = 0 V,  
1V ≤ VD ≤ 13.2V  
Output leakage current  
during overvoltage  
ID(FA)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–90  
90  
–50  
±1  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–100  
–500  
100  
500  
nA  
µA  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
–40°C to +85°C  
–40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
–2  
–2  
± 0.6  
± 0.6  
2
2
µA  
µA  
VEN = VAx = VDD  
VEN = VAx = 0 V  
–40°C to +125°C  
25°C  
–1.1  
–1.2  
1.1  
1.2  
IIL  
Low-level input current  
µA  
–40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7308F TMUX7309F  
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
160  
265  
VS = 8 V,  
RL = 4 kΩ, CL= 12 pF  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
285  
300  
485  
485  
500  
215  
230  
240  
ns  
ns  
ns  
420  
160  
VS = 8 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VS = 8 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
tRESPONSE  
tRECOVERY  
tBBM  
Fault response time  
Fault recovery time  
RL = 4 kΩ, CL= 12 pF  
RL = 4 kΩ, CL= 12 pF  
220  
0.63  
90  
ns  
µs  
ns  
pC  
25°C  
Break-before-make time delay  
Charge injection  
VS = 10 V, RL = 4 kΩ, CL= 12 pF  
VS = 6 V, CL = 1 nF  
–40°C to +125°C  
25°C  
30  
QINJ  
–11  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
–76  
–93  
dB  
dB  
dB  
XTALK  
XTALK  
Intra-channel crosstalk  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
Inter-channel crosstalk  
(TMUX7309F)  
–103  
–3 dB bandwidth (TMUX7308F)  
–3 dB bandwidth (TMUX7309F)  
25°C  
25°C  
130  
250  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
–9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10k Ω, VS = 6 VPP, VBIAS  
6 V, f = 20 Hz to 20k Hz  
=
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.002  
4
%
Input off-capacitance  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
pF  
Output off-capacitance  
(TMUX7308F)  
31  
CD(OFF)  
pF  
pF  
Output off-capacitance  
(TMUX7309F)  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
f = 1 MHz, VS = 6 V  
25°C  
25°C  
25°C  
16  
34  
20  
Input/Output on-capacitance  
(TMUX7308F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7309F)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.8 12 V Single Supply: Electrical Characteristics (continued)  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
25°C  
0.25  
0.5  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.5  
0.5  
0.4  
0.4  
0.4  
mA  
0.15  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
VSS supply current  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
GND current  
25°C  
0.075  
0.25  
25°C  
1
1
VS = ± 60 V,  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD(FA)  
VDD supply current under fault  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
0.15  
0.5  
0.5  
0.5  
VS = ± 60 V,  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VS = ± 60 V,  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND(FA)  
25°C  
0.17  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.1  
VDD = 13.2 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
VSS supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
mA  
(1) When VS is 10 V, VD is 1 V. Or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.9 36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
180  
250  
VS = 0 V to 28 V,  
IS = –1 mA  
RON  
On-resistance  
–40°C to +85°C  
–40°C to +125°C  
25°C  
330  
390  
8
2.5  
8
On-resistance mismatch between VS = 0 V to 28 V,  
ΔRON  
–40°C to +85°C  
–40°C to +125°C  
25°C  
12  
13  
65  
75  
90  
3
channels  
IS = –1 mA  
RFLAT  
On-resistance flatness  
VS = 0 V to 30 V, IS = –1 mA  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1.5  
VS = 1 V to 28 V,  
IS = –1 mA  
RFLAT  
On-resistance flatness  
On-resistance drift  
–40°C to +85°C  
–40°C to +125°C  
–40°C to +125°C  
25°C  
4
4
RON_DRIFT  
VS = 18 V, IS = –1 mA  
1
Ω/°C  
nA  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
–1  
–1  
0.1  
1
1
IS(OFF)  
Source off leakage current(1)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VD = 1 V / 30 V  
–4  
4
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
–1  
0.1  
0.3  
1
ID(OFF)  
Output on leakage current(2)  
Output on leakage current(1)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–3  
3
nA  
nA  
VD = 1 V / 30 V  
–14  
–1.5  
–5  
14  
1.5  
5
VDD = 39.6 V, VSS = 0 V  
Switch state is on  
VS = VD = 30 V or 1 V  
IS(ON)  
ID(ON)  
–40°C to +85°C  
–40°C to +125°C  
–22  
22  
FAULT CONDITION  
Input leakage current  
durring overvoltage  
VS = 60 / –40 V,  
VDD = 39.6 V, VSS = 0 V, GND = 0 V  
IS(FA)  
–40°C to +125°C  
–40°C to +125°C  
±110  
±135  
µA  
µA  
Input leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V,  
VDD = VSS = 0 V, GND = 0 V  
IS(FA) Grounded  
Input leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V,  
VDD = VSS = floating, GND = 0 V,  
IS(FA) Floating  
–40°C to +125°C  
±135  
±10  
µA  
nA  
25°C  
–50  
–70  
50  
70  
VS = 60 / –40 V,  
1V ≤ VD ≤ 39.6V  
VDD = 39.6 V, VSS = 0 V, GND = 0V,  
Output leakage current  
during overvoltage  
ID(FA)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–90  
90  
–50  
±1  
50  
Output leakage current  
during overvoltage with  
grounded supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = 0 V  
ID(FA) Grounded  
–40°C to +85°C  
–40°C to +125°C  
25°C  
–100  
–500  
100  
500  
nA  
µA  
±3  
±5  
±8  
Output leakage current  
during overvoltage with  
floating supply voltages  
VS = ± 60 V, GND = 0 V,  
VDD = VSS = floating  
ID(FA) Floating  
–40°C to +85°C  
–40°C to +125°C  
LOGIC INPUT/ OUTPUT  
IIH High-level input current  
25°C  
–3.2  
–3.2  
–1.1  
–1.2  
± 0.6  
± 0.6  
3.2  
3.2  
1.1  
1.2  
VEN = VAx = VDD  
VEN = VAx = 0 V  
µA  
µA  
–40°C to +125°C  
25°C  
IIL  
Low-level input current  
–40°C to +125°C  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS  
25°C  
185  
390  
VS = 18 V,  
RL = 4 kΩ, CL= 12 pF  
tON (EN)  
tOFF (EN)  
tTRAN  
Enable turn-on time  
Enable turn-off time  
Transition time  
–40°C to +85°C  
–40°C to +125°C  
25°C  
460  
530  
450  
450  
450  
230  
245  
255  
ns  
ns  
ns  
380  
185  
VS = 18 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
VS = 18 V,  
RL = 4 kΩ, CL= 12 pF  
–40°C to +85°C  
–40°C to +125°C  
25°C  
tRESPONSE  
tRECOVERY  
tBBM  
Fault response time  
Fault recovery time  
RL = 4 kΩ, CL= 12 pF  
210  
0.63  
100  
–16  
ns  
µs  
ns  
pC  
RL = 4 kΩ, CL= 12 pF  
25°C  
Break-before-make time delay  
Charge injection  
VS = 18 V, RL = 4 kΩ, CL= 12 pF  
VS = 18 V, CL = 1 nF, RS = 0 Ω  
–40°C to +125°C  
25°C  
50  
QINJ  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
OISO  
Off-isolation  
25°C  
25°C  
25°C  
–78  
–95  
dB  
Intra-channel crosstalk  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
XTALK  
dB  
Inter-channel crosstalk  
(TMUX7309F)  
–103  
–3 dB bandwidth (TMUX7308F)  
–3 dB bandwidth (TMUX7309F)  
25°C  
25°C  
130  
255  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V  
BW  
MHz  
dB  
RS = 50 Ω, RL = 50 Ω, CL = 5 pF,  
VS = 200 mVRMS, VBIAS = 6 V, f = 1 MHz  
ILOSS  
Insertion loss  
25°C  
–9  
Total harmonic distortion plus  
noise  
RS = 40 Ω, RL = 10k Ω, VS = 18 VPP, VBIAS  
= 18 V, f = 20 Hz to 20k Hz  
THD+N  
CS(OFF)  
25°C  
25°C  
25°C  
0.0015  
%
Input off-capacitance  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
4
pF  
Output off-capacitance  
(TMUX7308F)  
31  
CD(OFF)  
pF  
pF  
Output off-capacitance  
(TMUX7309F)  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
f = 1 MHz, VS = 18 V  
25°C  
25°C  
25°C  
16  
34  
19  
Input/Output on-capacitance  
(TMUX7308F)  
CS(ON)  
CD(ON)  
Input/Output on-capacitance  
(TMUX7309F)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.9 36 V Single Supply: Electrical Characteristics (continued)  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
25°C  
0.25  
0.5  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD  
VDD supply current  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.5  
0.5  
0.4  
0.4  
0.4  
mA  
0.15  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS  
VSS supply current  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND  
GND current  
25°C  
0.075  
0.25  
25°C  
1
1
VS = 60 / –40 V,  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IDD(FA)  
VDD supply current under fault  
–40°C to +85°C  
–40°C to +125°C  
25°C  
1
0.15  
0.5  
0.5  
0.5  
VS = 60 / –40 V,  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
ISS(FA)  
VSS supply current under fault  
GND current under fault  
–40°C to +85°C  
–40°C to +125°C  
mA  
mA  
mA  
VS = 60 / –40 V,  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 5 V or VDD  
IGND(FA)  
25°C  
0.15  
0.15  
25°C  
0.5  
0.5  
0.5  
0.4  
0.4  
0.4  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
IDD(DISABLE)  
VDD supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
25°C  
0.1  
VDD = 39.6 V, VSS = 0 V,  
VAx = 0 V, 5 V, or VDD, VEN = 0 V  
ISS(DISABLE)  
VSS supply current (disable mode)  
–40°C to +85°C  
–40°C to +125°C  
mA  
(1) When VS is 30 V, VD is 1 V. Or when VS is 1 V, VD is 30 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
1800  
420  
380  
340  
300  
260  
220  
180  
140  
100  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
-22 -18 -14 -10 -6  
-2  
2
6
10 14 18 22  
-22 -18 -14 -10 -6  
-2  
2
6
10 14 18 22  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Dual Supply Voltages  
Dual Supply Flat RON Region  
Figure 7-1. On-Resistance vs Source or Drain Voltage  
Figure 7-2. On-Resistance vs Source or Drain Voltage  
240  
350  
VDD = 13.5 V, VSS = -13.5 V  
TA = 125C  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
230  
220  
210  
200  
190  
180  
170  
160  
300  
TA = 85C  
250  
TA = 25C  
200  
150  
TA = -40C  
100  
-10  
-6  
-2  
2
6
10  
-18  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Flattest RON region for all supply voltages shown  
±15 V Supply Flattest RON Region  
Figure 7-3. On-Resistance vs Source or Drain Voltage  
Figure 7-4. On-Resistance vs Source or Drain Voltage  
350  
1800  
VDD = 7.2V, VSS = 0V  
TA = 125C  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD = 8V, VSS = 0V  
VDD = 8.8V, VSS = 0V  
VDD = 10.8V, VSS = 0V  
VDD = 12V, VSS = 0V  
VDD = 13.2V, VSS = 0V  
300  
TA = 85C  
250  
TA = 25C  
200  
150  
TA = -40C  
100  
-18  
0
2
4
6
8
10  
12 13.2  
-14  
-10  
-6  
-2  
2
6
10  
14  
18  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Voltages  
±20 V Supply Flattest RON Region  
Figure 7-6. On-Resistance vs Source or Drain Voltage  
Figure 7-5. On-Resistance vs Source or Drain Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7308F TMUX7309F  
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
480  
420  
360  
300  
240  
180  
350  
300  
250  
200  
150  
100  
TA = 125C  
TA = 85C  
TA = 25C  
VDD = 8V, VSS = 0V  
VDD = 8.8V, VSS = 0V  
VDD = 10.8V, VSS = 0V  
VDD = 12V, VSS = 0V  
VDD = 13.2V, VSS = 0V  
TA = -40C  
120  
60  
0
2
4
6
8
10  
12 13.2  
1
2
3
4
5
6
7
8
9
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
Single Supply Flat RON Region  
12 V Supply Flattest RON Region  
Figure 7-7. On-Resistance vs Source or Drain Voltage  
Figure 7-8. On-Resistance vs Source or Drain Voltage  
Single Supply Voltages  
Single Supply Flat RON Region  
Figure 7-9. On-Resistance vs Source or Drain Voltage  
Figure 7-10. On-Resistance vs Source or Drain Voltage  
350  
TA = 125C  
300  
TA = 85C  
250  
TA = 25C  
200  
150  
100  
TA = -40C  
1
5
9
13  
17  
21  
25  
29  
33  
VS or VD - Source or Drain Voltage (V)  
44 V Supply Flattest RON Region  
36 V Supply Flattest RON Region  
Figure 7-12. On-Resistance vs Source or Drain Voltage  
Figure 7-11. On-Resistance vs Source or Drain Voltage  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
12  
11  
10  
9
IDOFF VS = -10 V, VD = 10 V  
IDOFF VS = 10 V, VD = -10 V  
IDON VS = -10 V, VD = -10 V  
IDON VS = 10 V, VD = 10 V  
ISOFF VS = -10 V, VD = 10 V  
ISOFF VS = 10 V, VD = -10 V  
8
7
6
5
4
3
2
1
0
-1  
0
25  
50  
75  
100  
125  
Temperature (C)  
VDD = 12 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V  
Figure 7-13. Leakage Current vs Temperature  
Figure 7-14. Leakage Current vs Temperature  
12  
12  
11  
10  
9
IDOFF VS = 1 V, VD = 30 V  
IDOFF VS = 30 V, VD = 1 V  
IDON VS = 1 V, VD = 1 V  
IDON VS = 30 V, VD = 30 V  
ISOFF VS = 1 V, VD = 30 V  
ISOFF VS = 30 V, VD = 1 V  
IDOFF VS = -15 V, VD = 15 V  
IDOFF VS = 15 V, VD = -15 V  
IDON VS = -15 V, VD = -15 V  
IDON VS = 15 V, VD = 15 V  
ISOFF VS = -15 V, VD = 15 V  
ISOFF VS = 15 V, VD = -15 V  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-1  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = -20 V  
Figure 7-15. Leakage Current vs Temperature  
Figure 7-16. Leakage Current vs Temperature  
200  
100  
200  
100  
IDOFF VS = 1 V, VD = 30 V  
IDOFF VS = 30 V, VD = 1 V  
IDON VS = 1 V, VD = 1 V  
IDON VS = 30 V, VD = 30 V  
ISOFF VS = 1 V, VD = 30 V  
ISOFF VS = 30 V, VD = 1 V  
IDOFF VS = -15 V, VD = 15 V  
IDOFF VS = 15 V, VD = -15 V  
IDON VS = -15 V, VD = -15 V  
IDON VS = 15 V, VD = 15 V  
ISOFF VS = -15 V, VD = 15 V  
ISOFF VS = 15 V, VD = -15 V  
10  
1
10  
1
0.1  
0.1  
0.01  
0.01  
0.0005  
0.0005  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = -20 V  
Figure 7-17. Leakage Current vs Temperature  
Figure 7-18. Leakage Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
16  
16  
14  
12  
10  
8
VS = -60 V, VD = 15 V  
VS = -60 V, VD = 20 V  
VS = -30 V, VD = 20 V  
VS = 60 V, VD = -19 V  
VS = 30 V, VD = -19 V  
14  
12  
10  
8
VS = -30 V, VD = 15 V  
VS = 60 V, VD = -14 V  
VS = 30 V, VD = -14 V  
6
6
4
4
2
2
0
0
-2  
-2  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Temperature (C)  
Temperature (C)  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
Figure 7-19. ID(FA) Overvoltage Leakage Current vs Temperature Figure 7-20. ID(FA) Overvoltage Leakage Current vs Temperature  
16  
VS = -40 V, VD = 36 V  
14  
12  
10  
8
VS = -30 V, VD = 36 V  
VS = 60 V, VD = 1 V  
VS = 30 V, VD = 1 V  
6
4
2
0
-2  
0
25  
50  
75  
100  
125  
Temperature (C)  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
Figure 7-21. ID(FA) Overvoltage Leakage Current vs Temperature Figure 7-22. ID(FA) Overvoltage Leakage Current vs Temperature  
120  
90  
0.1  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
0.05  
0.03  
0.02  
60  
30  
0.01  
0
0.005  
-30  
-60  
-90  
-120  
-150  
-180  
0.003  
0.002  
0.001  
0.0005  
0.0003  
0.0002  
VS = -60 V  
VS = -30 V  
VS = 30 V  
VS = 60 V  
0.0001  
0
4k  
8k  
12k  
16k  
20k  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (C)  
VDD = 15 V, VSS = -15 V  
Figure 7-23. IS(FA) Overvoltage Leakage Current vs Temperature  
Figure 7-24. THD+N vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
2
-2  
2
-2  
-6  
-6  
-10  
-14  
-18  
-22  
-26  
-30  
-34  
-10  
-14  
-18  
-22  
VDD = 8 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 44 V, VSS = 0 V  
-26  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
-30  
-20 -16 -12  
0
4
8
12 16 20 24 28 32 36 40 44  
VS - Source Voltage (V)  
-8  
-4  
0
4
8
12  
16  
20  
VS - Source Voltage (V)  
Figure 7-26. Charge Injection vs Source Voltage – Single Supply  
Figure 7-25. Charge Injection vs Source Voltage – Dual Supply  
210  
VDD: 15 V, VSS: -15 V, Falling Edge  
200  
190  
180  
170  
160  
150  
140  
130  
120  
VDD: 15 V, VSS: -15 V, Rising Edge  
VDD: 20 V, VSS: -20 V, Falling Edge  
VDD: 20 V, VSS: -20 V, Rising Edge  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
Figure 7-27. Transition Times vs Temperature  
Figure 7-28. Transition Times vs Temperature  
350  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
450  
420  
390  
360  
330  
TOFF 15V  
TOFF +8V  
TON +8V  
TOFF +12V  
TON +12V  
TOFF +36V  
TON +36V  
TON 15V  
TOFF 20V  
TON 20V  
300  
270  
240  
210  
180  
150  
120  
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
Temperature (C)  
Figure 7-29. Turn-On and Turn-Off Times vs Temperature  
Figure 7-30. Turn-On and Turn-Off Times vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
0
-5  
-10  
-15  
-20  
-25  
-30  
Off-Isolation  
CrossTalk: Adjacent Channel  
CrossTalk: Nonadjacent Channel  
-20  
-40  
-60  
-80  
-100  
TMUX7308F  
TMUX7309F  
-120  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency(Hz)  
Frequency (Hz)  
Figure 7-31. Off Isolation and Crosstalk vs Frequency  
Figure 7-32. On Response vs Frequency  
CDOFF TMUX7308F  
120  
120  
100  
80  
60  
40  
20  
0
CDOFF TMUX7308F  
CON TMUX7308F  
CSOFF  
CDOFF TMUX7309F  
CON TMUX7309F  
CON TMUX7308F  
CSOFF  
CDOFF TMUX7309F  
CON TMUX7309F  
100  
80  
60  
40  
20  
0
-15 -12  
-9  
-6  
-3  
0
3
6
9
12  
15  
0
3
6
9
12  
VS or VD - Source or Drain Voltage (V)  
VS or VD - Source or Drain Voltage (V)  
VDD = 15 V, VSS = -15 V  
VDD = 12 V, VSS = 0 V  
Figure 7-33. Capacitance vs Source or Drain Voltage  
Figure 7-34. Capacitance vs Source or Drain Voltage  
0.9  
0.4  
VT Falling  
VT Rising  
VDD = +10V  
VSS = -10V  
VS = 10V  
0.36  
0.32  
0.28  
0.24  
0.2  
0.8  
0.7  
0.6  
0.5  
0.4  
0.16  
0.12  
0.08  
0.04  
100k  
1M  
Frequency(Hz)  
10M  
50M  
-40  
-15  
10  
35  
60  
85  
110 125  
Temperature (C)  
Figure 7-36. Large Signal Voltage Off Isolation vs Frequency  
Figure 7-35. Threshold Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
7.10 Typical Characteristics (continued)  
at TA = 25°C, VDD = 15 V, and VSS = –15 V (unless otherwise noted)  
25  
5
2.5  
SOURCE  
VDD  
22.5  
20  
DRAIN  
50V/s fault ramp  
0
-2.5  
-5  
17.5  
15  
-7.5  
-10  
12.5  
10  
-12.5  
-15  
7.5  
5
VSS  
DRAIN  
-17.5  
-20  
2.5  
0
SOURCE  
50V/s fault ramp  
-22.5  
-25  
-2.5  
-5  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
Time(s)  
Time(s)  
Figure 7-38. Drain Output Response – Negative Overvoltage  
Figure 7-37. Drain Output Response – Positive Overvoltage  
60  
55  
50  
45  
0
-6  
DRAIN  
-12  
-18  
40  
35  
30  
25  
20  
15  
10  
5
SOURCE  
VSS  
-24  
SOURCE  
-30  
50V/s fault ramp  
-36  
VDD  
50V/s fault ramp  
-42  
-48  
-54  
-60  
DRAIN  
0
-5  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
Time(s)  
Time(s)  
Figure 7-40. Drain Output Recovery – Negative Overvoltage  
Figure 7-39. Drain Output Recovery – Positive Overvoltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8 Parameter Measurement Information  
8.1 On-Resistance  
The on-resistance of the TMUX7308F and TMUX7309F is the ohmic resistance across the source (Sx) and drain  
(Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol RON is used  
to denote on-resistance. Figure 8-1 shows the measurement setup used to measure RON. ΔRON represents the  
difference between the RON of any two channels, while RON_FLAT denotes the flatness that is defined as the  
difference between the maximum and minimum value of the on-resistance measured over the specified analog  
signal range.  
Figure 8-1. On-Resistance Measurement Setup  
8.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state, which follows:  
1. Source off-leakage current IS(OFF): the leakage current flowing into or out of the source pin when the switch  
is off.  
2. Drain off-leakage current ID(OFF): the leakage current flowing into or out of the drain pin when the switch is  
off.  
Figure 8-2 shows the setup used to measure both off-leakage currents.  
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
A
SW  
SW  
SW  
SW  
S1  
S2  
S1  
S2  
ID (OFF)  
VS  
D
D
A
GND  
VD  
SW  
SW  
S8  
S8  
VD  
GND  
VS  
GND  
GND  
GND  
GND  
IS(OFF)  
ID(OFF)  
Figure 8-2. Off-Leakage Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.3 On-Leakage Current  
Source on-leakage current (IS(ON)) and drain on-leakage current (ID(ON)) denote the channel leakage currents  
when the switch is in the on state. IS(ON) is measured with the drain floating, while ID(ON) is measured with the  
source floating. Figure 8-3 shows the circuit used for measuring the on-leakage currents.  
VDD  
VSS  
VDD  
VSS  
IS(ON)  
A
SW  
SW  
SW  
SW  
S1  
S2  
S1  
S2  
N.C.  
ID(ON)  
A
D
D
VS  
GND  
N.C.  
SW  
SW  
VD  
S8  
S8  
GND  
VS  
VS  
GND  
GND  
GND  
GND  
IS(ON)  
ID(ON)  
Figure 8-3. On-Leakage Measurement Setup  
8.4 Input and Output Leakage Current Under Overvoltage Fault  
If the voltage on any source pin goes above the supplies (VDD or VSS) by one threshold voltage (VT), the  
overvoltage protection feature of the TMUX7308F and TMUX7309F is triggered to turn off the switch under  
fault, keeping the fault channel in a high-impedance state. IS(FA) and ID(FA) denotes the input and output  
leakage current under overvoltage fault conditions, respectively. For ID(FA) the device is disabled to measure  
leakage current on the drain pin without being impacted by the 40 kΩ impedance to the fault supply.When the  
overvoltage fault occurs, the supply (or supplies) can either be in normal operating condition (Figure 8-4) or  
abnormal operating condition (Figure 8-5). During abnormal operating condition, the supply (or supplies) can  
either be unpowered (VDD= VSS = 0 V) or floating (VDD= VSS = no connection), and remains within the leakage  
performance specifications.  
VDD  
VSS  
IS (FA)  
A
N.C.  
SW  
SW  
S1  
S2  
ID (FA)  
A
VS  
D
GND  
SW  
S8  
N.C.  
VD  
GND  
GND  
IS(FA) / ID(FA)  
( |VS| > |VDD + VT| or |VSS - VT| )  
Figure 8-4. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault with  
Normal Supplies  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
N.C.  
GND  
VDD  
VSS  
VDD  
VSS  
IS (FA)  
A
N.C.  
IS (FA)  
A
N.C.  
SW  
SW  
SW  
SW  
S1  
S2  
S1  
S2  
ID (FA)  
A
ID (FA)  
VS  
VS  
D
D
A
GND  
GND  
SW  
SW  
S8  
S8  
GND  
GND  
N.C.  
N.C.  
GND  
GND  
Unpowered  
(VDD = VSS = GND = 0 V)  
Floating  
(VDD = VSS = N.C.)  
Figure 8-5. Measurement Setup for Input and Output Leakage Current under Overvoltage Fault with  
Unpowered or Floating Supplies  
8.5 Break-Before-Make Delay  
The break-before-make delay is a safety feature of the TMUX7308F and TMUX7309F. The ON switches first  
break the connection before the OFF switches make connection. The time delay between the break and the  
make is known as break-before-make delay. Figure 8-6 shows the setup used to measure break-before-make  
delay, denoted by the symbol tBBM  
.
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VSS  
SW  
SW  
S1  
S2  
3 V  
D
tr < 20 ns  
VA  
tf < 20 ns  
0 V  
CL  
RL  
GND  
GND  
SW  
SW  
S7  
S8  
GND  
VS  
0.8 VS  
Output  
A0  
A1  
tBBM  
1
tBBM 2  
VS  
EN  
0 V  
Decoder  
tBBM = min ( tBBM 1, tBBM 2)  
A2  
GND  
VEN  
VA  
GND  
GND  
GND  
Figure 8-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.6 Enable Delay Time  
tON(EN) time is defined as the time taken by the output of the TMUX7308F and TMUX7309F to rise to a 90% final  
value after the EN signal has risen to a 50% final value. tOFF(EN) is defined as the time taken by the output of the  
TMUX7308F and TMUX7309F to fall to a 10% initial value after the EN signal has fallen to a 50% initial value.  
Figure 8-7 shows the setup used to measure the enable delay time.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VSS  
SW  
SW  
S1  
S2  
3 V  
VS  
D
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VEN  
GND  
0 V  
VS  
RL  
GND  
CL  
SW  
S8  
0.9 VS  
tON(EN)  
GND  
tOFF(EN)  
0.1 VS  
GND  
Output  
A0  
A1  
EN  
Decoder  
A2  
VEN  
GND  
GND  
GND  
Figure 8-7. Enable Delay Measurement Setup  
8.7 Transition Time  
Transition time is defined as the time taken by the output of the device to rise (to 90% of the transition) or fall (to  
10% of the transition) after the address signal (Ax) has fallen or risen to 50% of the transition. Figure 8-8 shows  
the setup used to measure transition time, denoted by the symbol tTRAN  
.
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VSS  
SW  
SW  
S1  
S2  
3 V  
0 V  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VA  
VS  
D
GND  
RL  
GND  
0.9 VS  
tTRAN  
CL  
SW  
S8  
Output  
VS  
tTRAN  
1
2
GND  
0.1 VS  
GND  
tTRAN = max ( tTRAN 1, tTRAN 2)  
A0  
A1  
EN  
Decoder  
A2  
VEN  
VA  
GND  
GND  
GND  
Figure 8-8. Transition Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.8 Fault Response Time  
Fault response time (tREPONSE) measures the delay between the source voltage exceeding the supply voltage  
(VDD or VSS) by 0.5 V and the drain voltage failing to 50% of the maximum output voltage. Figure 8-9 shows the  
setup used to measure tRESPONSE  
.
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
Max positive fault  
0 V  
VDD  
VSS  
VDD + 0.5 V  
60V/µs  
60V/µs  
ramp  
SW  
SW  
VS  
VS  
Sx  
ramp  
VSS - 0.5 V  
0 V  
Max negative fault  
VS  
tRESPONSE (VDD)  
VDD  
tRESPONSE (VSS)  
Output  
CL  
D/ DX  
0 V  
All other  
source  
pins  
Output  
0 V  
Output  
Output × 50%  
Output × 50%  
GND  
RL  
GND  
SW  
VSS  
GND  
tRESPONSE = max ( tRESPONSE(VDD), tRESPONSE(VSS)  
)
GND  
Figure 8-9. Fault Response Time Measurement Setup  
8.9 Fault Recovery Time  
Fault recovery time (tRECOVERY) measures the delay between the source voltage falling from overvoltage  
condition to below supply voltage (VDD or VSS) plus 0.5 V and the drain voltage rising from 0 V to 50% of  
the final output voltage. Figure 8-10 shows the setup used to measure tRECOVERY  
.
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
0 V  
VDD  
VSS  
VDD + 0.5 V  
VSS - 0.5 V  
SW  
SW  
Sx  
VS  
VS  
tRECOVERY (VSS)  
0 V  
0 V  
tRECOVERY (VDD)  
VS  
Output  
CL  
D/ DX  
All other  
source  
pins  
GND  
Output  
0 V  
Output x 50%  
Output × 50%  
Output  
RL  
GND  
SW  
GND  
tRECOVERY = max ( tRECOVERY(VDD), tRECOVERY(VSS)  
)
GND  
Figure 8-10. Fault Recovery Time Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.10 Charge Injection  
Charge injection is a measure of the glitch impulse transferred from the logic input to the signal path during logic  
pin switching, and is denoted by the symbol QINJ. Figure 8-11 shows the setup used to measure charge injection  
from the source to drain.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VSS  
SW  
SW  
S1  
S2  
Output  
VS  
D
3 V  
VEN  
0 V  
GND  
CL  
SW  
S8  
tr < 20 ns  
tf < 20 ns  
GND  
GND  
A0  
A1  
Output  
VS  
EN  
VOUT  
QINJ = CL ×  
VOUT  
Decoder  
A2  
VEN  
GND  
GND  
GND  
Figure 8-11. Charge-Injection Measurement Setup  
8.11 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to  
the source pin (Sx) of an off-channel. Figure 8-12 shows the setup used to measure, and the equation used to  
calculate off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1  
D
50Ω  
VOUT  
VSIG  
50Ω  
Sx  
50Ω  
GND  
8176  
1BB +OKH=PEKJ = 20 × .KC  
8
5
Figure 8-12. Off Isolation Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.12 Crosstalk  
The following are two types of crosstalk that can be defined for the devices:  
1. Intra-channel crosstalk (XTALK(INTRA)): the voltage at the source pin (Sx) of an off-switch input, when a  
1-VRMS signal is applied at the source pin of an on-switch input in the same channel, as shown in Figure  
8-13.  
2. Inter-channel crosstalk (XTALK(INTER)): the voltage at the source pin (Sx) of an on-switch input, when a  
1-VRMS signal is applied at the source pin of an on-switch input in a different channel, as shown in Figure  
8-14. Inter-channel crosstalk applies only to the TMUX7309F device.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VSS  
Network Analyzer  
SW  
SW  
S1/S1X  
D/ DX  
VOUT  
S2/S2X  
RS  
RL  
Other  
Sx/ Dx  
Pins  
50Ω  
SW  
VS  
N.C.  
Ax, EN  
GND  
VAX  
VEN  
8176  
+JPN= F ?D=JJAH %NKOOP=HG = 20 × .KC  
8
5
Figure 8-13. Intra-channel Crosstalk Measurement Setup  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
GND  
VDD  
VSS  
Network Analyzer  
SW  
SxA  
DA  
Other  
SxA Pins  
SW  
SW  
N.C.  
N.C.  
RS  
RL  
VOUT  
SxB  
DB  
Other  
SxB Pins  
SW  
50Ω  
RL  
VS  
Ax, EN  
GND  
VAX  
VEN  
8176  
+JPAN F ?D=JJAH %NKOOP=HG = 20 × .KC  
8
5
Figure 8-14. Inter-channel Crosstalk Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.13 Bandwidth  
Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to  
the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D or Dx) of the TMUX730xF.  
Figure 8-15 shows the setup used to measure bandwidth of the switch.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
VDD  
VSS  
Network Analyzer  
GND  
SW  
SW  
SX  
N.C.  
N.C.  
Other  
Sx/ Dx  
Pins  
RS  
SW  
VOUT  
D/ DX  
VS  
50Ω  
Ax, EN  
VAX  
VEN  
GND  
8176  
$=J@SE@PD = 20 × .KC  
8
5
Figure 8-15. Bandwidth Measurement Setup  
8.14 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined  
as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency  
at the multiplexer output. The on-resistance of the TMUX7308F and TMUX7309F varies with the amplitude  
of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total  
harmonic distortion plus noise is denoted as THD+N. Figure 8-16 shows the setup used to measure THD+N of  
the devices.  
VDD  
VSS  
0.1 µF  
GND  
0.1 µF  
VDD  
VSS  
Audio Precision  
GND  
SW  
SW  
SX  
N.C.  
N.C.  
Other  
Sx/ Dx  
Pins  
RS  
SW  
VOUT  
D/ DX  
VS  
RL  
Ax, EN  
GND  
VAX  
VEN  
Figure 8-16. THD+N Measurement Setup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The TMUX7308F and TMUX7309F are a modern complementary metal-oxide semiconductor (CMOS) analog  
multiplexers in 8:1 (single ended) and 4:1 (differential) configurations. The devices work well with dual supplies  
(±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as VDD = 15 V, VSS = –5 V). The  
devices have an overvoltage protection feature on the source pins under powered and powered-off conditions,  
allowing them to be used in harsh industrial environments.  
9.2 Functional Block Diagram  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
SW  
S1  
S2  
S1A  
DA  
DB  
SW  
SW  
S4A  
S1B  
D
SW  
SW  
S4B  
S8  
A1  
A2  
A3  
EN  
A1  
A2  
EN  
Fault Detection/  
Switch Driver/  
Logic Decoder  
Fault Detection/  
Switch Driver/  
Logic Decoder  
TMUX7308F  
TMUX7309F  
9.3 Feature Description  
9.3.1 Flat On – Resistance  
The TMUX7308F and TMUX7309F are designed with a special switch architecture to produce ultra-flat on-  
resistance (RON) across most of the switch input operation region. The flat RON response allows the device to  
be used in precision sensor applications since the RON is controlled regardless of the signals sampled. The  
architecture is implemented without a charge pump so no unwanted noise is produced from the device to affect  
sampling accuracy.  
9.3.2 Protection Features  
The TMUX7308F and TMUX7309F offer a number of protection features to enable robust system  
implementations.  
9.3.2.1 Input Voltage Tolerance  
The maximum voltage that can be applied to any source input pin is +60 V or -60 V, regardless of supply voltage.  
This allows the device to handle typical voltage fault conditions in industrial applications. It shall be cautioned  
that the device is rated to handle maximum stress of 85 V across different pins, such as the following:  
1. Between the source pins and supply rails:  
For example, if the device is powered by VDD supply of 20 V, then the maximum negative signal level on any  
source pin is –60 V to maintain the 60 V maximum rating on any source pin. If the device is powered by VDD  
supply of 40 V, then the maximum negative signal level on any source pin is reduced to –45 V to maintain  
the 85 V maximum rating across the source pin and the supply.  
2. Between the source pins and one or more drain pins:  
For example, if channel S1(A) is ON and the voltage on S1(A) pin is 40 V. In this case, the drain voltage  
is also 40 V. The maximum negative voltage on any of the other source pins is –45 V to maintain the 85 V  
maximum rating across the source pin and the drain pin.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
9.3.2.2 Powered-Off Protection  
When the supplies of TMUX7308F and TMUX7309F are removed (VDD / VSS = 0 V or floating), the source (Sx)  
pins of the device remain in the high impedance (Hi-Z) state, and the source (Sx) and drain (Dx) pins of the  
device remain within the leakage performance mentioned in the Electrical Specifications. Powered-off protection  
minimizes system complexity by removing the need to control power supply sequencing of the system. The  
feature prevents errant voltages on the input source pins from reaching the rest of the system and maintains  
isolation when the system is powering up. Without powered-off protection, signal on the input source pins can  
back-power the supply rails through internal ESD diodes and cause potential damage to the system.For more  
information on powered-off protection refer to Eliminate Power Sequencing With Powered-Off Protection Signal  
Switches.  
The switch remains OFF regardless of whether the VDD and VSS supplies are 0 V or floating. A GND reference  
must always be present to ensure proper operation. Source and drain voltage levels of up to ±60 V are blocked  
in the powered-off condition.  
9.3.2.3 Fail-Safe Logic  
Fail-safe logic circuitry allows voltages on the logic control pins to be applied before the supply pins, protecting  
the device from potential damage. The switch is specified to be in the OFF state, regardless of the state of the  
logic signals. The logic inputs are protected against positive faults of up to +44 V in the powered-off condition,  
but do not offer protection against the negative overvoltage condition.  
Fail-safe logic also allows the TMUX7308F and TMUX7309F devices to interface with a voltage greater than VDD  
during normal operation to add maximum flexibility in system design. For example, with a VDD of = 15 V, the logic  
control pins could be connected to +24 V for a logic high signal which allows different types of signals, such as  
analog feedback voltages, to be used when controlling the logic inputs. Regardless of the supply voltage, the  
logic inputs can be interfaced as high as 44 V.  
9.3.2.4 Overvoltage Protection and Detection  
The TMUX7308F and TMUX7309F detect overvoltage inputs by comparing the voltage on a source pin (Sx) with  
the supplies (VDD and VSS). A signal is considered overvoltage if it exceeds the supply voltages by the threshold  
voltage (VT).  
When an overvoltage is detected, the switch with the overvoltage automatically turns OFF, and stays OFF  
regardless of the logic controls. The source pin becomes high impedance and ensures only small leakage  
current flows through the switch and the overvoltage does not appear on the drain. When the overvoltage  
channel is selected by the logic control, the drain pin (D or Dx) is pulled to the supply that was exceeded. For  
example, if the source voltage exceeds VDD, the drain output is pulled to VDD. If the source voltage exceeds  
VSS, the drain output is pulled to VSS. The pull-up impedance is approximately 40 kΩ, and as a result, the drain  
current is limited to roughly 1 mA during a shorted load (to GND) condition.  
Figure 9-1 shows a detailed view of the how the pullup/down controls the output state of the drain pin under a  
fault scenario.  
VDD  
Ax  
Sx  
Logic &  
Fault  
Detection  
40 k  
40 k  
Dx  
ESD  
Protection  
VSS  
GND  
Figure 9-1. Detailed Functional Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
9.3.2.5 Adjacent Channel Operation During Fault  
When the logic pins are set to a channel under a fault, the overvoltage detection will trigger, the switch will open,  
and the drain pin will be pulled up/down as described in Section 9.3.2.4. During such an event, all other channels  
not under a fault can continue to operate as normal. For example, if S1 voltage exceeds VDD, and the logic pins  
are set to S1, the drain output is pulled to VDD. If then the logic pins are changed to set S4, which is not in  
overvoltage or undervoltage, the drain will disconnect from the pullup to VDD and the S4 switch will be enabled  
and connected to the drain, operating as normal. If the logic pins are switched back to S1, the S4 switch will be  
disabled, the drain pin will be pulled up to VDD again, and the switch from S1 to drain will not be enabled until the  
overvoltage fault is removed.  
9.3.2.6 ESD Protection  
All pins on the TMUX7308F and TMUX7309F support HBM ESD protection level up to ±3.5 kV, which helps the  
device from getting ESD damages during manufacturing process.  
The drain pins (D or Dx) have internal ESD protection diodes to the supplies VDD and VSS, therefore the voltage  
at the drain pins must not exceed the supply voltages to prevent excessive diode current. The source pins have  
specialized ESD protection that allows the signal voltage to reach ±60 V regardless of supply voltage level.  
Exceeding ±60 V on any source input may damage the ESD protection circuitry on the device and cause the  
device to malfunction if the damage is excessive.  
9.3.2.7 Latch-Up Immunity  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX7308F and TMUX7309F devices are constructed on silicon on insulator (SOI) based process where  
an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic  
structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch  
up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX7308F and  
TMUX7309F to be used in harsh environments. For more information on latch-up immunity refer to Using Latch  
Up Immune Multiplexers to Help Improve System Reliability.  
9.3.2.8 EMC Protection  
The TMUX7308F and TMUX7309F are not intended for standalone electromagnetic compatibility (EMC)  
protection in industrial applications. There are three common high voltage transient specifications that govern  
industrial high voltage transient specification: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5  
(surge immunity). A transient voltage suppressor (TVS), along with some low-value series current limiting  
resistor, are required to prevent source input voltages from going above the rated ±60 V limits.  
When selecting a TVS protection device, it is critical to ensure that the maximum working voltage is greater than  
both the normal operating range of the input source pins to be protected and any known system common-mode  
overvoltage that may be present due to incorrect wiring, loss of power, or short circuit. Figure 9-2 shows one  
example of the proper design window when selecting a TVS device.  
Region 1 denotes the normal operation region of TMUX7308F and TMUX7309F where the input source voltages  
stay below the fault supplies VDD and VSS. Region 2 represents the range of possible persistent DC (or long  
duration AC overvoltage fault) presented on the source input pins. Region 3 represents the margin between  
any known DC overvoltage level and the absolute maximum rating of the TMUX7308F and TMUX7309F. The  
selected TVS breakdown voltage must be less than the absolute maximum rating of the TMUX730xF but  
greater than any known possible persistent DC or long duration AC overvoltage fault to avoid triggering the  
TVS inadvertently. Region 4 represents the margin that system designers must impose when selecting the TVS  
protection device to prevent accidental triggering of the ESD cells of the TMUX7308F and TMUX7309F devices.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Internal ESD  
Trigger Voltage  
4
3
2
Device Absolute  
Max Rating  
TVS  
Breakdown  
Voltage  
System  
Overvoltage  
Overvoltage  
Protection Window  
Positive Supply  
VDD  
0 V  
1
Normal Operation  
Negative Supply  
VSS  
2
3
4
System  
Overvoltage  
Overvoltage  
Protection Window  
TVS  
Breakdown  
Voltage  
Device Absolute  
Max Rating  
Internal ESD  
Trigger Voltage  
Figure 9-2. System Operation Regions and Proper Region of Selecting a TVS Protection Device  
9.3.3 Bidirectional Operation  
The TMUX7308F and TMUX7309F conducts equally well from source (Sx) to drain (D or Dx) or from drain (D or  
Dx) to source (Sx). Each signal path has very similar characteristics in both directions. However, take note that  
the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is only allowed  
to swing between VDD and VSS and no overvoltage protection is available on the drain side.  
The flatest on-resistance region extends from VSS to roughly 3 V below VDD. Once the signal is within 3 V of VDD  
the on-resistance will expoentially increase and may impact desired signal transmission.  
9.3.4 1.8 V Logic Compatible Inputs  
The TMUX7308F and TMUX7309F devices have 1.8 V logic compatible control for all logic control inputs. 1.8  
V logic level inputs allows the TMUX7308F and TMUX7309F to interface with processors that have lower logic  
I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more  
information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
9.3.5 Integrated Pull-Down Resistor on Logic Pins  
The TMUX7308F and TMUX7309F have internal weak pull-down resistors to GND to ensure the logic pins are  
not left floating. The value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 µA at  
higher voltages. This feature integrates up to four external components and reduces system size and cost.  
9.4 Device Functional Modes  
The TMUX7308F and TMUX7309F offers two modes of operation (Normal mode and Fault mode) depending on  
whether any of the input pins experience an overvoltage condition.  
9.4.1 Normal Mode  
In Normal mode operation, signals of up to VDD and VSS can be passed through the switch from source (Sx) to  
drain (D or Dx) or from drain (D or Dx) to source (Sx). The address (Ax) pins and the enable (EN) pin determines  
which switch path to turn on, according to Table 9-1 and Table 9-2. The following conditions must be satisfied for  
the switch to stay in the ON condition:  
The difference between the primary supplies (VDD – VSS) must be greater than or equal to 8 V. With a  
minimum VDD of 5 V.  
The input signals on the source (Sx) or the drain (D or Dx) must be be between VDD+ VT and VSS – VT.  
The logic control (Ax and EN) must have selected the switch.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
9.4.2 Fault Mode  
The TMUX7308F and TMUX7309F enter into the Fault mode when any of the input signals on the source  
(Sx) pins exceed VDD or VSS by a threshold voltage VT. Under the overvoltage condition, the switch input  
experiencing the fault automatically turns OFF regardless of the logic status, and the source pin becomes high  
impedance with a negligible amount of leakage current flowing through the switch. When the fault channel is  
selected by the logic control, the drain pin (D or Dx) is pulled to the supply that was exceeded through a 40 kΩ  
internal resistor.  
The overvoltage protection is provided only for the source (Sx) input pins. The drain (D or Dx) pin, if used as a  
signal input, must stay in between VDD and VSS at all times since no overvoltage protection is implemented on  
the drain pin.  
9.4.3 Truth Tables  
Table 9-1 shows the truth tables for the TMUX7308F.  
Table 9-1. TMUX7308F Truth Table  
Selected Source Connected to Drain Pin  
EN  
A2  
A1  
A0  
(D)  
0
X(1)  
X(1)  
X(1)  
All sources are off (HI-Z)  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
(1) "X" means "do not care."  
Table 9-2 shows the truth tables for the TMUX7309F.  
Table 9-2. TMUX7309F Truth Table  
EN  
A1  
A0  
Selected Source Connected to Drain Pins (DA, DB)  
0
X(1)  
X(1)  
All sources are off (HI-Z)  
1
1
1
1
0
0
1
1
0
1
0
1
S1A and S1B  
S2A and S2B  
S3A and S3B  
S4A and S4B  
(1) "X" means "do not care."  
If unused, Ax pins must be tied to GND in order to ensure the device does not consume additional current as  
highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (Sx or Dx) should be  
connected to GND.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The TMUX7308F and TMUX7309F are part of the fault protected switches and multiplexers family of devices.  
The abilty to protect downstream components from overvoltage events up to ±60 V makes these switches and  
multiplexers suitable for harsh environments.  
10.2 Typical Application  
In analog input programmable logic controllers (PLC) a multiplexer is often used to switch multiple sensors  
to a single ADC. By using a multiplexer, the number of components in the system can be reduced to save  
system cost and size. In a PLC module a ±10 V input signal range is common for interfacing with external field  
transmitters and sensors; however, there are a number of fault cases that may occur that can be damaging  
to many of the integrated circuits. Such fault conditions may include, but are not limited to, human error from  
wiring connections incorrectly, component failure or wire shorts, electromagnetic interference (EMI) or transient  
disturbances, and so forth.  
Supply  
Power Module  
GND  
VDD  
VSS  
PLC Analog  
Input Module  
Bridge Sensor  
TMUX7308F  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
5V  
REF5025  
Thermocouple  
Current Sensing  
D
Gain / Filter  
Network  
Fault  
Protected  
Mux Inputs  
Signal  
Processing  
ISO77xx  
ADS125H01  
Photo  
LED  
A2  
A1  
V
Detector  
A0  
GND  
1.8V Logic  
Signals  
Optical Sensor  
Sensors  
Figure 10-1. Typical Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
10.2.1 Design Requirements  
Table 10-1. Design Parameters  
PARAMETER  
VALUE  
+15 V  
-15 V  
Positive supply (VDD) mux and ADC  
Negative supply (VSS) mux and ADC  
Power board supply voltage  
Input / output signal range non-faulted  
Overvoltage protection levels  
24 V  
-15 V to 15 V  
-60 V to 60 V  
Control logic thresholds  
Temperature range  
1.8 V compatible, up to 44 V  
-40°C to +125°C  
10.2.2 Detailed Design Procedure  
The image shows the case where an incorrect wiring condition occurred and one of the input connectors has  
been shorted to the power board supply voltage. If the board supply voltage is higher than the power supply of  
the multiplexer, then the TMUX7308F or TMUX7309F will disconnect the source input from passing the signal to  
protect the downstream ADC. The drain pin of the mux will be pulled up to the supply voltage VDD through a 40  
kΩ resistor to allow the ADC to determine a fault condition has occurred.  
10.2.3 Application Curves  
The example application utilizes the fault protection of the TMUX7308F or TMUX7309F to protect downstream  
components from potential miswiring conditions from the Power Module board. Figure 10-2 shows an example  
of positive overvoltage fault response with a fast fault ramp rate of 50 V/µs. Figure 10-3 shows the extremely  
flat on-resistance across source voltage while operating within a common signal range of ±10 V. These features  
make the TMUX7308F or TMUX7309F an ideal solution for factory automation applications that may face  
various fault conditions but also require excellent linearity and low distortion.  
25  
22.5  
20  
240  
230  
220  
210  
200  
190  
180  
170  
160  
VDD = 13.5 V, VSS = -13.5 V  
VDD = 15 V, VSS = -15 V  
VDD = 16.5 V, VSS = -16.5 V  
VDD = 18 V, VSS = -18 V  
VDD = 20 V, VSS = -20 V  
VDD = 22 V, VSS = -22 V  
SOURCE  
VDD  
50V/s fault ramp  
17.5  
15  
12.5  
10  
7.5  
5
DRAIN  
2.5  
0
-2.5  
-5  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
-10  
-6  
-2  
2
6
10  
Time(s)  
VS or VD - Source or Drain Voltage (V)  
Figure 10-2. Positive Overvoltage Response  
Figure 10-3. RON Flatness in Non-Fault Region  
11 Power Supply Recommendations  
The TMUX7308F and TMUX7309F operate across a wide supply range of ±5 V to ±22 V (8 V to 44 V in  
single-supply mode). They also perform well with asymmetrical supplies such as VDD = 15 V and VSS= –5 V. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 1 µF to 10 µF at both the VDD  
and VSS pins to ground. Always ensure the ground (GND) connection is established before supplies are ramped.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
The image below illustrates an example of a PCB layout with the TMUX7308F and TMUX7309F. Some key  
considerations are:  
For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and VSS to  
GND. We recommend a 0.1 µF and 1 µF capacitor, placing the lowest value capacitor as close to the pin as  
possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
12.2 Layout Example  
Via to  
ground plane  
Via to  
ground plane  
A0  
EN  
VSS  
A1  
A2  
Wide (low inductance)  
trace for power  
C
Wide (low inductance)  
trace for power  
C
GND  
VDD  
S5  
Via to  
ground plane  
S1  
S2  
S3  
S4  
D
TMUX7308F  
S6  
S7  
S8  
Figure 12-1. TMUX7308FPW Layout Example  
Via to  
Via to  
ground plane  
ground plane  
A0  
EN  
VSS  
A1  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
C
C
GND  
VDD  
Via to  
ground plane  
S1B  
S1A  
S2A  
S3A  
S4A  
DA  
S2B  
S3B  
S4B  
DB  
TMUX7309F  
Figure 12-2. TMUX7309FPW Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
GND  
VDD  
S5  
VSS  
S1  
S2  
S6  
S3  
Via to ground plane  
Figure 12-3. TMUX7308FQFN Layout Example  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
VDD  
S1B  
S2B  
S3B  
VSS  
S1A  
S2A  
S3A  
Via to ground plane  
Figure 12-4. TMUX7309FQFN Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TMUX7308F TMUX7309F  
TMUX7308F, TMUX7309F  
SCDS403B – FEBRUARY 2021 – REVISED DECEMBER 2021  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application note  
Texas Instruments, Improving Analog Input Modules Reliability Using Fault Protected Multiplexers application  
report  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, Protection Against Overvoltage Events, Miswiring, and Common Mode Voltages  
application report  
Texas Instruments, Using Latch-Up Immune Multiplexers to Help Improve System Reliability application  
report  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TMUX7308F TMUX7309F  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMUX7308FPWR  
PTMUX7308FRRPR  
TMUX7308FRRPR  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
WQFN  
WQFN  
PW  
RRP  
RRP  
16  
16  
16  
2000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
Call TI  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
TMUX  
7308F  
TMUX7309FRRPR  
ACTIVE  
WQFN  
RRP  
16  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
TMUX  
7309F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Dec-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX7308FRRPR  
TMUX7309FRRPR  
WQFN  
WQFN  
RRP  
RRP  
16  
16  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX7308FRRPR  
TMUX7309FRRPR  
WQFN  
WQFN  
RRP  
RRP  
16  
16  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RRP0016A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.95  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
2X 1.95  
SYMM  
17  
2.6 0.1  
12X 0.65  
1
12  
0.35  
16X  
PIN 1 ID  
0.25  
13  
16  
0.1  
C A B  
0.45  
0.35  
0.05  
16X  
4224816/A 02/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRP0016A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
SEE SOLDER MASK  
DETAIL  
13  
16  
16X (0.6)  
1
12  
16X (0.3)  
17  
SYMM  
12X (0.65)  
(3.8)  
(1.05)  
4
9
(R0.05) TYP  
(
0.2) TYP  
VIA  
5
8
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224816/A 02/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRP0016A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675) TYP  
13  
16  
16X (0.6)  
1
12  
16X (0.3)  
(0.675) TYP  
(3.8)  
17  
SYMM  
12X (0.65)  
4X ( 1.15)  
9
4
(R0.05) TYP  
8
5
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224816/A 02/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TMUX7308FPWR

具有 1.8V 逻辑电平的 ±60V 故障保护、8:1 单通道多路复用器 | PW | 16 | -40 to 125
TI

TMUX7308FRRPR

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7308F_V01

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with 1.8-V Logic
TI

TMUX7308F_V02

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7309F

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7309FRRPR

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX730XF

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7348F

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器
TI

TMUX7348FRTJR

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器 | RTJ | 20 | -40 to 125
TI

TMUX7349F

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、双路 4:1 多路复用器
TI

TMUX7349FRTJR

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、双路 4:1 多路复用器 | RTJ | 20 | -40 to 125
TI

TMUX7411F

TMUX741xF ±60 V Fault-Protected, 1:1 (SPST), 4-Channel Switches with Latch-Up Immunity and 1.8-V Logic
TI