TPIC2040 [TI]

TPIC2040 用于 ODD 驱动、由串行接口控制的 7 通道电机驱动器;
TPIC2040
型号: TPIC2040
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPIC2040 用于 ODD 驱动、由串行接口控制的 7 通道电机驱动器

电机 驱动 驱动器
文件: 总57页 (文件大小:944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
TPIC2040 用于 ODD 驱动、由串行接口控制的 7 通道电机驱动器  
1 特性  
CSW 输出具有可选 OCP 阈值电平  
硬件器件禁用引脚 XMUTE  
1
串行外设接口 (SPI)  
具有欠压闭锁 (UVLO) 和 过压保护 (OVP) 的电  
源监视器  
最大读写频率 35MHz  
3.3V 数字输入输出 (I/O)  
执行器和电机驱动器  
2 应用  
具有 H 桥输出的脉冲宽度调制 (PWM) 控制  
DVD 播放器  
具有 12 位数模转换器 (DAC) 控制的聚焦/跟踪/  
倾斜执行器驱动器  
CD 播放器  
光盘驱动器  
具有电流模式、10 DAC 控制的滑动电机驱  
动器  
3 说明  
具有 12 DAC 控制的负载驱动器  
TPIC2040 是一款适用于薄型或超薄 DVD /写器的超  
低噪声电机驱动器集成电路 (IC)。该 IC 集成有电流感  
测电阻,能够测量 SPM 电流并降低驱动系统成本。该  
驱动器 IC 7 条通道且由串行接口控制,非常适用于  
驱动主轴电机、滑动电机、负载电机和聚焦/跟踪/倾斜  
执行器。主轴电机驱动器利用 BEMF 检测(无需传感  
器)来启动并控制主轴电机  
无需位置传感器即可检测滑动结束位置  
主轴电机驱动器  
集成主轴电流感测电阻  
可通过设置寄存器来选择 0.20Ω 0.27Ω 的电  
流感测电阻值,从而将 SPM 电流限制在  
725mA 980mA  
无传感器:通过电机反电动势 (BEMF) 感测转  
子位置  
器件信息(1)  
通过串行端口编程 12 位主轴 DAC  
器件型号  
封装  
封装尺寸(标称值)  
独立的感应位置感测和启动  
TPIC2040DBT  
TSSOP (38)  
9.70mm x 4.40mm  
通过名为自动短制动的自动控制制动实现急停  
(短制动和主动制动)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
最大持续电流为 0.7A,不存在散热问题  
低速 (LS) 模式:限制在正常速度的 25%  
简化框图  
MCOM  
TPIC2040  
U
V
5 V  
SPM  
5 V  
实用功能  
XRESET 信号,具有 20ms 数字延时(上电复  
Driver  
3.3 V  
W
(POR))  
SLED1+  
5 V  
SPI  
状态锁存器:执行器定时器、SIF 错误、电源监  
视器、热保护和过流保护 (OCP) 故障  
SLED1-  
SLED2+  
SLED1  
5 V  
SLED2-  
SLED2  
开关  
1PX V  
output  
TLT+  
TLT-  
CSW:软件控制电流输出端口  
5 V  
5 V  
TLT  
低压降 (LDO) 前置驱动器  
FCS+  
FCS-  
LIN9VG  
LINFB  
5 V  
LDO  
Control  
9Vout  
具有外部晶体管的 3.3V 1.2V 电压输出的单  
通道 LDO 前置驱动器  
FCS  
TRK+  
TRK-  
5 V  
TRK  
保护  
LOAD+  
LOAD-  
5 V  
LOAD  
CSWSPM 和执行器通道上均配有独立热保护  
电路  
两个警报级别:热保护中的预检测检测  
负载驱动器中配有过流保护电路  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLIS172  
 
 
 
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
目录  
7.15 Serial Port I/F Write Timing Requirements ........... 10  
7.16 Serial I/F Read Timing Requirements................... 10  
7.17 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 19  
8.5 Programming .......................................................... 21  
8.6 Register Maps......................................................... 23  
Application and Implementation ........................ 39  
9.1 Application Information............................................ 39  
9.2 Typical Application ................................................. 48  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics – Common Part ................ 7  
7.6 Electrical Characteristics – Charge Pump ................ 7  
7.7 Electrical Characteristics – LDO Pre Driver Part ...... 8  
8
9
10 Power Supply Recommendations ..................... 50  
11 Layout................................................................... 50  
11.1 Layout Guidelines ................................................. 50  
11.2 Layout Example .................................................... 50  
12 器件和文档支持 ..................................................... 51  
12.1 器件支持 ............................................................... 51  
12.2 社区资源................................................................ 51  
12.3 ....................................................................... 51  
12.4 静电放电警告......................................................... 51  
12.5 Glossary................................................................ 51  
13 机械、封装和可订购信息....................................... 51  
7.8 Electrical Characteristics – Spindle Motor Driver  
Part............................................................................. 8  
7.9 Electrical Characteristics – Sled Motor Driver Part... 8  
7.10 Electrical Characteristics – Focus/  
Tilt/Tracking/Driver Part ............................................. 9  
7.11 Electrical Characteristics – Load Driver Part .......... 9  
7.12 Electrical Characteristics – Current Switch Part ..... 9  
7.13 Electrical Characteristics – Actuator Protection...... 9  
7.14 Electrical Characteristics – Serial Port Voltage  
Levels ...................................................................... 10  
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布。  
2
版权 © 2015, Texas Instruments Incorporated  
 
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
5 说明(续)  
由于所有通道的输出级均在高效的 PWM 驱动下工作,因此可通过 PWM 控制实现低功率运行。可以对聚焦/跟踪/  
倾斜执行器驱动器进行无死区控制。此外,该器件还内置有主轴部件输出电流限制电路、热关断电路、滑动结束位  
置检测电路、执行器保护和电源复位电路。  
6 Pin Configuration and Functions  
DBT Package  
38-Pin TSSOP  
Top View  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
LOAD+  
LOAD-  
SLED2-  
SLED2+  
SLED1-  
3
PGND_1  
SIOV  
4
SLED1+  
CSWO  
SSZ  
5
SCLK  
SIMO  
SOMI  
XMUTE  
XFG  
6
P5V_1  
7
P5V_SPM  
8
W
9
U
V
10  
11  
12  
13  
14  
XRESET  
CP1  
PGND_SPM  
MCOM  
PGND_2  
CP2  
CP3  
TRK-  
TRK+  
FCS-  
FCS+  
TLT-  
15 LIN3VG  
16  
17  
18  
19  
LINFB/GPOUT  
AGND/DGND  
CV3P3  
TLT+  
P5V_2/A5V  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
LOAD+  
LOAD–  
PGND_1  
SIOV  
O
O
PS  
PS  
I
Load positive output terminal  
Load negative output terminal  
GND terminal  
2
3
4
Power supply terminal for serial port typical 3.3 V  
SIO slave select low active input terminal  
SIO serial clock input terminal  
5
SSZ  
6
SCLK  
SIMO  
I
7
I
SIO slave input master output terminal  
SIO slave output master input terminal  
8
SOMI  
O
Copyright © 2015, Texas Instruments Incorporated  
3
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
9
NAME  
XMUTE  
IN  
O
XMUTE input terminal to disable driver output  
Motor speed signal output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
XFG  
XRESET  
CP1  
O
Power-on reset output. Internally pulled up to SIOV  
Capacitance connection for charge pump  
Capacitance connection for charge pump  
Capacitance connection for charge pump  
3.3-V predriver output control signal for external N-channel FET  
Voltage feedback of 3.3-V predriver (be controlled to LINFB = 1.215 V)  
Ground terminal for internal logic  
MISC  
MISC  
MISC  
O
CP2  
CP3  
LIN3VG  
LINFB/GPOUT  
AGND/DGND  
CV3P3  
P5V_2/A5V  
TLT+  
I/O  
PS  
MISC  
PS  
O
Capacitance terminal for internal 3.3-V regulator  
Power supply terminal  
Tilt positive output terminal  
TLT–  
O
Tilt negative output terminal  
FCS+  
O
Focus positive output terminal  
FCS–  
O
Focus negative output terminal  
TRK+  
O
Tracking positive output terminal  
TRK-–  
O
Tracking negative output terminal  
GND terminal  
PGND_2  
MCOM  
PGND_SPM  
V
PS  
IN  
Motor center tap connection  
PS  
O
GND terminal for spindle driver  
V phase output terminal for spindle motor  
U phase output terminal for spindle motor  
W phase output terminal for spindle motor  
Power supply terminal for spindle driver  
Power supply terminal  
U
O
W
O
P5V_SPM  
P5V_1  
CSWO  
SLED1+  
SLED1–  
SLED2+  
SLED2–  
PS  
PS  
O
Power switch output for 5-V OEIC in OPU  
Sled1 positive output terminal  
O
O
Sled1 negative output terminal  
O
Sled2 positive output terminal  
O
Sled2 negative output terminal  
4
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
V
+ 5 V supply voltage P5V, P5V_SPM  
Spindle output peak voltage  
Input/output voltage  
6
7
VCC + 0.3 V  
1.0  
V
–0.3  
V
Spindle output current  
A
Spindle output peak current (PW 2 ms, Duty 30%)  
Sled output peak current  
2.5  
A
0.8  
A
Focus/tilt/tracking driver output peak current  
Load driver output peak current  
Power dissipation  
1.5  
A
0.8  
A
See Thermal Information  
Operating temperature  
–20  
–50  
75  
°C  
°C  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5.0  
MAX  
5.5  
UNIT  
V
P5V  
Operating supply voltage (apply for P5V)  
SIOV voltage  
VSIOV  
VSIFH  
VSIFL  
ISPMOA  
ISPMO  
ISLDOA  
IACTOA  
ICSWOA  
Fck  
3.0  
3.3  
3.6  
V
XMUTE, SIMO, SSZ, SCLK pin H level input voltage range  
XMUTE, SIMO, SSZ, SCLK pin L level input voltage range  
Spindle output average current (U, V, W total)  
Spindle output current  
2.2  
SIOV + 0.2  
0.8  
V
–0.2  
V
700  
mA  
mA  
mA  
mA  
mA  
MHz  
°C  
700  
Sled output average current  
400  
Focus / tracking / tilt / loading output average current  
CSWO output average current  
400  
500  
SCLK frequency  
30  
33.8688  
25  
35  
TO  
Operating temperature  
–20  
75  
7.4 Thermal Information  
TPIC2040  
THERMAL METRIC(1)  
DBT (TSSOP)  
38 PINS  
81.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
27.2  
42.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJB  
41.7  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The JEDEC specification low K (1 s) board design used to derive this data.  
6
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
7.5 Electrical Characteristics – Common Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
LIN3P3_DIS = 1, XSLEEP = L  
Iload = 25 mA  
MIN  
TYP  
MAX UNIT  
ISTBY  
VCV3  
Stand by supply current  
CV3P3 output voltage  
XMUTE pulldown resistor  
XRESET pullup resistor  
XRESET low level output voltage  
Power-on reset delay  
XFG output resistor  
1.0  
3.63  
320  
52.8  
0.3  
mA  
V
2.97  
80  
3.3  
200  
33  
RXM  
kΩ  
kΩ  
V
RXRST  
VXRSTL  
TPOR  
RXFG  
13.2  
SIOV = 3.3 V, IOL = –100 µA  
15  
20  
25  
ms  
Ω
100  
200  
300  
SIOV = 3.3 V, XSLEEP = 1,  
IOH = 100 µA  
VXFGH  
XFG high-level output voltage  
SIOV – 0.3  
V
SIOV = 3.3 V, XSLEEP = 1,  
IOL = –100 µA  
VXFGL  
RGPO  
XFG low-level output voltage  
GPOUT output resistor  
0.3  
V
100  
200  
300  
Ω
SIOV = 3.3 V, XSLEEP = 1,  
GPOUT_ENA = 1,GPOUT_HL = 1,  
IOH = 100 µA  
VGPOH  
VGPOL  
GPOUT high-level output voltage  
SIOV – 0.3  
V
V
SIOV = 3.3 V, XSLEEP = 1,  
GPOUT_ENA = 1, GPOUT_HL = 0,  
IOH = 100 µA  
GPOUT low-level output voltage  
Thermal protect on temperature  
0.3  
tTSD  
Design specified value  
135  
5
150  
15  
165  
25  
ºC  
ºC  
Thermal protect hysteresis  
temperature  
hytTSD  
Vonvcc  
Voffvcc  
Vhysvcc  
VonCV3  
VoffCV3  
VonSIO  
VoffSIO  
VhysSIO  
P5V reset on voltage  
3.3  
3.5  
100  
2.4  
2.5  
2.4  
2.5  
20  
3.5  
3.7  
200  
2.5  
2.6  
2.5  
2.6  
100  
6.2  
6.0  
200  
3.7  
3.9  
300  
2.6  
2.7  
2.6  
2.7  
140  
6.4  
6.2  
300  
V
V
P5V reset off voltage  
P5V reset voltage hysteresis  
CV3P3 reset on voltage  
CV3P3 reset off voltage  
SIOV reset on voltage  
SIOV reset off voltage  
SIOV reset voltage hysteresis  
mV  
V
V
V
V
mV  
V
(1)  
VovpspmOn OVP detection voltage (spindle)  
5.9  
5.7  
50  
(1)  
VovpspmOff  
OVP release voltage (spindle)  
V
(1)  
VovpSpmHys OVP voltage hysteresis (spindle)  
mV  
OVP detection voltage  
VovpOn  
6.2  
6.0  
50  
6.5  
6.3  
6.7  
6.5  
V
V
(except spindle)(1)  
OVP release voltage  
VovpOff  
(except spindle)(1)  
OVP voltage hysteresis  
VovpHys  
200  
300  
mV  
(except spindle)(1)  
VonLinF  
VoffLinF  
VhysLINF  
LINFB reset on voltage  
0.83  
0.88  
20  
0.93  
0.98  
50  
1.03  
1.08  
80  
V
V
LINFB reset off voltage  
LINFB reset voltage hysteresis  
mV  
(1) Those are value as protection functions only, and stress beyond those listed under Recommended Operating Conditions may cause  
permanent damage to the device.  
7.6 Electrical Characteristics – Charge Pump  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
Frequency  
TEST CONDITIONS  
XSLEEP = 1  
MIN  
TYP  
MAX  
UNIT  
FCHGP  
132.6  
156  
179.4  
kHz  
Copyright © 2015, Texas Instruments Incorporated  
7
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
Electrical Characteristics – Charge Pump (continued)  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Ccp1 = Ccp3 = 0.1 µF  
IO = –1 mA  
MIN  
TYP  
MAX  
UNIT  
VCHGP  
Output voltage  
7.76  
9.7  
11.64  
V
7.7 Electrical Characteristics – LDO Pre Driver Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LINFB_Vth LINFB threshold voltage  
1.175  
1.215  
1.255  
V
7.8 Electrical Characteristics – Spindle Motor Driver Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High side + low side(1)  
RttlSPM  
IOUT = 0.5 A  
0.37  
0.7  
Ω
ResSPM  
GnSPM  
Resolution  
Gain  
12  
6.0  
bit  
Magnification to 1.0 input  
Forward  
5.2  
12h  
6.8  
92h  
times  
52h  
–52h  
0h  
WidDZSPM  
Spindle dead band  
Reverse  
–92h  
–40h  
801  
–12h  
40h  
WidDZSPMLS  
Spindle dead band (LS mode)  
SPM_RCOM_SEL = 00  
SPM_RCOM_SEL = 01  
SPM_RCOM_SEL = 10  
SPM_RCOM_SEL = 11  
890  
980  
725  
784  
979  
mA  
mA  
mA  
mA  
882  
1078  
798  
SPMClim  
Current limit  
652  
705  
863  
(1) IncldRcs  
7.9 Electrical Characteristics – Sled Motor Driver Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High side + low side  
RttlSLD  
ResSLD  
IO = 0.5 A  
0.9  
1.3  
Ω
Resolution  
10  
1Fh  
bit  
Forward  
Reverse  
2h  
60h  
–2h  
WidDZSLD  
GnSLD  
Input dead band  
–60h  
–1Fh  
P5V = 5 V  
RL = 10 Ω, 2.2 mH  
VSLED = 7FFh  
Sled current gain  
380  
440  
500  
mA  
SLEDENDTH<2:0> = 000  
SLEDENDTH<2:0> = 010  
SLEDENDTH<2:0> = 011  
SLEDENDTH<2:0> = 100  
SLEDENDTH<2:0> = 101  
SLEDENDTH<2:0> = 111  
26  
42  
9
46  
82  
66  
122  
35  
mV  
mV  
mV  
mV  
mV  
mV  
22  
END_DET BEMF threshold  
voltage  
VthEdetSLD  
65  
55  
70  
125  
105  
145  
185  
155  
220  
8
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
7.10 Electrical Characteristics – Focus/ Tilt/Tracking/Driver Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IO = 0.5 A  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High Side + Low Side  
(Focus±, Track±, Tilt±)  
RttlAct  
0.9  
1.3  
Ω
ResACT  
VOfstACT  
VOfstDACT  
GnDAct  
Resolution  
12  
0
bit  
mV  
mV  
db  
Each channel output offset voltage  
Output offset voltage Focus and Tilt  
Difference gain Focus and Tilt  
Gain  
DAC_code = 000h  
DIFF_TLT = 1  
–20  
–50  
–1  
20  
50  
1
0
DIFF_TLT = 1  
0
GnAct  
Magnification to 1.0 input  
5.2  
6
6.8  
times  
7.11 Electrical Characteristics – Load Driver Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total output resistance  
High side + low side  
(Load±)  
RttlLOD  
IO = 0.5 A  
0.9  
1.3  
Ω
ResLOD  
GnLOD  
Resolution  
Gain  
12  
6
bit  
Magnification to 1.0 input  
Forward  
5.2  
6.8  
times  
1Fh  
–20h  
0.8  
WidDZLOD  
TocpLOD  
IocpLOD  
Dead band  
Reverse  
Output 100% limit time  
Overcurrent protective level  
LOAD_05CH = 0  
0.64  
120  
215  
0.96  
400  
645  
s
LOAD_05CH = 1 at Load_OCP_IUP = 0  
LOAD_05CH = 1 at Load_OCP_IUP = 1  
240  
430  
mA  
mA  
Overcurrent protection delay  
time  
DlyocpLOD  
LOAD_05CH = 1  
0.64  
0.8  
0.96  
s
7.12 Electrical Characteristics – Current Switch Part  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
Rds(on)  
TEST CONDITIONS  
IO = 0.2 A  
MIN  
TYP  
200  
0.5  
MAX  
500  
UNIT  
mΩ  
A
RdsCSW  
IlmtCSW  
ThlCSW  
CSW_OCP = 0  
CSW_OCP = 1  
CSW_OCP = 2  
0.25  
0.375  
0.5  
0.75  
1.125  
1.5  
Current limit threshold level  
Protection hold time  
0.75  
1.0  
A
A
1.47  
1.6  
2.0  
ms  
7.13 Electrical Characteristics – Actuator Protection  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TintACTTEMP  
Update cycle  
21  
26  
31  
ms  
Copyright © 2015, Texas Instruments Incorporated  
9
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
7.14 Electrical Characteristics – Serial Port Voltage Levels  
over recommended operating free-air temperature range (P5V 4.5 to 5.5 V, TA –20to 75, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
80 %  
SIOV  
SOMI  
SOMI  
SIMO  
SIMO  
High-level output voltage, VOH  
IOH = 1 mA  
V
20%  
SIOV  
Low-level output voltage, VOL  
High-level input voltage, VIH  
Low level input voltage, VIL  
IOL = 1 mA  
V
V
V
70%  
SIOV  
20%  
SIOV  
SIMO  
SOMI  
SCLK  
SIMO  
SSZ  
Input rise/fall time  
Output rise/fall time(1)  
10% 90% SIOV  
3.5  
10  
ns  
ns  
Cload = 30 pF, 10% 90% SIOV  
Internal pulldown resistance  
80  
80  
80  
200  
200  
200  
320  
320  
320  
kΩ  
kΩ  
kΩ  
Internal pullup resistance  
(1) Specified by design  
7.15 Serial Port I/F Write Timing Requirements  
(1)  
see  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
Fck  
tckl  
SCLK clock frequency  
SCLK low time  
SIOV = 3.3 V  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
(1) Specified by design  
7.16 Serial I/F Read Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
Fck  
tckl  
SCLK clock frequency  
SCLK low time  
SIOV = 3.3 V  
35  
11  
11  
7
tckh  
tsens  
tsenh  
tsl  
SCLK high time  
ns  
SSZ setup time  
ns  
SSZ hold time  
7
ns  
SSZ disable high time  
SIMO setup time (Write)  
SIMO hold time (Write)  
SOMI delay time (Read)  
SOMI hold time (Read)  
11  
7
ns  
tds  
ns  
tdh  
7
ns  
trdly  
tsendl  
CLOAD = 10 pF, SIOV = 3.3 V  
CLOAD = 10 pF, SIOV = 3.3 V  
2
9
9
ns  
2
ns  
CLOAD = 10 pF, SIOV = 3.3 V  
From SSZ rise to SOMI HIZ  
trls  
SOMI release time (Read)  
0
9
ns  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
Tsl  
SSZ  
Tsens  
Fck  
Tsenh  
SCLK  
Tckh  
Tckl  
SIMO  
SOMI  
Tds  
Tdh  
Hi-Z  
Figure 1. Serial Port Write Timing  
Tsl  
SSZ  
Tsenh  
Fck  
Tsens  
Trls  
SCLK  
Tckl  
Tds  
Tckh  
Tdh  
R
SIMO  
SOMI  
Hi-Z  
Tsendl  
Trdly  
Figure 2. Serial Port Read Timings  
7.17 Typical Characteristics  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
LOAD-  
TRK-  
40  
LOAD+  
TRK+  
20  
0
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D003  
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D004  
DAC Code  
DAC Code  
Figure 3. DAC Code vs Duty Cycle for LOAD Outputs  
Figure 4. DAC Code vs Duty Cycle for TRK Outputs  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
TPIC2040 is low noise type motor driver IC suitable for 5V optical disk drives. The 7-channel driver IC controlled  
by serial I/F is optimum for driving a spindle motor, a sled motor (stepping motor applicable), a load motor, and  
Focus / Tracking / Tilt actuators. This IC’s integrated current sense resistance to measure SPM current reduces  
drive system cost in drastically. The spindle motor driver part uses integrated sensorless logic to attain very low-  
noise operation during startup and runtime. By using BEMF feedback, external sensors, such as a Hall device,  
are not needed to carry out self-starting by the starting circuit or perform position detection. By using the efficient  
PWM drivers, low-power operation can be achieved by controlling the PWM outputs. Dead zone less control is  
possible for a Focus / Tracking / Tilt actuator driver. In addition, the spindle part output current limiting circuit, the  
thermal shut down circuit, and the sled end-detection circuit offer protection for all actuators and motors.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.2 Functional Block Diagram  
5 V  
5 V  
5 V  
5 V  
0.1 µF 0.1 µF  
PGND_SPM  
Analog  
10 V(P5Vx2)  
XSLEEP  
SPM_RCOM  
Charge  
Pump  
3.3 V  
SPM  
Current Limit  
SPM_ENA  
SPM Logic  
DAC PWM  
MCOM  
BEMF  
Detector  
XFG  
U
XFG  
Predriver  
pwr FET  
V
SIOV  
3.3 V  
W
200 kΩ  
SSZ  
SSZ  
SLED1+  
SLED1–  
SCLK  
Predriver  
pwr FET  
SCLK  
DAC PWM  
SIMO  
SIMO  
SLD_ ENA  
I-F/B  
SOMI  
SOMI  
SLED END  
Detection  
ENDDET_ ENA  
Digital Core  
SLED2+  
SLED2–  
Predriver  
DAC PWM  
On-Chip  
Themometer  
pwr FET  
XMUTE  
InterLock  
SLD_ ENA  
I-F/B  
F/B  
TLT+  
TLT–  
Predriver  
pwr FET  
P5V  
DAC PWM  
DAC PWM  
CV3P3V  
TLT_ENA  
int 3.3-V  
Regulator  
0.1 µ  
FCS+  
FCS–  
Predriver  
pwr FET  
P5V  
SIOV  
LINFB  
SIOV  
F/B  
FCS_ ENA  
Power  
Monitor  
XRESET  
XRESET  
int 3p3  
P5V  
TRK+  
TRK–  
Predriver  
pwr FET  
ACTTEMPTH>0  
TRK_ ENA  
F/B  
F/B  
LOAD+  
DAC PWM  
5 V/3.3 V  
Predriver  
pwr FET  
Charge Pump  
LIN3P3_DIS  
LIN3VG  
LDO  
Control  
LOAD–  
1.2/3.3 V  
LOAD_ ENA  
CSWO  
CSW  
CSW _ ON  
CSWO  
10 µ  
LINFB/GPOUT  
LIN3P3_DIS  
and GPOUT_ENA  
GPOUT  
TPIC2040  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Protect Function  
TPIC2040 has five protection features, undervoltage lockout (UVLO), over voltage protection (OVP), short circuit  
protection (SCP), thermal protection (TSD), and actuator temperature protection (ACTTIMER) in order to protect  
target equipment. A protect behavior differ by generated events.  
8.3.1.1 Undervoltage Lockout (UVLO)  
Power Faults are reported in the UVLOMon register. Each UVLOMon bit will be initialized to zero upon a cold  
power up.  
After a fault is detected the appropriate fault bit will be latched high. Writing to the RST_ERRFLG (REG77) will  
clear all UVLOMon bits. The power device faults and actions are summarized in Table 1.  
Table 1. Power Fault Monitor  
FAULT TYPE  
LATCHED  
REGISTER  
XRESET  
CRITERIA  
SPM  
ACTUATOR  
LDO PRE  
DRIVER  
P5V under voltage  
UVLO_P5V  
Yes  
Yes  
<3.5 V  
<2.5 V  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
internal 3.3V under voltage UVLO_INT3P3  
(13-ms timeout  
then 120-ms Hi-  
Z)  
LINFB under voltage  
UVLO_1P2V  
Yes  
Yes  
<0.93 V  
Hi-Z  
Hi-Z  
SIOV under voltage  
P5V over voltage  
UVLO_SIOV  
OVP_P5V  
<2.5 V  
>6.2 V  
>6.5 V  
Hi-Z  
Brake  
Hi-Z  
Hi-Z  
Hi-Z  
8.3.1.2 Overvoltage Protection (OVP)  
Over voltage protect function is aimed to protect the unit from the supplying hi-voltage.  
When the supply voltage exceeds 6.5 V, all driver output goes Hi-Z. When the supply voltage falls below typical  
6.2 V, (6.0 V for SPM) all output start to operate again. The OVP and POR (XRESET) function is not interlocking.  
Moreover, when power supply exceeds 6.2 V, especially SPM enter short brake mode. This operation is offered  
supposing a voltage rising by motor BEMF of the high velocity revolution.  
This function is for insurance, so it cannot assure that the device is safety in the condition. Because the absolute  
maximum ratings range of the supply voltage is 6 V. When this function works, the feedback terminals are not  
shorted to GND.  
Figure 5 shows the behavior of over voltage protection.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
5-V supply  
6.5 V  
6.3 V  
6.2 V  
6.0 V  
SPM  
Short Brake  
Hi-Z  
Actuator  
LDO  
CSW  
Hi-Z  
Figure 5. Overvoltage Protection  
8.3.1.3 Overcurrent Protection (OCP)  
The over current protect function serve to protect the device from break down by large current. The OCP is  
provided for four circuit blocks, and each threshold are on Table 2.  
Table 2. OCP Threshold  
BLOCK  
DETECTION CURRENT  
continue 100% duty  
240 mA/425 mA  
MONITOR TIME  
800 ms  
PROTECTION TIME  
Forever  
LATCHED FLAG  
OCP_LOAD  
OCP_LOAD  
OCP_CSW  
Load driver 1 channel  
Load driver 0.5 channel  
CSW driver  
800 ms  
Forever  
500, 750, 1000 mA  
20 µs  
1.6 ms  
When the large current is detected on each block, device put the output FET to Hi-Z.  
The amounts of currents and time have specified the detection threshold for every circuit block.  
When OCP occurs, it returns automatically after expiring set Hi-Z period.  
OCPERR (REG7F) and OCP flag (REG7B) are set at OCP detection.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.3.1.3.1 OCP for Load Driver  
LOAD current  
0 mA  
Hi-Z  
LOAD+  
100% duty  
800 ms  
LOAD–  
XRESET  
Figure 6. Overcurrent Protection Load 1 Channel  
800 ms  
240 mA  
LOAD current  
0 mA  
Hi-Z  
LOAD+  
LOAD–  
XRESET  
Figure 7. Overcurrent Protection Load 0.5 Channel  
8.3.1.3.2 OCP for CSW  
CSW_ ON  
20 µs  
500 m A  
CSW current  
Hi-Z  
0 m A  
1.6 ms  
CSW voltage  
XRESET  
Figure 8. Overcurrent Protection Current Switch  
SCP function always monitors the output voltage of high-side and low-side FET of output driver, and when the  
setting voltage is not outputted, it recognizes as SCP and changed output Hi-Z. It returns to the original state  
automatically 1.6 ms after.  
Table 3. SCP Condition  
BLOCK  
SPM driver  
Sled driver  
Load driver  
Actuator driver  
FUNCTION  
DETECTION CONDITION  
DETECT TIME  
HI-Z HOLD TIME  
Monitor driver output voltage  
High-side FET output V = GND  
Low-side FET output V = Supply V  
SCP  
0.8 to 1.6 µs  
1.6 ms  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
VDAC set  
Driver current  
Hi-Z  
Hi-Z  
detect 1.6 µs  
Short to GND  
Driver voltage  
XRESET  
1.6 ms  
Figure 9. Example of SCP (Driver Short to GND)  
8.3.1.4 Thermal Protection (TSD)  
The thermal protection (TSD) is a protection function which intercepts an output and suspends an operation  
when the IC temperature exceed a maximum permissible on a safety. TSD makes an output Hi-Z when the  
temperature rises up and a threshold value is exceeded. There are two levels for threshold Alert and Trip. An  
alarm is given by status register TSD_FAULT_ on Alert level with 135°C. It continues rising up temperature, the  
register TSD_ is set at 150°C and the driver output changes HI-Z. If temperature falls and is reached 135°C, it  
will output again.  
TPIC2040 has total 10 temperature sensors in each circuit block. Particular sensor is assigned to appropriate  
status flag in Table 4.  
Table 4. Thermal Sensor Assignment  
CIRCUIT  
U
ALERT (°C)  
135  
TRIP (°C)  
150  
RELEASE (°C)  
ALERT FLAG  
TRIP FLAG  
TSD_SPM  
TSD_SPM  
TSD_SPM  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
TSD_ACT  
135  
135  
135  
135  
135  
135  
135  
135  
135  
135  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_SPM  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
TSD_FAULT_ACT  
V
135  
150  
W
135  
150  
TLT  
135  
150  
FCS  
TRK  
SLED1  
SLED2  
LOAD  
CSW  
135  
150  
135  
150  
135  
150  
135  
150  
135  
150  
135  
150  
8.3.1.5 Actuator Temperature Protection (ACTTIMER)  
TPIC2040 has Actuator protect function named ACTTIMER. This function enables to avoid from being broken by  
setting actuator channel output to HIZ when actuator coil current exceeds the specific value. Up to now, be used  
a simple actuator protect function such like exceeding max current with continuous time. However these types  
were not accurate. This new protection enables to calculate heat accumulation and judge correctly. When this  
function operates, and load channel output will be Hi-Z, too. And spindle channel will be forced Auto short brake  
and disc motor will stop.  
It is able to know the protection has occurred by checking Fault register ACTTIMER_FAULT (REG7F) and  
ACT_TIMER_PROT (REG78). ACTTIMER_FAULT has a character of advance notice, is set before detecting  
ACT_TIMER_PROT. Once an ACT_TIMER_PROT is set, even if temperature falls, it will not release protection  
automatically. It is necessary to clear the flag by setting RST_ERR_FLAG (REG77) or setting 0 to ACTTEMPTH  
(REG72). ACTTIMER function is able to disable by setting H to ACTPROT_OFF (REG72) or setting 0 to  
ACTTEMPTH (REG72).  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
In order to acquire the optimal value for ACTTEMPTH, you should set device into the condition of the detection  
level, and reading the value of ACTTEMP. Because of the present value can be read from ACTTEMP (REG78).  
(1)  
RST_ERR_FLAG  
ACTTIMER_FAULT  
ACT_TIMER_PROT  
ACTTEMPTH  
ACTTEMPTH-1  
ACTTEMP count  
Hi-Z  
FCS+, TRK+, TLT+  
Hi-Z  
FCS–, TRK–, TLT–  
Sled1+, Sled2+  
Sled1–, Sled2–  
Hi-Z  
Load+  
Hi-Z  
Load–  
Motor rpm  
0
Auto short brake  
XFG  
Disable 300 ms  
Figure 10. Actuator Temperature Protections  
(1) The ACTTEMP data is updated on Register in ACTPROT_OFF = 0 and ACTTEMPTH > 0.  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.4 Device Functional Modes  
8.4.1 Power-on Reset (POR)  
8.4.1.1 Power-Up Sequences  
In TPIC2040, the normal sequence is to wait for 5-V supply to come up to 2.2 V. After 5 V establish, the internal  
3.3 V will start and wait until stabilize. Now the voltage monitors start to work and begin to look for the LDO  
output. When LINFB pin over 0.98 V with SIOV over 2.6 V, the power up sequence finishes and the part starts to  
function. Once the part finishes all of its power up tasks, it takes XRESET high to indicate that the part is no  
longer in reset and ready to communicate to the outside world. Figure 11 is example of power-up sequence  
which is set 3.3-V LDO output and output is used for SIOV supply.  
P5V Supply  
5.0 V  
3.7 V  
LDO output (3.3 V)  
CV3P3  
2.6 V  
2.2 V  
LINFB  
0.98 V  
XRESET  
20 ms  
1.6 ms  
0 V  
time  
P5V >3.7 V && CV3P3 >2.6 V  
&& SIOV >2.6 V && LINFB >0.98 V  
Figure 11. POR (Enable LDO)  
P5V Supply  
5.0 V  
3.7 V  
CV3P3  
SIOV = LINFB = 3.3 V  
2.6 V  
2.2 V  
0.98 V  
0 V  
20 ms  
XRESET  
time  
P5V >3.7 V && CV3P3 >2.6 V  
&& SIOV >2.6 V && LINFB >0.98 V  
LIN3P3_DIS  
(Reduced ICC by LIN3P3_dis = 1)  
Figure 12. POR (Disable LDO)  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.1.2 XRESET  
TPIC2040 is preparing XRESET pin in order to notify an own status to DSP. TPIC2040 set XRESET to L when  
the event which has a serious effect on DSP occurs such like the power failure, the over temperature. If all the  
exception is removed, it will tell that XRESET pin would be set to H and it would be in the ready state. The POR  
(Power on reset) condition is shown in Figure 23 POR block diagram. All the behavior of XRESET is shown in  
Figure 14.  
P5V  
SIOV  
< 6.5 V  
> 3.7 V  
> 2.6 V  
Delay  
timer  
XRESET  
> 0.98 V  
int 3.3-V  
Regulator  
> 2.6 V  
LINFB  
Figure 13. POR Block Diagram  
XRESET: High  
(Write Data)  
Register Reset  
Register Valid Data  
RST_REGS = 1  
SIF_TIMEOUTERR_MON = 1  
20 ms  
P5V < 3.5 V  
or CV3P3 < 2.5 V  
or SIOV < 2.5 V  
or LINFB < 0.93 V  
P5V > 3.7 V  
and CV3P3 > 2.6 V  
and SIOV > 2.6 V  
and LINFB > 0.98 V  
XRESET: Low  
Figure 14. XRESET Behavior  
8.4.2 XMUTE  
This IC has XMUTE pin which had fail-safe function in preparation for unexpected operation.  
If XMUTE signal is inputted during operation, all the outputs will be suspended and the danger will be avoided.  
TPIC2040 will turn off all enable bits, actuator (TLT_ENA/FCS_ENA/TRK_ENA), SPM_ENA, SLD_ENA,  
LOAD_ENA and CSW_ON when XMUTE input change to L. LOAD_ENA bit will be disabled only when  
LOAD_05CH = 1. Also log this event to error latch flag XMUTE_DETECT (REG79) and PWRERR (REG7F).  
On the other hand, if it is set as XMUTE_NORST (REG7F) = 1, change of XMUTE will not influence to enable  
bits.  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.5 Programming  
8.5.1 Serial Port Functional Description  
The serial communication of TPIC2040 is based on a SPI communications protocol. TPIC2040 is put on the  
slave side.  
All 16-bit transmission data is effective in SSZ = L period.  
The bit stream sent through SIMO from a master (DSP) is latched to an internal shift register by the rising edge  
of SCLK. All the data is transmitted in a total of 16-bit format of a command and data. A format has two types of  
data, 8 bits and 12 bits length. In order to access specific registers, an address and R/W flag are specified as a  
command part. In addition, 12-bit data do not have R/W flag in the packet because DAC register(= 12-bit data  
form) are Write only. A transfer packet, command and data, is transmitted sequentially from MSB to LSB. A  
packet is distinguished in MSB 2 bits of command. In the case of 11, it handles a packet for control register  
access, and the other processed as a packet for a DAC data setting.  
There are the following four kinds of serial-data communication packets.  
1. Write 12 bits DAC data (MSB two bit 11)  
2. Write 8 bits control register (MSB two bit = 11)  
3. Read 8 bits control register (MSB two bit = 11)  
4. Write 12 bits Focus DAC dataRead 8 bits status register at the same time (MSB two bit 11)  
8.5.2 Write Operation  
For write operation, DSP transmits 16 bit (command + address + data) data a bit every in an order from MSB.  
Only the 16-bit data which means 16 SCLK sent from the master during SSZ = L becomes effective. If more than  
17 or less than 15 SCLK pulses are received during the time that SSZ is low, the whole packet will be ignored.  
For all valid write operations, the data of the shift register is latched into its designated internal register at rising  
edge of 16th SCLK. All internal register bits, except indicated otherwise, are reset to their default states upon  
power-on-reset.  
SSZ  
SCLK  
SIMO  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SOMI  
Hi-Z  
Figure 15. Write 12-Bits DAC Data  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
W
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 16. Write 8-Bits Control Register  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
Programming (continued)  
8.5.3 Read Operation  
DSP sends 8-bit header through SIMO, in order to perform Read operation. TPIC2040 will start to drive the  
SOMI line upon the eighth falling edge of SCLK and shift out eight data bits. The master DSP inputs 8bits data  
from SOMI after the ninth rising edge of SCLK. There is optional read mode that SOMI data is advanced a half  
clock cycle of SCLK. This mode becomes effective by setting ADVANCE_RD (REG74) = H.  
SSZ  
SCLK  
SIMO  
SOMI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Hi-Z  
Figure 17. Read 8-Bits Control Register  
8.5.4 Write and Read Operation  
Optionally, the master DSP can read Status register during writing 12 bits DAC (Focus DAC) packet. It is  
enabled by setting bit STATUS_ON_VFCS (REG74) = H.  
SSZ  
SCLK  
SIMO  
SOMI  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Hi-Z  
Figure 18. Write 12-Bits Focus DAC Data + Read 8-Bits Status Data  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6 Register Maps  
All registers are in WRITE-protect mode after XRESET release. WRITE_ENA bit (REG76) = H is required before  
writing data in register.  
8.6.1 Register State Transition  
Version Data  
(REG7E)  
Device PowerOn  
Initial Value Set  
P5V < 3.5 V  
or CV3P3 < 2.5 V  
XRESET= H  
(TPIC2040 output)  
or SIOV < 2.5 V  
or LINFB < 0.93 V  
or RST_REGS = 1  
or SIF_TIMEOUT_ERR = 1  
P5V< 2.0 V  
orCV3P3 < 2.0 V  
or RST_ ERR_ FLAG = 1  
W RITE_ ENABLE = 0  
or XSLEEP= 0  
Control Reg data  
Driver Enable  
(REG70 .. 7F, 6F)  
(REG70 xxx_ ENA, REG71 CSW _ ON)  
P5V < 3.5 V  
disable (0)  
or CV3P3 < 2.5 V  
or SIOV < 2.5 V  
or LINFB < 0.93 V  
or P5V > 6.5 V  
XMUTE = L  
(@XMUTE_ NORST = 0  
XMUTE_ NORST_CSW = 0) *  
Write (1)  
or  
or  
or  
XMUTE = L  
SIF_TIMEOUT_ERR = 1  
RST_REGS = 1  
enable (1)  
*disable LOAD_ENA only Load05_CH = 1  
Error latched Reg data  
(REG78,79,7A,7B,7F [5:1])  
VDAC Reg data  
(REG01- 09)  
Write(Vxxx)  
Initial (000)  
SetValue  
(Error occur, xmute = L)  
RST_ INDAC = 1  
or XXX_ ENA= 0  
Register Enable  
Figure 19. Register State Transition Chart  
Two difference forms are prepared in 12-bit DAC register, and the forms can be selected by setting  
VDAC_MAPSW (REG74h).  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
Table 5. DAC Register (VDAC_MAPSW = 0)  
REG  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
NAME  
N/A  
F
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
W
W
W
W
N/A  
N/A  
N/A  
VTLT  
VFCS  
VTRK  
VSLD1  
VSLD2  
N/A  
VTLT[11]  
VFCS[11]  
VTRK[11]  
VTLT[10]  
VFCS[10]  
VTRK[10]  
VTLT[9]  
VFCS[9]  
VTRK[9]  
VTLT[8]  
VFCS[8]  
VTRK[8]  
VSLD1[8]  
VSLD2[8]  
VTLT[7]  
VFCS[7]  
VTRK[7]  
VSLD1[7]  
VSLD2[7]  
VTLT[6]  
VFCS[6]  
VTRK[6]  
VSLD1[6]  
VSLD2[6]  
VTLT[5]  
VFCS[5]  
VTRK[5]  
VSLD1[5]  
VSLD2[5]  
VTLT[4]  
VFCS[4]  
VTRK[4]  
VSLD1[4]  
VSLD2[4]  
VTLT[3]  
VFCS[3]  
VTRK[3]  
VSLD1[3]  
VSLD2[3]  
VTLT[2]  
VFCS[2]  
VTRK[2]  
VTLT[1]  
VFCS[1]  
VTRK[1]  
VTLT[0]  
VFCS[0]  
VTRK[0]  
VSLD1[11] VSLD1[10] VSLD1[9]  
VSLD1[2] *VSLD1[1] *VSLD1[0]  
VSLD2[11] VSLD2[10] VSLD2[9]  
VSLD2[2] *VSLD2[1] *VSLD2[0]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VSPM  
VLOAD  
N/A  
VSPM[11] VSPM[10]  
VSPM[9]  
VSPM[8]  
VSPM[7]  
VSPM[6]  
VSPM[5]  
VSPM[4]  
VSPM[3]  
VSPM[2]  
VSPM[1]  
VSPM[0]  
VLOAD[11] VLOAD[10] VLOAD[9] VLOAD[8] VLOAD[7] VLOAD[6] VLOAD[5] VLOAD[4] VLOAD[3] VLOAD[2] VLOAD[1] VLOAD[0]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6.2 DAC Register (12-Bit Write Only)  
Table 6. DAC Register (VDAC_MAPSW = 1)  
REG(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
NAME  
N/A  
F
11  
10  
9
8
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
W
W
W
W
N/A  
N/A  
N/A  
VTLT  
VFCS  
VTRK  
VSLD1  
VSLD2  
VSPM  
N/A  
VTRK[11]  
VFCS[11]  
VTLT[11]  
VTRK[10]  
VFCS[10]  
VTLT[10]  
VTRK[9]  
VFCS[9]  
VTLT[9]  
VTRK[8]  
VFCS[8]  
VTLT[8]  
VTRK[7]  
VFCS[7]  
VTLT[7]  
VTRK[6]  
VFCS[6]  
VTLT[6]  
VTRK[5]  
VFCS[5]  
VTLT[5]  
VTRK[4]  
VFCS[4]  
VTLT[4]  
VTRK[3]  
VFCS[3]  
VTLT[3]  
VTRK[2]  
VFCS[2]  
VTLT[2]  
VTRK[1]  
VFCS[1]  
VTLT[1]  
VTRK[0]  
VFCS[0]  
VTLT[0]  
VSLD1[11] VSLD1[10] VSLD1[9]  
VSLD2[11] VSLD2[10] VSLD2[9]  
VSLD1[8]  
VSLD2[8]  
VSPM[8]  
VSLD1[7]  
VSLD2[7]  
VSPM[7]  
VSLD1[6]  
VSLD2[6]  
VSPM[6]  
VSLD1[5]  
VSLD2[5]  
VSPM[5]  
VSLD1[4]  
VSLD2[4]  
VSPM[4]  
VSLD1[3]  
VSLD2[3]  
VSPM[3]  
VSLD1[2] *VSLD1[1] *VSLD1[0]  
VSLD2[2] *VSLD2[1] *VSLD2[0]  
VSPM[11] VSPM[10]  
N/A  
VSPM[9]  
VSPM[2]  
VSPM[1]  
VSPM[0]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
VLOAD  
N/A  
VLOAD[11] VLOAD[10] VLOAD[9] VLOAD[8] VLOAD[7] VLOAD[6] VLOAD[5] VLOAD[4]  
N/A  
N/A  
N/A  
N/A  
N/A  
(1) TPIC2040 process as 0 even if set 1.  
Copyright © 2015, Texas Instruments Incorporated  
25  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.3 Control Register  
Table 7. Control Register (8bit Read/Write)(1)  
REG  
70h  
71h  
NAME  
DriverEna  
FuncEna  
F
7
6
5
4
3
2
1
0
R/W  
R/W  
TLT_ENA  
FCS_ENA  
ENDDET_ENA  
TRK_ENA  
LIN3P3_DIS  
SPM_ENA  
TI reserved  
SLD_ENA  
CSW_ON  
TI reserved  
LOAD_ENA  
XSLEEP  
SPM_LSMODE  
XMUTE_NORST  
_CSW  
TI reserved  
72h  
73h  
74h  
ACTCfg  
Parm0  
OptSet  
R/W  
R/W  
R/W  
LOAD_O5CH_HI LOADPROT_OF ACTPROT_OFF  
ACTTEMPTH  
GH  
F
SIF_TIMEOUT_TH  
SLEDEND_HZTI  
ME  
SLDENDTH[1:0]  
SPM_RCOM_SEL  
XMUTE_NORST  
VDAC_MAPSW  
TSD_TUP  
DIFF_TLT  
LOAD05_CH  
STATUS_ON_V  
FCS  
VSLD2_POL  
TI reserved  
LOAD_OCP_IUP  
TI reserved  
TI reserved  
SOMI_HIZ  
75h  
76h  
Protect  
R/W  
R/W  
WriteEna  
WRITE_ENABL  
E
77h  
78h  
79h  
7Ah  
ClrReg  
ActTemp  
UVLOMon  
TsdMon  
W
R
R
R
RST_INDAC  
RST_REGS  
RST_ERR_FLA  
G
TI reserved  
ACTTEMP  
UVLO_SIOV  
TSD_SPM  
SCP_SLED  
TI reserved  
TI reserved  
ACT_TIMER_PR  
OT  
XMUTE_DETEC  
T
UVLO_P5V  
OCP_CSW  
UVLO_INT3P3  
UVLO_1P2V  
TSD_ACT  
OVP_P5V  
TI reserved  
SCP_ACT  
TI reserved  
TI reserved  
TSD_FAULT_SP TSD_FAULT_AC  
TI reserved  
M
T
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
ProtMon  
Protect  
Protect  
Version  
Status  
R
R
R
R
R
OCP_LOAD  
TI reserved  
SCP_SPM  
TI reserved  
SCP_LOAD  
TI reserved  
Version  
ACTTIMER_FAU  
LT  
ENDDET  
SIF_TIMEOUTE  
RR  
PWRERR  
TSDERR  
OCPSCPERR  
TSDFAULT  
FG  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
6Ah  
Protect  
Protect  
Protect  
Protect  
Protect  
Protect  
Protect  
Protect  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
TI reserved  
CSW_OCP  
TI reserved  
(1) VTRK and VLOAD is exclusive, using same DAC block  
26  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
Table 7. Control Register (8bit Read/Write)() (continued)  
REG  
6Ch  
6Dh  
6Eh  
6Fh  
NAME  
Parm1  
F
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
TI reserved  
EDET_DELAY  
SLDENDTH[2]  
Protect  
TI reserved  
TI reserved  
ACTTIMER_FLT ENDDET_MON SIF_TIMEOUTE PWRERR_MON TSDERR_MON  
_MON RR_MON  
Protect  
MonitorSet  
OCPSCPERR_ TSDFAULT_MO  
MON  
TI reserved  
N
Copyright © 2015, Texas Instruments Incorporated  
27  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.4 Detailed Description of Registers  
8.6.4.1 REG01 12bit DAC for Tilt (VDAC_MAPSW = 0)  
Figure 20. Tilt (REG01)  
15  
14  
13  
12  
11  
10  
9
8
VTLT  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTLT  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. TILT (REG01) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VTLT  
w
0
Digital input code for Tilt.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by differential Tilt mode (REG74[7])  
TLT_OUT = VTLT × (6.0 / 2048) (DIFF_TLT = 0)  
TLT_OUT = (VFCS-VTLT) × (6.0 / 2048) (DIFF_TLT = 1)  
TLT_OUT should be changed after writing VFCS.  
In DIFF_TLT mode (DIFF_TLT = 1), TLT_OUT should be changed after  
writing VFCS.  
8.6.4.2 REG02 12bit DAC for Focus (VDAC_MAPSW = 0)  
Figure 21. Focus (REG02)  
15  
14  
13  
12  
11  
10  
9
8
VFCS  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VFCS  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Focus (REG02) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VFCS  
w
0
Digital input code for Focus.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
Output is changed by differential Tilt mode (REG74[7])  
FCS_OUT = VFCS × (6.0 / 2048) (DIFF_TLT = 0)  
FCS_OUT = (VFCS + VTLT) × (6.0 / 2048) (DIFF_TLT=1)  
28  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6.4.3 REG03 12bit DAC for Tracking (VDAC_MAPSW = 0)  
Figure 22. Tracking (REG03)  
15  
14  
13  
12  
11  
10  
9
8
VTRK  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VTRK  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. Tracking (REG03) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VTRK  
w
0
Digital input code for Tracking.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
TRK_OUT = VTRK × (6.0 / 2048)  
8.6.4.4 REG04 10bit DAC for Sled1 (VDAC_MAPSW = 0)  
Figure 23. Sled1 (REG04)  
15  
14  
13  
12  
11  
10  
9
8
VSLD1  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD1  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. Sled1 (REG04) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-2  
VSLD1  
w
0
Digital input code for Sled1.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD1[1:0], will be handled with zero.  
SLD1_OUT = VSLD1 × (440 mA / 2048)  
8.6.4.5 REG05 10bit DAC for Sled2 (VDAC_MAPSW = 0)  
Figure 24. Sled2 (REG05)  
15  
14  
13  
12  
11  
10  
9
8
VSLD2  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSLD2  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. Sled2 (REG05) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-2  
VSLD2  
w
0
Digital input code for Sled2.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
Two bits on LSB, VSLD2[1:0], will be handled with zero.  
SLD2_OUT = VSLD2 × (440mA / 2048)  
Copyright © 2015, Texas Instruments Incorporated  
29  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.4.6 REG08 12bit DAC for Spindle (VDAC_MAPSW = 0)  
Figure 25. Spindle (REG08)  
15  
14  
13  
12  
11  
10  
9
8
VSPM  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VSPM  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. Spindle (REG08) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VSPM  
w
0
Digital input code for Spindle.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
SPM_OUT = VSPM × (6.0 / 2048)  
8.6.4.7 REG09 12bit DAC for Load (VDAC_MAPSW = 0)  
Figure 26. Load (REG09)  
15  
14  
13  
12  
11  
10  
9
8
VLOAD  
w-0  
3
w-0  
2
w-0  
1
w-0  
0
7
6
5
4
VLOAD  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. Load (REG09) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
11-0  
VLOAD  
w
0
Digital input code for Load.  
2’s compliment format 0x800(-2048) to 0x7ff(+2047)  
LOAD_OUT = VLOAD × (6.0 / 2048)  
8.6.4.8 REG6A 8-Bit Control Register for CSW_OCP (REG6A)  
Figure 27. CSW_OCP (REG6A)  
7
6
5
4
3
2
1
0
TI reserved  
CSW_OCP  
TI reserved  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. CSW_OCP (REG6A) Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
rw  
Default  
Description  
0
0
CSW_OCP  
rw  
CSW OCP current threshold selection  
00: 0.5 A  
01: 0.75 A  
10: 1 A  
11: OCP disable  
3-0  
TI reserved  
rw  
0
30  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6.4.9 REG6C 8-Bit Control Register for Parm1 (REG6C)  
Figure 28. Parm1 (REG6C)  
7
6
5
4
3
2
1
0
TI reserved  
rw-0  
EDET_DELAY  
TI reserved  
SLDENDTH[2]  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. Parm1 (REG6C) Field Descriptions  
Bit  
7-5  
4-3  
Field  
Type  
rw  
Default  
Description  
TI reserved  
EDET_DELAY  
0
0
rw  
Timing parameter of detection window for sled end detection. (delay  
time / window width)  
EDET_DELAY[1:0]  
00: 0 ms/0.41 ms  
01: 0.62 ms/0.20 ms  
10: 0.93 ms/0.30 ms  
11: 1.24 ms/0.41 ms  
2-1  
0
TI reserved  
rw  
rw  
0
0
SLDENDTH[2]  
Sled end detection sensibility setting. Detection threshold for motor  
BEMF  
SLDENDTH[2:0]  
000: 46 mV  
010: 82 mV  
011: 22 mV  
100: 125 mV  
101: 105 mV  
111: 145 mV  
8.6.4.10 REG6F 8-Bit Control Register for MonitorSet (REG6F)  
Figure 29. MonitorSet (REG6F)  
7
6
5
4
3
2
1
0
ACTTIMER_FL ENDDET_MON SIF_TIMEOUT PWRERR_MO TSDERR_MON OCPERR_MO TSDFAULT_M  
TI reserved  
T_MON  
ERR_MON  
N
N
ON  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. MonitorSet (REG6F) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
ACTTIMER_FLT_MON rw  
0
Assign signal to GPIO pin  
1: ACTTIMER fault output to GPOUT pin  
6
5
4
3
2
1
0
ENDDET_MON  
rw  
0
0
0
0
0
0
0
Assign signal to GPIO pin  
1: ENDDET monitor output to GPOUT pin  
SIF_TIMEOUTERR_M rw  
ON  
Assign signal to GPIO pin  
1: SIF timeout monitor output to GPOUT pin  
PWRERR_MON  
TSDERR_MON  
OCPERR_MON  
TSDFAULT_MON  
TI reserved  
rw  
rw  
rw  
rw  
rw  
Assign signal to GPIO pin  
1: PWRERR monitor output to GPOUT pin  
Assign signal to GPIO pin  
1: TSDERR fault output to GPOUT pin  
Assign signal to GPIO pin  
1: OCPERR fault output to GPOUT pin  
Assign signal to GPIO pin  
1: TSDFAULT fault output to GPOUT pin  
Copyright © 2015, Texas Instruments Incorporated  
31  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.4.11 REG70 8-Bit Control Register for DriverEna (REG70)  
Figure 30. DriverEna (REG70)  
7
6
5
4
3
2
1
0
TLT_ENA  
rw-0  
FCS_ENA  
rw-0  
TRK_ENA  
rw-0  
SPM_ENA  
rw-0  
SLD_ENA  
rw-0  
TI reserved  
rw-0  
LOAD_ENA  
rw-0  
XSLEEP  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. DriverEna (REG70) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
TLT_ENA  
rw  
0
1 : Tilt enable (with XSLEEP=1)  
It is reset when XMUTE changes to L.  
6
5
4
3
1
FCS_ENA  
TRK_ENA  
SPM_ENA  
SLD_ENA  
LOAD_ENA  
rw  
rw  
rw  
rw  
rw  
0
0
0
0
0
1: Focus enable (with XSLEEP=1)  
It is reset when XMUTE changes to L.  
1: Track enable (with XSLEEP=1)  
It is reset when XMUTE changes to L.  
1: Spindle enable (with XSLEEP=1)  
It is reset when XMUTE changes to L.  
1: Sled enable (with XSLEEP=1)  
It is reset when XMUTE changes to L.  
1 : LOAD enable (with XSLEEP=1)  
Track (bit5:TRK_ENA) will be disabled at LOAD_ENA=1 because of  
sharing the DAC PWM module. Load priority is higher than TRK_ENA.  
It is reset when XMUTE changes to L. (with LOAD_05CH=1)  
0
XSLEEP  
rw  
0
1: Operation mode 0 : Power save mode  
Charge pump enable bit when LIN3P3_DIS is 1.  
All driver enable bit (Bit[7:1]) change disabled and output change to Hi-Z  
(regardless of setting xxx_ENA bit is 1) when setting XSLEEP to 0.  
Therefore set 1 to XSLEEP before setting each enable bits.  
8.6.4.12 REG71 8-Bit Control Register for FuncEna (REG71)  
Figure 31. FuncEna (REG71)  
7
6
5
4
3
2
1
0
SPM_LSMODE ENDDET_ENA  
LIN3P3_DIS  
TI reserved  
CSW_ON  
XMUTE_NORS  
T_CSW  
TI reserved  
rw-0 rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. FuncEna (REG71) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
SPM_LSMODE  
rw  
0
0 : Spindle Normal rotation mode  
1 : Light Scribe mode (slow rotation mode)  
6
5
ENDDET_ENA  
LIN3P3_DIS  
rw  
rw  
0
0
1 : use Sled end detection enable ( with SLD_ENA=1)  
1 : disable LIN3P3 pre-driver control. This bit will be set 1 when using  
LINFB pin use for monitoring GPOUT signal. (with GPOUT_ENA) Also  
the setting one is able to reduce ICC  
3
2
CSW_ON  
rw  
0
0
1 : CSWO enable ( with XSLEEP=1)  
It is reset when XMUTE changes to L  
XMUTE_NORST_CSW rw  
Reset option for CSW by XMUTE event  
0: Reset CSW_ON bit register at XMUTE=L.  
1: XMUTE status does not influence enable bit.  
1-0  
TI reserved  
rw  
0
32  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6.4.13 REG72 8-Bit Control Register for ACTCfg (REG72)  
Figure 32. ACTCfg (REG72)  
7
6
5
4
3
2
1
0
LOAD_O5CH_ LOADPROT_O ACTPROT_OF  
ACTTEMPTH  
HIGH  
FF  
F
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. ACTCfg (REG72) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
LOAD_05CH_HIGH  
rw  
0
LOAD output polarity at 0.5CH ( REG74h[6]=1 )  
0: LOADP = Low  
1: LOADP = High  
6
5
LOADPROT_OFF  
ACTPROT_OFF  
rw  
rw  
0
0
1: Load overcurrent protection OFF  
0 : Actuator protection ON  
1 : Actuator Fault monitor disable (No protection for ACT channel)  
4-0  
ACTTEMPTH  
rw  
0
Actuator thermal protection (=ACT Timer) threshold level  
ACT Timer Protection enable except ACTTEMPTH[4:0] = 0x00  
ACTTEMPTH = 0x00 equal to ACTPROT_OFF = 1  
By writing value 0x00, ACTTIMER_PROT flag is cleared.  
8.6.4.14 REG73 8-Bit Control Register for Parm0 (REG73)  
Figure 33. Parm0 (REG73)  
7
6
5
4
3
2
1
0
SIF_TIMEOUT_TH  
SLEDEND_HZ  
TIME  
SLDENDTH[1:0]  
SPM_RCOM_SEL  
XMUTE_NORST  
rw-0 rw-0  
rw-0  
rw-0 rw-0  
rw-0 rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. Parm0 (REG73) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
SIF_TIMEOUT_TH  
rw  
0
Watch dog timer for Serial communication  
0: disable 1: 1 ms 2: 100 µs 3: 10 µs  
Set SIF_TIMEOUTERR (REG7F) if communication is suspended for this  
time period. XRESET processing will be performed if a  
SIF_TIMEOUTERR occurs.  
5
SLEDEND_HZTIME  
SLDENDTH[1:0]  
rw  
rw  
0
0
Time window for sled end detection.  
0: 400 µs 1: 200 µs  
Caution) Need to recycle ENDDET_ENA = 0 1 after writing this bit.  
4-3  
Sled end detection sensibility setting. Detection threshold for motor  
BEMF  
SLDENDTH[2:0]  
000: 46 mV 010: 82 mV 011: 22 mV 100: 125 mV  
101: 105 mV 111: 145 mV  
2-1  
0
SPM_RCOM_SEL  
XMUTE_NORST  
rw  
rw  
0
0
Select resistor value of spindle current sense resistor. Current limit is set  
as following current.  
00: 890 mA; 01: 980 mA; 10: 725 mA; 11: 784 mA  
Reset driver enable bit (XXX_ENA) register at XMUTE = L.  
0: Reset enable bit at XMUTE = L  
1: XMUTE status does not influence enable bit.  
Copyright © 2015, Texas Instruments Incorporated  
33  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.4.15 REG74 8-Bit Control Register for OptSet (REG74)  
Figure 34. OptSet (REG74)  
7
6
5
4
3
2
1
0
DIFF_TLT  
LOAD_05CH  
RDSTAT_ON_  
VFCS  
VSLD2_POL  
LOAD_OCP_IU  
P
TI reserved  
SOMI_HIZ  
VDAC_MAPSW  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. OptSet (REG74) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
DIFF_TLT  
rw  
0
1 : Differential Tilt mode enable (with TLT_ENA = FCS_ENA = 1)  
Differential Tilt mode (DIFF_TLT = 1), DAC value setting as follows  
FCS_OUT = (VFCS + VTLT) × 6 / 2048  
TLT_OUT = (VFCS – VTLT) × 6 / 2048  
In DIFF_TLT mode (DIFF_TLT = 1), TLT_OUT should be changed after  
writing VFCS.  
6
5
LOAD_05CH  
rw  
rw  
0
0
The setting of Load motor driving type. Load output changes as follow  
0: Step down mode (LOAD output is controlled by DAC code, VLOAD)  
Use for Slot-in model or step down tray model.  
1: 0.5-channel mode (LOAD is only controlled by LOAD_05CH_HIGH)  
Use for Tray model  
RDSTAT_ON_VFCS  
Set Read status data (REG7F) at VFCS write command (REG02)  
1: Enable Write and Read mode  
(Write 12-bits Focus DAC data + Read 8-bits status data)  
4
3
VSLD2_POL  
rw  
rw  
0
0
change direction of SLED rotation  
LOAD_OCP_IUP  
Select overcurrent protection (OCP) threshold for Load channel current  
0: 250 mA  
1: 425 mA  
1
0
SOMI_HIZ  
rw  
rw  
0
0
0: SOMI line High-Z at bus idling time.  
1: SOMI line Pull Down at bus idling time.  
VDAC_MAPSW  
Selection of DAC register channel assignments (REG01~09)  
8.6.4.16 REG75 8-Bit Control Register for TSD_TUP (REG75)  
Figure 35. TSD_TUP (REG75)  
7
6
5
4
3
2
1
0
TI reserved  
rw-0  
TSD_TUP  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. TSD_TUP (REG75) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
rw  
Default  
Description  
TI reserved  
TSD_TUP  
0
0
rw  
TSD temperature threshold selection (Fault/Error)  
0: 135/150°C  
1: 155/170°C  
34  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6.4.17 REG76 8-Bit Control Register for WriteEna (REG76)  
Figure 36. WriteEna (REG76)  
7
6
5
4
3
2
1
0
WRITE_ENABL  
E
TI reserved  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
rw-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. WriteEna (REG76) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
WRITE_ENABLE  
rw  
0
0: Register Write disable except REG76  
1: Able to write all RW and W register  
6-0  
TI reserved  
rw  
0
8.6.4.18 REG77 8-Bit Control Register for ClrReg (REG77)  
Figure 37. ClrReg (REG77)  
7
6
5
4
3
2
1
0
RST_INDAC  
RST_REGS  
RST_ERR_FLA  
G
TI reserved  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. ClrReg (REG77) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
RST_INDAC  
w
0
1 : Reset all 12-bit input DAC register (REG01~0B)  
Self clear bit  
6
5
RST_REGS  
w
w
w
0
0
0
1 : Reset all 8-bit R/W Registers (REG70h~77h, 60h-6Fh)  
Self clear bit  
RST_ERR_FLAG  
TI reserved  
1 : Reset Fault Flag Latch (REG7F[5:1], REG79~REG7B)  
Self clear bit  
4-0  
8.6.4.19 REG78 8-Bit Control Register for ActTemp (REG78)  
Figure 38. ActTemp (REG78)  
7
6
5
4
3
2
1
0
TI reserved  
ACT_TIMER_P  
ROT  
ACTTEMP  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. ActTemp (REG78) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Default  
Description  
TI reserved  
ACT_TIMER_PROT  
r
r
0
0
ACT timer protection flag  
1: ACT Timer Protection has detected and latched.  
(ACTTEMP > ACTTEMPTH)  
This bit holds data after temperature change to low since this is a latch  
bit. Also driver output keep Hi-Z until setting RST_ERR_FLAG or  
ACTTEMPTH = 0.  
4-0  
ACTTEMP  
r
0
An integrated value of ACT_TIMER counters at present.  
Copyright © 2015, Texas Instruments Incorporated  
35  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.4.20 REG79 8-Bit Control Register for UVLOMon (REG79)  
Figure 39. UVLOMon (REG79)  
7
6
5
4
3
2
1
0
TI reserved  
XMUTE_DETE  
CT  
UVLO_P5V  
UVLO_INT3P3  
UVLO_SIOV  
UVLO_1P2V  
OVP_P5V  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
w-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. UVLOMon (REG79) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Default  
Description  
TI reserved  
XMUTE_DETECT  
UVLO_P5V  
UVLO_INT3P3  
UVLO_SIOV  
UVLO_1P2V  
r
r
r
r
r
r
0
0
0
0
0
0
XMUTE flag for detection low input. (>20 µs)(1)  
UVLO flag for detection low P5V supply(1)  
UVLO flag for detection low internal 3.3-V regulator(1)  
UVLO flag for detection low SIOV(1)  
UVLO flag for detection low LINFB(1)  
No detection in LIN3P3_DIS = 1  
4
3
2
1
0
OVP_P5V  
r
0
Overvoltage protection flag for P5Vsply(1)  
(1) Latched 1 st event only. Cleared by RST_ERR_FLG (REG77)  
8.6.4.21 REG7A 8-Bit Control Register for TsdMon (REG7A)  
Figure 40. TsdMon (REG7A)  
7
6
5
4
3
2
1
0
TI reserved  
TSD_FAULT_S TSD_FAULT_A  
TI reserved  
TSD_SPM  
TSD_ACT  
TI reserved  
PM  
CT  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. TsdMon (REG7A) Field Descriptions  
Bit  
7
Field  
Type  
Default  
Description  
TI reserved  
r
r
r
0
0
0
6
TSD_FAULT_SPM  
TSD_FAULT_ACT  
Pre alert of thermal protection of Spindle block(1)  
5
Pre alert of thermal protection of Focus /Track /Tilt Sled1 /Sled2 / /Load  
/CSW(1)  
4-3  
2
TI reserved  
TSD_SPM  
r
r
0
0
(1)  
Thermal protection flag for Spindle  
SPM output Hi-Z until temperature falls on release level  
1: Detect (latch)  
1
0
TSD_ACT  
r
r
0
0
Thermal protection flag for Focus /Track /Tilt Sled1 /Sled2 /Load/CSW(1)  
Actuator output Hi-Z until temperature falls on release level  
1: Detect (latch)  
TI reserved  
(1) Cleared by RST_ERR_FLAG bit (REG77)  
36  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
8.6.4.22 REG7B 8-Bit Control Register for ProtMon (REG7B)  
Figure 41. ProtMon (REG7B)  
7
TI reserved  
r-0  
6
OCP_LOAD  
r-0  
5
TI reserved  
r-0  
4
OCP_CSW  
r-0  
3
SCP_SPM  
r-0  
2
SCP_SLED  
r-0  
1
SCP_LOAD  
r-0  
0
SCP_ACT  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. ProtMon (REG7B) Field Descriptions  
Bit  
7
Field  
Type  
Default  
Description  
TI reserved  
OCP_LOAD  
OCP_CSW  
SCP_SPM  
SCP_SLED  
SCP_LOAD  
SCP_ACT  
r
r
r
r
r
r
r
0
0
0
0
0
0
0
6
Overcurrent protection flag bit for Load channel.(1)  
Overcurrent protection flag bit for CSW channel.(1)  
Short-circuit protection flag bit for spindle channel.(1)  
Short-circuit protection flag bit for sled channel.(1)  
Short-circuit protection flag bit for load channel.(1)  
Short-circuit protection flag bit for Fcs/Trk/Tilt channel.(1)  
4
3
2
1
0
(1) Cleared by RST_ERR_FLAG bit (REG77)  
8.6.4.23 REG7E 8-Bit Control Register for Version (REG7E)  
Figure 42. Version (REG7E)  
7
6
5
4
3
2
1
0
Version  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. Version (REG7E) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
Version  
X
Version[7:4] = revision number of TPIC2040  
Version[3:0] = option  
Copyright © 2015, Texas Instruments Incorporated  
37  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
8.6.4.24 REG7F 8-Bit Control Register for Status (REG7F)  
Figure 43. Status (REG7F)  
7
6
5
4
3
2
1
0
ACTTIMER_  
FAULT  
ENDDET  
SIF_TIMEOUT  
ERR  
PWRERR  
TSDERR  
OCPERR  
TSDFAULT  
FG  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. Status (REG7F) Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
ACTTIMER_FAULT  
r
0
Status flag of ACTTIMER protection  
1: Pre alert of ACTTIMER protection. It is close to the threshold level.  
You can get current ACTTIMER value in REG78.  
Both of this bit and ACT_TIMER_PROT (REG78) will be set when over  
the threshold.  
6
5
4
3
2
1
0
ENDDET  
r
r
r
r
r
r
r
0
0
0
0
0
0
0
status flag of END detection  
1: end position detected (not latch bit)  
SIF_TIMEOUTERR  
PWRERR  
TSDERR  
error flag of serial I/F watch dog timer  
1: SIF communication was interrupted, expired watch dog timer  
error flag of Power  
1: Voltage problem occurred, details in REG79  
error flag of any over thermal protections  
1: Dispatched thermal protection, details in REG7A  
OCPERR  
TSDFAULT  
FG  
error flag of any over current protection  
1: Dispatched OCP, details in REG7Bh  
warning of TSD of any thermal protection  
1: Detect pre thermal protection details in REG7A  
FG signal. Spindle rotation pulse for speed monitor  
38  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
NOTE  
Operate every driver channel after 5-V power supplied and stable.  
Appropriate capacity of de-coupling capacitor is required enough value of over 10 μF  
due to reduce influence of PWM switching noise. And the P5V pin needs to connect a  
filter of 1 μF. It is effective to put bypass capacitor(about 0.1 µF) near Power pin  
(P5V_1, P5V_2, P5V_SPM) for PWM switching noise reduction on power and GND  
line.  
Much current flow to driver circuits, to consider as below matters.  
Pattern-layout, line-impedance, and noise influence from supply line.  
9.1 Application Information  
9.1.1 DAC Type  
TPIC2040 has seven channels of Actuator. Each channel is assigned to the most suitable DAC engine with a  
different type respectively. ACT(F/T/Ti) has 12-bit DAC. Upper 8 (MSB sign bit) are converted at a time in 5MHz  
and LSB 4 bits are output in sequence with 1.25-MHz PWM. SPIN, SLED and Load DAC has same DAC types  
and sampling rate with 312 kHz. All channel except SLED have x6 gain. Table 32 shows configuration of each  
actuator.  
Table 32. DAC Type  
FCS/TRK/TLT  
12 bit  
SLED  
10 bit  
SPIN  
12 bit  
LOAD  
12 bit  
Resolution  
Type  
8-bit oversampling  
10-bit voltage  
8-bit Oversampling  
312K  
8-bit Oversampling  
312K  
Sampling  
1.25M / 10bit  
312K / 12bit  
PWM frequency  
Out range  
312 kHz  
±6 V  
About 156 kHz(variable)  
±440 mA  
156 kHz  
±6 V  
312 kHz  
±6 V  
Feed back  
Voltage feedback  
Current feedback  
Power supply  
compensation  
Voltage feedback  
Shared with TRK  
9.1.2 Example of 12-Bit DAC Sampling Rate for FCS/TRK/TLT  
The input data is separated in the upper 8bits and the lower 4bits. Upper 8bits (MSB sign 1bit) will be put into  
8bit current DAC in every 5 MHz. The lower 4bits will be put into one bit current DAC in sequence from upper to  
lower bit. This one bit DAC output with PWM in 1.25 MHz. At any PWM duty, 100%, 75%, 50%, 25% or 0%, will  
be summed in 8bit current DAC in every 1.25 MHz. Thus it takes 3.2 µs for all lower 4bits summing to PWM  
output. As a result, 12-bit data is sampled in every PWM cycle. Example of sampling rate for FCS/TRK/TLT is  
Figure 44.  
Copyright © 2015, Texas Instruments Incorporated  
39  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
White DAC  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
5 MHz  
1.25 MHz  
625 kHz  
312 kHz  
10 bit  
10 bit  
10 bit  
10 bit  
11 bit  
11 bit  
12 bit  
LSB 4 bit width  
PWM duty  
12 bit DAC (8 bit DAC + 4 bit PWM DAC) output  
one PWM cycle (312 kHz = 3.2 µs)  
Figure 44. Example of 12-Bit DAC Conversion Time (FCS/TRK/TLT)  
9.1.3 Digital Input Coding  
The output voltage (current) is commanded via programming to the DAC. All of the DAC input format is 12bit in  
two’s complement though some DAC has a low resolution. When 12 bits data is input 8 bits DAC, TPIC2040  
recognizes four subordinate position bits (LSB) as 0. To arrange for 12-bit DAC format, DSP should shift 8bit or  
10 bit data to an appropriate bit position. The full scale is ±1.0 V and driver gain is set 6. The output voltage  
(Vout) is given by the following equation:  
6 .0  
V o u t = D A C c o d e ì  
2 0 4 8  
(1)  
V d a c = 1 .0 ì b it[1 0 ] ì 0 .51 + b it[9 ] ì 0 .5 2 + b it[8 ] ì 0 .5 3 + ... + b it[0 ] ì 0 .5 1 1  
(
)
V d a c = (œ 1 .0 ) ì b it[1 0 ] ì 0 .5 1 + b it[9 ] ì 0 .5 2 + b it[8 ] ì 0 .5 3 + .. . + b it[0 ] ì 0 .51 1 + 0 .51 2  
(
)
V o u t = V d a c ì 6 .0 ( V )  
S L E D Io u t = V d a c ì 0 .4 4 ( A )  
where  
bit[11:0] is the digital input value, range 000000000000b to 111111111111b.  
(2)  
Table 33. DAC Format  
LSB  
MSB DIGITAL INPUT (BIN)  
1000_0000_0000  
1000_0000_0001  
1111_1111_1111  
0000_0000_0000  
0000_0000_0001  
0111_1111_1110  
0111_1111_1111  
HEX  
DEC  
-2048  
-2047  
-1  
VDAC  
-0.9995  
-0.9995  
-0.0005  
0
ANALOG OUTPUT  
0x800  
0x801  
0xFFF  
0x000  
0x001  
0x7FE  
0x7FF  
-5.997  
-5.997  
-0.003  
0.000  
0
+1  
+0.0005  
+0.9990  
+0.9995  
+0.003  
+5.994  
+5.997  
+2046  
+2047  
40  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
Analog output (V)  
+ 6.0  
VDAC  
+ 1.000  
+ 5.0  
*
800h  
DAC code  
7FFh  
000  
5.0  
6.0  
*
–1.000  
* following P5V input voltage  
Figure 45. Output Voltage vs DAC Code  
9.1.4 Example Timing of Target Control System  
TPIC2040 is designed for that meets the requirements updating control data in 400 kHz. The example of control  
system parameter is listed in Table 34. It takes 0.51 µs for transmit a 16bit data packet to TPIC2040 with 35MHz  
SCLK. Therefore, DSP can be sent four packets a 400-kHz interval. If SCLK is lower than 28.8MHz, it is required  
reducing packet quantity under three. For example, Focus/Truck command is updating in every 2.5 µs (400 kHz),  
and it is able to send another two kind of packet in this same slot. Figure 10 Example DAC control shows the  
example of the control timing when TPIC2040 is used.  
Table 34. Example Timing of Target Control System  
SIGNAL  
Focus  
Track  
Tilt  
BIT  
12  
12  
12  
10  
10  
12  
12  
UPDATE CYCLE (kHz)  
400  
400  
200  
100  
100  
100  
Sled1  
Sled2  
Spindle  
Load  
Copyright © 2015, Texas Instruments Incorporated  
41  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
312 kHz /3.2 µs(PWM 1cycle)  
Track  
R
R
R
R
R
Focus  
Tilt  
Sled1  
Sled2  
SPM  
Load  
400 kHz /2.5 µs  
Control  
register  
100 kHz /10 µs(1control cycle)  
PWM cycle  
DAC command  
0.51 µs (SCLK:35 MHz) for data transmit  
R
DAC command w/ status read  
Control register command  
Figure 46. Example DAC Control  
9.1.5 Spindle Motor Driver Part  
When VSPM is set a positive DAC code then it will be into acceleration mode. IS mode operates then the start-  
up circuit offers the special start-up pattern sequence to the driver in start-up, and then switches to spin-up mode  
by detecting the rotor position by BEMF signal from the spindle motor coil.  
The spin-down and brake function also be controlled by VSPM DAC value. When it is set the brake command to  
VSPM, driver goes into active-brake mode, then switch to short-brake mode in slow revolution speed, and then  
stop automatically. The FG signal is composed from EXOR of three-phase signal, and is output from XFG pin as  
shown in Figure 47.  
XRESET  
WRITE_ENABLE  
XSLEEP  
SPM_ENA  
VSPM  
VSPM[11.0] > 0  
VSPM[11.0] < 0  
0
XFG  
brake  
speed  
> 15 ms  
Release  
300 ms  
130 rpm  
time  
Figure 47. Spindle Operating Sequence  
TI recommends to use down-edge of FG signal for monitoring FG frequency. The FG terminal needs to be  
pulled up to the appropriate supply voltage by external resistor.  
Short brake mode is asserted after 300 ms of FG signal stays L-level in deceleration.  
The FG output is set to H-level in sleep mode in order to reduce sleep mode current.  
This value is the nominal number of using motor with 16-poles.  
42  
Copyright © 2015, Texas Instruments Incorporated  
 
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
First of all, power supply voltage of P5V must be supplied before any signals input.  
9.1.5.1 Spindle PWM Control  
The output PWM duty of Spindle is controlled by DAC code (VSPM). The gain in acceleration setting is always  
six times. However, the maximum output is restricted to P5V_SPM voltage. A dead band which output = 0 exists  
in the width of plus or minus 0x52 focusing on zero.  
PWM Output Duty  
Output (V)  
60 V  
5.0 V  
SPM_LSMODE = 0  
100%  
Dead Band  
Duty = 0%  
25%  
Slow Down  
Speed Up  
0%  
VSPMx[11:0]  
800h  
FAEh  
000  
52h  
7FFh  
Figure 48. Spindle PWM Control  
9.1.5.2 Auto Short Brake Function  
TPIC2040 provides auto short brake function which is selecting brake mode automatically by motor speed.  
Auto Short Brake is the intelligent brake function that includes two modes: short brake and active brake.  
When VSPM value is controlled more than equivalent 75% duty brake, deceleration is done by short brake under  
the rotation speed is over 3000 rpm. After deceleration, driver goes into Active-brake mode automatically by  
internal logic circuit under rotation speed is lower 2000 rpm. This function enables low power consumption and  
silent during braking.  
Table 35. Brake Mode  
ROTATION SPEED (RPM)  
VSPM[11:0]  
ABOUT 0 TO 2000  
2-phase short brake  
Active brake  
ABOUT 3000  
2-phase short brake  
Active brake  
0x000 - 0xFAE  
0xFAE - 0xA00  
0xA00 - 0x800  
Active brake  
3-phase short brake  
rpm  
4000  
Slow down  
3-phase  
short  
3000  
2000  
Active  
Active  
1000  
0
VSPM[11:0]  
800h  
A00h  
FAEh  
000  
Figure 49. Brake Mode Selections  
This value is the nominal number of using motor with 16-poles motor.  
Copyright © 2015, Texas Instruments Incorporated  
43  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
9.1.5.3 Spindle Low-Speed Mode  
LS mode is the low rotation mode which made the maximum 25% duty. When using SPM_LSMODE = 1, brake  
mode is always short brake. Figure 50 shows the output duty of LS mode.  
PWM Output Duty  
Output (V)  
SPM_LSMODE = 1  
6.0 V  
5.0 V  
100%  
25%  
0%  
Speed up  
Duty = 0%  
VSPM[11:0]  
800h  
000  
7FFh  
Figure 50. Spindle PWM Control (Low-Speed Mode)  
9.1.5.4 Spindle Driver Current Limit Circuit  
This IC builds in the SPM current sense resistor which can select resistor value.  
The spindle current limit circuit monitors motor current which flows through this resistance, and limits the output  
current by reducing PWM duty when detecting over current conditions. Table 36 shows resistor value.  
A limit current value can be calculated from following formulas.  
Limit current = 196 mV / resistor value  
(3)  
Table 36. SPM Current Sense Resistor  
SPM_RCOM_SEL[1:0] RESISTOR VALUE (Ω)  
LIMIT CURRENT  
(mA)  
00  
01  
10  
11  
0.22  
0.20  
0.27  
0.25  
890  
980  
725  
784  
9.1.6 Sled Driver Part  
9.1.6.1 Sled Channel Input versus Output PWM Duty  
The Sled driver outputs the PWM pulse set as DAC code (VSLDx) with current feed back. The maximum output  
is restricted to 440 mA at 0x7FF and 0x800. A dead band which output = 0 exists in the width of plus or minus  
focusing on zero.  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
Output Current  
Reverse  
Forward  
440 mA  
Dead Band  
ISLEDxP = ISLEDxN  
ISLEDxP< ISLEDxN  
FE0h  
ISLEDxP> ISLEDxN  
1Fh  
0
VSLDx[11:0]  
800h  
000  
7FFh  
Figure 51. Sled Output Current  
Both outputs of SLED1/2 are L when input code is in dead band.  
9.1.6.2 Sled End Detect Function  
This device has the function of end position detection for Sled. By this function aim to eliminate the position  
switch at PUH inner. When this function is enabled, internal logic will detect the sled out zero-cross point and at  
that time, internal BEMF detect circuit measures the BEMF level of stepping motor. There are six threshold  
levels. If BEMF is lower than selected threshold, device recognizes motor at stop and ENDDET bit to 1. ENDDET  
bit will be cleared at the BEMF voltage exceed threshold again.  
I-SLED1  
I-SLED2  
BEMF1  
BEMF2  
Motor Stop  
1
ENDDET  
Figure 52. Timing of Sled End Detection  
In order to perform high-precision detection, the sled motor needs to generate higher BEMF voltage. BEMF  
level depends on the stepping motor characteristic and its speed.  
BEMF detection level is selectable 22, 46, 82, 105, 125, 145 mV.  
If the drive speed changes, the timing which BEMF voltage generates will also change. In TPIC2040, detection  
window can be adjusted to the optimal value by setting EDET_DELAY parameter. Delay time from the point  
which polarity reverses and width of detection window are adjustable with EDET_DELAY.  
Width  
I-SLED 1/2  
Delay  
Figure 53. Timing of End Detection Window  
Copyright © 2015, Texas Instruments Incorporated  
45  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
9.1.7 Load Driver Part  
Load driver outputs the voltage with voltage feedback corresponding to the input DAC value. This channel has  
power voltage compensation thus it is suit for Slot-in type load control. This channel becomes active exclusively  
to other actuator channels. Load driver is shared with the TRK driver.  
PWM Output Duty  
Output (V)  
6.0 V  
5.0 V  
100%  
Dead Band  
Duty = 0%  
Load+ < Load–  
Load+ > load–  
0%  
VLOAD[11:0]  
800h  
FE0h 000 1Fh  
7FFh  
Figure 54. Load Output Duty  
Output voltage is controlled by PWM  
Both LOAD+ and LOAD– are connected to PGND through the internal clamp diode respectively.  
9.1.8 Focus/Track/Tilt Driver Part  
PW M output duty  
100%  
P5V  
reverse  
forw ard  
ACT+ < ACT-  
ACT+ > ACT-  
0%  
800h  
000  
7FFh  
ACT(FCS/TRK/TLT)[11:0]  
Figure 55. FCS/TRK/TLT Output Duty  
9.1.8.1 Differential Tilt Mode  
TPIC2040 support differential Tilt mode which output the value calculated from Focus and Tilt. Focus and Tilt can  
be set in differential mode by DIFF_TLT (REG74) = 1. Because Focus and Tilt are updated at the same time, the  
update interval of Tilt can be thinned out. Output data changes at after writing VFCS data. Therefore it is  
necessary to write VFCS data when set VTLT. In differential mode, the output value is calculated as follows.  
FCS_OUT = (VFCS + VTLT) × 6  
TLT_OUT = (VFCS – VTLT) × 6  
(4)  
(5)  
46  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
9.1.9 9-V LDO  
TPIC2040 built in function a pre-driver for LDO. The required voltage beyond 1.2 V can be outputted on N-  
channel FET by choosing external resistance. Arbitrary current can be supplied by selecting the external N-  
channel FET according to required current capacity. LIN3VG output (= N-channel FET gate control) is controlled  
to Feedback voltage LINFB is set as 1.215 V. The 22-nF capacitor for phase compensation is certainly installed.  
And the division resistance for FB is chosen so that it may become less than 3K in total. The example of external  
components shows Figure 56. The accuracy of output voltage depends for tolerance of resistance.  
When not using LDO, it should be open LIN3VG and LINFB should be connected to 3.3 V with LIN3P3_DIS = 1.  
5 V  
NFET  
ZXMN2B14  
1.215 V  
LIN3VG  
3.3 V  
4.7 kΩ  
Compensation  
22 nF (5%, 16 V)  
10 nF  
2.7 kΩ  
Storage  
0.1 .... 10.1 µF (10% 10 V)  
LINFB  
1kΩ(1%)  
Total resistance (to GND) < 3 kΩ  
Figure 56. Example Circuit of 3.3-V LDO  
9.1.10 Monitor Signal on GPOUT  
Able to output a specific signal to GPOUT pin. In order to output a signal, set a signal from REG6F by enabling  
first and then enable GPOUT_ENA. When two or more signals are set for GPOUT, an output is as logical sum.  
It is required to set both LIN3P3_DIS and GPOUT_ENA to 1.  
Copyright © 2015, Texas Instruments Incorporated  
47  
 
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
9.2 Typical Application  
Load Motor  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
LOAD+  
SLED2  
SLED2+  
SLED1–  
SLED1+  
CSWO  
10000 pF  
LOAD–  
10000 pF  
3
PGND_1  
SIOV  
Sled Motor  
CSW  
4
3.3 V  
SSZ  
SSZ  
5
10 µF  
SCLK  
SIMO  
SOMI  
XMUTE  
XFG  
SCLK  
SIMO  
6
5 V  
P5V_1  
0.1 µF  
10 µF  
0.1 µF  
7
5 V  
10 µF  
P5V_SPM  
SOMI  
8
W
3.3 V  
Spindle Motor  
33 kΩ  
XFG  
InterLock  
READY  
9
U
V
10  
11  
12  
13  
14  
XRESET  
CP1  
PGND_SPM  
MCOM  
0.1 µF  
0.1 µF  
PGND_2  
5 V  
CP2  
CP3  
TRK–  
TRK+  
FCS–  
5 V  
TRACKING  
15 LIN3VG  
22 nF  
3.3 V  
2.2 µF  
16  
17  
18  
19  
LINFB/GPOUT  
AGND/DGND  
CV3P3  
FOCUS  
TILT  
FCS+ 22  
10 nF  
TLT–  
21  
20  
1 kΩ  
0.1 µF  
TLT+  
P5V_2/A5V  
5 V  
0.1 µF  
10 µF  
Figure 57. Example of Application Circuit  
Table 37. Pin Connection When Specific Function is  
not Applied  
FUNCTION  
PIN  
NUMBER  
CONNECTION  
LDO  
LIN3VG  
LINFB  
15  
16  
Open  
3.3 V (SIOV)  
9.2.1 Design Requirements  
To begin the design process, determine the following:  
1. Motor configuration: The user can use all motor channels or some of them.  
2. Power up devices with a 5-V supply.  
9.2.2 Detailed Design Procedure  
After power up on 5-V supply, the following values may be written to the following registers to enable motors.  
1. Set WRITE_ENABLE = 1 on REG76 via SPI.  
2. Set XSLEEP = 1 at REG70  
3. Enable motor channel by ENA_XXX bits on REG70  
4. Change the DAC settings for each motor in REG01-0B. Then, output channels will start driving load.  
48  
Copyright © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
Table 38. Recommended External Components  
PIN  
P5V_1  
P5V_2  
P5V_SPM  
SIOV  
TO  
FUNCTION  
Noise decoupling  
VALUE (RATE)  
10.0 (10%16 V)  
10.0 (10%16 V)  
10.0 (10%16 V)  
1.0 (10%10 V)  
UNIT  
μF  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
CP2  
Noise decoupling  
μF  
Noise decoupling  
μF  
Noise decoupling  
μF  
LOAD_P  
LOAD_N  
CP1  
Prevent surge current  
Prevent surge current  
Charge pump capacitor  
10000(10% 16 V)  
10000(10% 16 V)  
0.1 (10% 16 V)  
pF  
pF  
µF  
Charge pump capacitor (P5V  
only, prohibit other power  
supply)  
CP3  
P5V  
0.1 (10% 16 V)  
µF  
9.2.3 Application Curves  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
FCS-  
TLT-  
40  
FCS+  
TLT+  
20  
0
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D001  
-3000  
-2000  
-1000  
0
1000  
2000  
3000  
D002  
DAC Code  
DAC Code  
Figure 58. DAC Code vs Duty Cycle for FCS Outputs  
Figure 59. DAC Code vs Duty Cycle for TLT Outputs  
Copyright © 2015, Texas Instruments Incorporated  
49  
TPIC2040  
ZHCSEG2 DECEMBER 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
All driver channels should be operated after the required power is supplied and stable.  
The appropriate capacity of the decoupling capacitor requires a value over 10 μF to reduce the influence of PWM  
switching noise. The P5V_1, P5V_2, and P5V_SPM pins must connect to 10-μF decoupling capacitors.  
Current flow to the driver circuits takes both pattern-layout, line-impedance, and noise influence from the supply  
line into consideration.  
11 Layout  
11.1 Layout Guidelines  
1. CV3P3V requires an external capacitor. Because these are reference voltage for device, locate the capacitor  
as close to device as possible. Keep away from noise sources.  
2. TI recommends SCLK ground shielding.  
3. LINFB is feedback pin for LDO. External divided resistors should be located closer to LINFB pin.  
11.2 Layout Example  
To MPU  
To 3.3-V supply  
To MPU  
GPOUT  
To MPU  
XFG  
RDY  
SSZ  
GND Shield  
SCLK  
To MPU  
GND Shield  
SIMO  
SOMI  
To MPU  
SIOV  
To MPU  
To 3.3-V supply  
Figure 60. Layout Recommendation  
50  
版权 © 2015, Texas Instruments Incorporated  
TPIC2040  
www.ti.com.cn  
ZHCSEG2 DECEMBER 2015  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
51  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPIC2040DBTRG4  
ACTIVE  
TSSOP  
DBT  
38  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-20 to 75  
TPIC2040  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
6.55  
6.25  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
38 X 0.5  
38  
1
2X  
9
9.75  
9.65  
NOTE 3  
19  
B
20  
0.23  
38 X  
0.17  
4.45  
1.2 MAX  
0.1  
C A B  
4.35  
NOTE 4  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220221/A 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220221/A 05/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220221/A 05/2020  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPIC2040DBTRG4

TPIC2040 用于 ODD 驱动、由串行接口控制的 7 通道电机驱动器 | DBT | 38 | -20 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2050

TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2050RDFDRG4

TPIC2050 具有 3 波束激光二极管驱动器、由串行接口控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2060A

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2060ADFDRG4

TPIC2060A 用于 ODD 的串行 I/F 控制的 9 通道电机驱动器 | DFD | 56 | -20 to 75

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2101

DC BRUSH MOTOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2101D

DC BRUSH MOTOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2101DG4

Single Phase Low-Side Pre-FET Driver 14-SOIC -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2101DR

Single Phase Low-Side Pre-FET Driver 14-SOIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2101N

DC BRUSH MOTOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2101_12

DC BRUSH MOTOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPIC2202

2-CHANNEL COMMON-SOURCE POWER DMOS ARRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI