TPA3116D2QDADRQ1 [TI]

汽车类 50W、2 通道、4.5V 至 26V 电源模拟输入 D 类音频放大器 | DAD | 32 | -40 to 125;
TPA3116D2QDADRQ1
型号: TPA3116D2QDADRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 50W、2 通道、4.5V 至 26V 电源模拟输入 D 类音频放大器 | DAD | 32 | -40 to 125

放大器 光电二极管 商用集成电路 音频放大器
文件: 总40页 (文件大小:2734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
TPA311xD2-Q1 100W 50W D 类立体声汽车用放大器  
1 特性  
2 应用范围  
1
支持多路输出配置  
车载音频  
紧急呼叫  
驾驶员通知  
21V 电压、4Ω 桥接负载 (BTL) 负载条件下的功  
率为 2 × 50W (TPA3116D2-Q1)  
24V 电压、8Ω BTL 负载条件下的功率为 2 ×  
3 说明  
30W (TPA3118D2-Q1)  
宽电压范围:4.5V 26V  
高效 D 类运行  
TPA311xD2-Q1 器件是用于驱动扬声器的汽车类高效  
立体声数字放大器功率级,单声道模式下的驱动功率高  
100W/2TPA3118D2-Q1 甚至可以在不使用外  
部散热器的情况下在双层 PCB 上提供 2 × 30W/8的  
功率。 如果需要更高的功率,可以选用 TPA3116D2-  
Q1,这款器件在其顶层散热焊盘上连接一个小型散热  
器后可提供 2 × 50W/4的功率。  
兼具 > 90% 的功率效率与低空闲损耗特性,大  
幅减小了散热器尺寸  
高级调制系统配置  
多重开关频率  
AM 抑制  
主从模式同步  
TPA311xD2-Q1 高级振荡器和 PLL 电路采用多开关频  
率选项来抑制 AM 干扰;搭配使用主从模式选项时,  
还可使多个器件实现同步。  
高达 1.2MHz 的切换频率  
采用具有高 PSRR 的反馈功率级架构,降低了  
PSU 需求  
可编程功率限制  
TPA311xD2-Q1 器件针对短路、过热、过压、欠压和  
直流等故障提供了全面保护。 在过载情况下,器件会  
将故障情况报告给处理器,从而避免自身遭到损坏。  
差分和单端输入  
立体声 BTL 和单声道并行桥接负载 (PBTL) 模式  
由单电源供电运行,减少了元件数量  
器件信息(1)  
封装  
集成了具有错误报告功能的自保护电路,其中包括  
过压、欠压、过热、直流检测和短路等保护  
器件  
散热焊盘  
顶层  
TPA3116D2-Q1  
TPA3118D2-Q1  
旨在满足汽车电磁兼容性 (EMC) 要求  
HTSSOP (32)  
底层  
耐热增强型封装  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
DAD32 引脚散热薄型小外形尺寸 (HTSSOP)  
封装,焊盘朝上)  
简化应用电路  
DAP32 引脚 HTSSOP 封装,焊盘朝下)  
-40°C 125°C 环境温度范围  
4.5-V to  
26-V PSU  
Audio Processor  
TPA3116D2-Q1  
and Control  
AM/FM Tuner  
Right  
符合汽车应用要求  
PBTL  
Detect  
Left  
Right  
Left  
LC Filter  
LC Filter  
CD or MP3  
Aux In  
具有符合 AEC-Q100 的下列结果:  
SD  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
MUTE  
FAULT  
AM/FM Avoidance  
Control  
AM2,1,0  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
GAIN Control and Master or Slave Setting  
Power Limit  
GAIN/SLV  
PLIMIT  
SYNC  
Capable of Synchronizing  
to Other Devices  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS862  
 
 
 
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 10  
7.4 Device Functional Mode ......................................... 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application .................................................. 19  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 DC Electrical Characteristics .................................... 6  
6.6 AC Electrical Characteristics..................................... 7  
6.7 Timing Requirements................................................ 7  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
10.3 Heat Sink Used on the EVM................................. 25  
11 器件和文档支持 ..................................................... 26  
11.1 器件支持................................................................ 26  
11.2 相关链接................................................................ 26  
11.3 ....................................................................... 26  
11.4 静电放电警告......................................................... 26  
11.5 Glossary................................................................ 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
Changes from Original (July 2015) to Revision A  
Page  
Added all information following the pin description diagrams................................................................................................. 4  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
5 Pin Configuration and Functions  
DAD PowerPAD™ Package  
32-Pin HTSSOP With Exposed Thermal Pad Up  
TPA3116D2-Q1 Top View  
MODSEL  
SD  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
2
FAULT  
RINP  
3
4
RINN  
PLIMIT  
GVDD  
GAIN/SLV  
GND  
5
6
OUTNR  
BSNR  
GND  
7
8
Thermal  
Pad  
9
BSPL  
OUTPL  
GND  
LINP  
10  
11  
12  
13  
14  
15  
16  
LINN  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
AM1  
AM0  
SYNC  
DAP PowerPAD Package  
32-Pin HTSSOP With Exposed Thermal Pad Down  
TPA3118D2-Q1 Top View  
MODSEL  
SD  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVCC  
PVCC  
BSPR  
OUTPR  
GND  
2
FAULT  
RINP  
3
4
RINN  
5
PLIMIT  
GVDD  
GAIN/SLV  
GND  
6
OUTNR  
BSNR  
GND  
7
8
Thermal  
Pad  
9
BSPL  
OUTPL  
GND  
LINP  
10  
11  
12  
13  
14  
15  
16  
LINN  
MUTE  
AM2  
OUTNL  
BSNL  
PVCC  
PVCC  
AVCC  
AM1  
AM0  
SYNC  
Copyright © 2015, Texas Instruments Incorporated  
3
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Table 1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AM[2:0]  
NO.  
13–15  
17  
I
AM avoidance frequency selection  
Analog supply  
AVCC  
BSNL  
BSNR  
BSPL  
BSPR  
FAULT  
P
20  
BST  
BST  
BST  
BST  
DO  
Bootstrap for negative left channel output, connect to 220-nF X5R, or better ceramic cap to OUTPL  
Bootstrap for negative right channel output, connect to 220-nF X5R, or better ceramic cap to OUTNR  
Bootstrap for positive left channel output, connect to 220-nF X5R, or better ceramic cap to OUTNL  
Bootstrap for positive right channel output, connect to 220-nF X5R or better ceramic cap to OUTPR  
26  
24  
30  
3
General fault reporting including overtemperature, dc detect, open drain.  
FAULT = High, normal operation  
FAULT = Low, fault condition  
GAIN/SLV  
GND  
8
I
Selects gain and selects between master and slave modes depending on pin voltage divider.  
Ground  
9, 22,  
G
25, 28  
GVDD  
7
PO  
Internally generated gate voltage supply. Not to be used as a supply or connected to any component  
other than a 1-µF X7R ceramic decoupling capacitor and the PLIMIT and GAIN/SLV resistor dividers.  
LINN  
11  
10  
1
I
I
I
Negative audio input for left channel. Biased at 3 V. Connect to GND for PBTL mode.  
Positive audio input for left channel. Biased at 3 V. Connect to GND for PBTL mode.  
LINP  
MODSEL  
Mode selection logic input (LOW = BD mode, HIGH = 1 SPW mode). TTL logic levels with compliance  
to AVCC.  
MUTE  
12  
I
Mute signal for fast disable or enable of outputs (HIGH = outputs Hi-Z, LOW = outputs enabled). TTL  
logic levels with compliance to AVCC.  
OUTNL  
OUTNR  
OUTPL  
OUTPR  
PLIMIT  
21  
27  
23  
29  
6
PO  
PO  
PO  
PO  
I
Negative left-channel output  
Negative right-channel output  
Positive left-channel output  
Positive right-channel output  
Power limit level adjust. Connect a resistor divider from GVDD to GND to set power limit. Connect  
directly to GVDD for no power limit.  
PVCC  
18, 19,  
31, 32  
P
Power supply  
RINN  
RINP  
SD  
5
4
2
I
I
I
Negative audio input for right channel. Biased at 3 V.  
Positive audio input for right channel. Biased at 3 V.  
Shutdown logic input for audio amp (LOW = outputs Hi-Z, HIGH = outputs enabled). TTL logic levels  
with compliance to AVCC.  
SYNC  
16  
DIO  
G
Clock input/output for synchronizing multiple class-D devices. Direction determined by GAIN/SLV pin.  
Connect to GND for best system performance. If not connected to GND, leave floating.  
Thermal pad  
(1) TYPE: DO = Digital output, I = Analog input, G = General ground, PO = Power output, BST = Bootstrap.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
VALUE  
–0.3 to 30  
UNIT  
V
Supply voltage, VCC  
Input voltage, VI  
PVCC, AVCC  
INPL, INNL, INPR, INNR  
–0.3 to 6.3  
V
PLIMIT, GAIN/SLV, SYNC  
AM0, AM1, AM2, MUTE, SD, MODSEL  
AM0, AM1, AM2, MUTE, SD, MODSEL  
–0.3 to GVDD + 0.3  
–0.3 to PVCC + 0.3  
10  
V
V
Slew rate, maximum(2)  
V/ms  
°C  
°C  
°C  
Operating ambient temperature, TA  
–40 to 125  
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
–40 to 150  
–40 to 125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) 100-kΩ series resistor is needed if maximum slew rate is exceeded.  
6.2 ESD Ratings  
VALUE  
±2000  
±450  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 16, 17,  
and 32)  
±450  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
VIH  
Supply voltage  
PVCC, AVCC  
4.5  
26  
V
High-level input  
voltage  
AM0, AM1, AM2, MUTE, SD, SYNC, MODSEL  
2
V
Low-level input  
voltage  
VIL  
VOL  
IIH  
AM0, AM1, AM2, MUTE, SD, SYNC, MODSEL  
FAULT, RPULLUP = 100 kΩ, V(PVCC) = 26 V  
0.8  
0.8  
50  
V
V
Low-level output  
voltage  
High-level input  
current  
AM0, AM1, AM2, MUTE, SD, MODSEL (VI = 2 V, VCC = 18 V)  
µA  
Output filter: L = 10 µH, C = 680 nF, BTL  
Output filter: L = 10 µH, C = 1 µF, PBTL  
3.2  
1.6  
4
Minimum load  
impedance  
RL  
Lo  
Ω
Output-filter  
inductance  
Minimum output filter inductance under short-circuit condition  
1
µH  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
6.4 Thermal Information  
TPA3116D2-Q1 TPA3118D2-Q1  
THERMAL METRIC(1)  
DAD  
32 PINS  
44.7(2)  
1.2  
DAP  
32 PINS  
32.4  
17.2  
17.3  
0.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
21.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
ψJB  
21  
17.2  
1
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Modeled with a 15-mm × 15-mm × 2-mm copper heat slug heat sink. A better heat sink or airflow would yield a much better RθJA  
.
Perfect heat sink results could be as low as RθJC(top) = 1.2 ºC/W.  
6.5 DC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Class-D output offset voltage (measured  
differentially)  
| VOS  
ICC  
|
VI = 0 V, gain = 36 dB  
1.5  
15  
mV  
mA  
SD = 2 V, no load or filter, V(PVCC) = 12 V  
SD = 2 V, no load or filter, V(PVCC) = 24 V  
SD = 0.8 V, no load or filter, V(PVCC) = 12 V  
SD = 0.8 V, no load or filter, V(PVCC) = 24 V  
20  
32  
35  
50  
Quiescent supply current  
<50  
50  
Quiescent supply current in shutdown  
mode  
ICC(SD)  
rDS(on)  
µA  
mΩ  
dB  
400  
Drain-source on-state resistance,  
measured pin-to-pin  
V(PVCC) = 21 V, IO = 500 mA, TJ = 25°C  
120  
R1 = open, R2 = 20 kΩ  
R1 = 100 kΩ, R2 = 20 kΩ  
R1 = 100 kΩ, R2 = 39 kΩ  
R1 = 75 kΩ, R2 = 47 kΩ  
R1 = 51 kΩ, R2 = 51 kΩ  
R1 = 47 kΩ, R2 = 75 kΩ  
R1 = 39 kΩ, R2 = 100 kΩ  
R1 = 16 kΩ, R2 = 100 kΩ  
V(SD) = 2 V  
19  
25  
31  
35  
19  
25  
31  
35  
20  
26  
32  
36  
20  
26  
32  
36  
10  
2
21  
27  
33  
37  
21  
27  
33  
37  
G
G
Gain (BTL)  
Gain (SLV)  
dB  
dB  
dB  
ton  
Turn-on time  
ms  
µs  
V
toff  
Turn-off time  
V(SD) = 0.8 V  
GVDD  
Gate drive supply  
I(GVDD) < 200 µA  
6.4  
6.9  
7.4  
Output voltage maximum under PLIMIT  
control  
VO  
V(PLIMIT) = 2 V; VI = 1 Vrms  
6.75  
7.9  
8.75  
V
6
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
6.6 AC Electrical Characteristics  
TA = 25°C, AVCC = PVCC = 12 V to 24 V, RL = 4 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
200 mVPP ripple at 1 kHz, gain = 20 dB, inputs ac-coupled  
to GND  
KSVR  
PO  
Power supply ripple rejection  
–70  
dB  
THD+N = 10%, f = 1 kHz, V(PVCC) = 14.4 V  
THD+N = 10%, f = 1 kHz, V(PVCC) = 21 V  
VCC = 21 V, f = 1 kHz, PO = 25 W (half-power)  
25  
50  
Continuous output power  
W
THD+N Total harmonic distortion + noise  
0.1%  
65  
µV  
dBV  
dB  
Vn  
Output integrated noise  
20 Hz to 22 kHz, A-weighted filter, gain = 20 dB  
VO = 1 Vrms, gain = 20 dB, f = 1 kHz  
–80  
–100  
Crosstalk  
Maximum output at THD+N < 1%, f = 1 kHz, gain = 20 dB,  
A-weighted  
SNR  
Signal-to-noise ratio  
102  
dB  
AM[2:0] = 000  
AM[2:0] = 001  
AM[2:0] = 010  
AM[2:0] = 011  
AM[2:0] = 100  
AM[2:0] = 101  
AM[2:0] = 110  
AM[2:0] = 111  
376 400  
470 500  
564 600  
940 1000  
1128 1200  
424  
530  
636  
1060  
kHz  
fOSC  
Oscillator frequency  
1278  
Reserved  
Thermal trip point  
Thermal hysteresis  
Overcurrent trip point  
150  
15  
°C  
°C  
A
7.5  
6.7 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
td  
Delay from MUTE rising to SD falling  
1.4  
s
td  
SD  
MUTE  
FAULT  
mP  
TPA3116D2-Q1  
SD  
MUTE  
FAULT  
Figure 1. Timing Requirement for SD  
Copyright © 2015, Texas Instruments Incorporated  
7
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
6.8 Typical Characteristics  
fs = 400 kHz, BD mode (unless otherwise noted)  
10  
10  
1
PO = 0.5 W  
PO = 1 W  
PO = 2.5 W  
PO = 1 W  
PO = 2.5 W  
PO = 5 W  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D001  
D003  
Gain = 26 dB  
PVCC = 6 V  
TA = 25°C  
Gain = 26 dB  
PVCC = 14.4 V  
TA = 25°C  
RL = 4 Ω  
10-µH + 0.68-µF filter  
RL = 4 Ω  
10-µH + 0.68-µF filter  
Figure 2. Total Harmonic Distortion + Noise (BTL) vs  
Frequency  
Figure 3. Total Harmonic Distortion + Noise (BTL) vs  
Frequency  
10  
10  
20 Hz  
1 kHz  
6 kHz  
20 Hz  
1 kHz  
6 kHz  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
Output Power (W)  
1
10  
10m  
100m  
1
10  
40  
Output Power (W)  
D004  
D006  
Gain = 26 dB  
PVCC = 6 V  
TA = 25°C  
Gain = 26 dB  
PVCC = 14.4 V  
TA = 25°C  
10-µH + 0.68-µF filter  
RL = 4 Ω  
10-µH + 0.68-µF filter  
RL = 4 Ω  
Figure 4. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
Figure 5. Total Harmonic Distortion + Noise (BTL) vs Output  
Power  
30  
25  
20  
15  
10  
5
100  
THD+N = 1%  
THD+N = 10%  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
PLIMIT Voltage (V)  
D007  
D009  
Gain = 26 dB  
PVCC = 14.4 V  
TA = 25°C  
Gain = 26 dB  
TA = 25°C  
RL = 4 Ω  
RL = 4 Ω  
10-µH + 0.68-µF filter  
10-µH + 0.68-µF filter  
Figure 6. Output Power (BTL) vs PLIMIT Voltage  
Figure 7. Maximum Output Power (BTL) vs Supply Voltage  
8
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
fs = 400 kHz, BD mode (unless otherwise noted)  
100  
0
-20  
Right to Left  
Left to Right  
90  
80  
70  
60  
50  
40  
30  
20  
-40  
-60  
-80  
-100  
-120  
-140  
PVCC = 6V  
PVCC = 12 V  
PVCC = 14.4 V  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
20  
100  
1k  
10k 20k  
Output Power (W)  
Frequency (Hz)  
D010  
D011  
Gain = 26 dB  
TA = 25°C  
RL = 4 Ω  
10-µH + 0.68-µF filter  
Gain = 26 dB  
PVCC = 12 V  
TA = 25°C  
RL = 4 Ω  
10-µH + 0.68-µF filter  
Figure 8. Power Efficiency (BTL) vs Output Power  
Figure 9. Crosstalk vs Frequency  
30  
20  
300  
200  
100  
0
0.5  
0.1  
PO = 1 W  
PO = 2.5 W  
PO = 5 W  
10  
0
-10  
-20  
-30  
-40  
-50  
-100  
-200  
-300  
-400  
-500  
0.01  
Gain  
Phase  
0.002  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
D012  
D014  
Gain = 26 dB  
PVCC = 14.4 V  
TA = 25°C  
PVCC = 14.4 V  
TA = 25°C  
RL = 4 Ω  
RL = 4 Ω  
22-µH + 1-µF filter  
22-µH + 3.3-µF filter  
Figure 10. Total Harmonic Distortion + Noise (BTL) vs  
Frequency  
Figure 11. Gain and Phase (BTL) vs Frequency  
Copyright © 2015, Texas Instruments Incorporated  
9
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPA311xD2-Q1 devices are highly efficient class-D audio amplifiers with integrated 120-mΩ MOSFETs that  
allow output currents up to 7.5 A. The high efficiency allows the amplifier to provide an excellent audio  
performance without the need for a bulky heat sink.  
The device can be configured for either master or slave operation by using the SYNC pin. Doing so helps to  
prevent audible beat noise.  
7.2 Functional Block Diagram  
GVDD  
PVCC  
BSPR  
SD  
PVCC  
TTL  
Buffer  
Modulation and  
PBTL Select  
MUTE  
Gain  
Control  
OUTPR_FB  
Gate  
Drive  
OUTPR  
GAIN  
+
OUTPR_FB  
GND  
RINP  
RINN  
+
+
PWM  
Logic  
Gain  
Control  
PLIMIT  
GVDD  
PVCC  
+
BSNR  
+
PVCC  
OUTPNR_FB  
OUTNR_  
FB  
+
FAULT  
Gate  
Drive  
OUTNR  
GND  
SC Detect  
DC Detect  
SYNC  
GAIN/SLV  
Ramp  
Generator  
Startup Protection  
Logic  
Biases and  
References  
Thermal  
Detect  
AM<2:0>  
PLIMIT  
Reference  
PLIMIT  
PVCC  
UVLO/OVLO  
PVCC  
GVDD  
PVCC  
BSNL  
AVDD  
GVDD  
PVCC  
LDO  
Regulator  
AVCC  
GVDD  
Gate  
Drive  
OUTNL  
OUTNL_FB  
OUTNL_  
FB  
+
+
LINP  
LINN  
GND  
+
+
Gain  
Control  
PWM  
Logic  
PLIMIT  
GVDD  
PVCC  
+
+
BSPL  
PVCC  
OUTPL_FB  
Gate  
Drive  
OUTPL  
GND  
Input  
Sense  
PBTL  
Select  
Modulation and  
PBTL Select  
OUTPL_FB  
GND  
Thermal  
Pad  
7.3 Feature Description  
7.3.1 Gain Setting and Master and Slave  
The gain of the TPA311xD2-Q1 family is set by the voltage divider connected to the GAIN/SLV control pin.  
Master or slave mode is also controlled by the same pin. An internal ADC is used to detect the eight input states.  
The first four stages set the GAIN in master mode to gains of 20, 26, 32, and 36 dB, respectively, whereas the  
next four stages set the GAIN in slave mode to gains of 20, 26, 32, and 36 dB, respectively. The gain setting is  
latched during power up and cannot be changed while device is powered. Table 2 lists the recommended resistor  
values and the state and gain.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
Table 2. Gain and Master or Slave  
MASTER / SLAVE  
MODE  
GAIN  
R1 (to GND)(1)  
R2 (to GVDD)(1)  
INPUT IMPEDANCE  
Master  
Master  
Master  
Master  
Slave  
20 dB  
26 dB  
32 dB  
36 dB  
20 dB  
26 dB  
32 dB  
36 dB  
5.6 kΩ  
20 kΩ  
39 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
16 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
Slave  
Slave  
Slave  
(1) Resistor tolerance should be 5% or better.  
5
6
INNR  
2
1
PLIMIT  
GVDD  
1
C5 1 µF  
2
7
2
1
R2  
8
51 k  
GAIN/SLV  
GND  
9
R1 51 k  
10  
Figure 12. Gain, Master or Slave  
In master mode, the SYNC terminal is an output, in slave mode, SYNC terminal is an input for a clock input.  
7.3.2 Input Impedance  
The input stage of the TPA311xD2-Q1 family is a fully differential input stage, and the input impedance changes  
with the gain setting from 9 kat 36-dB gain to 60 kat 20-dB gain. Table 2 lists the values from mininimum to  
maximum gain. The tolerance of the input resistor value is ±20%, so the minimum value is higher than 7.2 k.  
The inputs must be ac-coupled to minimize the output dc offset and ensure correct ramping of the output  
voltages during power ON and power OFF. The input ac-coupling capacitor together with the input impedance  
forms a high-pass filter with the following cutoff frequency:  
1
ƒ
=  
2pZiCi  
(1)  
If a flat bass response is required down to 20 Hz, the recommended cutoff frequency is a tenth of that, 2 Hz.  
Table 3 lists the recommended ac-coupling capacitors for each gain step. If –3 dB is accepted at 20 Hz, 10 times  
lower capacitors can used – for example, a 1 µF can be used.  
Table 3. Recommended Input AC-Coupling Capacitors  
GAIN  
20 dB  
26 dB  
32 dB  
36 dB  
INPUT IMPEDANCE  
INPUT CAPACITANCE  
HIGH-PASS FILTER  
1.8 Hz  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
1.5 µF  
3.3 µF  
5.6 µF  
10 µF  
1.6 Hz  
2.3 Hz  
1.8 Hz  
Z
f
C
i
Z
i
IN  
Input  
Signal  
Figure 13. Input Impedance  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
 
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
The input capacitors used should be a type with low leakage, like quality electrolytic, tantalum, or ceramic. If a  
polarized type is used, the positive connection should face the input pins, which are biased to 3 Vdc.  
7.3.3 Start-Up and Shutdown Operation  
The TPA311xD2-Q1 family employs a shutdown mode of operation designed to reduce supply current (ICC) to the  
absolute minimum level for power conservation during periods of nonuse. The SD input pin should be held high  
(see Recommended Operating Conditions for SD VIH and VIL levels) during normal operation when the amplifier  
is in use. Pulling SD low sets the outputs to mute, and the amplifier enters a low-current state. It is not  
recommended to leave SD unconnected, because amplifier operation would be unpredictable.  
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power  
supply. The gain setting is selected at the end of the start-up cycle. At the end of the start-up cycle, the gain is  
selected and cannot be changed until the next power up.  
7.3.4 PLIMIT Operation  
The TPA311xD2-Q1 family has a built-in voltage limiter that can be used to limit the output voltage level below  
the supply rail, the amplifier simply operates as if it was powered by a lower supply voltage, and thereby limits  
the output power. Add a resistor divider from GVDD to ground to set the voltage at the PLIMIT pin. An external  
reference may also be used if tighter tolerance is required. Add a 1-µF capacitor from the PLIMIT pin to ground  
to ensure stability. It is recommended to connect PLIMIT to GVDD when using 1SPW-modulation mode.  
Figure 14. Power Limit Example  
The PLIMIT circuit sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle  
to a fixed maximum value. This limit can be thought of as a virtual voltage rail which is lower than the supply  
connected to PVCC. This virtual rail is approximately 4 times the voltage at the PLIMIT pin. This output voltage  
can be used to calculate the maximum output power for a given maximum input voltage and speaker impedance.  
æ
ö2  
æ
ç
è
ö
÷
ø
RL  
´ V  
ç
÷
P
ç
÷
RL + 2 ´ RS  
è
ø
POUT  
=
for unclipped power  
2 ´ RL  
where  
POUT (10%THD) = 1.25 × POUT (unclipped)  
RL is the load resistance.  
RS is the total series resistance including RDS(on) and output filter resistance.  
VP is the peak amplitude  
VP = 4 × PLIMIT voltage if PLIMIT < 4 × VP  
(2)  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
Table 4. Power Limit Example  
PVCC (V)  
24 V  
PLIMIT VOLTAGE (V)(1)  
R to GND  
Short  
R to GVDD  
OUTPUT VOLTAGE (Vrms)  
GVDD  
3.3  
Open  
51 kΩ  
51 kΩ  
Open  
51 kΩ  
68 kΩ  
17.9  
12.67  
9
24 V  
45 kΩ  
24 kΩ  
Short  
24 V  
2.25  
GVDD  
2.25  
1.5  
12 V  
10.33  
9
12 V  
24 kΩ  
18 kΩ  
12 V  
6.3  
(1) PLIMIT measurements taken with EVM gain set to 26 dB and input voltage set to 1 Vrms  
.
7.3.5 GVDD Supply  
The GVDD supply is used to power the gates of the output full-bridge transistors. The GVDD supply can also be  
used to supply the PLIMIT and GAIN/SLV voltage dividers. Decouple GVDD with an X5R ceramic 1-µF capacitor  
to GND. The GVDD supply is not intended to be used for external supply. It is recommended to limit the current  
consumption by using resistor voltage dividers of 100 kor more for GAIN/SLV and PLIMIT.  
7.3.6 BSPx and BSNx Capacitors  
The full H-bridge output stages use only NMOS transistors. Therefore, to turn on correctly they require bootstrap  
capacitors for the high side of each output. A 220-nF ceramic capacitor of quality X5R or better, rated for at least  
16 V, must be connected from each output to its corresponding bootstrap input. (See the application circuit  
diagram in Figure 19.) The bootstrap capacitors connected between the BSxx pins and their corresponding  
outputs function as a floating power supply for the high-side N-channel power MOSFET gate-drive circuitry.  
During each high-side switching cycle, the bootstrap capacitors hold the gate-to-source voltage high enough to  
keep the high-side MOSFETs turned on.  
7.3.7 Differential Inputs  
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To  
use the TPA311xD2-Q1 family with a differential source, connect the positive lead of the audio source to the  
RINP or LINP input and the negative lead from the audio source to the RINN or LINN input. To use the  
TPA311xD2-Q1 family with a single-ended source, ac-ground the negative input through a capacitor equal in  
value to the input capacitor on the positive input and apply the audio source to either input. In a single-ended  
input application, the unused input should be ac-grounded at the audio source instead of at the device input for  
best noise performance. For good transient performance, the impedance seen at each of the two differential  
inputs should be the same.  
The impedance seen at the inputs should be limited to an RC time constant of 1 ms or less if possible. This is to  
allow the input dc-blocking capacitors to become completely charged during the 10-ms power-up time. If the  
input capacitors are not allowed to completely charge, there is some additional sensitivity to component matching  
which can result in a pop if the input components are not well matched.  
7.3.8 Device Protection System  
The TPA311xD2-Q1 family contains a complete set of protection circuits to make system design efficient as well  
as to protect the device against any kind of permanent failures due to short circuits, overload, overtemperature,  
and undervoltage. The FAULT pin signals if an error is detected according to Table 5:  
Table 5. Fault Reporting  
TRIGGERING CONDITION  
(typical value)  
LATCHED OR SELF-  
CLEARING  
FAULT  
FAULT  
ACTION  
Overcurrent  
Output short or short to PVCC or GND  
Tj > 150°C  
Low  
Low  
Low  
Output high impedance  
Output high impedance  
Output high impedance  
Latched  
Latched  
Latched  
Overtemperature  
Too-high dc offset  
DC output voltage  
Undervoltage on  
PVCC  
V(PVCC) < 4.5 V  
V(PVCC) > 27 V  
Output high impedance  
Output high impedance  
Self-clearing  
Self-clearing  
Overvoltage on PVCC  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.3.9 DC-Detect Protection  
The TPA311xD2-Q1 family has circuitry which protects the speakers from dc current, which might occur due to  
defective capacitors on the input or shorts on the printed circuit board at the inputs. A dc-detect fault is reported  
on the FAULT pin as a low state. The dc-detect fault also causes the amplifier to shut down by changing the  
state of the outputs to Hi-Z.  
If automatic recovery from the short-circuit protection latch is desired, connect the FAULT pin directly to the SD  
pin. This allows the FAULT pin function to automatically drive the SD pin low which clears the dc-detect  
protection latch.  
A dc-detect fault is issued when the output differential duty-cycle of either channel exceeds 60% for more than  
420 ms at the same polarity. For several values of the supply voltage, Table 6 shows some examples of the  
typical output offset voltages that trigger dc-detect protection. This feature protects the speaker from large dc  
currents or ac currents less than 2 Hz. To avoid nuisance faults due to the dc-detect circuit, hold the SD pin low  
at power up until the signals at the inputs are stable. Also, take care to match the impedance seen at the positive  
and negative inputs to avoid nuisance dc-detect faults.  
Table 6 lists the minimum output offset voltages required to trigger the dc detect. The outputs must remain at or  
above the voltage listed in the table for more than 420 ms to trigger the dc detect.  
Table 6. DC Detect Threshold  
V(PVCC) (V)  
VOS - OUTPUT OFFSET VOLTAGE (V)  
4.5  
6
0.96  
1.3  
12  
18  
2.6  
3.9  
7.3.10 Short-Circuit Protection and Automatic Recovery Feature  
The TPA311xD2-Q1 family has protection from overcurrent conditions caused by a short circuit on the output  
stage. The short-circuit protection fault is reported on the FAULT pin as a low state. The amplifier outputs are  
switched to a high-impedance state when the short-circuit protection latch is engaged. The latch can be cleared  
by cycling the SD pin through the low state.  
If automatic recovery from the short-circuit protection latch is desired, connect the FAULT pin directly to the SD  
pin. This allows the FAULT pin function to automatically drive the SD pin low, which clears the short-circuit  
protection latch.  
In systems where a possibility of a permanent short from the output to PVDD or to a high-voltage battery like a  
car battery can occur, pull the MUTE pin low with the FAULT signal and an inverting transistor to ensure a high-Z  
restart, as shown in Figure 15.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
GVDD  
32  
1
2
3
4
100K  
100K  
MODSEL  
PVCC  
31  
PVCC  
30  
SD  
SD  
FAULT  
BSPR  
FAULT  
29  
INPR  
INNR  
OUTPR  
28  
GND  
27  
5
6
GVDD  
GVDD  
PLIMIT  
GVDD  
OUTNR  
26  
BSNR  
25  
GND  
7
8
100K  
100K  
GAIN/SLV  
GND  
1uF  
24  
9
BSPL  
10  
11  
12  
23  
INPL  
INNL  
OUTPL  
22  
GND  
21  
MUTE  
MUTE  
AM2  
OUTNL  
13  
14  
15  
16  
20  
BSNL  
19  
AM1  
AM0  
PVCC  
18  
PVCC  
17  
SYNC  
AVCC  
TPA3116D2-Q1  
Figure 15. MUTE Driven by Inverted FAULT  
7.3.11 Thermal Protection  
Thermal protection on the TPA311xD2-Q1 family prevents damage to the device when the internal die  
temperature exceeds 150°C. There is a ±15°C tolerance on this trip point from device to device. Once the die  
temperature exceeds the thermal trip point, the device enters the shutdown state and the outputs are disabled.  
This is a latched fault.  
Thermal protection faults are reported on the FAULT pin as a low state.  
If automatic recovery from the thermal protection latch is desired, connect the FAULT pin directly to the SD pin.  
This allows the FAULT pin function to automatically drive the SD pin low, which clears the thermal protection  
latch.  
7.3.12 TPA311xD2-Q1 Modulation Scheme  
The TPA311xD2-Q1 family has the option of running in either BD modulation or 1SPW modulation; this is set by  
the MODSEL pin.  
7.3.12.1 MODSEL = GND: BD Modulation  
Each output is switching from 0 volts to the supply voltage. The OUTPx and OUTNx are in phase with each other  
with no input so that there is little or no current in the speaker. The duty cycle of OUTPx is greater than 50% and  
OUTNx is less than 50% for positive output voltages. The duty cycle of OUTPx is less than 50% and OUTNx is  
greater than 50% for negative output voltages. The voltage across the load sits at 0 V throughout most of the  
switching period, reducing the switching current, which reduces any I2R losses in the load.  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
PVCC  
Positive Output  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
Figure 16. BD Mode Modulation  
7.3.12.2 MODSEL = HIGH: 1SPW Modulation  
The 1SPW mode alters the normal modulation scheme in order to achieve higher efficiency with a slight penalty  
in THD degradation, and more attention required in the output filter selection. In 1SPW mode, the outputs  
operate at approximately 15% modulation during idle conditions. When an audio signal is applied, one output  
decreases and one increases. The decreasing output signal quickly rails to GND at which point all the audio  
modulation takes place through the rising output. The result is that only one output is switching during a majority  
of the audio cycle. Efficiency is improved in this mode due to the reduction of switching losses. The THD penalty  
in 1SPW mode is minimized by the high-performance feedback loop. The resulting audio signal at each half-  
output has a discontinuity each time the output rails to GND. This can cause ringing in the audio reconstruction  
filter unless care is taken in the selection of the filter components and type of filter used.  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
OUTP-OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
-PVCC  
OUTP  
-OUTN  
0
A
Speaker  
Current  
Figure 17. 1SPW Mode Modulation  
7.3.13 AM Avoidance EMI Reduction  
To reduce interference in the AM radio band, the TPA3116D2-Q1 has the ability to change the switching  
frequency via the AM[2:0] pins. The recommended frequencies are listed in Table 7. The fundamental frequency  
and its second harmonic straddle the AM radio band listed. This eliminates the tones that can be present due to  
the switching frequency being demodulated by the AM radio.  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Table 7. AM Frequencies  
US  
EUROPEAN  
AM FREQUENCY (kHz)  
AM FREQUENCY (kHz)  
522–540  
SWITCHING FREQUENCY (kHz)  
AM2  
AM1  
AM0  
540–917  
917–1125  
1125–1375  
1375–1547  
540–914  
500  
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
0
1
0
0
0
1
914–1122  
1122–1373  
1373–1548  
600 (or 400)  
500  
600 (or 400)  
1547–1700  
1548–1701  
600 (or 500)  
7.4 Device Functional Mode  
7.4.1 Mono Mode (PBTL)  
The TPA311xD2-Q1 family can be connected in MONO mode enabling up to 100-W output power. This is done  
by:  
Connecting INPL and INNL directly to ground (without capacitors) to set the device in mono mode during  
power up  
Connecting OUTPR and OUTNR together for the positive speaker terminal and OUTNL and OUTPL together  
for the negative terminal  
Applying the analog input signal to INPR and INNR  
TPA3116D2-Q1  
4.5 V–26 V  
PSU  
OUTPR  
Right  
OUTNR  
LC Filter  
OUTPL  
OUTNL  
PBTL  
Detect  
Left  
Figure 18. Mono Mode (PBTL)  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
This section describes a 2.1 master-and-slave application. The master is configured as stereo outputs and the  
slave is configured as a mono PBTL output.  
8.2 Typical Application  
A 2.1 solution, U1 TPA3116D2-Q1 in master mode 400 kHz, BTL, gain if 20 dB, power limit not implemented. U2  
in Slave, PBTL mode gain of 20dB. Inputs are connected for differential inputs.  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Application (continued)  
OUTPUT LC FILTER  
10uH  
EMI C-RC SNUBBER  
PVCC DECOUPLING  
PVCC  
10nF  
3.3R  
10nF  
220uF  
1nF  
100nF  
3.3R  
100nF  
1nF  
1nF  
1nF  
1nF  
680nF  
100K  
32  
31  
30  
1
MODSEL  
PVCC  
2
SD_LR  
SD  
PVCC  
BSPR  
220nF  
3
4
1nF  
1nF  
FAULT  
IN_P_RIGHT  
IN_N_RIGHT  
29  
28  
27  
26  
25  
24  
10nF  
3.3R  
INPR  
INNR  
OUTPR  
GND  
5
6
680nF  
PLIMIT  
GVDD  
OUTNR  
BSNR  
7
100K  
10uH  
10uH  
8
220nF  
220nF  
GAIN/SLV  
GND  
GND  
1uF  
9
BSPL  
20K  
10  
11  
12  
23  
22  
21  
INPL  
INNL  
OUTPL  
GND  
3.3R  
10nF  
1nF  
1nF  
680nF  
IN_P_LEFT  
IN_N_LEFT  
MUTE  
AM2  
OUTNL  
BSNL  
13  
14  
15  
16  
20  
19  
18  
17  
220nF  
MUTE_LR  
AM1  
AM0  
PVCC  
PVCC  
PVCC  
100K  
SYNC  
AVCC  
10nF  
3.3R  
680nF  
220uF  
1nF  
100nF  
TPA3116D2-Q1  
10uH  
PVCC DECOUPLING  
10K  
OUTPUT LC FILTER  
10uH  
EMI C-RC SNUBBER  
PVCC DECOUPLING  
PVCC  
PVCC  
3.3R  
220uF  
1nF  
100nF  
1nF  
1uF  
100K  
10nF  
32  
31  
30  
1
2
3
4
MODSEL  
PVCC  
SD_SUB  
SD  
PVCC  
BSPR  
220nF  
1nF  
1nF  
FAULT  
IN_P_SUB  
IN_N_SUB  
29  
28  
27  
26  
25  
24  
10nF  
INPR  
INNR  
OUTPR  
GND  
5
6
1nF  
1uF  
1uF  
1uF  
PLIMIT  
GVDD  
OUTNR  
BSNR  
3.3R  
7
47K  
75K  
10uH  
10uH  
8
220nF  
220nF  
GAIN/SLV  
GND  
GND  
1uF  
9
BSPL  
10  
11  
12  
23  
22  
21  
INPL  
INNL  
OUTPL  
GND  
3.3R  
1nF  
MUTE_SUB  
MUTE  
AM2  
OUTNL  
BSNL  
13  
14  
15  
16  
20  
19  
18  
17  
10nF  
220nF  
100K  
AM1  
AM0  
PVCC  
PVCC  
PVCC  
SYNC  
AVCC  
10nF  
1nF  
220uF  
1nF  
100nF  
TPA3116D2-Q1  
3.3R  
1nF  
10uH  
PVCC DECOUPLING  
Figure 19. Typical Application Schematic  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
Typical Application (continued)  
8.2.1 Design Requirements  
DESIGN PARAMETERS  
Input voltage range, V(PVCC)  
PWM output frequencies  
Maximum output power  
EXAMPLE VALUE  
4.5 V to 26 V  
400 kHz, 500 kHz, 600 kHz, 1 MHz or 1.2 MHz  
50 W  
8.2.2 Detailed Design Procedure  
The TPA311xD2-Q1 family is a very flexible and easy-to-use class-D amplifier; therefore, the design process is  
straightforward. Before beginning the design, gather the following information regarding the audio system.  
PVCC rail planned for the design  
Speaker or load impedance  
Maximum output-power requirement  
Desired PWM frequency  
8.2.2.1 Select the PWM Frequency  
Set the PWM frequency by using AM0, AM1 and AM2 pins.  
8.2.2.2 Select the Amplifier Gain and Master or Slave Mode  
In order to select the amplifier gain setting, the designer must determine the maximum power target and the  
speaker impedance. Once these parameters have been determined, calculate the required output-voltage swing  
which delivers the maximum output power.  
Choose the lowest analog gain setting that produces an output-voltage swing greater than the required output  
swing for maximum power. The analog gain and master or slave mode can be set by selecting the voltage  
divider resistors (R1 and R2) on the GAIN/SLV pin.  
8.2.2.3 Select Input Capacitance  
Select the bulk capacitors at the PVCC inputs for proper voltage margin and adequate capacitance to support the  
power requirements. In practice, with a well-designed power supply, two 100-μF, 50-V capacitors should be  
sufficient. One capacitor should be placed near the PVCC inputs at each side of the device. PVCC capacitors  
should be a low-ESR type because they are being used in a high-speed switching application.  
8.2.2.4 Select Decoupling Capacitors  
Good-quality decoupling capacitors must be added at each of the PVCC inputs to provide good reliability, good  
audio performance, and to meet regulatory requirements. X5R or better ratings should be used in this  
application. Consider temperature, ripple current, and voltage overshoots when selecting decoupling capacitors.  
Also, these decoupling capacitors should be located near the PVCC and GND connections to the device in order  
to minimize series inductances.  
8.2.2.5 Select Bootstrap Capacitors  
Each of the outputs requires bootstrap capacitors to provide gate drive for the high-side output FETs. For this  
design, use 0.22-μF, 25-V capacitors of X5R quality or better.  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
8.2.3 Application Curves  
10  
10  
1
20 Hz  
1 kHz  
6 kHz  
20 Hz  
1 kHz  
6 kHz  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10  
40  
10m  
100m  
1
10  
40  
Output Power (W)  
Output Power (W)  
D005  
D006  
Gain = 26 dB  
PVCC = 12 V  
TA = 25°C  
10-µH + 0.68-µF filter  
Gain = 26 dB  
PVCC = 14.4 V  
TA = 25°C  
RL = 4 Ω  
RL = 4 Ω  
10-µH + 0.68-µF filte  
Figure 20. Total Harmonic Distortion + Noise (BTL) vs  
Output Power  
Figure 21. Total Harmonic Distortion + Noise (BTL) vs  
Output Power  
9 Power Supply Recommendations  
The power supply requirements for the TPA3116D2-Q1 consist of one higher-voltage supply to power the output  
stage of the speaker amplifier. Several on-chip regulators are included on the TPA3116D2-Q1 to generate the  
voltages necessary for the internal circuitry of the audio path. It is important to note that the voltage regulators  
which have been integrated are sized only to provide the current necessary to power the internal circuitry. The  
external pins are provided only as a connection point for off-chip bypass capacitors to filter the supply.  
Connecting external circuitry to these regulator outputs may result in reduced performance and damage to the  
device. The high-voltage supply, between 4.5 V and 26 V, supplies the analog circuitry (AVCC) and the power  
stage (PVCC). The AVCC supply feeds the internal LDOs, including GVDD. The LDO outputs are connected to  
external pins for filtering purposes, but should not be connected to external circuits. The GVDD LDO output has  
been sized to provide current necessary for internal functions but not for external loading.  
10 Layout  
10.1 Layout Guidelines  
Because the class-D switching edges are fast, it is necessary to take care when planning the layout of the  
printed circuit board. The following suggestions help to meet EMC requirements.  
Decoupling capacitors — The high-frequency decoupling capacitors should be placed as close to the PVCC  
and AVCC terminals as possible. Large (100 μF or greater) bulk power supply decoupling capacitors should  
be placed near the TPA3116D2-Q1 on the PVCC supplies. Local, high-frequency bypass capacitors should  
be placed as close to the PVCC pins as possible. These capacitors can be connected to the IC GND pad  
directly for an excellent ground connection. Consider adding a small, good-quality, low-ESR ceramic capacitor  
between 220 pF and 1 nF and a larger mid-frequency capacitor of value between 100 nF and 1 µF, also of  
good quality, to the PVCC connections at each end of the chip.  
Keep the current loop from each of the outputs through the filter and back to GND as small and tight as  
possible. The size of this current loop determines its effectiveness as an antenna.  
Grounding — The PVCC decoupling capacitors should connect to GND. All ground should be connected at  
the IC GND, which should be used as a central ground connection or star ground for the TPA3116D2-Q1.  
Output filter — The LC filter should be placed close to the outputs. The capacitor used in the LC filter should  
be grounded.  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
Layout Guidelines (continued)  
For an example layout, see the TPA3116D2 Evaluation Module (TPA3116D2EVM) User Guide (SLOU336). Both  
the EVM user manual and the thermal pad application reports, SLMA002 and SLMA004, are available on the TI  
Web site at http://www.ti.com.  
10.2 Layout Example  
Figure 22. Layout Example Top  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 23. Layout Example Bottom  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPA3116D2-Q1, TPA3118D2-Q1  
www.ti.com.cn  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
10.3 Heat Sink Used on the EVM  
The heat sink (part number ATS-TI 10 OP-521-C1-R1 or equivalent) used on the EVM is a 14-mm × 25-mm ×  
50-mm extruded aluminum heat sink with three fins (see Figure 24). For additional information on the heat sink,  
go to www.qats.com.  
50.00 0.38  
[1.969 .015]  
SINK LENGTH  
MACHINE THESE  
3 EDGES AFTER  
0.00  
ANODIZATION  
25.00  
–0.60  
3.00  
[.118]  
+.000  
–.024  
SINK HEIGHT  
.984  
1.00  
[.118]  
6.35  
[.250]  
3.00  
[.118]  
13.90 0.38  
[.547 .015]  
BASE WIDTH  
6.95  
[.274]  
5.00  
[.197]  
40.00  
[1.575]  
2X 4-40 x 6.5  
Figure 24. EVM Heatsink  
This size heat sink has shown to be sufficient for continuous output power. The crest factor of music and having  
airflow lowers the requirement for heat sinking, and smaller types of heat sinks can be used.  
版权 © 2015, Texas Instruments Incorporated  
25  
 
TPA3116D2-Q1, TPA3118D2-Q1  
ZHCSE21A JULY 2015REVISED AUGUST 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
8. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPA3116D2-Q1  
TPA3118D2-Q1  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 本数据随时可能发生变更  
并且不对本文档进行修订,恕不另行通知。 要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
26  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
TPA3116D2QDADRQ1  
TPA3118D2QDAPRQ1  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
HTSSOP  
HTSSOP  
DAD  
32  
32  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
TPA  
3116Q  
D2  
ACTIVE  
DAP  
NIPDAU  
-40 to 125  
TPA3118Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPA3116D2QDADRQ1 HTSSOP DAD  
TPA3118D2QDAPRQ1 HTSSOP DAP  
32  
32  
2000  
2000  
330.0  
330.0  
24.4  
24.4  
8.6  
8.6  
11.5  
11.5  
1.6  
1.6  
12.0  
12.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPA3116D2QDADRQ1  
TPA3118D2QDAPRQ1  
HTSSOP  
HTSSOP  
DAD  
DAP  
32  
32  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
TM  
DAD0032C  
PowerPAD TSSOP - 1.15 mm max height  
S
C
A
L
E
1
.
6
0
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
A
0.1 C  
PIN 1 ID AREA  
30X 0.65  
32  
1
EXPOSED  
THERMAL PAD  
11.1  
10.9  
NOTE 3  
3.74  
3.16  
2X  
9.75  
16  
17  
0.30  
32X  
0.19  
3.04  
2.46  
0.1  
C A B  
6.2  
6.0  
B
(0.15) TYP  
0.25  
SEE DETAIL A  
1.15  
1.00  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4223628/B 02/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DAD0032C  
PowerPAD TMTSSOP - 1.15 mm max height  
PLASTIC SMALL OUTLINE  
32X (1.5)  
SEE DETAILS  
SYMM  
1
32  
32X (0.45)  
30X (0.65)  
SYMM  
(R0.05) TYP  
17  
16  
(7.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223628/B 02/2020  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
DAD0032C  
PowerPAD TSSOP - 1.15 mm max height  
PLASTIC SMALL OUTLINE  
32X (1.5)  
SYMM  
1
32  
32X (0.45)  
30X (0.65)  
SYMM  
(R0.05) TYP  
16  
17  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X  
4223628/B 02/2020  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DAP 32  
8.1 x 11, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225303/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
DAP0032C  
PowerPAD TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
TYP  
A
PIN 1 ID AREA  
30X 0.65  
32  
1
11.1  
10.9  
NOTE 3  
2X  
9.75  
16  
B
17  
0.30  
32X  
0.19  
6.2  
6.0  
0.1 C  
0.1  
C A B  
SEATING PLANE  
(0.15) TYP  
C
SEE DETAIL A  
3.04  
2.46  
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
3.74  
3.16  
1.2 MAX  
0.75  
0.50  
0.15  
0.05  
2X (0.6)  
NOTE 5  
0 - 8  
2X (0.15)  
NOTE 5  
DETAIL A  
TYPICAL  
4223691/A 05/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
DAP0032C  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(5.2)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.04)  
32X (1.5)  
SYMM  
SEE DETAILS  
1
32  
32X (0.45)  
30X (0.65)  
(11)  
NOTE 9  
SYMM  
(3.74)  
(1.2 TYP)  
(
0.2) TYP  
VIA  
(R0.05) TYP  
16  
17  
METAL COVERED  
BY SOLDER MASK  
(0.65) TYP  
(1.3) TYP  
(7.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223691/A 05/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
DAP0032C  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.04)  
BASED ON  
0.125 THICK  
STENCIL  
32X (1.5)  
1
32  
32X (0.45)  
30X (0.65)  
(3.74)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
17  
16  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.40 X 4.18  
3.04 X 3.74 (SHOWN)  
2.78 X 3.41  
0.125  
0.15  
0.175  
2.57 X 3.16  
4223691/A 05/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPA3116D2_15

Filter-Free Class-D Stereo Amplifier Family
TI

TPA3117D2

15-W Filter-Free Stereo Class-D Audio Power Amplifier
TI

TPA3117D2RHBR

15-W Filter-Free Stereo Class-D Audio Power Amplifier with SpeakerGuard™
TI

TPA3117D2RHBT

15-W stereo, 8- to 26-V supply, analog input Class-D audio amplifier w/ filter free &amp; SpeakerGuard&trade; 32-VQFN -40 to 85
TI

TPA3118D2

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance
TI

TPA3118D2-Q1

汽车类 30W、2 通道、4.5V 至 26V 电源模拟输入 D 类音频放大器
TI

TPA3118D2DAP

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance
TI

TPA3118D2DAPR

15W,30W,50W Filter-Free Class-D Stereo Amplifier Family with AM Avoidance
TI

TPA3118D2QDAPRQ1

汽车类 30W、2 通道、4.5V 至 26V 电源模拟输入 D 类音频放大器 | DAP | 32 | -40 to 125
TI

TPA311D

350-mW MONO AUDIO POWER AMPLIFIER
TI

TPA311DG4

350-mW MONO AUDIO POWER AMPLIFIER
TI

TPA311DGN

350-mW MONO AUDIO POWER AMPLIFIER
TI