TPA3223 [TI]

具有低空闲电流的 200W 立体声、400W 单声道、10 至 45V 电源电压、模拟输入 D 类音频放大器;
TPA3223
型号: TPA3223
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低空闲电流的 200W 立体声、400W 单声道、10 至 45V 电源电压、模拟输入 D 类音频放大器

放大器 音频放大器
文件: 总44页 (文件大小:2040K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPA3223  
ZHCSQ35 NOVEMBER 2022  
TPA3223 200W 立体声、400W 单声HD 模拟输D 类放大器  
1 特性  
3 说明  
10V 42V 宽电源电压范围  
• 立体(2 x BTL) 和单声(1 x PBTL) 配置  
THD+N 10% 时的输出功率  
200W/4ΩBTL 立体声配置  
300W/3ΩPBTL 单声道配置  
425W/2ΩPBTL 单声道配置  
THD+N 1% 时的输出功率  
TPA3223 是一款可在全功率、空闲和待机状态下实现  
高效运行的高功率 D 类放大器。该器件具有闭环反  
从而在整个音频频带内实现低失真并提供出色的音  
质。该器件以 AD 调制运行最多可为 4Ω载提供 2  
x 200W 的功率或为 2Ω 负载提供 1 x 400W 的功  
率。  
TPA3223 具有单端或差分模拟输入接口最高支持  
2VRMS具有四种可选增益20dB23.5dB32dB 和  
36dBTPA3223 还实现了大于 90% 的效率、低空闲  
功率和超低待机功耗 (< 0.1W)。这是通过采用 60mΩ  
MOSFET、经优化的栅极驱动方案和低功耗运行模式  
实现的。为进一步简化设计该器件集成了重要的保护  
功能包括欠压、过压、逐周期电流限制、短路、削波  
检测、过热警告和关断以及直流扬声器保护。  
170W/4ΩBTL 立体声配置  
325W/2ΩPBTL 单声道配置  
• 闭环反馈设计  
1W/4ΩTHD+N 0.02%  
60dB PSRRBTL无输入信号)  
– 输出噪声A 加权< 100µV  
SNRA 加权> 110dB  
• 低功耗运行模式  
器件信息(1)  
– 待机模式静音和关断  
– 单通BTL 运行  
封装尺寸NOM)  
器件型号  
TPA3223  
封装  
HTSSOP (44)  
6.10mm x 14.00mm  
• 多输入选项可简化前置放大器设计  
– 差分或单端模拟输入  
– 可选增益20dB23.5dB32dB36dB  
• 集成式保护欠压、过压、过流、逐周期电流限  
制、短路、削波检测、过热警告和关断以及直流扬  
声器保护  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
TPA3223  
RIGHT  
LEFT  
LC Filter  
LC Filter  
PBTL  
Detect  
• 轻松同步多个器件  
90% D 类运(4)  
Audio Source  
And Control  
OTW_CLIP  
RESET  
FAULT  
VDD  
AVDD  
GVDD  
2 应用  
CMUTE  
5V  
蓝牙Wi-Fi扬声器  
条形音箱  
• 低音炮  
Power Supply  
42V  
Switching Frequency Select  
Clock Synchronization  
FREQ_ADJ  
OSCM/P  
PVDD  
110VAC->240VAC  
专业和公共广(PA) 扬声器  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEF0  
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
9 Detailed Description......................................................17  
9.1 Overview...................................................................17  
9.2 Functional Block Diagrams....................................... 18  
9.3 Feature Description...................................................20  
9.4 Device Functional Modes..........................................24  
10 Application and Implementation................................30  
10.1 Application Information........................................... 30  
10.2 Typical Applications................................................ 30  
10.3 Power Supply Recommendations...........................34  
10.4 Layout..................................................................... 35  
11 Device and Documentation Support..........................38  
11.1 Documentation Support.......................................... 38  
11.2 Receiving Notification of Documentation Updates..38  
11.3 支持资源..................................................................38  
11.4 Trademarks............................................................. 38  
11.5 Electrostatic Discharge Caution..............................38  
11.6 术语表..................................................................... 38  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
6.1 Pin Functions.............................................................. 5  
7 Specifications.................................................................. 6  
7.1 绝对最大额定值...........................................................6  
7.2 ESD 等级.................................................................... 6  
7.3 建议运行条件.............................................................. 7  
7.4 热性能信息..................................................................7  
7.5 电气特性......................................................................8  
7.6 音频特(BTL)..........................................................10  
7.7 音频特(PBTL)....................................................... 10  
7.8 Typical Characteristics, BTL Configuration, AD-  
mode............................................................................11  
7.9 Typical Characteristics, PBTL Configuration, AD-  
mode........................................................................... 14  
8 Parameter Measurement Information..........................16  
Information.................................................................... 38  
4 Revision History  
DATE  
REVISION  
NOTES  
November 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
5 Device Comparison  
5-1. Device Comparison Table  
SUPPLY  
VOLTAGE  
THERMAL PAD  
LOCATION  
DEVICE NAME  
DESCRIPTION  
TPA3220  
TPA3221  
TPA3244  
TPA3245  
TPA3250  
TPA3251  
TPA3255  
60-W Stereo, 110-W Peak HD Analog-Input, Pad-Down Class-D Amplifier  
100 W Stereo, 200 W Mono HD, Analog-Input, Class-D Amplifier  
32 V  
Bottom  
Top  
32 V  
60-W Stereo, 110-W peak PurePath™ Ultra-HD Pad Down Class-D Amplifier  
115-W Stereo, 230-W Mono PurePath™ Ultra-HD Analog-Input Class-D Amplifier  
70 W Stereo, 130 W Peak Ultra-HD, Analog-Input, Pad-Down Class-D Amplifier  
175 W Stereo, 350 W Mono Ultra-HD, Analog-Input Class-D Amplifier  
315 W Stereo, 600 W Mono Ultra-HD, Analog-Input Class-D Amplifier  
31.5 V  
31.5 V  
38 V  
Bottom  
Top  
Bottom  
Top  
38 V  
53.5 V  
Top  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
The TPA3223 is available in a thermally enhanced TSSOP package.  
The package type contains a thermal pad that is located on the top side of the device for convenient thermal  
coupling to the heat sink.  
GVDD  
AVDD  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
BST2_M  
BST2_P  
GND  
2
NC  
3
GND  
4
GND  
GND  
5
OUT2_M  
OUT2_M  
PVDD  
CMUTE  
IN2_M  
IN2_P  
6
7
8
PVDD  
FREQ_ADJ  
OSCP  
9
PVDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
OUT2_P  
GND  
OSCM  
GND  
PowerPad™  
GND  
RESET  
IN1_M  
IN1_P  
OUT1_M  
PVDD  
PVDD  
GND  
PVDD  
NC  
OUT1_P  
OUT1_P  
GND  
NC  
FAULT  
OTW_CLIP  
GAIN/CLKSYNC  
VDD  
GND  
BST1_M  
BST1_P  
Not to scale  
6-1. DDV Package, HTSSOP 44-Pin, Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
6.1 Pin Functions  
6-1. Pin Functions Table  
NAME  
NO.  
2
I/O(1)  
P
DESCRIPTION  
AVDD  
AVDD voltage supply. Refer to: 10.3.1.2  
BST1_M  
BST1_P  
BST2_M  
BST2_P  
24  
P
OUT1_M HS bootstrap supply (BST), 0.033 μF capacitor to OUT1_M required.  
Refer to: 10.2.1.2.3  
23  
44  
43  
P
P
P
OUT1_P HS bootstrap supply (BST), 0.033 μF capacitor to OUT1_P required.  
Refer to: 10.2.1.2.3  
OUT2_M HS bootstrap supply (BST), 0.033 μF capacitor to OUT2_M required.  
Refer to: 10.2.1.2.3  
OUT2_P HS bootstrap supply (BST), 0.033 μF capacitor to OUT2_P required.  
Refer to: 10.2.1.2.3  
CMUTE  
6
19  
9
P
O
O
Mute and Startup Timing Capacitor. Connect a 33 nF capacitor to GND. Refer to: 9.4.3  
Shutdown signal, open drain; active low. Refer to: 9.3.6  
FAULT  
FREQ_ADJ  
Oscillator frequency programming pin. Refer to: 9.3.4  
Closed loop gain and clock synchronization configuration pin.  
Refer to: 9.3.1  
GAIN/CLKSYNC  
GND  
21  
I
4,5,12,16,25,  
26,42,33,34,  
41  
P
Ground  
GVDD  
IN1_M  
IN1_P  
IN2_M  
IN2_P  
NC  
1
P
I
Gate drive supply. Refer to: 10.3.1.2  
Negative audio input for channel 1  
Positive audio input for channel 1  
Negative audio input for channel 2  
Positive audio input for channel 2  
Not connected or pulled to ground  
14  
15  
I
7
8
I
I
3,17,18  
11  
OSCM  
I/O  
I/O  
O
Oscillator synchronization interface.  
Refer to: 9.3.1  
OSCP  
10  
20  
Oscillator synchronization interface.  
Refer to: 9.3.1  
OTW_CLIP  
Clipping warning and Over-temperature warning; open drain; active low.  
Refer to: 9.3.6  
OUT1_M  
OUT1_P  
OUT2_M  
OUT2_P  
PVDD  
32  
27,28  
39,40  
35  
O
O
O
O
P
Negative output for channel 1  
Positive output for channel 1  
Negative output for channel 2  
Positive output for channel 2  
29,30,31,36,  
37,38  
PVDD supply. Refer to: 10.2.1.2.2 and 10.3.1.3  
RESET  
13  
22  
I
Device reset input; active low. Refer to: 9.4.5.7, 9.4.1, 9.4.2  
Input power supply. Refer to: 10.3.1.1  
VDD  
P
P
PowerPad™  
Ground, connect to grounded heatsink. Placed on top side of device.  
(1) I=Input, O=Output, I/O= Input/Output, P=Power  
6-2. Mode Selection Pins  
MODE PINS(2)  
OUTPUT  
CONFIGURATION  
INPUT MODE(1)  
DESCRIPTION  
IN2_M  
IN2_P  
X
X
1N/2N + 1  
1N/2N + 1  
2 × BTL  
Stereo, BTL output configuration, AD mode modulation  
Mono, Paralleled BTL configuration. Connect OUT1_P to OUT2_P  
and OUT1_M to OUT2_M, AD mode modulation  
0
1
0
1
1 x PBTL  
1 x BTL  
Mono, BTL configuration. OUT1_M and OUT1_P active, AD mode  
modulation  
1N/2N + 1  
(1) 2N refers to differential input signal, 1N refers to single ended input signal. +1 refers to number of logic control ( RESET) input pins.  
(2) X refers to inputs connected through AC coupling capacitor, 0 refers to logic low (GND), 1 refers to logic high (AVDD).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPA3223  
 
 
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得除非另有说明(1)  
最小值  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
最大值  
单位  
50  
57  
V
PVDD GND  
PVDD GND瞬态小8ns(2)  
V
V
50  
BST_X GVDD  
电源电压  
50  
V
VDD GND  
GVDD GND(2)  
AVDD GND  
5.5  
5.5  
50  
V
V
V
OUT1_MOUT1_POUT2_MOUT2_P GND  
输出引脚  
OUT1_MOUT1_POUT2_MOUT2_P GND瞬态小8ns(2)  
57  
V
5.5  
5.5  
5.5  
9
V
IN1_MIN1_PIN2_MIN2_P GND  
FREQ_ADJGAIN/CLKSYNCCMUTERESETOSCPOSCM GND  
FAULTOTW_CLIP GND  
V
接口引脚  
V
mA  
°C  
°C  
持续灌电流、FAULTOTW_CLIP GND  
工作结温范围  
TJ  
0
150  
150  
Tstg  
-40  
贮存温度范围  
(1) 应力超出绝对最大额定下所列的值可能会对器件造成永久损坏。这些列出的值仅仅是应力额定值这并不表示器件在这些条件下以及  
建议运行条以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。  
(2) 这些电压表示在各种条件下测得的器件端子直流电+ 峰值交流波形。  
7.2 ESD 等级  
单位  
人体放电模(HBM)ANSI/ESDA/JEDEC JS-001所有引(1)  
充电器件模型CDM),JEDEC JESD22-C101所有引脚(2)  
±3000  
V
VESD  
静电放电  
±1500  
V
(1) JEDEC JEP155 指出500V HBM 可实现在标ESD 控制流程下安全生产。  
(2) JEDEC JEP157 指出250V CDM 可实现在标ESD 控制流程下安全生产。  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
 
 
 
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.3 建议运行条件  
在自然通风条件下的工作温度范围内测得除非另有说明)  
最小值  
典型值 最大值  
单位  
PVDD  
VDD(1)  
AVDD  
GVDD  
VIN  
10  
42  
5
45  
5.5  
V
功率级电源  
直流电源电压  
直流电源电压  
直流电源电压  
直流电源电压  
4.5  
4.5  
4.5  
V
V
V
V
VDDGVDD AVDD 的外部电源  
模拟电路的电源电压  
5
5.5  
5
5.5  
栅极驱动电路的电源电压  
最大输入电压摆幅INx_PINx_M)  
±2.8  
3.5  
4
PVDD = 42V输出滤波器电感在推荐范围内  
PVDD =< 42V输出滤波器电感在推荐范围内  
PVDD = 42V输出滤波器电感在推荐范围内  
PVDD/  
RL(BTL)  
负载阻BTL  
IOC  
BTL)  
RL(PBTL)  
1.6  
3
10  
负载阻PBTL  
LOUT(BTL)  
LOUT(PBTL)  
5
IOC 处的最小输出电感  
μH  
μH  
输出滤波器电感  
5
10  
输出滤波器电感LC 滤波器后PBTL  
每个电感器在一IOC 处的最小输出电感  
460  
510  
575  
2.3  
480  
533  
600  
500  
555  
标称值  
AM1  
为避AM 干扰PWM 帧速率可供选择1%  
电阻容差  
FPWM  
kHz  
AM2  
625  
fOSC(IO)  
3.78  
10.1  
30.3  
50.5  
MHz  
OSCM/OSCP CLK 输入外设模式)  
PWM 帧速率编程电阻  
9.9  
10  
30  
50  
1.0  
5
标称值主模式  
AM1主模式  
AM2主模式  
R(FREQ_ADJ)  
29.7  
49.5  
kΩ  
CPVDD  
V(FREQ_ADJ)  
TJ  
PVDD 闭合去耦电容器  
μF  
V
用于外设模式运行FREQ_ADJ 引脚上的电压 外设模式连接AVDD)  
0
125  
°C  
结温  
(1) VDD 必须连接5V 电源  
7.4 热性能信息  
TPA3223  
热指标(1)  
DDV 44 HTSSOP  
单位  
JEDEC 4 PCB  
RθJA  
42.6  
0.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
结至环境热阻  
RθJC(top)  
RθJB  
结至外壳顶部热阻  
结至电路板热阻  
13.8  
0.4  
ψJT  
结至顶部特征参数  
结至电路板特征参数  
结至外壳底部热阻  
13.5  
ψJB  
RθJC(bot)  
不适用  
(1) 有关新旧热指标的更多信息请参阅半导体IC 封装热指应用报告。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPA3223  
 
 
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.5 电气特性  
PVDD = 42VVDD = 5VGVDD = 5VAVDD = 5VTC外壳温度= 75°CfS = 480kHz除非另有说明。  
最小  
参数  
测试条件  
典型值 最大值  
单位  
电源电压和电流消耗  
IVDD  
150  
5
µA  
µA  
运行无音频信号VDD = 5V  
复位模式VDD = 5V  
VDD 电源电流  
IVDD  
IGVDD  
IGVDD  
IPVDD  
IPVDD  
IPVDD  
模拟输入  
23  
5
mA  
µA  
50% 占空比VDD = 5V  
栅极电源电流。AD 模式调制  
复位模式VDD = 5V  
45  
35  
1
mA  
mA  
mA  
PVDD 空闲电流AD 模式调制BTL  
PVDD 空闲电流AD 模式调制BTL  
PVDD 空闲电流AD 模式调制BTL  
使用推荐输出滤波器占空比50%  
使用推荐输出滤波器占空比50%TC = 25ºC  
复位模式无开关  
20  
23.5  
32  
R1 = 5.6kΩR2 = 断开  
R1 = 20kΩR2 = 100kΩ  
R1 = 39kΩR2 = 100kΩ  
R1 = 47kΩR2 = 75kΩ  
R1 = 51kΩR2 = 51kΩ  
R1 = 75kΩR2 = 47kΩ  
R1 = 100kΩR2 = 39kΩ  
R1 = 100kΩR2 = 16kΩ  
G = 20dB  
反相电压增益VOUT/VIN主时钟同步器件配  
)  
36  
G
dB  
20  
23.5  
32  
反相电压增益VOUT/VIN外设时钟同步器件  
配置)  
36  
48  
G = 23.5dB  
24  
RIN  
kΩ  
输入电阻  
G = 32dB  
12  
G = 36dB  
7.3  
振荡器  
2.76  
3.06  
3.45  
2.7  
2.88  
3.198  
3.6  
3
3.33  
3.75  
标称值主模式  
AM1主模式  
AM2主模式  
高电平输入电压  
低电平输入电压  
(1)  
fOSC(IO)  
FPWM × 6  
MHz  
VIH  
VIL  
V
V
0.7  
外部振荡器外设模式)  
输出MOSFET  
60  
60  
漏源电阻(LS)  
mΩ  
mΩ  
TJ = 25°C不包括金属化电阻,  
GVDD = 5V  
RDS(on)  
漏源电阻(HS)  
I/O 保护  
Vuvp,AVDD  
Vuvp,AVDD,hyst  
Vuvp,PVDD  
Vuvp,PVDD,hyst  
Vovp,PVDD  
Vovp,PVDD,hyst  
OTW  
4
0.2  
V
V
欠压保护限制AVDD  
欠压保护迟滞AVDD  
欠压保护限制PVDD_x  
欠压保护迟滞PVDD_x  
过压保护限制PVDD_x  
过压保护迟滞PVDD_x  
过热警告OTW_CLIP  
9.1  
V
0.6  
V
46  
V
0.85  
125  
V
°C  
需将温度降OTW 温度以下才能OTW  
事件后停OTW_CLIP。  
OTWhyst  
20  
°C  
OTE  
155  
20  
°C  
°C  
°C  
ms  
A
过热错误  
OTEhyst  
需复位才能OTE 事件后释FAULT  
OTE-OTW 差分  
OTE-OTW(differential)  
OLPC  
25  
2.2  
10  
fPWM = 480kHz1024 PWM 周期)  
1Ω载时的标称峰值电流  
过载保护计数器  
IOC, BTL  
过流限制保护扬声器负载电流  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.5 电气特(continued)  
PVDD = 42VVDD = 5VGVDD = 5VAVDD = 5VTC外壳温度= 75°CfS = 480kHz除非另有说明。  
最小  
参数  
测试条件  
典型值 最大值  
单位  
IOC, PBTL  
IOCT  
20  
A
过流限制保护扬声器输出电流  
1Ω载时的标称峰值电流  
150  
ns  
过流响应时间  
由过流引起的从开关转换到翻转状态的时间。  
静态数字规格  
VIH  
VIL  
2.3  
V
V
高电平输入电压  
低电平输入电压  
输入漏电流  
RESET  
0.7  
Ilkg  
100  
OSCMOSCPRESET  
μA  
OTW/关断故障)  
内部上拉电阻OTW_CLIP AVDD,  
FAULT AVDD  
RINT_PU  
26  
kΩ  
VOH  
VOL  
4.5  
5
5.5  
V
高电平输出电压  
低电平输出电压  
内部上拉电阻  
IO = 4 mA  
200  
500  
mV  
(1) 标称值AM1 AM2 使用相同的内部振荡器其固定比率4 : 4.5 : 5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.6 音频特(BTL)  
PCB 和系统配置符合推荐指南。音频频= 1kHzPVDD_X = 42VVDD = 5VGVDD = 5VRL = 4Ω、fS = 480kHzTC  
= 75°C输出滤波器LDEM = 10μHCDEM = 1µFAD 调制AES17 + AUX-0025 测量滤波器除非另有说明。  
最大  
参数  
测试条件  
最小值  
典型值  
单位  
PO  
200  
170  
W
W
%
RL = 4Ω,10% THD+N  
每通道功率输出  
每通道功率输出  
总谐波失+ 噪声  
PO  
RL = 4Ω,1% THD+N  
THD+N  
1W  
0.02  
A 加权AES17 滤波器输入电容器接地=  
20dB  
Vn  
100  
μV  
输出积分噪声  
|VOS  
|
5
108  
109  
1.5  
20  
mV  
dB  
dB  
W
输入交流耦合GND  
输出失调电压  
信噪比(1)  
SNR  
DNR  
Pidle  
A 加权= 20dB  
A 加权= 20dB  
PO = 0所有输出开关AD 调制TC = 25°C(2)  
动态范围  
空闲损耗引起的功率耗(IPVDD_X  
)
(1) SNR 1% THD+N 输出电平计算得出。  
(2) 实际系统空闲损耗也受输出电感器磁芯损耗的影响。  
7.7 音频特(PBTL)  
PCB 和系统配置符合推荐指南。音频频= 1kHzPVDD_X = 42VVDD = 5VGVDD = 5VRL = 3Ω,fS = 480kHzTC =  
75°C输出滤波器LDEM = 10μHCDEM = 1µF后置滤波PBTLAD 调制AES17 + AUX-0025 测量滤波器除非另有  
说明。  
参数  
测试条件  
RL = 2Ω,10% THD+N  
最小值  
典型值 最大值 单位  
425  
300  
W
W
RL = 3Ω,10% THD+N  
RL = 4Ω,10% THD+N  
RL = 2Ω,1% THD+N  
RL = 3Ω,1% THD+N  
RL = 4Ω,1% THD+N  
1W  
250  
PO  
每通道功率输出  
325  
245  
195  
THD+N  
Vn  
0.017  
%
总谐波失+ 噪声  
A 加权AES17 滤波器输入电容器接地=  
20dB  
100  
μV  
输出积分噪声  
|VOS  
|
10  
109  
110  
1.5  
mV  
dB  
dB  
W
输入交流耦合GND  
输出失调电压  
信噪比(1)  
SNR  
DNR  
Pidle  
A 加权= 20dB  
A 加权= 20dB  
PO = 0所有输出开关AD 调制TC = 25°C(2)  
动态范围  
空闲损耗引起的功率耗(IPVDD_X)  
(1) SNR 1% THD+N 输出电平计算得出。  
(2) 实际系统空闲损耗受输出电感器磁芯损耗的影响。  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics, BTL Configuration, AD-mode  
All Measurements taken at audio frequency = 1 kHz, PVDD = 42 V, VDD = 5 V, GVDD = 5 V, RL = 4 , fS = 480 kHz, TC =  
75°C, Output Filter: LDEM = 10 μH, CDEM = 1 μFAES17 + AUX-0025 measurement filters, unless otherwise noted.  
10  
5
10  
5
RL=4  
TC=75C  
PVDD=42V  
TC=75C  
BTL Mode  
1W  
10W  
50W  
100W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
Load=4  
Load=6  
Load=8  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
10  
100 200  
Frequency (Hz)  
Output Power (W)  
7-2. Total Harmonic Distortion+Noise vs Frequency  
7-1. Total Harmonic Distortion + Noise vs Output Power  
10  
200  
3  
1W  
5
180  
3- CB3C Limited  
10W  
50W  
100W  
2
1
4  
160  
6  
8  
140  
120  
100  
80  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
60  
AUX-0025 Filter  
80kHz analyzer BW  
RL=4TC=75C  
40  
0.005  
THD+N = 10%  
TC=75C  
BTL Mode  
20  
0.002  
0.001  
0
10  
20  
100  
1k  
Frequency (Hz)  
10k 20k 40k  
15  
20  
25  
30  
35  
40 42  
PVDD - Supply Voltage - V  
D014  
D037  
7-3. Total Harmonic Distortion+Noise vs Frequency  
7-4. Output Power vs Supply Voltage, AD-mode  
200  
3  
180  
3- CB3C Limited  
4  
160  
6  
8  
140  
120  
100  
80  
60  
40  
THD+N = 1%  
TC=75C  
BTL Mode  
20  
0
10  
15  
20  
25  
30  
35  
40  
PVDD - Supply Voltage - V  
D014  
D037  
7-5. Output Power vs Supply Voltage, AD-mode  
7-6. System Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPA3223  
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics, BTL Configuration, AD-mode (continued)  
All Measurements taken at audio frequency = 1 kHz, PVDD = 42 V, VDD = 5 V, GVDD = 5 V, RL = 4 , fS = 480 kHz, TC =  
75°C, Output Filter: LDEM = 10 μH, CDEM = 1 μFAES17 + AUX-0025 measurement filters, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4  
6  
8  
4  
6  
8  
TC=75C  
TC=75C  
PVDD = 24V  
PVDD = 12V  
BTL Mode  
BTL Mode  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
2 Channel Output Power - W  
2 Channel Output Power - W  
D024  
D024  
7-7. System Efficiency vs Output Power  
7-8. System Efficiency vs Output Power  
275  
250  
225  
200  
175  
150  
125  
100  
75  
THD+N=10%  
BTL Mode  
50  
4  
6  
8  
25  
0
0
25  
50  
75  
100  
TC - Case Temperature - C  
7-10. Output Power vs Case Temperature  
7-9. Power Dissipation vs Output Power  
7-11. Noise Amplitude vs Frequency  
7-12. CCIF Intermodulation  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.8 Typical Characteristics, BTL Configuration, AD-mode (continued)  
All Measurements taken at audio frequency = 1 kHz, PVDD = 42 V, VDD = 5 V, GVDD = 5 V, RL = 4 , fS = 480 kHz, TC =  
75°C, Output Filter: LDEM = 10 μH, CDEM = 1 μFAES17 + AUX-0025 measurement filters, unless otherwise noted.  
0
TC=75C  
4  
Pout=25W/channel  
FFT size=16384  
BTL Mode  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
AUX-0025 filter  
80kHz Analyzer BW  
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
f - Frequency - Hz  
7-14. Power Supply Rejection Ratio vs Frequency  
18 kHz + 19 kHz Ratio 1 : 1  
7-13. CCIF Intermodulation  
0
-20  
50  
CH1 to CH2  
CH2 to CH1  
RL=4, TC=75C  
Aggressor Amplitude = 2Vrms(1W)  
BTL Mode  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40  
-60  
-80  
RL=4  
TC=25C  
BTL Mode  
-100  
-120  
0
20  
100  
1k  
10k 20k  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42  
Supply Voltage (V)  
Frequency (Hz)  
D014  
D037  
7-15. Channel to Channel Crosstalk vs Frequency  
7-16. PVDD Idle Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.9 Typical Characteristics, PBTL Configuration, AD-mode  
All Measurements taken at audio frequency = 1 kHz, PVDD = 42 V, VDD = 5 V, GVDD = 5 V, RL = 2 , fS = 480 kHz, TA =  
75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, Post-Filter PBTL, AES17 + AUX-0025 measurement filters, unless  
otherwise noted.  
10  
10  
RL=2  
TC=75C  
1W  
25W  
100W  
5
PVDD=42V  
TC=75C  
Post-PBTL Mode  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
Load=2  
Load=3  
Load=4  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
10  
100  
500  
Frequency (Hz)  
Output Power (W)  
7-18. Total Harmonic Distortion+Noise vs Frequency  
7-17. Total Harmonic Distortion+Noise vs Output  
10  
350  
2  
1W  
25W  
100W  
5
3  
300  
2
1
4  
250  
0.5  
0.2  
0.1  
200  
150  
0.05  
0.02  
0.01  
100  
AUX-0025 Filter  
80kHz analyzer BW  
RL=2TC=75C  
0.005  
THD+N = 1%  
TC=75C  
Post-PBTL Mode  
50  
0.002  
0.001  
0
10  
20  
100  
1k  
10k 20k 40k  
15  
20  
25  
30  
35 40 42  
Frequency (Hz)  
PVDD - Supply Voltage - V  
D014  
D037  
7-19. Total Harmonic Distortion+Noise vs Frequency  
7-20. Output Power vs Supply Voltage  
100  
2  
3  
4  
70  
50  
30  
20  
10  
7
5
3
2
TC=75C  
PVDD = 42V  
Post-PBTL Mode  
1
0.7  
0.5  
0.01  
0.05  
0.2 0.5  
1
2 3 45 710 20 50 100200 500  
2 Channel Output Power - W  
D024  
7-21. System Efficiency vs Output Power  
7-22. Power Dissipation vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
7.9 Typical Characteristics, PBTL Configuration, AD-mode (continued)  
All Measurements taken at audio frequency = 1 kHz, PVDD = 42 V, VDD = 5 V, GVDD = 5 V, RL = 2 , fS = 480 kHz, TA =  
75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, Post-Filter PBTL, AES17 + AUX-0025 measurement filters, unless  
otherwise noted.  
500  
400  
300  
200  
100  
0
0
-20  
TC=75C  
2   
Pout=1W/channel  
FFT size=16384  
Post-PBTL Mode  
-40  
-60  
-80  
-100  
-120  
-140  
2   
3   
4   
AUX-0025 filter  
80kHz Analyzer BW  
THD+N=10%  
Post-PBTL Mode  
0
5k  
10k  
15k  
20k  
25k  
30k  
35k  
40k  
0
25  
50  
TC - Case Temperature - C  
75  
100  
f - Frequency - Hz  
18 kHz + 19 kHz Ratio 1 : 1  
7-24. CCIF Intermodulation vs Frequency  
7-23. Output Power vs Case Temperature  
7-25. CCIF Intermodulation vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
All parameters are measured according to the conditions described in the 7.3 .  
Most audio analyzers will not give correct readings of Class-D amplifiersperformance due to their sensitivity to  
out of band noise present at the amplifier output. AES-17 + AUX-0025 pre-analyzer filters are recommended to  
use for Class-D amplifier measurements. In absence of such filters, a 30-kHz low-pass filter (10 + 47 nF) can  
be used to reduce the out of band noise remaining on the amplifier outputs.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
TPA3223 is designed as a feature-enhanced cost efficient high power Class-D audio amplifier. The device has  
built-in advanced protection circuitry to provide for maximum product robustness as well as a flexible feature set  
including selectable gain settings, switching frequency, clock synchronization of multiple devices, mute function,  
temperature and clipping status signals. TPA3223 has a bandwidth up to 100 kHz and low output noise designed  
for high resolution audio applications and accepts both differential and single ended analog audio inputs at levels  
from 1 VRMS to 2 VRMS. With the closed loop operation TPA3223 is designed for high audio performance with a  
system power supply between 10 V and 42 V.  
An external 5 V supply is used for the AVDD and VDD supply pins. Although supplied from the same 5 V source,  
separating AVDD and VDD on the printed-circuit board (PCB) by RC filters (see 10.2 for details) is  
recommended. These RC filters provide the recommended high-frequency isolation. Special attention needs to  
be paid to placing all decoupling capacitors as close to their associated pins as possible. In general, the physical  
loop with the power supply pins, decoupling capacitors and GND return path to the device pins must be kept as  
short as possible and with as little area as possible to minimize induction (see 10.4.2 for additional  
information).  
The floating supplies for the output stage high side gate drives are supplied by built-in bootstrap circuitry  
requiring only an external capacitor for each half-bridge.  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap  
pin (BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap  
capacitor is charged through an internal diode connected between the gate-drive power-supply pin (GVDD) and  
the bootstrap pins. When the power-stage output is high, the bootstrap capacitor potential is shifted above the  
output potential and thus provides an acceptable voltage supply for the high-side gate driver. TI recommends to  
use 33 nF ceramic capacitors, size 0603 or 0805, for the bootstrap supply. These 33 nF capacitors maintain  
sufficient energy storage, even during minimal PWM duty cycles, to keep the high-side power stage FET  
(LDMOS) fully turned on during the remaining part of the PWM cycle.  
Special attention needs to be paid to the power stage power supply; this includes component selection, PCB  
placement, and routing.  
For good electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X node  
is decoupled with 1 μF ceramic capacitors placed as close as possible to the PVDD supply pins. TI  
recommends to follow the PCB layout of the TPA3223 reference design. For additional information on  
recommended power supply and required components, see 10.2.  
The external power supply for the AVDD and VDD supplies must be from a low-noise, low-output-impedance  
voltage regulator. Likewise, the 42V power stage supply is assumed to have low output impedance throughout  
the entire audio band, and low noise. The power supply sequence is not critical as facilitated by the internal  
power-on-reset circuit, but TI recommends to release RESET after the power supply is settled for minimum turn  
on audible artifacts. Moreover, the TPA3223 is fully protected against erroneous power-stage turn on due to  
parasitic gate charging. Thus, voltage-supply ramp rates (dV/dt) are noncritical within the specified range (see  
the 7.3 table of this data sheet).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPA3223  
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.2 Functional Block Diagrams  
AVDD  
VDD  
RESET  
AVDD  
GVDD  
GVDD  
ERROR  
HANDLING  
OTW_CLIP  
FAULT  
DIFFOC  
CB3C  
IOUT1_M  
IOUT1_P  
IOUT2_M  
IOUT2_P  
OVER-LOAD  
PROTECTION  
CURRENT  
SENSE  
GAIN/CLKSYNC  
PWM ACTIVITY  
DETECTOR  
PVDD  
PPSC  
OUT_X  
POWER-UP  
RESET  
TEMP  
I/O LOGIC  
SENSE  
CMUTE  
STARTUP  
CONTROL  
PVDD  
AVDD  
UVP  
STARTUP & CONTROL  
FREQ_ADJ  
OSCILLATOR  
OSCM  
OUTPUT DC  
CONTROL  
OSCP  
PROTECTION  
GVDD  
BST1_M  
PVDD  
-
GATE-DRIVE  
GATE-DRIVE  
OUT1_M  
GND  
+
IN1_P  
ANALOG  
PWM  
RECEIVER  
TIMING  
CONTROL  
LOOP  
CONTROL  
FILTER  
IN1_M  
+
-
OUT_1_P  
PVDD  
GVDD  
BST1_P  
CHANNEL 1  
GVDD  
BST2_M  
PVDD  
-
GATE-DRIVE  
GATE-DRIVE  
OUT2_M  
GND  
+
IN2_P  
ANALOG  
PWM  
RECEIVER  
TIMING  
CONTROL  
LOOP  
CONTROL  
FILTER  
IN2_M  
+
-
OUT2_P  
PVDD  
GVDD  
BST2_P  
CHANNEL 2  
9-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
System  
microcontroller or  
Analog circuitry  
BST1_P  
OSCM  
OSCP  
Oscillator  
Synchronization  
Bootstrap  
Capacitors  
BST1_M  
2nd Order  
L-C Output  
Filter for  
each  
OUT1_P  
Output  
H-Bridge 1  
IN1_M  
IN1_P  
Input DC  
Blocking  
Caps  
ANALOG_IN1_M  
ANALOG_IN1_P  
OUT1_M  
Input  
H-Bridge 1  
H-Bridge  
Hardwire PWM  
Frame Adjust  
2-CHANNEL  
H-BRIDGE  
BTL MODE  
FREQ_ADJ  
Gain and Clock  
Synchronization  
GAIN/CLKSYNC  
2nd Order  
L-C Output  
Filter for  
each  
OUT2_P  
OUT2_M  
IN2_M  
IN2_P  
Input DC  
Blocking  
Caps  
ANALOG_IN2_M  
ANALOG_IN2_P  
Output  
H-Bridge 2  
Input  
H-Bridge 2  
H-Bridge  
PBTL  
Detect  
BST2_P  
BST2_M  
Bootstrap  
Capacitors  
PVDD  
PVDD  
Power Supply  
Decoupling  
VDD, AVDD  
& GVDD  
Power Supply  
Decoupling  
42 V  
SYSTEM Power  
Supplies  
GND  
VDD, GVDD, AVDD  
GND  
5 V  
VAC  
*NOTE1: Logic AND in or outside microcontroller  
9-2. System Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Input Configuration, Gain Setting And Primary / Peripheral Operation  
TPA3223 is designed to accept either a differential or a single-ended audio input signal. To accept a wide range  
of system front ends TPA3223 has selectable input gain that allows full scale output with a wide range of input  
signal levels.  
Best system noise performance is obtained with balanced audio interface. However, in systems with only a  
single ended audio input signal available, one input terminal can be connected to AC ground to accept single  
ended audio input signals.  
IN1_P  
IN1_P  
IN1_M  
+
-
IN1_M  
IN2_P  
IN2_P  
IN2_M  
+
-
IN2_M  
TPA322x  
9-3. Balanced Audio Input Configuration  
In systems with single ended audio inputs, set the device gain higher than for systems with balanced audio input  
signals.  
IN1_P  
IN1  
+
-
IN1_M  
IN2_P  
IN2  
+
-
IN2_M  
TPA322x  
9-4. Single Ended Audio Input Configuration  
9.3.2 Gain Setting And Clock Synchronization  
The gain of TPA3223 is set by the voltage divider connected to the GAIN/CLKSYNC control pin. Clock  
synchronization configuration is also controlled by the same pin. An internal ADC is used to detect the 8 input  
states. The first four stages sets the GAIN in Primary mode in gains of 20, 23.5, 32 and 36 dB respectively, while  
the next four stages sets the GAIN in peripheral mode in gains of 20, 23.5, 32 and 36 dB respectively. The gain  
setting is latched when RESET goes high and cannot be changed while RESET is high. 9-1 shows the  
recommended resistor values, the state and gain:  
9-1. Clock Synchronization Configuration  
Primary / Peripheral  
Mode  
Differential Input Signal Level  
(each input pin)  
Single Ended Input Signal  
Level  
Gain  
R1 (to GND)  
R2 (to AVDD)  
Primary  
Primary  
20 dB  
23.5 dB  
32 dB  
36 dB  
20 dB  
23.5 dB  
32 dB  
36 dB  
OPEN  
100 kΩ  
100 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
39 kΩ  
16 kΩ  
2 VRMS  
1 VRMS  
2 VRMS  
2 VRMS  
5.6 kΩ  
20 kΩ  
39 kΩ  
47 kΩ  
51 kΩ  
75 kΩ  
100 kΩ  
100 kΩ  
Primary  
0.5 VRMS  
0.32 VRMS  
2 VRMS  
1 VRMS  
Primary  
0.63 VRMS  
2 VRMS  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
1 VRMS  
2 VRMS  
0.5 VRMS  
0.32 VRMS  
1 VRMS  
0.63 VRMS  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
AVDD  
R2  
AVDD  
GAIN/CLKSYNC  
TPA3223  
R1  
GND  
9-5. Clock Synchronization Setup  
For easy multi-channel system design TPA3223 has a Clock Synchronization feature that allows automatic  
synchronization of multiple peripheral devices operated at the PWM switching frequency of a Primary device.  
Using clock synchronization benefits system noise performance by eliminating spurious crosstalk sum and  
difference tones due to unsynchronized channel-to-channel switching frequencies. Furthermore, the Clock  
Synchronization scheme is designed to interleave switching of the individual channels in a multi-channel system  
such that the power supply current ripple frequency is moved to a higher frequency, which reduces the RMS  
ripple current in the power supply bulk capacitors.  
The Clock Synchronization scheme and the interleaving of the output stage switching are automatically  
configured by connecting the OSCx pins between a Primary and multiple peripheral devices. There are two  
different configurations of peripheral devices (secondary or tertiary) depending on how the OSCx pins are  
connected. Connect the OSCM of the Primary device to the OSCM of a peripheral device and the OSCP of the  
Primary device to the OSCP pin of a peripheral device to configure as a secondary. Connect the OSCM of the  
Primary device to the OSCP of a peripheral device and the OSCP of the Primary device to the OSCM pin of a  
peripheral device to configure as a tertiary. The Primary, secondary and tertiary PWM switching is 30 degrees  
out of phase with each other. All switching channels are automatically synchronized by releasing RESET on all  
devices at the same time.  
AVDD  
47k  
47k  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
OSCM  
OSCP  
TPA322x  
Secondary  
RESET  
TPA322x  
Tertiary  
RESET  
TPA322x  
Secondary  
RESET  
TPA322x  
Primary  
RESET  
TPA322x  
Tertiary  
RESET  
TPA322x  
Secondary  
RESET  
TPA322x  
Tertiary  
RESET  
9-6. Gain and Primary PCB Implementation  
Placement on the PCB and connection of multiple TPA3223 devices in a multi channel system is illustrated in 图  
9-6. Peripheral devices must be placed on either side of the Primary device, with a secondary device on one  
side of the Primary device, and a tertiary device on the other. In systems with more than 3 TPA3223 devices, the  
Primary must be in the middle, and every second peripheral device must be a secondary or tertiary as illustrated  
in 9-6. A 47 kΩpull up resistor to AVDD must be connected to the Primary device OSCM output and a 47 kΩ  
pull down resistor to GND must be connected to the Primary OSCP CLK outputs.  
9.3.3 PWM Modulation  
The TPA3223 uses the AD-Mode PWM modulation scheme which continuous switches the two half bridge  
outputs in each BTL output channel.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
OUTP  
OUTN  
0V  
0V  
0A  
OUTP Current  
OUTN Current  
0A  
9-7. AD Mode Output Waveforms, Idle  
OUTP  
OUTN  
0V  
0V  
>0A  
OUTP Current  
OUTN Current  
<0A  
9-8. AD Mode Output Waveforms, High Level Output  
PVDD  
PVDD  
OUTX_P (PWM)  
OUTX_M (PWM)  
SpeakerX_P  
PVDD/2  
PVDD/2  
SpeakerX_M  
0V  
SpeakerX_Diff  
9-9. AD Mode Speaker Output Signals, Low or and High Level Output  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.3.4 Oscillator  
The oscillator frequency can be trimmed by external control of the FREQ_ADJ pin.  
To reduce interference problems while using radio receiver tuned within the AM band, change the switching  
frequency from nominal to higher values. Choose these values so that the nominal and the higher value  
switching frequencies together results in the fewest cases of interference throughout the AM band. Select the  
oscillator frequency by changing the FREQ_ADJ resistor value connected to GND in Primary mode, according to  
the description in the 7.3.  
For peripheral mode operation, turn off the oscillator by pulling the FREQ_ADJ pin to AVDD. Doing so configures  
the OSC_I/O pins as inputs to be controlled from an external differential clock. In a multiple device system, inter-  
channel delay is automatically set up between the switching of the audio channels, which can be illustrated by  
no idle channels switching at the same time. Doing so will not influence the audio output, but only the switch  
timing to minimize noise coupling between audio channels through the power supply to optimize audio  
performance and to get better operating conditions for the power supply. The inter-channel delay will be set up  
for a peripheral device depending on the polarity of the OSC_I/O connection such that a secondary is selected  
by connecting the primary device OSC_I/O to the secondary device OSC_I/O with same polarity (+ to + and - to  
-), and tertiary is selected with the inverse polarity (+ to - and - to +).  
9.3.5 Input Impedance  
The TPA3223 input stage is a fully differential input stage and the input impedance changes with the gain setting  
from 7.3 kΩat 36 dB gain to 48 kΩat 20 dB gain. 9-2 lists the values from min to max gain. The tolerance of  
the input resistor value is ±20 % so the minimum value is higher than 5.8 kΩ. The inputs need to be AC-coupled  
to minimize the output DC-offset and ensure correct ramping of the output voltages during power-ON and power-  
OFF. The input ac-coupling capacitor together with the input impedance forms a high-pass filter with the  
following cut-off frequency:  
If a flat bass response is required down to 20 Hz, then the recommended cut-off frequency is a tenth of that,  
which is 2 Hz. 9-2 lists the recommended ac-couplings capacitors for each gain step. If a -3 dB in frequency  
response is accepted at 20 Hz, then 10 times lower capacitors can be used for example, a 1 μF can be used.  
9-2. Recommended Input AC-Coupling Capacitors  
Gain  
20 dB  
23.5 dB  
32 dB  
36 dB  
Input Impedance  
Input AC-Coupling Capacitance  
Input High Pass Filter  
4.7 µF  
10 µF  
10 µF  
10 µF  
0.7 Hz  
0.7 Hz  
1.3 Hz  
2.2 Hz  
48 kΩ  
24 kΩ  
12 kΩ  
7.3 kΩ  
Use an input capacitors with low leakage, like quality electrolytic, tantalum, film or ceramic. If a polarized type of  
input capacitor is used, then place the positive connection such that the capacitor has a positive DC bias.  
9.3.6 Error Reporting  
The FAULT, and OTW_CLIP, pins are active-low, open-drain outputs. The FAULT function is for protection-mode  
signaling to a system-control device. Any fault resulting in device shutdown is signaled by the FAULT pin going  
low. Also, OTW_CLIP goes low when the device junction temperature exceeds 125°C (see 9-3).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPA3223  
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9-3. Error Reporting  
FAULT  
OTW_CLIP (1)  
DESCRIPTION  
Overtemperature (OTE), overload (OLP), undervoltage (UVP) or overvoltage (OVP).  
Junction temperature higher than 125°C (overtemperature warning).  
0
0
Overload (OLP), undervoltage (UVP), overvoltage (OVP). Junction temperature lower  
than 125°C  
0
1
1
1
0
1
Junction temperature higher than 125°C (overtemperature warning)  
Junction temperature lower than 125°C and no OLP or UVP faults (normal operation)  
(1) Static value. OTW_CLIP is static low when OTW is asserted, and toggling when output signal is CLIP  
备注  
Asserting RESET low forces the FAULT signal high, independent of faults being present. TI  
recommends monitoring the OTW_CLIP signal using the system microcontroller and responding to an  
overtemperature warning signal by turning down the volume to prevent further heating of the device  
resulting in device shutdown (OTE).  
To reduce external component count, an internal pullup resistor to 3.3 V is provided on both FAULT and  
OTW_CLIP outputs.  
9.4 Device Functional Modes  
TPA3223 can be configured in either a stereo BTL (Bridge Tied Load) mode, mono BTL mode (only one output  
BTL channel active), or in a mono PBTL (Parallel Bridge Tied Load) mode. In PBTL mode the two output BTL  
channels are paralleled with double output current available. The paralleling of the two BTL outputs must be  
made after the output LC filter.  
See 6-2 for mode configuration setup.  
OUT1_P  
OUT1_P  
IN1_P  
IN1_P  
IN1_P  
IN1_P  
OUT1_M  
OUT2_P  
OUT1_M  
OUT2_P  
IN1_M  
IN1_M  
IN1_M  
IN1_M  
TPA322x  
TPA322x  
IN2_P  
IN2_P  
IN2_P  
IN2_M  
IN2_M  
IN2_M  
AVDD  
OUT2_M  
OUT2_M  
9-10. Stereo BTL  
9-11. Mono BTL  
OUT1_P  
IN1_P  
IN1_P  
OUT1_M  
OUT2_P  
IN1_M  
IN1_M  
TPA322x  
IN2_P  
IN2_M  
OUT2_M  
9-12. Mono PBTL, Post LC Filter  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.4.1 Powering Up  
The TPA3223 does not require a power-up sequence because of the integrated undervoltage protection (UVP),  
but TI recommends to hold RESET low until PVDD supply voltage is stable to avoid audio artifacts. The outputs  
of the H-bridges remain in a high-impedance state until the gate-drive supply (GVDD) and AVDD voltages are  
above their UVP voltage thresholds (see the 7.5 table of this data sheet). Doing so allows an internal circuit to  
charge the external bootstrap capacitors by enabling a weak pull-down of the half-bridge output as well as  
initiating a controlled ramp up sequence of the output voltage.  
PVDD  
VDD  
GVDD  
RESET  
AVDD  
t
Precharge  
C 20ms  
FAULT  
VIN_X  
OUT_X  
VOUT_X  
t
Startup ramp  
V_CMUTE  
9-13. Startup Timing  
When RESET is released to turn on TPA3223, FAULT signal turns low. FAULT stays low until AVDD reaches the  
undervoltage protection (UVP) voltage threshold (see the 7.5 table of this data sheet). After a pre-charge time  
to stabilize the DC voltage across the input AC coupling capacitors, the ramp up sequence starts and completes  
once the CMUTE node is charged to the final value.  
9.4.1.1 Startup Ramp Time  
During the startup ramp the CMUTE capacitor is charged by an internal current generator. With use of the  
recommended 33 nF CMUTE capacitor value, the startup ramp time is approximately 20 ms. Higher CMUTE  
capacitor value will increase the ramp time, and a lower value will decrease the ramp time. The recommended  
CMUTE capacitor value is selected for minimum audible artifacts during startup and shutdown ramp.  
9.4.2 Powering Down  
The TPA3223 does not require a power-down sequence. The device remains fully operational as long as the  
VDD, AVDD and PVDD voltages are above their undervoltage protection (UVP) voltage thresholds (see 7.5).  
Although not specifically required, TI recommends to hold RESET low during power down, thus preventing  
audible artifacts including pops or clicks by initiating a controlled ramp down sequence of the output voltage. The  
ramp down sequence will complete once the CMUTE node is discharged.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPA3223  
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.4.2.1 Power Down Ramp Time  
During the power down ramp the CMUTE capacitor is discharged by internal circuitry. With use of the  
recommended 33 nF CMUTE capacitor value, the power-down ramp time is approximately 20 ms.  
9.4.3 Device Reset  
Asserting RESET low initiates the device ramp down. The output FETs go into a Hi-Z state after the ramp down  
is complete. Output pull downs are active in both BTL mode and PBTL mode with RESET low.  
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the RESET input low  
enables weak pull-down of the half-bridge outputs.  
Asserting RESET low removes any fault information to be signaled on the FAULT output, that is, FAULT is forced  
high. A rising-edge transition on RESET allows the device to resume operation after a fault. To make sure of  
thermal reliability, the rising edge of RESET must occur no sooner than 4 ms after the falling edge of FAULT.  
The TPA3223 will enter a low power state once the ramp down sequence is complete.  
9.4.4 Device Soft Mute  
Asserting CMUTE low initiates the device soft mute function. The soft mute function initiates a ramp down  
sequence of the outputs, and the output FETs go into a Hi-Z state after the ramp down is complete. All internal  
circuits are powered while in soft mute state. External control of the soft mute function must provide high  
impedance output when not engaged (open drain output) to allow the CMUTE node to charge/discharge during  
device ramp up and ramp down when de-asserting and asserting RESET.  
9.4.5 Device Protection System  
The TPA3223 contains advanced protection circuitry carefully designed to facilitate system integration and ease  
of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such as  
short circuits, overload, overtemperature, overvoltage, and undervoltage. The TPA3223 responds to a fault by  
immediately setting the power stage in a high-impedance (Hi-Z) state and asserting the FAULT pin low. In  
situations other than overload and overtemperature error (OTE), the device automatically recovers when the  
fault condition has been removed, that is, the supply voltage has increased. The device will handle errors, as  
shown in 9-4.  
9-4. Device Protection  
BTL MODE  
LOCAL ERROR IN  
PBTL MODE  
TURNS OFF  
LOCAL ERROR IN  
TURNS OFF  
A
B
C
D
A
B
C
D
A+B  
A+B+C+D  
C+D  
Bootstrap UVP does not shutdown according to the table, it shuts down the respective half-bridge (non-latching,  
does not assert FAULT).  
9.4.5.1 Overload and Short Circuit Current Protection  
TPA3223 has fast reacting current sensors on all high-side and low-side FETs. To prevent output current from  
increasing beyond the overcurrent threshold, TPA3223 uses current limiting of the output current for each  
switching cycle (Cycle By Cycle Current Control, CB3C) in case of excess output current. CB3C prevents  
premature shutdown due to high output current transients caused by high level music transients and a drop of  
the real load impedance of the speaker, and allows the output current to be limited to a maximum programmed  
level. If the maximum output current persists, for example the power stage being overloaded with too low load  
impedance, then the device will shut down the affected output channel and the affected output is put in a high-  
impedance (Hi-Z) state until a RESET cycle is initiated. CB3C works individually for each full-bridge output. If an  
over current event is triggered, then the CB3C performs a state flip of the full-bridged output that is cleared upon  
beginning of next PWM frame.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
PWM_X  
HS PWM  
RISING EDGE PWM  
SETS CB3C LATCH  
LS PWM  
OC EVENT RESETS  
CB3C LATCH  
OC THRESHOLD  
OUTPUT CURRENT  
OCH  
HS GATE-DRIVE  
LS GATE-DRIVE  
9-14. CB3C Timing Example  
9.4.5.2 Signal Clipping and Pulse Injector  
A built-in activity detector monitors the PWM activity of the OUT_X pins. TPA3223 is designed to drive unclipped  
output signals all the way to PVDD and GND rails. In case of audio signal clipping when applying excessive input  
signal voltage, or in case of CB3C current protection being active, the amplifier feedback loop of the audio  
channel will respond to this condition with a saturated state, and the output PWM signals will stop unless special  
circuitry is implemented to handle this situation. To prevent the output PWM signals from stopping in a clipping or  
CB3C situation, narrow pulses are injected to the gate drive to maintain output activity. The injected narrow  
pulses are injected at every 4th PWM frame, and thus the effective switching frequency during this state is  
reduced to 1/4 of the normal switching frequency.  
Signal clipping is signaled on the OTW_CLIP pin and is self clearing when signal level reduces and the device  
reverts to normal operation. The OTW_CLIP pulses start at the onset to output clipping, typically at a THD level  
around 0.01%, resulting in narrow OTW_CLIP pulses starting with a pulse width of approximately 500 ns.  
9-15. Signal Clipping PWM and Speaker Output Signals  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.4.5.3 DC Speaker Protection  
The output DC protection scheme protects a speaker from excess DC current in case one terminal of the  
speaker is connected to the amplifier while the other is accidentally shorted to the chassis ground. Such a short  
circuit results in a DC voltage of PVDD/2 across the speaker, which potentially can result in destructive current  
levels. The output DC protection detects any unbalance of the output and input current of a BTL or PBTL output  
configuration (current into/out of one half-bridge equals current out of/into the other half-bridge), and in the event  
of the imbalance exceeding a programmed threshold, the overload counter increments until the maximum value  
and the affected output channel is shut down. DC Speaker Protection is enabled in both BTL and PBTL mode  
operation.  
9.4.5.4 Pin-to-Pin Short Circuit Protection (PPSC)  
The PPSC detection system protects the device from permanent damage in the case that a power output pin  
(OUT_X) is shorted to GND_X or PVDD_X. For comparison, the OC protection system detects an overcurrent  
after the demodulation filter where PPSC detects shorts directly at the pin before the filter. PPSC detection is  
performed at startup after RESET is pulled high. When PPSC detection is activated by a short on the output, all  
half-bridges are kept in a Hi-Z state until the short is removed; the device then continues the startup sequence  
and starts switching. The detection is controlled globally by a two step sequence. The first step ensures that  
there are no shorts from OUT_X to GND_X, the second step tests that there are no shorts from OUT_X to  
PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output LC filter. The  
typical duration is < 15 ms/μF. While the PPSC detection is in progress, FAULT is kept low. If no shorts are  
present, then the PPSC detection passes, and FAULT is released. A device reset will start a new PPSC  
detection. PPSC detection is enabled in both BTL and PBTL output configurations. To ensure not to trip the  
PPSC detection system, TI recommends not to insert a resistive load to GND_X or PVDD_X.  
9.4.5.5 Overtemperature Protection OTW and OTE  
TPA3223 has a two-level temperature-protection system that asserts an active-low warning signal ( OTW_CLIP)  
when the device junction temperature exceeds 125°C (typical). If the device junction temperature exceeds  
155°C (typical), then the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the  
high-impedance (Hi-Z) state and FAULT being asserted low. OTE is latched in this case. To clear the OTE latch,  
RESET must be asserted. Thereafter, the device resumes normal operation.  
9.4.5.6 Undervoltage Protection (UVP), Overvoltage Protection (OVP), and Power-on Reset (POR)  
The UVP, OVP and POR circuits of the TPA3223 fully protect the device in any power-up/down and brownout  
situation, and also in overvoltage situation with PVDD not exceeding the values stated in 7.1. While powering  
up, the POR circuit ensures that all circuits are fully operational when the AVDD supply voltage reaches the  
value stated in 7.5. Although AVDD is independently monitored, a supply voltage drop below the UVP  
threshold on AVDD pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state.  
The device automatically resumes operation when all supply voltages have increased above their UVP  
threshold. In case of an OVP event, all half-bridge outputs are immediately set in the high-impedance (Hi-Z)  
state and FAULT is asserted low until PVDD is below the OVP threshold.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
9.4.5.7 Fault Handling  
If a fault situation occurs while in operation, then the device acts accordingly to the fault being a global or a  
channel fault. A global fault is a chip-wide fault situation and causes all PWM activity of the device to be shut  
down, and asserts FAULT low. A global fault is a latching fault and clearing FAULT and restarting operation  
requires resetting the device by toggling RESET. De-asserting RESET is never allowed with excessive system  
temperature, so TI recommends to monitor RESET with a system microcontroller and only release RESET  
( RESET high) if the OTW_CLIP signal is cleared (high). A channel fault results in shutdown of the PWM activity  
of the affected channels.  
备注  
Asserting RESET low forces the FAULT signal high, independent of faults being present.  
9-5. Error Reporting  
Fault/Event  
Description  
Latched/Self  
Clearing  
Action needed to  
Clear  
Fault/Event  
PVDD_X UVP  
PVDD_X OVP  
Global or Channel  
Reporting Method  
Output FETs  
Increase affected  
supply voltage  
Decrease affected  
supply voltage  
Voltage Fault  
Global  
FAULT pin  
Self Clearing  
HI-Z  
Increase affected  
supply voltage  
AVDD UVP  
POR (AVDD UVP)  
OTW  
Power On Reset  
Thermal Warning  
Global  
Global  
FAULT pin  
Self Clearing  
Self Clearing  
Allow AVDD to rise  
HI-Z  
Cool below OTW  
threshold  
OTW_CLIP pin  
Normal operation  
OTE  
Thermal Shutdown  
OC Shutdown  
Global  
FAULT pin  
FAULT pin  
Latched  
Latched  
Toggle RESET  
Toggle RESET  
HI-Z  
HI-Z  
OLP (CB3C>2.1 ms)  
Channel  
Reduce signal level  
or remove short  
Flip state, cycle by  
cycle at fs/3  
CB3C  
OC Limiting  
Channel  
Global  
None  
None  
Self Clearing  
Self Clearing  
No OSC_IO activity  
in Peripheral Mode  
Resume OSC_IO  
activity  
Stuck at Fault(1)  
HI-Z  
(1) Stuck at Fault occurs when input OSC_IO input signal frequency drops below minimum frequency given in the Electrical  
Characteristics table of this data sheet.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPA3223  
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
TPA3223 can be configured either in stereo BTL, mono BTL or mono PBTL mode depending on output power  
conditions and system design.  
10.2 Typical Applications  
10.2.1 Stereo BTL Application  
220 nF  
BST2_M  
BST2_P  
GND  
GVDD  
AVDD  
NC  
10µH  
44  
43  
42  
41  
+5V  
1
2
3
1µF  
10nF  
1µF  
220 nF  
1nF  
1nF  
1µF  
GND  
GND  
3R3  
4
5
OUT2_M  
OUT2_M  
PVDD  
GND  
33nF  
1µF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
3R3  
CMUTE  
IN2_M  
IN2_P  
FREQ_ADJ  
OSCP  
6
PVDD  
1µF  
1k  
IN2_M  
10nF  
CMUTE  
10µH  
7
PVDD  
IN2_P  
1µF  
470uF  
1µF  
8
1µF  
PVDD  
9
50k  
OUT2_P  
GND  
10  
11  
12  
13  
OSCM  
GND  
TPA3223  
GND  
OUT1_M  
PVDD  
PVDD  
RESET  
IN1_M  
IN1_P  
GND  
RESET  
PVDD  
IN1_M  
IN1_P  
14  
15  
16  
17  
18  
19  
20  
21  
22  
10µH  
1µF  
1µF  
1µF  
1000 uF  
1000 uF  
1µF  
10nF  
PVDD  
OUT1_P  
OUT1_P  
GND  
1nF  
1nF  
1µF  
1µF  
NC  
3R3  
NC  
3R3  
FAULT  
FAULT  
OTW_CLIP  
GAIN/CLKSYNC  
VDD  
10nF  
GND  
OTW_CLIP  
220 nF  
BST1_M  
BST1_P  
10µH  
5.6k  
+5V  
220 nF  
100nF  
470uF  
10-1. Typical Differential (2N) AD-Mode BTL Application  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.2.1.1 Design Requirements  
For this design example, use the parameters in 10-1.  
10-1. Design Requirements, BTL Application  
DESIGN PARAMETER  
Low Power Supply  
High Power Supply  
EXAMPLE  
5 V  
10 - 42 V  
IN1_M = ±2.8V (peak, max)  
IN1_P = ±2.8V (peak, max)  
Analog Inputs  
IN2_M = ±2.8V (peak, max)  
IN2_P = ±2.8V (peak, max)  
Output Filters  
Inductor-Capacitor Low Pass Filter (10 µH + 1 µF)  
3.5 - 8 Ω  
Speaker Impedance  
10.2.1.2 Detailed Design Procedures  
A rising-edge transition on RESET input allows the device to execute the startup sequence and start switching.  
A toggling OTW_CLIP signal is indicating that the output is approaching clipping. The signal can be used either  
to decrease audio volume or to control an intelligent power supply nominally operating at a low rail adjusting to a  
higher supply rail.  
The device inverts the audio signal from input to output.  
10.2.1.2.1 Decoupling Capacitor Recommendations  
In order to design an amplifier that has robust performance, passes regulatory requirements, and exhibits good  
audio performance, good quality decoupling capacitors should be used. In practice, use X7R in this application.  
The voltage of the decoupling capacitors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This is particularly true in the selection  
of the 1 μF capacitor that is placed on the power supply to each full-bridge. The capacitor must withstand the  
voltage overshoot of the PWM switching, the heat generated by the amplifier during high power output, and the  
ripple current created by high power output. A minimum voltage rating of 75 V is required for use with a 42 V  
power supply.  
10.2.1.2.2 PVDD Capacitor Recommendation  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVDD Capacitors. Select  
these capacitors for proper voltage margin and adequate capacitance to support the power requirements. In  
practice, with a well designed system power supply, two 1000 μF capacitors, 75 V supports most applications.  
Use PVDD capacitors with low ESR type because they are used in a circuit associated with high-speed  
switching.  
10.2.1.2.3 BST capacitors  
To make sure of a large enough bootstrap energy storage for the high side gate drive to work correctly with all  
audio source signals, 33 nF / 50 V X7R BST capacitors are recommended.  
10.2.1.2.4 PCB Material Recommendation  
FR-4 Glass Epoxy material with 2 oz. (70 μm) copper is recommended for use with the TPA3223. The use of  
this material can provide for higher power output, improved thermal performance, and better EMI margin due to  
lower PCB trace inductance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPA3223  
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.2.2 Application Curves  
Relevant performance plots for TPA3223 in BTL configuration are shown in 7.8  
10  
5
10  
5
PVDD=42V  
TC=75C  
BTL Mode  
1W  
10W  
50W  
100W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
AUX-0025 Filter  
80kHz analyzer BW  
RL=4TC=75C  
Load=4  
Load=6  
Load=8  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
100 200  
20  
100  
1k  
Frequency (Hz)  
10k 20k 40k  
Output Power (W)  
10-2. Total Harmonic Distortion + Noise vs  
10-3. Total Harmonic Distortion+Noise vs  
Output Power  
Frequency  
200  
3  
180  
160  
140  
120  
100  
80  
3- CB3C Limited  
4  
6  
8  
60  
40  
THD+N = 10%  
TC=75C  
BTL Mode  
20  
0
10  
15  
20  
25  
30  
35  
40 42  
PVDD - Supply Voltage - V  
D014  
D037  
10-4. Output Power vs Supply Voltage, AD-mode  
10-5. System Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.2.3 Typical Application, Differential (2N), AD-Mode PBTL (Outputs Paralleled after LC filter)  
TPA3223 can be configured in mono PBTL mode by paralleling the outputs before the LC filter (see ) or after the  
LC filter. Paralleled outputs after the LC filter can be preferred if a single board design must support both PBTL  
and BTL, or in the case multiple, smaller paralleled inductors are preferred due to size or cost. Paralleling after  
the LC filter requires four inductors, one for each OUT_x. This section shows an example of paralleled outputs  
after the LC filter.  
220 nF  
BST2_M  
BST2_P  
GND  
GVDD  
AVDD  
NC  
44  
43  
42  
41  
+5V  
1
2
3
1µF  
1µF  
220 nF  
GND  
GND  
4
5
10µH  
10µH  
OUT2_M  
OUT2_M  
PVDD  
GND  
33nF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
CMUTE  
IN2_M  
IN2_P  
FREQ_ADJ  
OSCP  
PVDD  
6
1k  
CMUTE  
7
PVDD  
1µF  
470uF  
1µF  
8
10nF  
PVDD  
9
50k  
1nF  
1nF  
OUT2_P  
GND  
1µF  
1µF  
10  
11  
12  
13  
3R3  
OSCM  
GND  
TPA3223  
GND  
3R3  
OUT1_M  
PVDD  
PVDD  
RESET  
IN1_M  
IN1_P  
GND  
RESET  
10nF  
PVDD  
10µH  
10µH  
IN1_M  
IN1_P  
14  
15  
16  
17  
18  
19  
20  
21  
22  
1µF  
1µF  
1µF1000uF 1000uF 1µF  
PVDD  
OUT1_P  
OUT1_P  
GND  
NC  
NC  
FAULT  
FAULT  
OTW_CLIP  
GAIN/CLKSYNC  
VDD  
GND  
OTW_CLIP  
220 nF  
BST1_M  
BST1_P  
5.6k  
+5V  
220 nF  
100nF  
470uF  
10-6. Typical Differential (2N) AD-Mode PBTL Application  
10.2.3.1 Design Requirements  
Refer to 10.2.1 for the Design Requirements.  
10-2. Design Requirements, PBTL Application  
DESIGN PARAMETER  
Low Power Supply  
High Power Supply  
EXAMPLE  
5 V  
10 - 42 V  
IN1_M = ±2.8 V (peak, max)  
IN1_P = ±2.8 V (peak, max)  
IN2_M = Grounded  
Analog Inputs  
IN2_P = Grounded  
Output Filters  
Inductor-Capacitor Low Pass Filter (10 µH + 1 µF)  
Speaker Impedance  
2 - 4 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.3 Power Supply Recommendations  
10.3.1 Power Supplies  
The TPA3223 device requires an external power supply for PVDD to power the output stage of the speaker  
amplifier and the associated circuitry.  
An external power supply must be connected to GVDD, AVDD and VDD to power the gate-drive and other  
internal digital and analog circuit blocks in the device.  
The allowable voltage range for both the PVDD and GVDD/AVDD/VDD supplies are listed in 7.3. Ensure both  
the PVDD and the GVDD/AVDD/VDD supplies can deliver more current than listed in 7.3.  
10.3.1.1 VDD Supply  
An external 5 V power supply needs to be connected to VDD, AVDD and GVDD.  
Proper connection, routing, and decoupling techniques are highlighted in the TPA3223 EVM User's Guide (as  
well as 10.1 and 10.4.2) and must be followed as closely as possible for proper operation and  
performance. Deviation from the guidance offered in the TPA3223 device EVM User's Guide, which followed the  
same techniques as those shown in 10.1, may result in reduced performance, errant functionality, or even  
damage to the TPA3223 device.  
10.3.1.2 AVDD and GVDD Supplies  
AVDD and GVDD can be supplied through an external 5 V power supply to power internal analog and digital  
circuits and the gate-drivers for the output H-bridges. Proper connection, routing, and decoupling techniques are  
highlighted in the TPA3223 device EVM User's Guide (as well as 10.1 and 10.4.2) and must be followed as  
closely as possible for proper operation and performance. Deviation from the guidance offered in the TPA3223  
device EVM User's Guide, which followed the same techniques as those shown in 10.1 may result in reduced  
performance, errant functionality, or even damage to the TPA3223 device.  
10.3.1.3 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques  
are highlighted in the TPA3223 device EVM User's Guide (as well as 10.1 and 10.4.2) and must be  
followed as closely as possible for proper operation and performance. Due to the high-voltage switching of the  
output stage, it is particularly important to properly decouple the output power stages in the manner described in  
the TPA3223 device EVM User's Guide. The lack of proper decoupling, like that shown in the EVM User's Guide,  
can result in voltage spikes which can damage the device, or cause poor audio performance and device  
shutdown faults.  
10.3.1.4 BST Supply  
TPA3223 has built-in bootstrap supply for each half bridge gate drive to supply the high side MOSFETs, only  
requiring a single capacitor per half bridge. The capacitors are connected to each half bridge output, and are  
charged by the GVDD supply via an internal diode while the PWM outputs are in low state. The high side gate  
drive is supplied by the voltage across the BST capacitor while the output PWM is high. It is recommended to  
place the BST capacitors close to the TPA3223 device, and to keep PCB routing traces at minimum length.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.4 Layout  
10.4.1 Layout Guidelines  
Use an unbroken ground plane to have good low impedance and inductance return path to the power supply  
for power and audio signals.  
Maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as  
many of the ground pins as possible, since the ground pins are the best conductors of heat in the package.  
PCB layout, audio performance and EMI are linked closely together.  
Routing the audio input should be kept short and together with the accompanied audio source ground.  
The small bypass capacitors on the PVDD lines should be placed as close to the PVDD pins as possible.  
A solid local ground area underneath the device is important to minimize ground bounce.  
Orient the passive component so that the narrow end of the passive component is facing the TPA3223  
device, unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads.  
Avoid placing other heat producing components or structures near the TPA3223 device.  
Avoid cutting off the flow of heat from the TPA3223 device to the surrounding ground areas with traces or via  
strings, especially on output side of device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.4.2 Layout Examples  
10.4.2.1 BTL Application Printed Circuit Board Layout Example  
T3  
T1  
1
44  
2
43  
T2  
3
42  
4
41  
5
40  
6
39  
7
38  
8
37  
T2  
9
36  
10  
35  
11  
34  
12  
T2  
33  
13  
32  
14  
31  
15  
30  
16  
29  
T2  
17  
28  
18  
27  
19  
26  
20  
25  
T1  
21  
24  
2  
23  
T3  
System Processor  
Bo om to top layer connec on via  
Bo om Layer Signal Traces  
Pad to top layer ground pour  
Top Layer Signal Traces  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer copper traces. All PCB  
area not used for traces must be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors must be as close as possible to the PVDD and GND_X pins, the heat sink sets the distance.  
Wide traces must be routed on the top layer with direct connection to the pins and without going through vias. No vias or traces must be  
blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
10-7. BTL Application Printed Circuit Board - Composite  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
10.4.2.2 PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board Layout Example  
T3  
T1  
1
44  
2
43  
T2  
3
42  
4
41  
5
40  
6
39  
7
38  
8
37  
T2  
9
36  
10  
35  
11  
34  
12  
T2  
33  
13  
32  
14  
31  
15  
30  
16  
29  
T2  
17  
28  
18  
27  
19  
26  
20  
25  
T1  
21  
24  
22  
23  
T3  
System Processor  
Bo om to top layer connec on via  
Top Layer Signal Traces  
Bo om Layer Signal Traces  
Pad to top layer ground pour  
A. Note: PCB layout example shows composite layout. Dark grey: Top layer copper traces, light gray: Bottom layer copper traces. All PCB  
area not used for traces must be GND copper pour (transparent on example image)  
B. Note T1: PVDD decoupling bulk capacitors should be as close as possible to the PVDD and GND_X pins, the heat sink sets the  
distance. Wide traces should be routed on the top layer with direct connection to the pins and without going through vias. No vias or  
traces must be blocking the current path.  
C. Note T2: Close decoupling of PVDD with low impedance X7R ceramic capacitors is placed under the heat sink and close to the pins.  
D. Note T3: Heat sink needs to have a good connection to PCB ground.  
10-8. PBTL (Outputs Paralleled after LC filter) Application Printed Circuit Board - Composite  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPA3223  
TPA3223  
ZHCSQ35 NOVEMBER 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
TPA3223 Evaluation Module User's Guide  
Multi-Device Configuration for TPA32xx Amplifiers  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
Wi-Fiis a trademark of Wi-Fi Alliance.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPA3223  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPA3223DDVR  
ACTIVE  
HTSSOP  
DDV  
44  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
3223  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
42X 0.635  
44  
1
2X (0.3)  
NOTE 6  
14.1  
13.9  
NOTE 3  
2X  
13.335  
7.30  
6.72  
EXPOSED  
THERMAL  
PAD  
(0.15) TYP  
NOTE 6  
2X (0.6)  
NOTE 6  
23  
22  
0.27  
0.17  
44X  
4.43  
3.85  
0.08  
C A B  
6.2  
6.0  
B
(0.15) TYP  
0.25  
1.2  
1.0  
GAGE PLANE  
SEE DETAIL A  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4218830/A 08/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
SEE DETAILS  
SYMM  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
SYMM  
(R0.05) TYP  
23  
22  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4218830/A 08/2016  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
44X (1.45)  
44X (0.4)  
SYMM  
1
44  
42X (0.635)  
SYMM  
23  
22  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE :6X  
4218830/A 08/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPA3223DDVR

具有低空闲电流的 200W 立体声、400W 单声道、10 至 45V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | -40 to 85
TI

TPA3244

60W 立体声、120W 单声道、12 至 31.5V 电源电压、模拟输入 D 类音频放大器,低空闲电流,焊盘朝下
TI

TPA3244DDW

60W 立体声、120W 单声道、12 至 31.5V 电源电压、模拟输入 D 类音频放大器,低空闲电流,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3244DDWR

60W 立体声、120W 单声道、12 至 31.5V 电源电压、模拟输入 D 类音频放大器,低空闲电流,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3245

115W 立体声、230W 单声道、12V 至 31.5V 电源电压、模拟输入 D 类音频放大器
TI

TPA3245DDV

115W 立体声、230W 单声道、12V 至 31.5V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | 0 to 70
TI

TPA3245DDVR

115W 立体声、230W 单声道、12V 至 31.5V 电源电压、模拟输入 D 类音频放大器 | DDV | 44 | 0 to 70
TI

TPA3250

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下
TI

TPA3250D2DDW

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3250D2DDWR

70W 立体声、140W 单声道、12 至 38V 电源电压、模拟输入 D 类音频放大器,焊盘朝下 | DDW | 44 | 0 to 70
TI

TPA3251

175W 立体声、350W 单声道、12V 至 38V 电源电压、模拟输入 D 类智能音频放大器
TI

TPA3251D2DDV

175W 立体声、350W 单声道、12V 至 38V 电源电压、模拟输入 D 类智能音频放大器 | DDV | 44 | 0 to 70
TI