TPL0102-EP_15 [TI]

TPL0102-EP 256-Taps Dual-Channel Digital Potentiometer With Non-Volatile Memory;
TPL0102-EP_15
型号: TPL0102-EP_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPL0102-EP 256-Taps Dual-Channel Digital Potentiometer With Non-Volatile Memory

文件: 总36页 (文件大小:1049K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPL0102-EP  
SLIS149 JUNE 2014  
TPL0102-EP 256-Taps Dual-Channel Digital Potentiometer With Non-Volatile Memory  
1 Features  
2 Applications  
1
Dual-Channel, 256-Position Resolution  
Non-Volatile Memory Stores Wiper Settings  
2-mm × 2-mm, 14-Pin TSSOP Package  
100-kΩ End-to-End Resistance (TPL0102-100)  
Adjustable Gain Amplifiers and Offset Trimming  
Adjustable Power Supplies  
Precision Calibration of Set Point Thresholds  
Sensor Trimming and Calibration  
Fast Power-Up Response Time to Wiper Setting:  
<100 µs  
Mechanical Potentiometer Replacement  
3 Description  
±0.5 LSB INL, ±0.25 LSB DNL (Voltage-Divider  
Mode)  
The TPL0102-EP is a two-channel, linear-taper digital  
potentiometer with 256 wiper positions. Each  
potentiometer can be used as a three-terminal  
potentiometer or as a two-terminal rheostat. The  
TPL0102-EP-100 has an end-to-end resistance of  
100 k.  
4 ppm/°C Ratiometric Temperature Coefficient  
I2C-Compatible Serial Interface  
2.7- to 5.5-V Single-Supply Operation  
±2.25 to ±2.75 V Dual-Supply Operation  
The  
TPL0102-EP  
has  
non-volatile  
memory  
Operating Temperature Range From  
–40°C to 125°C  
(EEPROM) which can be used to store the wiper  
position. The internal registers of the TPL0102-EP  
can be accessed using the I2C interface.  
ESD Performance Tested Per JESD 22  
2000-V Human Body Model  
(A114-B, Class II)  
The TPL0102-EP is available in a 14-pin TSSOP  
package with a specified temperature range of –40°C  
to 125°C.  
Supports Defense, Aerospace, and Medical  
Applications  
Device Information(1)  
Controlled Baseline  
ORDER NUMBER  
PACKAGE  
BODY SIZE (NOM)  
One Assembly and Test Site  
One Fabrication Site  
TPL0102-  
100QPWREP  
TSSOP (14)  
5.00 mm × 4.40 mm  
Available in Extended (Q) Temperature –40°C  
to 125°C  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
4 Functional Block Diagram  
A0 A1 A2  
VDD  
VSS  
HA  
HB  
SCL  
VOLATILE  
I2C INTERFACE  
WA  
REGISTERS  
SDA  
WB  
NON-VOLATILE  
REGISTERS  
GND  
LA  
LB  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
Table of Contents  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 22  
8.5 Register Maps......................................................... 23  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Application ................................................. 26  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Functional Block Diagram .................................... 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Operating Characteristics.......................................... 8  
7.7 Timing Requirements................................................ 9  
7.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
9
10 Layout................................................................... 27  
10.1 Layout Example .................................................... 27  
11 Device and Documentation Support ................. 29  
11.1 Trademarks........................................................... 29  
11.2 Electrostatic Discharge Caution............................ 29  
11.3 Glossary................................................................ 29  
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 29  
8
5 Revision History  
DATE  
REVISION  
NOTES  
June 2014  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
 
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
6 Pin Configuration and Functions  
TSSOP – PW Package  
14 Pins  
(Top View)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
A0  
HA  
LA  
A1  
WA  
HB  
LB  
GND  
SCL  
SDA  
WB  
A2  
8
VSS  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
HA  
NO.  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
High pin of potentiometer A  
Low pin of potentiometer A  
Wiper pin of potentiometer A  
High pin of potentiometer B  
Low pin of potentiometer B  
Wiper pin of potentiometer B  
Address bit 2  
LA  
2
WA  
HB  
3
4
LB  
5
WB  
A2  
6
7
VSS  
SDA  
SCL  
GND  
A1  
8
Power  
I/O  
I
Negative or GND power supply pin  
I2C data I/O  
I2C clock input  
9
10  
11  
12  
13  
14  
Ground  
I
Address bit 1  
A0  
I
Address bit 0  
VDD  
Power  
Positive power supply pin  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings(1)(2)(3)  
MIN  
–0.3  
–7  
MAX  
7
UNIT  
V
VDD to GND  
VSS to GND  
VDD to VSS  
VH, VL, VW  
VI  
Supply voltage  
0.3  
7
V
V
Voltage at resistor pins  
Digital input voltage  
Pulse current  
VSS – 0.3 VDD + 0.3  
V
–0.3 VDD + 0.3  
V
±20  
±2  
mA  
mA  
IH, IL, IW  
Continuous current  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–65  
150  
°C  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
Single supply operation (VSS = 0 V)  
2.7  
±2.25  
VSS  
VDD, VSS  
V
Dual supply operation  
±2.75  
VDD  
VH, VL  
VIH  
VIL  
Pin voltage  
V
V
Voltage input high (SCL, SDA, A0, A1, A2)  
Voltage input low (SCL, SDA, A0, A1, A2)  
Wiper current  
0.7 × VDD  
0
5.5  
0.3 × VDD  
±2  
V
IW  
mA  
°C  
TJ  
Junction temperature  
–40  
125  
4
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
7.4 Thermal Information  
TPL0102-EP  
PW  
THERMAL METRIC(1)  
UNIT  
14 PINS  
112.9  
39.9  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
RθJC(top)  
RθJB  
55.9  
°C/W  
ψJT  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
3.5  
ψJB  
55.2  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
7.5 Electrical Characteristics  
VDD = 2.7 to 5.5 V, VSS = 0 V, VH= VDD, VL= GND, TJ = –40°C to 125°C (unless otherwise noted). Typical values are at  
VDD = 5 V, TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
End-to-end resistance  
(Between H and L pins)  
RTOT  
TPL0102-100  
80  
100  
120  
kΩ  
RH, RL  
RW  
Pin resistance  
60  
25  
22  
16  
200  
120  
Ω
Ω
Wiper resistance  
Pin capacitance  
Wiper capacitance  
(1)(2)  
CH, CL  
pF  
pF  
(1)(2)  
CW  
VH = VSS to VDD, VL = Floating  
or  
ILKG  
Pin leakage current  
0.1  
1
µA  
VL = VSS to VDD, VH = Floating  
Resistance temperature  
coefficient  
TCR  
Input Code = 0x80h  
92  
ppm/°C  
%
Channel-to-channel resistance  
match  
RTOT,MATCH  
0.1  
VOLTAGE DIVIDER MODE  
INL(3)(4)  
DNL(3)(5)  
ZSERROR  
FSERROR  
Integral non-linearity  
–0.5  
–0.25  
0
0.5  
0.25  
2
LSB  
LSB  
LSB  
LSB  
Differential non-linearity  
Zero-scale error  
(6)(7)  
(6)(8)  
0.1  
Full-scale error  
–2  
–0.1  
0
Wiper at the same tap position, same voltage  
at all H and same voltage at all L pins  
(6)(9)  
VMATCH  
TCV  
Channel-to-channel matching  
–2  
2
LSB  
Ratiometric temperature  
coefficient  
Wiper set at mid-scale  
4
ppm/°C  
Wiper set at  
BW  
Bandwidth  
TPL0102-100  
TPL0102-100  
midscale  
CLOAD = 10 pF  
229  
3.6  
kHz  
µS  
%
TSW  
THD  
Wiper setting time  
Total harmonic distortion  
VH = 1 VRMS at 1 kHz,  
VL = (VDD – VSS)/2,  
Measurement at W  
TPL0102-100  
0.03  
ƒH = 1 kHz,  
XTALK  
Crosstalk  
VL = GND,  
–82  
dB  
Measurement at W  
(1) Pin and wiper capacitance extracted from self admittance of three port network measurement  
I
i
Y =  
ii  
Vk =0 for k¹i  
V
i
(2) Digital Potentiometer Macromodel  
H
CH  
R
TOTAL  
W
CW  
CL  
L
(3) LSB = (VMEAS[code 255] – VMEAS[code 0]) / 255  
(4) INL = ((VMEAS[code x] – VMEAS[code 0]) / LSB) – [code x]  
(5) DNL = ((VMEAS[code x] – VMEAS[code x-1]) / LSB) – 1  
(6) IDEAL_LSB = (VH – VL) / 256  
(7) ZSERROR = VMEAS[code 0] / IDEAL_LSB  
(8) FSERROR = [(VMEAS[code 255] – (VH – VL)) / IDEAL_LSB] + 1  
(9) VMATCH = (VMEAS_A[code x] – VMEAS_B[code x]) / IDEAL_LSB  
6
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
Electrical Characteristics (continued)  
VDD = 2.7 to 5.5 V, VSS = 0 V, VH= VDD, VL= GND, TJ = –40°C to 125°C (unless otherwise noted). Typical values are at  
VDD = 5 V, TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RHEOSTAT MODE (Measurements between W and L with H not connected, or between W and H with L not connected)  
RINL(10)(11)  
RDNL(10)(12)  
Integral non-linearity  
Differential non-linearity  
Offset  
–1  
–0.5  
0
1
0.5  
2
LSB  
LSB  
LSB  
LSB  
(13)(14)  
ROFFSET  
0.2  
54  
(13)(15)  
RMATCH  
RBW  
Channel-to-channel matching  
–2  
2
Code = 0x00h,  
L Floating,  
Input applied to W, Measure  
at H, CLOAD = 10 pF  
Bandwidth  
TPL0102-100  
kHz  
(10) RLSB = (RMEAS[code 255] – RMEAS[code 0]) / 255  
(11) RINL =( (RMEAS[code x] – RMEAS[code 0]) / RLSB) – [code x]  
(12) RDNL =( (RMEAS[code x] – RMEAS[code x-1]) / RLSB ) – 1  
(13) IDEAL_RLSB = RTOT / 256  
(14) ROFFSET = RMEAS[code 0] / IDEAL_RLSB  
(15) RMATCH = (RMEAS_A[code x] – RMEAS_B[code x]) / IDEAL_RLSB  
100  
10  
1
85  
95  
105  
Operating Junction Temperature (ºC)  
115  
125  
C020  
(1) See data sheet for absolute maximum and minimum recommended operating conditions.  
(2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect  
life).  
(3) Enhanced plastic product disclaimer applies.  
Figure 1. TPL0102-EP Electromigration Fail Mode/Wirebond Life Derating Chart  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
7.6 Operating Characteristics  
VDD = 2.7 to 5.5 V, VSS = 0 V, VH = VDD, VL = GND, TJ= –40°C to 125°C (unless otherwise noted). Typical values are at  
VDD = 5 V, TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.5  
1
UNIT  
–40°C  
25°C  
0.2  
VDD = 2.75 V, VSS = –2.75 V,  
I2C interface in standby mode  
IDD(STBY)  
VDD standby current  
µA  
125°C  
–40°C  
25°C  
16  
–1.5  
–1  
–0.2  
0.2  
VDD = 2.75 V, VSS = –2.75 V,  
I2C interface in standby mode  
ISS(STBY)  
VSS standby current  
VDD shutdown current  
VSS shutdown current  
µA  
µA  
µA  
125°C  
–40°C  
25°C  
–16  
1.5  
1
VDD = 2.75 V, VSS = –2.75 V,  
I2C interface in standby mode  
IDD(SHUTDOWN)  
125°C  
–40°C  
25°C  
16  
–1.5  
–1  
–0.2  
VDD = 2.75 V, VSS = –2.75 V,  
I2C interface in standby mode  
ISS(SHUTDOWN)  
125°C  
–16  
IDD  
ISS  
VDD current during non-volatile write VDD = 2.75 V, VSS = –2.75 V  
350  
1
µA  
µA  
VSS current during non-volatile write  
VDD = 2.75 V, VSS = –2.75 V  
-350  
–1  
Digital pins leakage current (A0, A1,  
A2, SDA, and SCL)  
ILKG-DIG  
VPOR  
µA  
V
Power-on recall voltage  
Minimum VDD at which memory recall occurs  
2
EEPROM SPECIFICATION  
EEPROM endurance  
1000  
100000  
20  
Cycles  
Hours  
ms  
EEPROM retention  
tWC  
Non-volatile write cycle time  
WIPER TIMING CHARACTERISTICS  
tWRT  
Wiper response time  
SCL falling edge of last bit of wiper data byte to wiper  
new position  
600  
800  
ns  
ns  
tSHUTDOWNREC  
Wiper position recall time from shut- SCL falling edge of last bit of ACR data byte to wiper  
down mode  
stored position and H connection  
tD  
Power-up delay  
VDD above VPOR, to wiper initial value register recall  
completed, and I2C interface in standby mode  
35  
7
100  
5.5  
µs  
pF  
CIN  
Pin capacitance  
A0, A1, A2, SDA SCL pins  
I2C INTERFACE SPECIFICATIONS  
VIH  
Input high voltage  
0.7 ×  
VDD  
V
V
VIL  
Input low voltage  
0.3 ×  
VDD  
0
VOL  
CIN  
Output low voltage  
Pin capacitance  
SDA pin, IOL = 4 mA  
0.4  
V
A0, A1, A2, SDA SCL pins  
7
pF  
8
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
7.7 Timing Requirements  
VDD = 2.7 to 5.5 V, VSS = 0 V, VH = VDD, VL = GND, TJ = –40°C to 125°C (unless otherwise noted). Typical values are at  
VDD = 5 V, TJ = 25°C (unless otherwise noted).  
STANDARD MODE I2C BUS  
FAST MODE I2C BUS  
UNIT  
MIN  
MAX  
MIN MAX  
I2C INTERFACE TIMING REQUIREMENTS  
ƒSCL  
tSCH  
tSCL  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial data setup time  
I2C serial data hold time  
I2C input rise time  
0
4
100  
50  
0
0.6  
1.3  
0
400 kHz  
µs  
µs  
4.7  
0
50  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
tSDS  
tSDH  
tICR  
tICF  
250  
0
100  
0
(1)  
1000  
300  
20 + 0.1Cb  
300  
300  
300  
I2C input fall time  
20 + 0.1Cb  
(1)  
(1)  
tICF  
I2C output fall time, 10- to 400-pF bus  
I2C bus free time between stop and start  
I2C start or repeater start conditions setup time  
I2C start or repeater start condition hold time  
I2C stop condition setup time  
300  
20 + 0.1Cb  
tBUF  
tSTS  
tSTH  
tSPS  
4.7  
4.7  
4
1.3  
1.3  
0.6  
0.6  
4
tVD(DATA) Valid data time, SCL low to SDA output valid  
1
1
1
1
tVD(DATA) Valid data time of ACK condition, ACK signal from  
SCL low to SDA (out) low  
(1) Cb = total capacitance of one bus line in pF  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
7.8 Typical Characteristics  
6
5
0.0  
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
4
3
2
1
0
±1  
±2  
IDD(STBY) Current  
ISS(STBY) Current  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
Free-Air Temperature (ƒC)  
Free-Air Temperature (ƒC)  
C001  
C002  
Figure 2. IDD Standby Current vs Temperature  
Figure 3. ISS Standby Current vs Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
±0.2  
0.0  
±0.5  
±1.0  
±1.5  
±2.0  
±2.5  
IDD(SHUTDOWN) Current  
ISS(SHUTDOWN) Current  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Free-Air Temperature (ƒC)  
Free-Air Temperature (ƒC)  
C003  
C004  
Figure 4. IDD Shutdown Current vs Temperature  
Figure 5. ISS Shutdown Current vs Temperature  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
±0.145  
±0.150  
±0.155  
±0.160  
±0.165  
±0.170  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Free-Air Temperature (ƒC)  
Free-Air Temperature (ƒC)  
C005  
C006  
Figure 6. IDD Current (Non-Volatile Write) vs Temperature  
Figure 7. ISS Current (Non-Volatile Write) vs Temperature  
10  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
Typical Characteristics (continued)  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
2.7 V  
5.5 V  
2.7 V  
5.5 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Free-Air Temperature (ƒC)  
Free-Air Temperature (ƒC)  
C007  
C007  
Figure 8. Wiper Resistance (RW) vs Temperature  
Figure 9. End-to-End Resistance (Between H and L Pins) vs  
Temperature  
0.32  
0.28  
0.24  
0.20  
0.16  
0.12  
0.08  
0.04  
±0.40  
±0.50  
±0.60  
±0.70  
±0.80  
±0.90  
±1.00  
2.7 V  
5.5 V  
2.7 V  
5.5 V  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
±40  
±20  
Free-Air Temperature (ƒC)  
Free-Air Temperature (ƒC)  
C009  
C010  
Figure 10. Zero-Scale Error vs Temperature  
Figure 11. Full-Scale Error vs Temperature  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
2.7 V  
5.5 V  
0
20  
40  
60  
80  
100  
120  
±40  
±20  
Free-Air Temperature (ƒC)  
C011  
Figure 12. Offset vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TPL0102-EP is a two-channel, linear-taper digital potentiometer with 256 wiper positions. Each  
potentiometer can be used as a three-pin potentiometer or as a two-pin rheostat. The TPL0102-EP-100 has an  
end-to-end resistance of 100 k.  
The TPL0102-EP has non-volatile memory (EEPROM) which can be used to store the wiper position. When the  
device is powered down, the last value stored in the IVR register will be maintained in the non-volatile memory.  
When power is restored, the contents of the IVR register are recalled and loaded into the corresponding WR  
register to set the wipers to the initial position. The internal registers of the TPL0102-EP can be accessed using  
the I2C interface.  
The position of the wiper pin is controlled by the value in the WR 8-bit register. When the WR contains all zeroes,  
the wiper pin W is closest to its L (low) pin. As the value of the WR increases from all zeroes to all ones (255  
decimal), the wiper moves monotonically from the position closest to L to the position closest to H. At the same  
time, the resistance between W and L increases monotonically, whereas the resistance between W and H  
decreases monotonically.  
8.2 Functional Block Diagram  
A0 A1 A2  
VDD  
VSS  
HA  
HB  
SCL  
SDA  
VOLATILE  
I2C INTERFACE  
WA  
REGISTERS  
WB  
NON-VOLATILE  
REGISTERS  
GND  
LA  
LB  
12  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
8.3 Feature Description  
Table 1. Summary of Features  
Feature  
Number of potentiometers  
TPL0102-EP  
2
I2C  
Digital interface  
Steps  
256  
Wiper memory  
Taper  
Non-volatile  
Linear  
100 kΩ  
20%  
End-to-end resistance  
End-to-end resistance tolerance  
Wiper resistance  
25 (typ)  
8.3.1 Potentiometer Pin Description  
8.3.1.1 HA, HB, LA, LB  
The high (HA, HB) and low (LA, LB) pins of the TPL0102-EP are equivalent to the fixed pins of a mechanical  
potentiometer. The H and L pins do not have any polarity restrictions, i.e. H can be at a higher voltage than L, or  
L can be at a higher voltage than H. The WA and WB pins are the wipers and equivalent to the movable pin of a  
mechanical potentiometer. The position of the wiper is set using the WR register. With the WR register set to 255  
decimal, the wiper is closest to the H pin, and with the WR register set to 0, the wiper is closest to the L pin.  
8.3.1.2 SDA, SCL  
SDA is a bi-directional serial data input/output pin for I2C communication. SDA is an open drain output and  
requires an external pull-up resistor.  
SCL is the serial clock input for I2C communication. SCL requires an external pull-up resistor.  
8.3.1.3 A0, A1, A2  
These inputs are used to set the last three bits of the I2C address of the device. By using different values for A0,  
A1, A2, up to eight TPL0102-EP devices can be used on the same I2C bus.  
From Processor to DPOT  
From DPOT to Processor  
I2C Write to A Register  
Address (1010_ _ _)  
Start  
0
Ack  
Register Addr  
DataN  
Ack  
Stop  
Ack  
Ack  
Data1  
I2C Read From A Register  
Address (1010_ _ _)  
Start  
0
1
Ack  
Ack  
Register Addr  
Ack  
reStart  
Ack  
Address (1010_ _ _)  
First Read Data Byte  
Ack  
noAck  
Last Read Data Byte  
Stop  
Figure 13. I2C Interface  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
The following is a sample sequence to set wipers of both potentiometers at mid-scale. Assume A0, A1, and A2  
are 0 and device has just been powered up.  
From Processor to DPOT  
From DPOT to Processor  
Method 1: First Write 0x80 to IVRA and then write 0x80 to IVRB Register  
Address (1010000b)  
IVRA Register (0x00h)  
Start  
0
Ack  
Ack  
Ack  
Data (0x80)  
Ack  
Stop  
Address (1010 000b)  
IVRB Register (0x01h)  
Start  
0
Ack  
Data (0x80h)  
Ack  
Stop  
Method 2: Perform a multi byte write to IVRA and IVRB Register  
Address (1010000b)  
IVRA Register (0x00h)  
Start  
0
Ack  
Ack  
Data (0x80h)  
Ack  
Data (0x80h)  
Ack  
Stop  
Data written to Register 0x00h  
Data written to Register 0x01h  
Figure 14. tI2C Interface Example  
8.3.2 Standard I2C Interface Details  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by the master sending a start condition, a high-to-low transition on  
the SDA input/output while the SCL input is high (see Figure 15). After the start condition, the device address  
byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call  
address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output  
during the high of the ACK-related clock pulse  
Figure 15. Definition of Start and Stop Conditions  
14  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
 
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
The data byte follows the address ACK. The R/W bit is kept low for transfer from the master to the slave. The  
data byte is followed by an ACK sent from this device. Data are output only if complete bytes are received and  
acknowledged. The output data is valid at time (tpv) after the low-to-high transition of SCL, during the clock cycle  
for the ACK. On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line  
must remain stable during the high pulse of the clock period, as changes in the data line at this time are  
interpreted as control commands (start or stop) (see Figure 16).  
Figure 16. Bit Transfer  
A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
master (see Figure 15).  
The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not  
limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the  
receiver can send an ACK bit.  
A slave receiver that is addressed must generate an ACK after the reception of each byte. The device that  
acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during  
the high pulse of the ACK-related clock period (see Figure 17). Setup and hold times must be taken into account.  
Figure 17. Acknowledgment on the I2C Bus  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
 
 
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
8.3.3 Ideal Resistance Values  
H
RHW  
RWL = RTOT x D/256  
RTOT  
W
RHW = RTOT x (1 –(D/256))  
RWL  
Where D = Decimal Value of Wiper Code  
L
Figure 18.  
Table 2 shows the ideal values for DPOT with end-to-end resistance of 100 k. The absolute values of  
resistance can vary significantly, but the ratio (RWL / RHW) is extremely accurate.  
Table 2.  
Step  
0
Binary  
0
RWL (kΩ)  
0.00  
0.39  
0.78  
1.17  
1.56  
1.95  
2.34  
2.73  
3.13  
3.52  
3.91  
4.30  
4.69  
5.08  
5.47  
5.86  
6.25  
6.64  
7.03  
7.42  
7.81  
8.20  
8.59  
8.98  
9.38  
9.77  
10.16  
10.55  
10.94  
11.33  
11.72  
12.11  
RHW (kΩ)  
100.00  
99.61  
99.22  
98.83  
98.44  
98.05  
97.66  
97.27  
96.88  
96.48  
96.09  
95.70  
95.31  
94.92  
94.53  
94.14  
93.75  
93.36  
92.97  
92.58  
92.19  
91.80  
91.41  
91.02  
90.63  
90.23  
89.84  
89.45  
89.06  
88.67  
88.28  
87.89  
RWL / RHW  
0.00  
0.00  
0.01  
0.01  
0.02  
0.02  
0.02  
0.03  
0.03  
0.04  
0.04  
0.04  
0.05  
0.05  
0.06  
0.06  
0.07  
0.07  
0.08  
0.08  
0.08  
0.09  
0.09  
0.10  
0.10  
0.11  
0.11  
0.12  
0.12  
0.13  
0.13  
0.14  
1
1
2
10  
3
11  
4
100  
5
101  
6
110  
7
111  
8
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
16  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
 
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
Table 2. (continued)  
Step  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
Binary  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
RWL (kΩ)  
12.50  
12.89  
13.28  
13.67  
14.06  
14.45  
14.84  
15.23  
15.63  
16.02  
16.41  
16.80  
17.19  
17.58  
17.97  
18.36  
18.75  
19.14  
19.53  
19.92  
20.31  
20.70  
21.09  
21.48  
21.88  
22.27  
22.66  
23.05  
23.44  
23.83  
24.22  
24.61  
25.00  
25.39  
25.78  
26.17  
26.56  
26.95  
27.34  
27.73  
28.13  
28.52  
28.91  
29.30  
29.69  
30.08  
30.47  
RHW (kΩ)  
87.50  
87.11  
86.72  
86.33  
85.94  
85.55  
85.16  
84.77  
84.38  
83.98  
83.59  
83.20  
82.81  
82.42  
82.03  
81.64  
81.25  
80.86  
80.47  
80.08  
79.69  
79.30  
78.91  
78.52  
78.13  
77.73  
77.34  
76.95  
76.56  
76.17  
75.78  
75.39  
75.00  
74.61  
74.22  
73.83  
73.44  
73.05  
72.66  
72.27  
71.88  
71.48  
71.09  
70.70  
70.31  
69.92  
69.53  
RWL / RHW  
0.14  
0.15  
0.15  
0.16  
0.16  
0.17  
0.17  
0.18  
0.19  
0.19  
0.20  
0.20  
0.21  
0.21  
0.22  
0.22  
0.23  
0.24  
0.24  
0.25  
0.25  
0.26  
0.27  
0.27  
0.28  
0.29  
0.29  
0.30  
0.31  
0.31  
0.32  
0.33  
0.33  
0.34  
0.35  
0.35  
0.36  
0.37  
0.38  
0.38  
0.39  
0.40  
0.41  
0.41  
0.42  
0.43  
0.44  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
Table 2. (continued)  
Step  
79  
Binary  
RWL (kΩ)  
30.86  
31.25  
31.64  
32.03  
32.42  
32.81  
33.20  
33.59  
33.98  
34.38  
34.77  
35.16  
35.55  
35.94  
36.33  
36.72  
37.11  
37.50  
37.89  
38.28  
38.67  
39.06  
39.45  
39.84  
40.23  
40.63  
41.02  
41.41  
41.80  
42.19  
42.58  
42.97  
43.36  
43.75  
44.14  
44.53  
44.92  
45.31  
45.70  
46.09  
46.48  
46.88  
47.27  
47.66  
48.05  
48.44  
48.83  
RHW (kΩ)  
69.14  
68.75  
68.36  
67.97  
67.58  
67.19  
66.80  
66.41  
66.02  
65.63  
65.23  
64.84  
64.45  
64.06  
63.67  
63.28  
62.89  
62.50  
62.11  
61.72  
61.33  
60.94  
60.55  
60.16  
59.77  
59.38  
58.98  
58.59  
58.20  
57.81  
57.42  
57.03  
56.64  
56.25  
55.86  
55.47  
55.08  
54.69  
54.30  
53.91  
53.52  
53.13  
52.73  
52.34  
51.95  
51.56  
51.17  
RWL / RHW  
0.45  
0.45  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.77  
0.78  
0.79  
0.80  
0.82  
0.83  
0.84  
0.86  
0.87  
0.88  
0.90  
0.91  
0.92  
0.94  
0.95  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
18  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
Table 2. (continued)  
Step  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
Binary  
RWL (kΩ)  
49.22  
49.61  
50.00  
50.39  
50.78  
51.17  
51.56  
51.95  
52.34  
52.73  
53.13  
53.52  
53.91  
54.30  
54.69  
55.08  
55.47  
55.86  
56.25  
56.64  
57.03  
57.42  
57.81  
58.20  
58.59  
58.98  
59.38  
59.77  
60.16  
60.55  
60.94  
61.33  
61.72  
62.11  
62.50  
62.89  
63.28  
63.67  
64.06  
64.45  
64.84  
65.23  
65.63  
66.02  
66.41  
66.80  
67.19  
RHW (kΩ)  
50.78  
50.39  
50.00  
49.61  
49.22  
48.83  
48.44  
48.05  
47.66  
47.27  
46.88  
46.48  
46.09  
45.70  
45.31  
44.92  
44.53  
44.14  
43.75  
43.36  
42.97  
42.58  
42.19  
41.80  
41.41  
41.02  
40.63  
40.23  
39.84  
39.45  
39.06  
38.67  
38.28  
37.89  
37.50  
37.11  
36.72  
36.33  
35.94  
35.55  
35.16  
34.77  
34.38  
33.98  
33.59  
33.20  
32.81  
RWL / RHW  
0.97  
0.98  
1.00  
1.02  
1.03  
1.05  
1.06  
1.08  
1.10  
1.12  
1.13  
1.15  
1.17  
1.19  
1.21  
1.23  
1.25  
1.27  
1.29  
1.31  
1.33  
1.35  
1.37  
1.39  
1.42  
1.44  
1.46  
1.49  
1.51  
1.53  
1.56  
1.59  
1.61  
1.64  
1.67  
1.69  
1.72  
1.75  
1.78  
1.81  
1.84  
1.88  
1.91  
1.94  
1.98  
2.01  
2.05  
1111110  
1111111  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
10001000  
10001001  
10001010  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
10010001  
10010010  
10010011  
10010100  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
Table 2. (continued)  
Step  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
Binary  
RWL (kΩ)  
67.58  
67.97  
68.36  
68.75  
69.14  
69.53  
69.92  
70.31  
70.70  
71.09  
71.48  
71.88  
72.27  
72.66  
73.05  
73.44  
73.83  
74.22  
74.61  
75.00  
75.39  
75.78  
76.17  
76.56  
76.95  
77.34  
77.73  
78.13  
78.52  
78.91  
79.30  
79.69  
80.08  
80.47  
80.86  
81.25  
81.64  
82.03  
82.42  
82.81  
83.20  
83.59  
83.98  
84.38  
84.77  
85.16  
85.55  
RHW (kΩ)  
32.42  
32.03  
31.64  
31.25  
30.86  
30.47  
30.08  
29.69  
29.30  
28.91  
28.52  
28.13  
27.73  
27.34  
26.95  
26.56  
26.17  
25.78  
25.39  
25.00  
24.61  
24.22  
23.83  
23.44  
23.05  
22.66  
22.27  
21.88  
21.48  
21.09  
20.70  
20.31  
19.92  
19.53  
19.14  
18.75  
18.36  
17.97  
17.58  
17.19  
16.80  
16.41  
16.02  
15.63  
15.23  
14.84  
14.45  
RWL / RHW  
2.08  
2.12  
2.16  
2.20  
2.24  
2.28  
2.32  
2.37  
2.41  
2.46  
2.51  
2.56  
2.61  
2.66  
2.71  
2.76  
2.82  
2.88  
2.94  
3.00  
3.06  
3.13  
3.20  
3.27  
3.34  
3.41  
3.49  
3.57  
3.65  
3.74  
3.83  
3.92  
4.02  
4.12  
4.22  
4.33  
4.45  
4.57  
4.69  
4.82  
4.95  
5.10  
5.24  
5.40  
5.56  
5.74  
5.92  
10101101  
10101110  
10101111  
10110000  
10110001  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
20  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
Table 2. (continued)  
Step  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
Binary  
RWL (kΩ)  
85.94  
86.33  
86.72  
87.11  
87.50  
87.89  
88.28  
88.67  
89.06  
89.45  
89.84  
90.23  
90.63  
91.02  
91.41  
91.80  
92.19  
92.58  
92.97  
93.36  
93.75  
94.14  
94.53  
94.92  
95.31  
95.70  
96.09  
96.48  
96.88  
97.27  
97.66  
98.05  
98.44  
98.83  
99.22  
99.61  
RHW (kΩ)  
14.06  
13.67  
13.28  
12.89  
12.50  
12.11  
11.72  
11.33  
10.94  
10.55  
10.16  
9.77  
RWL / RHW  
6.11  
11011100  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
6.31  
6.53  
6.76  
7.00  
7.26  
7.53  
7.83  
8.14  
8.48  
8.85  
9.24  
9.38  
9.67  
8.98  
10.13  
10.64  
11.19  
11.80  
12.47  
13.22  
14.06  
15.00  
16.07  
17.29  
18.69  
20.33  
22.27  
24.60  
27.44  
31.00  
35.57  
41.67  
50.20  
63.00  
84.33  
127.00  
255.00  
8.59  
8.20  
7.81  
7.42  
7.03  
6.64  
6.25  
5.86  
5.47  
5.08  
4.69  
4.30  
3.91  
3.52  
3.13  
2.73  
2.34  
1.95  
1.56  
1.17  
0.78  
0.3  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
8.4 Device Functional Modes  
VOLTAGE DIVIDER MODE  
VH  
VHW  
VHW = (VH – VL) x (1 – (D/256))  
VH - VL  
W
VWL = (VH – VL) x D/256  
VWL  
Where D = Decimal Value of Wiper Code  
VL  
RHEOSTAT MODE A  
H
H (Floating)  
RWL = RTOT x D/256  
RTOT  
OR  
RTOT  
W
W
Where D = Decimal Value of Wiper Code  
RWL  
RWL  
L
L
RHEOSTAT MODE B  
H
H
RHW  
RHW  
RHW = RTOT x (1 – (D/256))  
RTOT  
OR  
RTOT  
Where D = Decimal Value of Wiper Code  
W
W
L
L (Floating)  
Figure 19. Digital Potentiometer Configurations  
22  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
 
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
8.5 Register Maps  
8.5.1 Slave Address  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 2  
1
0
1
0
A2  
A1  
A0  
R/W  
8.5.2 TPL0102-EP Register Maps  
REGISTER ADDRESS (HEX)  
NON-VOLATILE  
IVRA  
VOLATILE  
WRA  
WRB  
N/A  
0
1
IVRB  
2
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
General purpose  
3
N/A  
4
N/A  
5
N/A  
6
N/A  
7
N/A  
8
N/A  
9
N/A  
A
B
C
E
D
F
10  
N/A  
N/A  
N/A  
N/A  
N/A  
Reserved  
N/A  
ACR  
8.5.3 IVRA (Initial Value Register for Potentiometer A)  
Register address: 00H  
Factory programmed value: 80H  
Type: non-volatile write/read  
NAME  
SIZE (BITS)  
DESCRIPTION  
Non-volatile register to store wiper position for potentiometer A  
IVRA  
8
8.5.4 WRA (Wiper Resistance Register for Potentiometer A)  
Register address: 00H  
Reset value: same as IVRA  
Type: volatile write/read  
NAME  
SIZE (BITS)  
DESCRIPTION  
WRA  
8
Volatile register to change wiper position for potentiometer A  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
8.5.5 IVRB (Initial Value Register for Potentiometer B)  
Register address: 01H  
Factory programmed value: 80H  
Type: non-volatile write/read  
NAME  
SIZE (BITS)  
DESCRIPTION  
IVRB  
8
Non-volatile register to store wiper position for potentiometer B  
8.5.6 WRB (Wiper Resistance Register for Potentiometer B)  
Register address: 01H  
Reset value: same as IVRB  
Type: volatile write/read  
NAME  
SIZE (BITS)  
DESCRIPTION  
WRB  
8
Volatile register to change wiper position for potentiometer B  
8.5.7 ACR (Access Control Register)  
Register address: 00H  
Reset value: 40H  
Type: non-volatile write/read  
NAME  
SIZE (BITS)  
DESCRIPTION  
IVRA  
8
Non-volatile register to store wiper position for potentiometer A  
Bit 7  
VOL  
0
Bit 6  
SHDN  
1
Bit 5  
WIP  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ACR  
8
0
0
0
0
0
0
0
0
0
0
Default Value  
NAME  
SIZE (BITS)  
DESCRIPTION  
0: Non-volatile registers (IVRA, IVRB) are accessible. Value written to IVRi register is  
also written to the corresponding WRi.  
VOL  
1
1: Only volatile registers (WRi) are accessible.  
0: Shut-down mode is enabled. Potentiometers are in shut-down mode.  
(see Figure 20)  
SHDN  
1
1
1: Shut-down mode is disabled  
0: Non-volatile write operation is not in progress  
WIP (read-only bit)  
1: Non-volatile write operation is in progress (it is not possible to write to the WRi or  
ACR while WIP = 1)  
24  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
H
SHDN  
Switch Open when SHDN = Low,  
Switch Closed when SHDN = High  
SHDN  
Switch Open when SHDN = Low,  
Switch Closed when SHDN = High  
W
L
Figure 20. Potentiometer in Shut-Down Mode  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
9 Application and Implementation  
9.1 Application Information  
In a simple operational amplifier configuration, like the one found in Figure 21, the TPL0102-EP is used to control  
the gain and offset voltage of the operational amplifier. Using the TPL0102-EP in a rheostat mode (like Rheostat  
Mode A in Figure 19), the gain setting of the negative feedback loop can be adjusted freely. To have maximum  
control of the offset voltage correction of the operational amplifier, the voltage divider mode can be used; giving  
the user an increased amount of control and precision for systems sensitive to DC offset.  
9.2 Typical Application  
5V  
WA  
½ TPL0102-EP  
LA  
to Nullify Offset Voltage  
HA  
1
7
3
2
VIN  
+
8
TLE2027  
VOUT  
-
4
R1  
HB  
LB  
½ TPL0102-EP  
to Adjust Gain  
WB  
Figure 21. Offset Voltage and Gain Adjustment  
26  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
 
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
10 Layout  
10.1 Layout Example  
Positive Power  
Supply Pin  
Negative Power  
Supply Pin  
Address Bit 2 Address Bit1 Address Bit 0  
High pin of  
Potentiometer A  
Wiper pin of  
Potentiometer A  
Low pin of  
Potentiometer A  
High pin of  
Potentiometer B  
Wiper pin of  
Potentiometer B  
I2C Clock Input  
I2C Data I/O  
Low pin of  
Potentiometer B  
Figure 22. TPL0102-EP Layout (Top Layer)  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
TPL0102-EP  
SLIS149 JUNE 2014  
www.ti.com  
Layout Example (continued)  
Positive Power  
Supply Pin  
Negative Power  
Supply Pin  
Address Bit 2 Address Bit1 Address Bit 0  
High pin of  
Potentiometer A  
Wiper pin of  
Potentiometer A  
Low pin of  
Potentiometer A  
Highpin of  
Potentiometer B  
Wiper pin of  
Potentiometer B  
I2C Clock Input  
I2C Data I/O  
Low pin of  
Potentiometer B  
Figure 23. TPL0102-EP Layout (Bottom Layer)  
28  
Submit Documentation Feedback  
Copyright © 2014, Texas Instruments Incorporated  
TPL0102-EP  
www.ti.com  
SLIS149 JUNE 2014  
11 Device and Documentation Support  
11.1 Trademarks  
All trademarks are the property of their respective owners.  
11.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jun-2014  
PACKAGING INFORMATION  
Orderable Device  
TPL0102-100QPWREP  
V62/14613-01XE  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
TSSOP  
TSSOP  
PW  
14  
14  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
EL-100EP  
EL-100EP  
ACTIVE  
PW  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jun-2014  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2014  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPL0102-100QPWREP TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2014  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPL0102-100QPWREP  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2015, Texas Instruments Incorporated  

相关型号:

TPL0102_15

Two 256-Taps Digital Potentiometers
TI

TPL0202-10

256-TAPS DUAL CHANNEL DIGITAL POTENTIOMETER WITH SPI INTERFACE AND NONVOLATILE MEMORY
TI

TPL0202-10MRTER

256-TAPS DUAL CHANNEL DIGITAL POTENTIOMETER WITH SPI INTERFACE AND NONVOLATILE MEMORY
TI

TPL0202-10RUCR

256-TAPS DUAL CHANNEL DIGITAL POTENTIOMETER WITH SPI INTERFACE AND NONVOLATILE MEMORY
TI

TPL0401A

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401A-10

具有 I2C 接口(地址 0101110)的 128 抽头单通道数字电位器
TI

TPL0401A-10-Q1

具有 I2C 接口(地址 0101110)的汽车类 128 抽头单通道数字电位器
TI

TPL0401A-10DCKR

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401A-10QDCKRQ1

具有 I2C 接口(地址 0101110)的汽车类 128 抽头单通道数字电位器 | DCK | 6 | -40 to 125
TI

TPL0401A-10_15

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401ADCK

Works with low cost MSP430 based LaunchPad platform
TI

TPL0401B

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI