TPD3S713QRVCRQ1 [TI]

Automotive USB 0.05-A to 0.6-A adjustable current limit and VBUS/D+/D- short-to-VBATT protection | RVC | 20 | -40 to 125;
TPD3S713QRVCRQ1
型号: TPD3S713QRVCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Automotive USB 0.05-A to 0.6-A adjustable current limit and VBUS/D+/D- short-to-VBATT protection | RVC | 20 | -40 to 125

文件: 总38页 (文件大小:2795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
TPD3S713-Q1 TPD3S713A-Q1 具有可调节限流VBATT 短接保护功能的汽车  
USB 2.0 接口保护器件  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准:  
TPD3S713x-Q1 是一款单芯片解决方案在汽车 USB  
集线器、音响主机、远程信息处理和媒体接口应用中为  
高速数据和电力线提供电池短路、短路和 ESD 保护。  
集成的数据开关提供了同类最佳的带宽能够在 USB  
发生电池短路时最大限度地减少信号衰减。高达  
1.2GHz 的带宽可利用汽车 USB 环境中常见的长系留  
线缆来实现干净USB 2.0 480Mbps 眼图。  
– 器件温度等140°C +125°C 环境工作  
温度范围  
– 器HBM ESD 分类等H2  
– 器CDM ESD 分类等C5  
VBUS 引脚上的电池短路保护18V和接地短  
路保护功能  
DM_INDP_IN 引脚上的电池短路保护高达  
18VVBUS 短路保护功能  
• 符IEC 61000-4-2 标准DP_INDM_IN 和  
电池短路保护可隔离内部系统电路止其受到  
VBUSDP_IN DM_IN 引脚上任何过压情况的影  
响。在这些引脚上TPD3S713x-Q1 可处理热插拔和  
直流事件高达 18V 的过压并关闭内部开关保护上  
游收发器免受有害电压和电流尖峰的影响。  
VBUS  
±8kV 接触放电±15kV 空气放电  
• 符ISO 10605330pF330Ω标准的  
DP_INDM_IN VBUS  
VBUS 脚还提供灵活的可调节限流负载开关从  
50mA 600mA),如果端口只需要数十毫安的电  
可节省系统功率预算。  
±8kV 接触放电±15kV 空气放电  
• 高速数据开关1230MHz 带宽)  
4.5V 5.5V 输入电压工作范围  
50mA 600mA 可调节电流限值200mA 时精度  
±13.5%)  
TPD3S713x-Q1 器件具有一个能够控制上行电源的电  
流检测输出因此可在连接长 USB 电缆的远程 USB  
端口保5V 的电压。  
• 集73mΩ典型值MOSFET  
500mA 最大连续输出电流  
VBUS 电缆补偿  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPD3S713x-Q1  
WQFN (20)  
4.00mm × 3.00mm  
20 QFN (3mm × 4mm) 封装  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 汽USB 接口  
– 音响主机  
– 远程信息处理  
– 导航模块  
• 汽USB 充电端口  
– 媒体接口  
TPD3S713x-Q1  
IN  
BUS  
5V  
VBUS  
D-  
DM_IN  
DP_IN  
DM_OUT  
DP_OUT  
D+  
GND  
EN  
EN  
ILIM_SEL  
BIAS  
ILIM_SEL  
FAULT1  
FAULT  
INT1  
ILIM_LO  
ILIM_HI  
Up-stream DC-DC  
ADC  
CS  
IMON  
GND  
Rlim_Hi  
Rlim_Lo  
INT2  
原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDH1  
 
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................21  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
9.3 Power Supply Recommendations.............................26  
9.4 Layout....................................................................... 26  
10 Device and Documentation Support..........................29  
10.1 Documentation Support.......................................... 29  
10.2 接收文档更新通知................................................... 29  
10.3 支持资源..................................................................29  
10.4 Trademarks.............................................................29  
10.5 静电放电警告.......................................................... 29  
10.6 术语表..................................................................... 29  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................8  
6.7 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................14  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................16  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (February 2022) to Revision B (April 2023)  
Page  
• 向数据表添加了 TPD3S713A-Q1....................................................................................................................... 1  
• 通篇TPD3S713-Q1 更改TPD3S713x-Q1如果适用............................................................................ 1  
Added the TPD3S713A-Q1 Fault behavior in Fault Conditions section........................................................... 16  
Added the TPD3S713A-Q1 DP_IN or DM_IN OVP behavior in Output and DP or DM Discharge section......19  
Changes from Revision * (May 2020) to Revision A (February 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
ESD 等级增加了 ISO 10605330pF330Ω............................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
2
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
20  
19  
18  
17  
BUS  
BUS  
1
2
16  
15  
IMON  
IN  
3
14 DM_IN  
13 DP_IN  
IN  
Thermal Pad  
DM_OUT  
DP_OUT  
4
5
6
12  
BIAS  
11  
CS  
GND  
7
8
9
10  
5-1. RVC Package 20-Pin WQFN Top View  
5-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
This pin sources a scaled-down ratio of current through the internal FET. A resistor from this pin to  
GND converts current to proportional voltage; used as an analog current monitor.  
IMON  
1
O
Input supply voltage; connect a 0.1-µF or greater ceramic capacitor from IN to GND as close to the  
IC as possible.  
IN  
2,3  
PWR  
DM_OUT  
DP_OUT  
CS  
4
5
6
I/O  
I/O  
O
DM data line to upstream USB host controller  
DP data line to upstream USB host controller  
Linear cable compensation current. Connect to divider resistor of front-end dc-dc converter.  
Logic-level control input for turning the power and signal switches on or off. When EN is low, the  
device is disabled, and the signal and power switches are OFF.  
EN  
7
8
I
I
Logic-level control input for choosing the current limit resistor and current limit threshold. When  
ILIM_SEL = High, ILIM_HI resistor is valid; When ILIM_SEL = Low, ILIM_LO resistor is valid.  
ILIM_SEL  
Logic-level control input, the device can be set in normal mode or client mode through pin  
configuration. If INT1 = high, the device is in normal mode; If INT1 = low and ILIM_SEL = Low, the  
device is in client mode.  
INT1  
9
I
I
INT2  
GND  
BIAS  
DP_IN  
DM_IN  
BUS  
10  
11  
For internal circuit, must connect to ground without a pull down resistor.  
Ground connection; must be connected externally to the thermal pad.  
Used for IEC protection. Typically, connect a 2.2-µF capacitor to ground and 5.1-kΩresistor to BUS.  
DP data line to downstream connector  
PWR  
I/O  
12  
13  
14  
I/O  
DM data line to downstream connector  
15,16  
17  
PWR  
NC  
Power-switch output  
NC  
No connect, leave floating or connect to ground.  
Active-low, open-drain output, asserted during overtemperature, overcurrent, and overvoltage  
conditions.  
FAULT  
18  
O
ILIM_LO  
ILIM_HI  
19  
20  
I
I
External resistor used to set the low current-limit threshold, selected by ILIM_SEL pin.  
External resistor used to set the high current-limit threshold, selected by ILIM_SEL pin.  
Thermal pad on the bottom of the package  
Thermal pad  
(1) I = Input, O = Output, I/O = Input and output, PWR = Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Voltages are with respect to GND unless otherwise noted(1)  
MIN  
MAX  
UNIT  
Voltage range  
CS, ILIM_SEL, INT1, EN, FAULT, ILIM_HI, ILIM_LO,  
7
V
0.3  
IN, IMON, INT2  
DM_OUT, DP_OUT  
5.7  
18  
0.3  
0.3  
100  
BIAS, DM_IN, DP_IN, VBUS  
Continuous current  
DM_IN to DM_OUT or DP_IN to DP_OUT  
100  
mA  
IBUS  
Internally limited  
Internally limited  
25  
Continuous output source current, ISRC  
Continuous output sink current, ISNK  
ILIM_HI, LIM_LO, IMON  
A
mA  
A
FAULT  
CS  
Internally limited  
Operating junction temperature, TJ  
Storage temperature,Tstg  
150  
150  
°C  
°C  
40  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000(2)  
±750(3)  
±8000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
IEC 61000-4-2 contact discharge  
IEC 61000-4-2 air di scharge  
DP_IN, DM_IN and VBUS pins(4)  
DP_IN, DM_IN and VBUS pins(4)  
±15000  
Electrostatic  
discharge  
V(ESD)  
V
ISO 10605 (330 pF, 330 Ω),  
contact discharge  
DP_IN, DM_IN and VBUS pins(5)  
±8000  
ISO 10605 (330 pF, 330 Ω), air  
discharge  
DP_IN, DM_IN and VBUS pins(5)  
±15000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5.  
(4) Surges per IEC 61000-4-2, level 4, 1999 applied from DP_IN, DM_IN and VBUS to output ground of the TPD3S713Q1EVM-103  
evaluation module.  
(5) Surges per ISO 10605 (330 pF, 330 Ω), applied from DP_IN, DM_IN and VBUS to output ground of the TPD3S713Q1EVM-103  
evaluation module.  
6.3 Recommended Operating Conditions  
Voltages are with respect to GND unless otherwise noted.  
MIN  
4.5  
0
NOM  
MAX  
5.5  
5.5  
3.6  
500  
30  
UNIT  
V
V(IN)  
Supply voltage  
Input voltage  
IN  
EN, ILIM_SEL, INT1, INT2  
DM_IN, DM_OUT, DP_IN, DP_OUT  
IBUS  
V
0
V
I(BUS)  
Output continuous current  
mA  
mA  
mA  
kΩ  
°C  
DM_IN to DM_OUT or DP_IN to DP_OUT  
FAULT  
30  
Continuous output sink current  
10  
R(ILIM_xx) Current-limit-set resistors  
6.98  
100  
125  
TJ  
Operating junction temperature  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
4
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
 
 
 
 
 
 
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.4 Thermal Information  
TPD3S713x-Q1  
THERMAL METRIC(1)  
RVC (WQFN)  
20 PINS  
37.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
39.9  
11.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
11.8  
ψJB  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 5.5 V, V(EN) = V(INT1) = V(ILIM_SEL) = V(IN), V(INT2) = GND,  
R(FAULT) = 10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 52.3 kΩ. Positive currents are into pins. Typical values are at TJ = 25°C. All  
voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUT POWER SWITCH  
TJ = 25°C  
73  
73  
90  
rDS(on)  
On-resistance(1)  
mΩ  
120  
40°C TJ 125°C  
VBUS = 5 V, VIN = VEN = 0 V, 40°C TJ ≤  
125°C, measure I(IN)  
Ilkg  
Reverse leakage current  
0.01  
2
µA  
OUT DISCHARGE  
Discharge resistance  
(ILIM_SEL change)  
R(DCHG)  
400  
500  
630  
Ω
ENABLE, ILIM_SEL, INT1, INT2 INPUTS  
Input pin rising logic  
threshold voltage  
0.8  
0.7  
1.35  
2
V
V
Input pin falling logic  
threshold voltage  
1.15  
200  
1.65  
Hysteresis(2)  
mV  
µA  
Input current  
Pin voltage = 0 V or 5.5 V  
1
1  
CURRENT LIMIT  
38  
62  
55  
82  
71  
102  
RILIM_HI or RILIM_LO = 80.6 kΩ  
RILIM_HI or RILIM_LO = 52.3 kΩ  
RILIM_HI or RILIM_LO = 22.1 kΩ  
RILIM_HI or RILIM_LO = 15.4 kΩ  
RILIM_HI or RILIM_LO = 6.98 kΩ  
RILIM_HI Shorted to GND  
166  
245  
560  
860  
192  
275  
600  
1150  
218  
VBUS short-circuit current  
limit  
IOS  
mA  
305  
640  
1440  
RILIM_HI Shorted to GND  
V(EN) = 0 V, V(BUS) = 0 V, 40°C TJ 125°C,  
no 5.1-kresistor (open) between BIAS and  
VBUS  
I(IN_OFF)  
I(IN_ON)  
Disabled IN supply current  
Enabled IN supply current  
0.1  
10  
µA  
µA  
V(INT1) = V(ILIM_SEL) = High  
200  
280  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 5.5 V, V(EN) = V(INT1) = V(ILIM_SEL) = V(IN), V(INT2) = GND,  
R(FAULT) = 10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 52.3 kΩ. Positive currents are into pins. Typical values are at TJ = 25°C. All  
voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
UNDERVOLTAGE LOCKOUT, IN  
IN rising  
IN falling  
3.9  
3.3  
4.1  
3.5  
4.3  
V
3.7  
V(UVLO)  
FAULT  
UVLO threshold voltage  
Output low voltage  
Off-state leakage  
I(FAULT) = 1 mA  
V(FAULT) = 5.5 V  
100 mV  
2
µA  
THERMAL SHUTDOWN  
T(OTSD2) Thermal shutdown threshold  
155  
135  
°C  
°C  
°C  
Thermal shutdown threshold  
in current-limit  
T(OTSD1)  
Hysteresis(3)  
20  
DM_IN AND DP_IN OVERVOLTAGE PROTECTION  
V(OV_Data)  
Protection trip threshold  
Hysteresis(3)  
DP_IN and DM_IN rising  
3.3  
3.9  
100  
200  
370  
390  
4.15  
V
mV  
DP_IN = DM_IN = 18 V, IN = 5 V or 0 V  
DP_IN = DM_IN = 5 V, IN = 5 V  
DP_IN = DM_IN = 5 V, IN = 0  
Discharge resistor after  
OVP(3)  
R(DCHG_Data)  
kΩ  
BUS OVERVOLTAGE PROTECTION  
V(OV_BUS)  
Protection trip threshold  
Hysteresis(3)  
VBUS rising  
5.65  
190  
6
90  
55  
80  
6.35  
V
mV  
VBUS = 18 V, IN = 5 V  
VBUS = 18 V, IN = 0  
85  
R(DCHG_BUS)  
Discharge resistor  
kΩ  
120  
CABLE COMPENSATION  
I(CS) Sink current  
210  
230  
µA  
Load = 0.5 A, 2.5 V V(CS) 5.5 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
6
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 5.5 V, V(EN) = V(INT1) = V(ILIM_SEL) = V(IN), V(INT2) = GND,  
R(FAULT) = 10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 52.3 kΩ. Positive currents are into pins. Typical values are at TJ = 25°C. All  
voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CURRENT MONITOR OUTPUT (IMON)  
I(IMON)  
Source current  
245  
265  
285  
µA  
Load = 0.5 A, 0 V(IMON) 2.5 V  
HIGH-BANDWIDTH ANALOG SWITCH  
V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN) = 30  
mA  
3.2  
3.8  
6.5  
7.6  
DP and DM switch on-  
resistance  
R(HS_ON)  
Ω
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN)  
=
15 mA  
V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN) = 30  
mA  
0.05  
0.05  
8.8  
0.15  
0.15  
Switch resistance mismatch  
between DP and DM  
channels  
|ΔR(HS_ON)  
|
Ω
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN)  
=
15 mA  
DP and DM switch off-state VEN = 0 V, V(DP_IN) = V(DM_IN) = 0.3 V, Vac = 0.03  
capacitance(4)  
VPP, f = 1 MHz  
C(IO_OFF)  
C(IO_ON)  
pF  
DP and DM switch on-state V(DP_IN) = V(DM_IN) = 0.3 V, Vac = 0.03 VPP, f = 1  
10.9  
12  
pF  
dB  
dB  
capacitance(4)  
MHz  
Off-state isolation(4)  
V(EN) = 0 V, f = 250 MHz  
On-state cross-channel  
isolation(4)  
f = 250 MHz  
34  
VEN = 0 V, V(DP_IN) = V(DM_IN) = 3.6 V, V(DP_OUT)  
V(DM_OUT) = 0 V, measure I(DP_OUT) and I(DM_OUT)  
=
Ilkg(OFF)  
BW  
Off-state leakage current  
0.1  
1.5  
µA  
Bandwidth (3 dB)(4)  
R(L) = 50 Ω  
1230  
MHz  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
(3) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
(4) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.6 Switching Characteristics  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 5.5 V, V(EN) = V(INT1) = V(ILIM_SEL) = V(IN), V(INT2) = GND,  
R(FAULT) = 10 kΩ, R(IMON) = 2.55 kΩ, R(ILIM_HI) = 52.3 kΩ. Positive currents are into pins. Typical values are at TJ = 25°C. All  
voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
1.05  
0.27  
TYP  
1.75  
0.47  
7.5  
MAX UNIT  
tr  
BUS voltage rise time  
BUS voltage fall time  
BUS voltage turn-on time  
BUS voltage turn-off time  
3.1  
0.82  
11  
ms  
ms  
ms  
ms  
V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω  
tf  
ton  
toff  
V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω  
2.7  
5
Discharge hold time  
(ILIM_SEL change)  
t(DCHG_S)  
t(IOS)  
t(OC_BUS_FAULT)  
tpd  
Time V(OUT) < 0.7V  
1.1  
5.5  
2
2
2.9  
s
BUS short-circuit response  
time(1)  
µs  
ms  
ns  
V(IN) = 5 V, R(SHORT) = 50 mΩ  
Bidirectional deglitch applicable to current-limit  
condition only (no deglitch assertion for OTSD)  
BUS FAULT deglitch time  
8.5  
0.14  
11.5  
Analog switch propagation  
delay (1)  
V(IN) = 5 V  
Analog switch skew  
between opposite transitions  
t(SK)  
V(IN) = 5 V  
0.02  
5
ns  
µs  
of the same port (tPHL  
(1)  
tPLH  
)
DP_IN and DM_IN  
overvoltage protection  
response time  
t(OV_Data)  
BUS overvoltage protection  
response time  
t(OV_BUS)  
0.3  
16  
16  
µs  
ms  
ms  
DP_IN and DM_IN FAULT-  
asserted degltich time  
t(OV_Data_FAULT)  
11  
11  
23  
23  
BUS FAULT-asserted  
degltich time  
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
8
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
TA = 25°C, V(IN) = 5 V, V(EN) = V(IN), V(ILIM_SEL) = V(INT1) = V(IN), V(INT2) = GND, FAULT connect to V(IN) via a 10-kΩpullup  
resistor (unless stated otherwise)  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
41.8  
41.6  
41.4  
41.2  
41  
40.8  
40.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
V(IN) = 5 V  
V(OUT) = 5 V  
Measure I(BUS)  
6-1. Power Switch On-Resistance vs Temperature  
6-2. Reverse Leakage Current vs Temperature  
100  
570  
VIN=5 V  
VIN=0 V  
VIN=4.5 V  
VIN=5 V  
VIN=5.5 V  
560  
550  
540  
530  
520  
510  
500  
490  
480  
90  
80  
70  
60  
50  
40  
-25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
6-3. BUS Discharge Resistance (OVP) vs Temperature  
6-4. BUS Discharge Resistance (Mode Change) vs  
Temperature  
600  
4
RILIM_HI=15.5 K  
RILIM_HI=80.6 K  
500  
RILIM_HI=22.1 K  
RILIM_HI=52.3 K  
RILIM_HI=7.3 K  
400  
2
300  
200  
100  
0
0
-2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
V(IN) = 5 V  
ILIM_SEL = High  
6-5. VBUS Short-Circuit Current Limit vs Temperature  
6-6. Disabled IN Supply Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = V(IN), V(ILIM_SEL) = V(INT1) = V(IN), V(INT2) = GND, FAULT connect to V(IN) via a 10-kΩpullup  
resistor (unless stated otherwise)  
205  
195  
185  
175  
165  
155  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
VIN=4.5 V  
VIN=5.0 V  
VIN=5.5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
ILIM_SEL = High  
V(IN) = 5 V  
6-7. Enabled IN Supply Current vs Temperature  
6-8. DP_IN Overvoltage Protection Threshold vs Temperature  
6.3  
300  
6.2  
6.1  
6
250  
200  
150  
100  
50  
5.9  
5.8  
5.7  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (Cè)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
V(IN) = 5 V  
IBUS = 0.5 A  
V(CS) = 2.5 V  
6-9. BUS Overvoltage Protection Threshold vs Temperature  
6-10. I(CS) vs Temperature  
210.6  
266  
265.75  
265.5  
265.25  
265  
Vcs = 2.5 V  
Vcs = 5.5 V  
Vcs = 3.5 V  
VIN=4.5 V  
VIN=5.0 V  
VIN=5.5 V  
210.4  
210.2  
210  
209.8  
209.6  
209.4  
209.2  
209  
264.75  
264.5  
264.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
VIN = 5.5 V  
IBUS = 0.5 A  
IBUS = 0.5 A  
V(IMON) = 2.5 V  
6-11. I(CS) vs V(CS) Voltage  
6-12. I(IMON) vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
TA = 25°C, V(IN) = 5 V, V(EN) = V(IN), V(ILIM_SEL) = V(INT1) = V(IN), V(INT2) = GND, FAULT connect to V(IN) via a 10-kΩpullup  
resistor (unless stated otherwise)  
265.75  
Vcs = 2 V  
Vcs = 1 V  
Vcs = 0 V  
265.5  
265.25  
265  
264.75  
264.5  
264.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
VIN = 4.5 V  
IBUS = 0.5 A  
6-13. I(IMON) vs V(CS) Voltage  
Measured on EVM with 10-cm cable  
Measured on EVM with 10-cm cable  
6-14. Bypassing the TPD3S713-Q1 Data Switch  
6-15. Through the TPD3S713-Q1 Data Switch  
C(LOAD) = 10 µF  
t = 5 ms/div  
C(LOAD) = 10 µF  
6-17. Turn-off Response  
t = 5 ms/div  
R(LOAD) = 68 Ω  
R(LOAD) = 68 Ω  
6-16. Turn-on Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = V(IN), V(ILIM_SEL) = V(INT1) = V(IN), V(INT2) = GND, FAULT connect to V(IN) via a 10-kΩpullup  
resistor (unless stated otherwise)  
R(ILIM_LO) = 80.6  
t = 5 ms/div  
t = 5 ms/div  
R(ILIM_HI) = 80.6 kΩ  
kΩ  
6-19. Short Circuit to No Load  
6-18. Enable Into Short  
t = 5 ms/div  
t =5 ms/div  
R(ILIM_HI) = 52.3 kΩ R(short) = 50 mΩ  
6-20. Hot Short  
6-21. VBUS Short-to-Battery  
t = 20 ms/div  
t = 5 ms/div  
6-22. VBUS Short-to-Battery Recovery  
6-23. DP_IN Short-to-Battery  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
12  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
TA = 25°C, V(IN) = 5 V, V(EN) = V(IN), V(ILIM_SEL) = V(INT1) = V(IN), V(INT2) = GND, FAULT connect to V(IN) via a 10-kΩpullup  
resistor (unless stated otherwise)  
t = 5 ms/div  
t = 20 ms/div  
6-24. DP_IN Short-to-Battery Recovery  
R(BIAS) = 5.1 kΩ  
R(BIAS) = 5.1 kΩ  
6-25. DP_IN Short-to-VBUS  
t = 2 ms/div  
R(BIAS) = 5.1 kΩ  
6-27. Data Transmission Characteristics vs Frequency  
6-26. DP_IN Short-to-VBUS and Recovery  
6-28. Off-State Data-Switch Isolation vs Frequency  
6-29. On-State Cross-Channel Isolation vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7-1. Short-to-Battery System Test Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
14  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPD3S713x-Q1 is a single-chip solution for short-to-battery, short-circuit, and ESD protection for high speed  
data and power lines in automotive USB hub, head unit, telematics, and media interface applications. The  
integrated data switches provide best-in-class bandwidth for minimal signal degradation during USB short-to-  
battery events. The high bandwidth allows for a clean USB2.0 high-speed eye diagram which helps pass  
stringent USB certification tests in the automotive USB environment.  
The short-to-battery protection isolates the internal system circuits from any overvoltage conditions at the VBUS  
,
DP_IN, and DM_IN pins. On these pins, the TPD3S713x-Q1 can handle overvoltages up to 18 V for hot plug  
and DC events. This feature protects the upstream voltage regulator, automotive processor, and hub when these  
pins are exposed to fault conditions.  
The VBUS pin also provides an accurate current limited load switch from 55 mA to 600 mA. The leading  
overcurrent protection automatically limits current to prevent drooping of the upstream rail during short-to-ground  
events. Also TPD3S713x-Q1 can save power budget for the whole system.  
The TPD3S713x-Q1 device integrates a cable compensation (CS) feature to compensate for long-cable voltage  
drop. This feature keeps the remote USB port output voltage constant to enhance the user experience under  
high-current charging conditions.  
The TPD3S713x-Q1 device provides a current-monitor function (IMON) by connecting a resistor from the IMON  
pin to GND to provide a positive voltage linearly with load current. This connection can be used for system power  
or dynamic power management.  
Additionally, the device provides ESD protection up to ±8 kV (contact discharge) and ±15 kV (air discharge) per  
IEC 61000-4-2 on DP_IN and DM_IN.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8.2 Functional Block Diagram  
8.3 Feature Description  
8.3.1 FAULT Response  
The device features an active-low, open-drain fault output. FAULT goes low when there is a fault condition. Fault  
detection includes overtemperature, overcurrent, or overvoltage on VBUS, DP_IN and DM_IN. Connect a 10-kΩ  
pullup resistor from FAULT to IN.  
8-1 summarizes the conditions that generate a fault and actions taken by the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
16  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8-1. Fault Conditions  
EVENT  
CONDITION  
TPD3S713-Q1  
TPD3S713A-Q1  
The device immediately shuts off the  
USB data switches and the internal  
V(DP_IN) or V(DM_IN) > 3.9 V power switch. The fault indicator asserts power switch keeps turn on. The fault  
The device immediately shuts off the  
USB data switches, and the internal  
Overvoltage on the data  
lines  
with a 16-ms deglitch, and deasserts  
without deglitch.  
indicator asserts with a 16-ms deglitch,  
and deasserts without deglitch.  
The device immediately shuts off the  
The device immediately shuts off the  
internal power switch and the USB data internal power switch and the USB data  
Overvoltage on V(BUS)  
Overcurrent on V(BUS)  
V(BUS) > 6 V  
switches. The fault indicator asserts  
with a 16-ms deglitch and deasserts  
without deglitch.  
switches. The fault indicator asserts  
with a 16-ms deglitch and deasserts  
without deglitch.  
The device regulates switch current at  
I(OS) until thermal cycling occurs. The  
fault indicator asserts and deasserts  
with an 8-ms deglitch.  
The device regulates switch current at  
I(OS) until thermal cycling occurs. The  
fault indicator asserts and deasserts  
with an 8-ms deglitch.  
I(BUS) > I(OS)  
The device immediately shuts off the  
The device immediately shuts off the  
internal power switch and the USB data internal power switch and the USB data  
switches. The fault indicator asserts  
immediately when the junction  
temperature exceeds OTSD2 or OTSD1 temperature exceeds OTSD2 or OTSD1  
while in a current-limiting condition. The while in a current-limiting condition. The  
switches. The fault indicator asserts  
immediately when the junction  
TJ > OTSD2 in non-current-  
limited or TJ > OTSD1 in  
current-limited mode.  
Overtemperature  
device has a thermal hysteresis of  
20°C.  
device has a thermal hysteresis of  
20°C.  
8.3.2 Cable Compensation  
When a load draws current through a long or thin wire, there is an IR drop that reduces the voltage delivered to  
the load. In the vehicle from the voltage regulator 5-V output to the loading, the total resistance of power switch  
rDS(on) and cable resistance causes an IR drop at the loading input. So the charging current of most portable  
devices is less than their expected maximum charging current.  
8-1. Voltage Drop  
The TPD3S713-Q1 device detects the load current and applies a proportional sink current that can be used to  
adjust the output voltage of the upstream regulator to compensate for the IR drop in the charging path. The gain  
G(CS) of the sink current proportional to load current is 420 µA/A.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8-2. Cable Compensation Equivalent Circuit  
8.3.2.1 Design Procedure  
To start the procedure, the total resistance, including the power switch rDS(on) and wire resistance R(WIRE), must  
be known.  
1. Choose R(G) following the voltage-regulator feedback resistor-divider design guideline.  
2. Calculate R(FA) according to 方程1.  
RFA = (rDS(on) + R(WIRE) ) / G(CS)  
(1)  
3. Calculate R(FB) according to 方程2.  
V
(OUT)  
R(FB)  
=
- R(G) - R(FA)  
V
/ R(G)  
(FB)  
(2)  
4. C(COMP) in parallel with R(FA) is required to stabilize V(OUT) when C(BUS) is large. Start with C(COMP) 3 ×  
G(CS) × C(OUT), then adjust C(COMP) to optimize the load transient of the voltage regulator output. V(OUT)  
stability must always be verified in the end application circuit.  
8.3.3 DP and DM Protection  
DP and DM protection consists of ESD and OVP (overvoltage protection). The DP_IN and DM_IN pins provide  
ESD protection up to ±15 kV (air discharge) and ±8 kV (contact discharge) per IEC 61000-4-2 (see the ESD  
Ratings section for test conditions).  
The ESD stress seen at DP_IN and DM_IN is impacted by many external factors, like the parasitic resistance  
and inductance between ESD test points and the DP_IN and DM_IN pins. For air discharge, the temperature  
and humidity of the environment can cause some difference, so the IEC performance must always be verified in  
the end-application circuit.  
The IEC ESD performance of the TPD3S713x-Q1 device depends on the capacitance connected from BIAS to  
GND. TI recommends a 2.2-µF capacitor placed close to the BIAS pin. Connect the BIAS pin to BUS using a  
5.1-kΩresistor as a discharge path for the ESD stress.  
OVP protection is provided for short-to-VBUS or short-to-battery conditions in the vehicle harness, preventing  
damage to the upstream USB transceiver or hub. When the voltage on DP_IN or DM_IN exceeds 3.9 V (typical),  
the TPD3S713x-Q1 device quickly responds to block the high-voltage reverse connection to DP_OUT and  
DM_OUT. Overcurrent short-to-GND protection for DP and DM is provided by the upstream USB transceiver.  
8.3.4 VBUS OVP Protection  
The TPD3S713x-Q1 BUS pin can withstand up to 18 V. The internal MOSFET turns off quickly when a short-to-  
battery condition occurs.  
The TPD3S713x-Q1 device OVP threshold is 6 V (typical).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
18  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8.3.5 Output and DP or DM Discharge  
When an OVP condition occurs on DP_IN or DM_IN, both TPD3S713x-Q1 devices enable an internal 200-kΩ  
discharge resistance from DP_IN to ground, and from DM_IN to ground. The TPD3S713-Q1 turns off the power  
switch and data switches. But the TPD3S713A-Q1 only turns off the data switches. Both TPD3S713x-Q1  
devices automatically disable the discharge paths and turn on the switches after the OVP condition is removed.  
When an OVP condition occurs on BUS, both TPD3S713x-Q1 devices turn on an internal discharge path (see 表  
8-2 for the discharge resistance). The analog switches are also turned off. Both TPD3S713x-Q1 devices  
automatically turn off the discharge path and turn on the analog switch after the OVP condition is removed.  
8-2. BUS Discharge Resistance  
BUS DISCHARGE  
VIN(1)  
EN(1)  
OVP(1)  
RESISTANCE(2)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
80 kΩ  
80 kΩ  
500 Ω  
55 kΩ  
55 kΩ  
(1) 0 = inactive, 1 = active  
(2) = no discharge resistance  
8.3.6 Overcurrent Protection  
When an overcurrent condition is detected, the device maintains a constant output current and reduces the  
output voltage accordingly. Two possible overload conditions can occur. In the first condition, the output is  
shorted before the device is enabled or before the application of V(IN). The TPD3S713x-Q1 device senses the  
short and immediately switches into a constant-current output. In the second condition, a short or an overload  
occurs while the device is enabled. At the instant the overload occurs, high currents flow for 1 to 2 μs (typical)  
before the current-limit circuit reacts. The device operates in constant-current mode after the current-limit circuit  
has responded. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.  
The device remains off until the junction temperature cools approximately 20°C and then restarts. The device  
continues to cycle on and off until the overcurrent condition is removed.  
8.3.7 Undervoltage Lockout  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turnon threshold. Built-in hysteresis prevents unwanted oscillations on the output due to input voltage drop from  
large current surges.  
8.3.8 Thermal Sensing  
Two independent thermal-sensing circuits protect the TPD3S713x-Q1 device if the temperature exceeds  
recommended operating conditions. These circuits monitor the operating temperature of the power-distribution  
switch and disable operation. The power dissipation in the package is proportional to the voltage drop across the  
power switch, so the junction temperature rises during an overcurrent condition. The first thermal sensor turns off  
the power switch when the die temperature exceeds 135°C and the device is in current limit. The second thermal  
sensor turns off the power switch when the die temperature exceeds 155°C regardless of whether the power  
switch is in current limit. Hysteresis is built into both thermal sensors, and the switch turns on after the device  
has cooled by approximately 20°C. The switch continues to cycle off and then on until the fault is removed. The  
open-drain false-reporting output, FAULT, is asserted (low) during an overtemperature shutdown condition.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8.3.9 Current-Limit Setting  
The TPD3S713x-Q1 has two independent current-limit settings that are each adjusted externally with a resistor.  
The ILIM_HI setting is adjusted with R(ILIM_HI) connected between ILIM_HI and GND. The ILIM_LO setting is  
adjusted with R(ILIM_LO) connected between ILIM_LO and GND.  
The current limit is selected by ILIM_SEL pin. If ILIM_SEL = high, ILIM_HI is selected; if ILIM_SEL = low,  
ILIM_LO is selected.  
The following equation calculates the value of resistor for adjusting the typical current limit (need update):  
(3)  
Many applications require that the current limit meet specific tolerance limits. When designing to these tolerance  
limits, both the tolerance of the TPD3S713x-Q1 current limit and the tolerance of the external adjusting resistor  
must be taken into account. The following equations approximate the TPD3S713x-Q1 minimum and maximum  
current limits to within a few milliamperes and are appropriate for design purposes. The equations do not  
constitute part of TIs published device specifications for purposes of TIs product warranty. These equations  
assume an idealno variationexternal adjusting resistor. To take resistor tolerance into account, first  
determine the minimum and maximum resistor values based on its tolerance specifications and use these values  
in the equations. Because of the inverse relation between the current limit and the adjusting resistor, use the  
maximum resistor value in the IOS(min) equation and the minimum resistor value in the IOS(max) equation.  
(4)  
(5)  
8-3. Current-Limit Setting vs Adjusting Resistor  
The routing of the traces to the R(ILIM_xx) resistors must have a sufficiently low resistance so as not to affect the  
current-limit accuracy. The ground connection for the R(ILIM_xx) resistors is also very important. The resistors  
must reference back to the TPD3S713x-Q1 GND pin. Follow normal board layout practices to ensure that  
current flow from other parts of the board does not impact the ground potential between the resistors and the  
TPD3S713x-Q1 GND pin.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
20  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Device Truth Table (TT)  
The device truth table (8-3) lists all valid combinations for both ILIM_SEL and INT1 pins, and the  
corresponding mode. The TPD3S713x-Q1 device monitors the INT1 and ILIMI_SEL input change, and there is  
2s discharge on BUS pin during mode change.  
8-3. Truth Table  
IMON FOR  
CURRENT  
MONITOR  
CURRENT LIMIT  
SELECTED  
POWER  
SWITCH  
FAULT  
REPORT  
INT1  
ILIM_SEL  
MODE  
DATA SWITCH  
0
0
1
1
0
1
0
1
N/A  
Client mode  
OFF  
ON  
OFF  
ON(1)  
RESERVED, DO NOT USE  
ILIM_LO  
ILIM_HI  
Normal mode  
Normal mode  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
(1) In the client mode, the FAULT only reports in case of BUS,DP_IN and DM_IN OVP.  
8.4.2 Client Mode  
The TPD3S713x-Q1 device integrates client mode as shown in 8-4. The internal power switch is OFF to block  
current flow from BUS to IN, and the signal switches are ON. This mode can be used for software upgrades from  
the USB port.  
8-4. Client-Mode Equivalent Circuit  
In client mode, because the power switch is OFF, BUS must be 5 V so that the device can work normally (usually  
powered by an external downstream USB port). If the BUS voltage is low, the communication may not work  
properly.  
8.4.3 High-Bandwidth Data-Line Switch  
The DP and DM data lines pass through the device. A wide-bandwidth signal switch allows data to pass through  
the device without corrupting signal integrity. The data-line switches are turned on in any of the operating modes.  
The EN input must be at logic high for the data-line switches to be enabled.  
备注  
While in client and normal mode, the data switches are ON.  
The data switches are only for the USB-2.0 differential pair. In the case of a USB-3.0 host, the  
super-speed differential pairs must be routed directly to the USB connector without passing  
through the TPD3S713x-Q1 device.  
Data switches are OFF during BUS (VBUS) discharge.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPD3S713x-Q1 device is a USB power switch with cable compensation and short-to-battery protection for  
VBUS, DP, and DM. The device is typically used for automotive USB port protection. The following design  
procedure can be used to select components for the TPD3S713x-Q1 device. This section presents a simplified  
discussion of how to choose external components for VBUS, DP, and DM short-to-battery protection.  
9.2 Typical Application  
For an automotive USB charging port, the VBUS, DP, and DM pins are exposed and require a protection device.  
The protection required includes VBUS overcurrent, DP and DM ESD protection, and short-to-battery protection.  
This charging-port device protects the upstream dc-dc converter (bus line) and automotive SOC or hub chips  
(DP and DM data lines). 9-1 shows an application schematic of this circuit with short-to-battery protection.  
TPD3S713x-Q1  
IN  
BUS  
5V  
VBUS  
D-  
DM_IN  
DP_IN  
DM_OUT  
DP_OUT  
D+  
GND  
EN  
EN  
ILIM_SEL  
BIAS  
ILIM_SEL  
FAULT1  
FAULT  
INT1  
ILIM_LO  
ILIM_HI  
Up-stream DC-DC  
ADC  
CS  
IMON  
GND  
Rlim_Hi  
Rlim_Lo  
INT2  
9-1. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
DESIGN PARAMETER  
Battery voltage, V(BAT)  
Short-circuit cable  
EXAMPLE VALUE  
18 V  
0.5 m  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer must know the following:  
The battery voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
22  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
 
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
The short-circuit cable length.  
The maximum continuous output current for the USB port. The minimum current-limit setting of TPD3S713x-  
Q1 device must be higher than this current.  
The maximum output current of the upstream dc-dc converter. The maximum current-limit setting of  
TPD3S713x-Q1 device must be lower than this current.  
For cable compensation, the total resistance including power switch rDS(on), cable resistance, and connector  
contact resistance must be specified.  
9.2.2.1 Input Capacitance  
Consider the following application situations when choosing the input capacitors.  
For all applications, TI recommends a 0.1-µF or greater ceramic bypass capacitor between IN and GND, placed  
as close as possible to the device for local noise decoupling.  
During output short or hot plug-in of a capacitive load, high current flows through the TPD3S713x-Q1 device  
back to the upstream dc-dc converter until the TPD3S713x-Q1 device responds (after t(IOS)). During this  
response time, the TPD3S713x-Q1 input capacitance and the dc-dc converter output capacitance source current  
to keep VIN above the UVLO of the TPD3S713x-Q1 device and any shared circuits. Size the input capacitance  
for the expected transient conditions and keep the path between the TPD3S713x-Q1 device and the dc-dc  
converter short to help minimize voltage drops.  
Input voltage overshoots can be caused by either of two effects. The first cause is an abrupt application of input  
voltage in conjunction with input power-bus inductance and input capacitance when the IN pin is in the high-  
impedance state (before turnon). Theoretically, the peak voltage is 2 times the applied voltage. The second  
cause is due to the abrupt reduction of output short-circuit current when the TPD3S713x-Q1 device turns off and  
energy stored in the input inductance drives the input voltage high. Applications with large input inductance (for  
example, a connection between the evaluation board and the bench power supply through long cables) may  
require large input capacitance to prevent the voltage overshoot from exceeding the absolute-maximum voltage  
of the device.  
During the short-to-battery (EN = HIGH) condition, the input voltage follows the output voltage until OVP  
protection is triggered (t(OV_BUS)). After the TPD3S713x-Q1 device responds and turns off the power switch, the  
stored energy in the input inductance can cause ringing.  
Based on the three situations described, TI recommends 10-µF and 0.1-µF low-ESR ceramic capacitors, placed  
close to the input.  
9.2.2.2 Output Capacitance  
Consider the following application situations when choosing the output capacitors.  
After an output short occurs, the TPD3S713x-Q1 device abruptly reduces the BUS current, and the energy  
stored in the output power-bus inductance causes voltage undershoot and potentially reverse voltage as it  
discharges.  
Applications with large output inductance (such as from a cable) benefit from the use of a high-value output  
capacitor to control the voltage undershoot.  
For USB port applications, because the VBUS pin is exposed to IEC61000-4-2 level-4 ESD, use a low-ESR  
capacitance to protect BUS.  
The TPD3S713x-Q1 device is capable of handling up to 18-V battery voltage. When VBUS is shorted to the  
battery, the LCR tank circuit formed can induce ringing. The peak voltage seen on the BUS pin depends on the  
short-circuit cable length. The parasitic inductance and resistance varies with length, causing the damping factor  
and peak voltage to differ. Longer cables with larger resistance reduce the peak current and peak voltage.  
Consider high-voltage derating for the ceramic capacitor, because the peak voltage can be higher than twice the  
battery voltage.  
Based on the three situations described, TI recommends a 10-µF, 35-V, X7R, 1210 low-ESR ceramic capacitor  
placed close to BUS. If the battery voltage is 16 V and a 16-V transient voltage suppressor (TVS) is used, then  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
the capacitor voltage can be reduced to 25 V. Considering temperature variation, placing an additional 35-V  
aluminum electrolytic capacitor can lower the peak voltage and make the system more robust.  
9.2.2.3 BIAS Capacitance  
The capacitance on the BIAS pin helps the IEC ESD performance on the DM_IN and DP_IN pins.  
When a short-to-battery on DP_IN, DM_IN, BUS, or both occurs, high voltage can be seen on the BIAS pin.  
Place a 2.2-µF, 50-V, X7R, 0805, low-ESR ceramic capacitor close to the BIAS pin. The whole current path from  
BIAS to GND must be as short as possible. Additionally, use a 5.1-kdischarge resistor from BIAS to BUS.  
9.2.2.4 Output and BIAS TVS  
The TPD3S713x-Q1 device can withstand high transient voltages up to 18 V. In real application, the ringing can  
exceed 18 V due to LCR tank ringing, but to make BUS, DP_IN, and DM_IN robust, place one TVS close to the  
BUS pin, and another TVS close to the BIAS pin. When choosing the TVS, the reverse standoff voltage VR  
depends on the battery voltage (16 V or 18 V). Considering the peak pulse power capability, TI recommends a  
400-W device such as an SMAJ16 for a 16-V battery or an SMAJ18 for an 18-V battery.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
24  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
9.2.3 Application Curves  
VBAT = 16 V  
t = 5 µs/div  
VBAT = 18 V  
t = 5 µs/div  
9-2. Disabled, 25-V, 1206, X7R COUT Capacitor  
9-3. Disabled, 35-V, 1210, X7R COUT Capacitor  
Without SMAJ16  
Without SMAJ18  
t = 20 µs/div  
t = 20 µs/div  
9-4. Disabled, 25-V, 1206, X7R COUT Capacitor  
9-5. Disabled, 35-V, 1210, X7R COUT Capacitor  
With SMAJ16, BUS Shorted to Battery  
With SMAJ18, BUS Shorted to Battery  
t = 20 µs/div  
t = 20 µs/div  
9-7. Enable BUS Shorted to Battery  
9-6. DC-DC VIN Floating, BUS Shorted to Battery  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
t = 2 µs/div  
RBIAS = 5.1 kΩ  
t = 2 µs/div  
RBIAS = 5.1 kΩ  
9-8. Disabled, DP_IN Shorted to Battery  
9-9. DC-DC VIN Floating, DP_IN Shorted to  
Battery  
t = 2 µs/div  
R(BIAS) = 5.1 kΩ  
R(DP_OUT) = 15 kΩ  
9-10. Enabled, DP_IN Shorted to Battery  
9.3 Power Supply Recommendations  
The TPD3S713x-Q1 device is designed for a supply voltage range of 4.5 V VIN 5.5 V, with its power switch  
used for protecting the upstream power supply when a fault such as overcurrent or short to ground occurs on the  
USB port. Therefore, the power supply must be rated higher than the current-limit setting to avoid voltage drops  
during overcurrent or short-circuit conditions.  
9.4 Layout  
9.4.1 Layout Guidelines  
Layout best practices for the TPD3S713x-Q1 device are listed as follows:  
Considerations for input and output power traces:  
Make the power traces as short as possible.  
Make the power traces as wide as possible.  
Considerations for input-capacitor traces:  
For all applications, TI recommends 10-µF and 0.1-µF low-ESR ceramic capacitors, placed close to the IN  
pin.  
The resistors attached to the ILIM_HI and ILIM_LO pins of the device have several requirements:  
TI recommends to use 1% low-temperature-coefficient resistors.  
The trace routing between these two pins and GND must be as short as possible to reduce parasitic  
effects on current limit. These traces must not have any coupling to switching signals on the board.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
26  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
 
 
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
Locate all TPD3S713x-Q1 pullup resistors for open-drain outputs close to their connection pin. Pullup  
resistors must be 100 k.  
If a particular open-drain output is not used or needed in the system, tie it to GND.  
ESD considerations:  
The TPD3S713x-Q1 device has built-in ESD protection for DP_IN and DM_IN. Keep trace lengths minimal  
from the USB connector to the DP_IN and DM_IN pins on the TPD3S713x-Q1 device, and use minimal  
vias along the traces.  
The capacitor on BIAS helps to improve the IEC ESD performance. A 2.2-µF capacitor must be placed  
close to BIAS, and the current path from BIAS to GND across this capacitor must be as short as possible.  
Do not use vias along the connection traces.  
A 10-µF output capacitor must be placed close to the BUS pin and TVS.  
See the ESD Protection Layout Guide for additional information.  
TVS Considerations (BUS, DP_IN and DM_IN exceed 18 V):  
For BUS, a TVS like SMAJ18 must be placed near the BUS pin.  
For BIAS, a TVS like SMAJ18 must be placed close to the BIAS pin, but behind the 2.2-µF capacitor.  
The whole path from BUS to GND or BIAS to GND across the TVS must be as short as possible.  
DP_IN, DM_IN, DP_OUT, and DM_OUT routing considerations  
Route these traces as microstrips with nominal differential impedance of 90 Ω.  
Minimize the use of vias on the high-speed data lines.  
Keep the reference GND plane devoid from cuts or splits above the differential pairs to prevent impedance  
discontinuities.  
For more USB 2.0 high-speed D+ and Ddifferential routing information, see the High Speed USB  
Platform Design Guideline from Intel.  
Thermal Considerations:  
When properly mounted, the thermal-pad package provides significantly greater cooling ability than an  
ordinary package. To operate at rated power, the thermal pad must be soldered to the board GND plane  
directly under the device. The thermal pad is at GND potential and can be connected using multiple vias to  
inner-layer GND. Other planes, such as the bottom side of the circuit board, can be used to increase heat  
sinking in higher-current applications. See the PowerPad™ Thermally Enhanced Package application  
report) and (PowerPAD™ Made Easy application brief) for more information on using this thermal pad  
package.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
9.4.2 Layout Example  
9-11. TPD3S713x-Q1 Layout Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDH1  
28  
Submit Document Feedback  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
TPD3S713-Q1, TPD3S713A-Q1  
ZHCSLC3B MAY 2020 REVISED APRIL 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
High Speed USB Platform Design Guidelines Intel  
Texas Instruments, ESD Protection Layout Guide application note  
Texas Instruments, PowerPADThermally Enhanced Package application note  
Texas Instruments, PowerPADMade Easy application brief  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPD3S713-Q1 TPD3S713A-Q1  
English Data Sheet: SLUSDH1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPD3S713AQRVCRQ1  
TPD3S713QRVCRQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
3S713AQ  
3S713Q  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPD3S713AQRVCRQ1  
TPD3S713QRVCRQ1  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
4.3  
4.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPD3S713AQRVCRQ1  
TPD3S713QRVCRQ1  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVC0020A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
0.45  
0.35  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
7
10  
16X 0.5  
11  
6
2X  
SYMM  
21  
2.5  
2.6 0.1  
SEE TERMINAL  
DETAIL  
1
16  
0.25  
20X  
0.15  
20  
17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
1.6 0.1  
0.05  
0.45  
0.35  
20X  
4219150/B 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.6)  
SYMM  
(R0.05)  
TYP  
17  
20  
20X (0.6)  
1
16  
20X (0.2)  
(1)  
TYP  
21  
(3.8)  
(2.6)  
SYMM  
16X (0.5)  
11  
6
(
0.2) TYP  
VIA  
7
10  
(1 TYP)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219150/B 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.47)  
20  
17  
20X (0.6)  
1
21  
16  
20X (0.2)  
(R0.05) TYP  
SYMM  
2X  
(1.15)  
(3.8)  
(0.675)  
TYP  
16X (0.5)  
11  
6
METAL  
TYP  
7
10  
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD X  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219150/B 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPD3S714-Q1

汽车类 USB 0.55A 固定电流限制和 VBUS/D+/D- VBATT 短路保护

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S714QDBQRQ1

Automotive USB 0.55-A fixed current limit and  VBUS/D+/D- short-to-VBATT protection | DBQ | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S716-Q1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD3S716QDBQRQ1

汽车类 USB 0.5A 至 2.4A 可调节电流限制和 VBUS/D+/D- VBATT 短路保护 | DBQ | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPD4001K

IC BUF OR INV BASED PRPHL DRVR, PSFM12, F-12, Peripheral Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPD4005K

IC,MOTOR CONTROLLER,BIPOLAR,ZIP,18PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPD4006KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PZFM23, HEAT SINK, ZIP-23, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPD4008K

DC Motor Controller/Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPD4008KLB2

IC BRUSHLESS DC MOTOR CONTROLLER, 1 A, PZFM23, HEAT SINK, ZIP-23, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPD4011K

MOTOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPD4011KLBF

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPD4011KLBR

IC BRUSHLESS DC MOTOR CONTROLLER, 2 A, PZFM23, 1.27 MM PITCH, PLASTIC, HZIP-23, Motion Control Electronics

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA