TPL5010QDDCTQ1 [TI]

具有看门狗功能的汽车 AEC-Q100 毫微功耗系统计时器 | DDC | 6 | -40 to 125;
TPL5010QDDCTQ1
型号: TPL5010QDDCTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有看门狗功能的汽车 AEC-Q100 毫微功耗系统计时器 | DDC | 6 | -40 to 125

文件: 总25页 (文件大小:785K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
TPL5010-Q1 具有看门狗功能、符合 AEC-Q100 标准的毫微功耗系统定时  
1 特性  
2 应用  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 的下列结果:  
电动汽车  
常开系统  
由电池供电的系统  
离合致动器电路  
车门把手电路  
智能钥匙  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件组件充电模式 (CDM) ESD 分类等级 C5  
远程电流传感器  
出入检测  
电流消耗为 35nA2.5V 时的典型值)  
电源电压范围:1.8V 5.5V  
可选时间间隔范围:100ms 7200s  
定时器精度:1%(典型值)  
可通过电阻选择时间间隔  
看门狗功能  
3 说明  
TPL5010-Q1 是一款具有看门狗功能且符合 AEC-  
Q100 标准的低功耗毫微定时器,非常适用于在占空比  
或电池供电应用中进行系统 唤醒。在此类系统中,可  
使用微控制器定时器唤醒系统,但如果定时器休眠电流  
较高,则微控制器定时器在此休眠模式下会消耗高达  
60%-80% 的总系统电流。TPL5010-Q1 仅消耗 35nA  
电流,可替代集成微控制器定时器执行相应功能,从而  
使微控制器处于功耗较低的模式下。这种节能效果延长  
电池使用寿命并显著缩小电池尺寸,使得 TPL5010-  
Q1 成为功率敏感型 应用的理想选择。TPL5010-Q1 提  
100ms 7200s 可选时间间隔,适用于由中断驱动  
的 应用。出于安全考虑,某些标准(如 EN50271)要  
求实现看门狗功能。TPL5010-Q1 不仅实现了看门狗  
功能,而且几乎没有增加任何功耗。TPL5010-Q1 采  
6 引脚小外形尺寸晶体管 (SOT)-23 封装。  
手动复位  
TPL5x10Q 系列符合 AEC-Q100 标准的毫微功耗  
系统定时器:  
TPL5010-Q1:延迟范围可通过编程设定的看门  
狗功能  
TPL5110-Q1:延迟范围可通过编程设定且具有  
单次触发功能的金属氧化物半导体 (MOS) 驱动  
器件信息(1)  
器件型号  
封装  
SOT23 (6)  
封装尺寸(标称值)  
TPL5010-Q1  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNAS679  
 
 
 
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
简化应用  
µC  
VOUT  
VIN  
wp  
TPL5010-Q1  
VDD  
VDD  
GND  
RSTn  
WAKE  
DONE  
RSTn  
GPIO  
GPIO  
.attery  
POWER MANAGEMENT  
DELAY/  
M_RST  
w9óÇ  
GND  
GND  
2
版权 © 2016, Texas Instruments Incorporated  
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
目录  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 10  
8.5 Programming .......................................................... 10  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions ...................... 5  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements ............................................... 7  
7.7 Typical Characteristics.............................................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
12 器件和文档支持 ..................................................... 19  
12.1 接收文档更新通知 ................................................. 19  
12.2 社区资源................................................................ 19  
12.3 ....................................................................... 19  
12.4 静电放电警告......................................................... 19  
12.5 Glossary................................................................ 19  
13 机械、封装和可订购信息....................................... 19  
8
4 修订历史记录  
日期  
修订版本  
注释  
2016 9 月  
*
最初发布版本。  
5 器件比较表  
TPL5x10Q 系列符合 AEC-Q100 标准的毫微功耗系统定时器  
器件编号  
电源电流(典型值)  
特殊 功能  
低功耗计时器  
看门狗功能  
TPL5010-Q1  
TPL5110-Q1  
35nA  
可编程延迟范围  
手动复位  
低功耗计时器  
MOS 驱动器  
可编程延迟范围  
手动复位  
35nA  
单次触发功能  
Copyright © 2016, Texas Instruments Incorporated  
3
 
 
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
6 Pin Configuration and Functions  
SOT23  
6-Pin DDC  
Top View  
TPL5010-Q1  
1
2
3
VDD  
RSTn  
WAKE  
DONE  
6
5
4
GND  
DELAY/  
M_RST  
Table 1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
APPLICATION INFORMATION  
NO.  
1
VDD  
GND  
P
G
I
Supply voltage  
2
Ground  
3
DELAY/  
M_RST  
Time Interval set and Manual Reset  
Resistance between this pin and GND is used to  
select the time interval. The reset switch is also  
connected to this pin.  
4
5
6
DONE  
WAKE  
RSTn  
I
Logic Input for watchdog functionality  
Digital signal driven by the µC to indicate successful  
processing of the WAKE signal.  
O
O
Timer output signal generated every tIP  
period.  
Digital pulsed signal to wake up the µC at the end of  
the programmed time interval.  
Reset Output (open drain output)  
Digital signal to RESET the µC, pull-up resistance is  
required  
(1) G= Ground, P= Power, O= Output, I= Input.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–5  
MAX  
6.0  
UNIT  
V
Supply voltage (VDD-GND)  
Input voltage at any pin(2)  
Input current on any pin  
VDD + 0.3  
5
V
mA  
°C  
Tstg  
TJ  
Storage temperature  
–65  
150  
Junction temperature(3)  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The voltage between any two pins should not exceed 6V.  
(3) The maximum power dissipation is a function of TJ(MAX), θJA, and the ambient temperature, TA. The maximum allowable power  
dissipation at any ambient temperature is PDMAX = (TJ(MAX) - TA)/ θJA. All numbers apply for packages soldered directly onto a PC  
board.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model, per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q10-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (VDD-GND)  
Temperature  
–40  
125  
°C  
7.4 Thermal Information  
TPL5010-Q1  
THERMAL METRIC(1)  
SOT23  
6 PINS  
163  
26  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
57  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.5  
ψJB  
57  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
7.5 Electrical Characteristics  
TA= 25°C, VDD-GND=2.5 V (unless otherwise stated)(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
MAX(2) UNIT  
POWER SUPPLY  
IDD  
Supply current(4)  
Operation mode  
35  
50  
nA  
µA  
Digital conversion of external  
resistance (Rext)  
200  
400  
TIMER  
tIP  
Time interval period(5)  
1650 selectable time Min time interval  
100  
ms  
s
Intervals  
Max time  
7200  
interval  
Time interval setting accuracy(6)  
Excluding the precision of Rext  
±0.6%  
±25  
Timer interval setting accuracy over 1.8 V VDD 5.5 V  
ppm/V  
supply voltage  
tOSC  
Oscillator accuracy  
–0.5%  
0.5%  
Oscillator accuracy over  
temperature(5)  
-40°C TA 125°C  
1.8 V VDD 5.5 V  
150  
ppm/°C  
%/V  
Oscillator accuracy over supply  
voltage(5)  
±0.4  
Oscillator accuracy over life time(7)  
0.24%  
100  
320  
20  
(5)  
tDONE  
tRSTn  
Minimum DONE pulse width  
ns  
ms  
ms  
ms  
RSTn pulse width  
tWAKE  
t_Rext  
WAKE pulse width  
Time to convert Rext(5)  
100  
DIGITAL LOGIC LEVELS  
VIH  
Minimum logic high threshold DONE  
pin  
0.7 ×  
VDD  
V
V
VIL  
Maximum logic low threshold DONE  
pin  
0.3 ×  
VDD  
Iout = 100 µA  
Iout = 1 mA  
VDD – 0.3  
VDD – 0.7  
V
V
VOH  
VOL  
Logic output high-level WAKE pin  
Logic output low-level WAKE pin  
Iout = –100 µA  
Iout = –1 mA  
IOL= –1 mA  
0.3  
0.7  
0.3  
V
V
VOLRSTn  
IOHRSTn  
VIHM_RST  
RSTn logic output low-level  
V
RSTn high-level output current  
VOHRSTn = VDD  
1
nA  
V
Minimum logic high threshold  
DELAY/M_RST pin(5)  
1.5  
(1) Values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating  
of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of  
internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the device may be  
permanently degraded, either mechanically or electrically.  
(2) Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through  
correlations using statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped  
production material.  
(4) The supply current excludes load and pull-up resistor current. Input pins are at GND or VDD.  
(5) This parameter is specified by design and/or characterization and is not tested in production.  
(6) The accuracy for time interval settings below 1 second is ±100 ms.  
(7) Operational life time test procedure equivalent to 10 years.  
6
Copyright © 2016, Texas Instruments Incorporated  
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
7.6 Timing Requirements  
MIN(1)  
NOM(2) MAX(1) UNIT  
(3)  
trRSTn  
tfRSTn  
trWAKE  
tfWAKE  
Rise Time RSTn  
Capacitive load 50 pF, Rpull-up 100 kΩ  
Capacitive load 50 pF, Rpull-up 100 kΩ  
Capacitive load 50 pF  
11  
µs  
ns  
(3)  
Fall time RSTn  
Rise time WAKE  
Fall time WAKE  
50  
50  
(3)  
(3)  
ns  
Capacitive load 50 pF  
50  
ns  
Min delay(4)  
100  
tIP–20  
20  
ns  
DONE to RSTn or WAKE to  
DONE delay  
tDDONE  
(4)  
Max delay  
ms  
ms  
ms  
(3)  
tM_RST  
tDB  
Minimum valid manual reset  
De-bounce manual reset  
Observation time 30 ms  
20  
(1) Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through  
correlations using statistical quality control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped  
production material.  
(3) This parameter is specified by design and/or characterization and is not tested in production.  
(4) In case of RSTn from its falling edge, in case of WAKE, from its rising edge.  
VDD  
ttWAKE  
t
trWAKE  
WAKE  
DONE  
RSTn  
ttIPt  
ttDDONEt  
tfWAKE  
tDONE  
ttRSTn+ tIP  
t
trRSTn  
ttRSTn+tDB  
t
ttRSTnt  
ttR_EXT + tRSTn  
t
tfRSTn  
DELAY/  
M_RST  
ttM_RST  
Figure 1. TPL5010-Q1 Timing  
Copyright © 2016, Texas Instruments Incorporated  
7
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
7.7 Typical Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
TA= -40°C  
TA= 25°C  
TA= 70°C  
TA= 105°C  
TA = 125°C  
VDD= 1.8V  
VDD= 2.5V  
VDD= 3.3V  
VDD= 5.5V  
90  
80  
70  
60  
50  
40  
30  
20  
1.5  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Supply Voltage (V)  
D00  
Temperature (°C)  
Figure 2. IDD vs VDD  
Figure 3. IDD vs Temperature  
2
1.5  
1
2
1.5  
1
TA= -40°C  
TA= 25°C  
TA= 70°C  
TA= 105°C  
TA= 125°C  
VDD= 1.8V  
VDD= 2.5V  
VDD= 3.3V  
VDD= 5.5V  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
1.5  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
Supply Voltage (V)  
Temperature (°C)  
Figure 4. Oscillator Accuracy vs VDD  
Figure 5. Oscillator Accuracy vs Temperature  
1000  
100  
10  
40%  
POR  
REXT READING  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
1
TIMER MODE  
0.1  
0.01  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
-1  
-0.8  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
Time (s)  
Accuracy (%)  
number of  
1 s < tIP 7200 s  
observations >  
20000  
Figure 7. Time Interval Setting Accuracy  
Figure 6. IDD vs Time  
8
Copyright © 2016, Texas Instruments Incorporated  
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
8 Detailed Description  
8.1 Overview  
The TPL5010-Q1 is a system wakeup timer with a watchdog feature, ideal for low power applications. TPL5010-  
Q1 is ideal for use in interrupt-driven applications and provides selectable timing from 100 ms to 7200 s.  
8.2 Functional Block Diagram  
VDD  
RSTn  
LOW FREQUENCY  
OSCILLATOR  
FREQUENCY  
DIVIDER  
LOGIC  
CONTROL  
WAKE  
DONE  
DELAY/  
M_RST  
DECODER  
&
MANUAL RESET  
DETECTOR  
GND  
8.3 Feature Description  
The DONE, WAKE and RSTn signals are used to implement the watchdog function. The TPL5010-Q1 is  
programmed to issue a periodic WAKE pulse to a µC which is in sleep or standby mode. After receiving the  
WAKE pulse, the µC must issue a DONE signal to the TPL5010-Q1 at least 20 ms before the rising edge of the  
next WAKE pulse. If the DONE signal is not asserted, the TPL5010-Q1 asserts the RSTn signal to reset the µC.  
A manual reset function is realized by momentarily pulling the DELAY/M_RST pin to VDD.  
ttIPt  
ttIPt  
WAKE  
DONE  
RSTn  
MISSED  
DONE  
ttRSTn+ tIPt  
DELAY/  
M_RST  
Figure 8. Watchdog  
8.3.1 WAKE  
The WAKE pulse is sent out from the TPL5010-Q1 when the programmed time interval starts (except at the  
beginning of the first cycle or if in the previous interval the DONE has not been received).  
This signal is normally low.  
8.3.2 DONE  
The DONE pin is driven by a µC to signal successful processing of the WAKE signal. The TPL5010-Q1  
recognizes a valid DONE signal as a low to high transition; if two or more DONE signals are received within the  
time interval, only the first DONE signal is processed.  
The DONE signal resets the counter of the watchdog only. If the DONE signal is received when the WAKE is still  
high, the WAKE will go low as soon as the DONE is recognized.  
Copyright © 2016, Texas Instruments Incorporated  
9
 
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 RSTn  
To implement the reset interface between the TPL5010-Q1 and the µC a pull-up resistance is required. 100 kΩ is  
recommended, to minimize current.  
During the POR and the reading of the REXT the RSTn signal is LOW.  
RSTn is asserted (LOW) for either one of the following conditions:  
1. If the DELAY/M_RST pin is high for at least two consecutive cycles of the internal oscillator (approximately  
20 ms).  
2. At the beginning of a new time interval if DONE is not received at least 20 ms before the next WAKE rising  
edge (see Figure 8).  
8.4 Device Functional Modes  
8.4.1 Startup  
During startup, after POR, the TPL5010-Q1 executes a one-time measurement of the resistance attached to the  
DELAY/M_RST pin in order to determine the desired time interval for WAKE. This measurement interval is  
tR_EXT. During this measurement a constant current is temporarily flowing into REXT  
.
ttR_EXT + tRSTn + tIPt  
ttIPt  
WAKE  
DONE  
RSTn  
DELAY/  
M_RST  
RESISTANCE  
READING  
POR  
Figure 9. Startup  
8.4.2 Normal Operating Mode  
During normal operating mode, the TPL5010-Q1 asserts periodic WAKE pulses in response to valid DONE  
pulses from the µC. If either a manual reset is applied (logic HIGH on DELAY/M_RST pin) or the µC does not  
issue a DONE pulse within the required time, the TPL5010-Q1 asserts the RSTn signal to the µC and restarts its  
internal counters. See Figure 8 and Figure 10 .  
8.5 Programming  
8.5.1 Configuring the WAKE Interval with the DELAY/M_RST Pin  
The time interval between 2 adjacent WAKE pulses (rising edges) is selectable through an external resistance  
(REXT) between the DELAY/M_RST pin and ground. The value of the resistance REXT is converted one time after  
POR. The allowable range of REXT is 500 Ω to 170 kΩ. At least a 1% precision resistance is recommended. See  
Timer Interval Selection Using External Resistance for how to set the WAKE pulse interval using REXT  
.
The time between 2 adjacent RESET signals (falling edges) or between a RESET (falling edge) and a WAKE  
(rising edge) is given by the sum of the programmed time interval and the tRSTn (reset pulse width).  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
Programming (continued)  
8.5.2 Manual Reset  
If VDD is connected to the DELAY/M_RST pin, the TPL5010-Q1 recognizes this as a manual reset condition. In  
this case the time interval is not set. If the manual reset is asserted during the POR or during the reading  
procedure, the reading procedure is aborted and is re-started as soon as the manual reset switch is released. A  
pulse on the DELAY/M_RST pin is recognized as a valid manual reset only if it lasts at least 20 ms (observation  
time is 30 ms).  
A valid manual reset resets all the counters inside the TPL5010-Q1. The counters restart only when the high  
digital voltage at DELAY/M_RST is removed and the next tRSTn is elapsed.  
ttIPt  
WAKE  
DONE  
ttRSTn+ tIPt  
RSTn  
ANY RESET  
ttM_RST  
t
ttDB  
t
ttM_RSTt  
DELAY/  
M_RST  
VALID M_RST  
NOT VALID M_RST  
Figure 10. Manual Reset  
8.5.2.1 DELAY/M_RST  
A resistance in the range between 500 Ω and 170 kΩ needs to be connected in order to select a valid time  
interval. At the POR and during the reading of the resistance the DELAY/M_RST is connected to an analog  
signal chain though a mux. After the reading of the resistance the analog circuit is switched off and the  
DELAY/RST is connected to a digital circuit.  
The manual reset detection is supported with a de-bounce feature which makes the TPL5010-Q1 insensitive to  
the glitches on the DELAY/M_RST pin. When a valid manual reset signal is asserted on the DELAY/M_RST pin,  
the RSTn signal is asserted LOW after a delay of tM_RST. It remains LOW after a valid manual reset is asserted +  
tDB + tRSTn. Due to the asynchronous nature of the manual reset signal and its arbitrary duration, the LOW status  
of the RSTn signal maybe affected by an uncertainty of about ±5 ms.  
A valid manual reset puts all the digital output signals at their default values:  
WAKE = LOW  
RSTn = asserted LOW  
8.5.2.2 Circuitry  
The manual reset may be implemented using a switch (momentary mechanical action). The TPL5010-Q1 offers 2  
possible approaches according to the power consumption constraints of the application.  
Copyright © 2016, Texas Instruments Incorporated  
11  
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
Programming (continued)  
µC  
VOUT  
VIN  
wp  
TPL5010-Q1  
VDD  
VDD  
RSTn  
WAKE  
DONE  
RSTn  
GPIO  
GPIO  
.attery  
POWER MANAGEMENT  
GND  
DELAY/  
M_RST  
w9óÇ  
GND  
GND  
Figure 11. Manual Reset with SPST Switch  
For use cases that do not require the lowest power consumption, using a single pole single throw switch may  
offer a lower cost solution. The DELAY/M_RST pin may be directly connected to VDD with REXT in the circuit.  
The current drawn from the supply voltage during the reset is given by VDD/REXT  
.
µC  
VOUT  
wp  
TPL5010-Q1  
VIN  
VDD  
VDD  
RSTn  
WAKE  
DONE  
RSTn  
GPIO  
GPIO  
.attery  
POWER MANAGEMENT  
GND  
GND  
DELAY/  
M_RST  
w9óÇ  
GND  
Figure 12. Manual Reset with SPDT Switch  
The reset function may also be asserted by switching DELAY/M_RST from REXT to VDD using a single pole  
double throw switch, which will provide a lower power solution for the manual reset, because no current flows.  
8.5.3 Timer Interval Selection Using External Resistance  
In order to set the time interval, the external resistance REXT is selected according the following formula:  
- b + b 2 - 4a  
2a  
(
c -100 T  
)
÷
REXT =100  
«
÷
where  
T is the desired time interval in seconds  
REXT is the resistance value to use in Ω  
a, b, c are coefficients depending on the range of the time interval  
(1)  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
Programming (continued)  
Table 2. Coefficients for Equation 1  
TIME  
SET  
INTERVAL  
RANGE (s)  
a
b
c
1
2
1 < T 5  
0.2253  
–0.1284  
0.1972  
0.2617  
0.3177  
–20.7654  
46.9861  
570.5679  
–2651.8889  
692.1201  
5 < T 10  
3
4
5
10 < T 100  
100 < T 1000  
T > 1000  
–19.3450  
–56.2407  
–136.2571  
5957.7934  
34522.4680  
EXAMPLE  
Required time interval: 8 s  
The coefficient set to be selected is the number 2. The formula becomes:  
2
46.9861- 46.9861 +4*0.1284  
(
-2561.8889-100*8  
)
÷
REXT =100  
÷
2*0.1284  
«
(2)  
The resistance value is 10.18 k.  
Table 3 and Table 4 contain example values of tIP and their corresponding value of REXT  
.
Table 3. First 9 Time Intervals  
PARALLEL OF TWO 1% TOLERANCE  
tIP (ms)  
RESISTANCE (Ω)  
CLOSEST REAL VALUE (Ω)  
RESISTORS (kΩ)  
100  
200  
300  
400  
500  
600  
700  
800  
900  
500  
500  
1.0 // 1.0  
-
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4501  
2.43 // 3.92  
-
4.42 // 5.76  
5.36 // 6.81  
4.75 // 13.5  
6.19 // 11.3  
6.19 // 16.5  
Table 4. Most Common Time Intervals Between 1 s to 2 h  
CLOSEST REAL  
VALUE (kΩ)  
PARALLEL OF TWO 1% TOLERANCE  
tIP  
CALCULATED RESISTANCE (kΩ)  
RESISTORS (kΩ)  
7.15 // 19.1  
12.4 // 15.0  
12.7// 19.1  
1 s  
2 s  
5.20  
6.79  
5.202  
6.788  
7.628  
8.306  
8.852  
9.223  
9.673  
10.180  
10.68  
11.199  
14.405  
16.778  
18.748  
3 s  
7.64  
4 s  
8.30  
14.7 // 19.1  
16.5 // 19.1  
18.2 // 18.7  
19.1 // 19.6  
11.5 // 8.87  
17.8 // 26.7  
15.0 // 44.2  
16.9 // 97.6  
32.4 // 34.8  
22.6 // 110.0  
5 s  
8.85  
6 s  
9.27  
7 s  
9.71  
8 s  
10.18  
10.68  
11.20  
14.41  
16.78  
18.75  
9 s  
10 s  
20 s  
30 s  
40 s  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
 
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
Table 4. Most Common Time Intervals Between 1 s to 2 h (continued)  
CLOSEST REAL  
VALUE (kΩ)  
PARALLEL OF TWO 1% TOLERANCE  
tIP  
CALCULATED RESISTANCE (kΩ)  
RESISTORS (kΩ)  
50 s  
1 min  
2 min  
3 min  
4 min  
5 min  
6 min  
7 min  
8 min  
9 min  
10 min  
20 min  
30 min  
40 min  
50 min  
1 h  
20.047  
22.02  
29.35  
34.73  
39.11  
42.90  
46.29  
49.38  
52.24  
54.92  
57.44  
77.57  
92.43  
104.67  
115.33  
124.91  
149.39  
170.00  
20.047  
22.021  
29.349  
34.729  
39.097  
42.887  
46.301  
49.392  
52.224  
54.902  
57.437  
77.579  
92.233  
104.625  
115.331  
124.856  
149.398  
170.00  
28.7 // 66.5  
40.2 // 48.7  
35.7 // 165.0  
63.4 // 76.8  
63.4 // 102.0  
54.9 // 196.0  
75.0 // 121.0  
97.6 // 100.0  
88.7 // 127.0  
86.6 // 150.0  
107.0 // 124.0  
140.0 // 174.0  
182.0 // 187.0  
130.0 // 536.00  
150.0 // 499.00  
221.0 // 287.00  
165.0 // 1580.0  
340.0 // 340.0  
1 h 30 min  
2 h  
8.5.4 Quantization Error  
The TPL5010-Q1 can generate 1650 discrete timer intervals in the range of 100 ms to 7200 s. The first 9  
intervals are multiples of 100 ms. The remaining 1641 intervals cover the range between 1 s to 7200 s. Because  
they are discrete intervals, there is a quantization error associated with each value.  
The quantization error can be evaluated according to the following formula:  
(
TDESIRED -TADC  
)
Err =100  
Where:  
TDESIRED  
(3)  
(4)  
R D2  
R D  
»
ÿ
Ÿ
1
÷
÷
T ADC = INT  
a
+ b  
+ c  
2
100  
100  
100  
«
R
»
ÿ
EXT  
R D = INT  
Ÿ
100  
where  
REXT is the resistance calculated with Equation 1  
a, b, c are the coefficients of the equation listed in Table 2  
(5)  
8.5.5 Error Due to Real External Resistance  
REXT is a theoretical value and may not be available in standard commercial resistor values. It is possible to  
closely approach the theoretical REXT using two or more standard values in parallel. However, standard values  
are characterized by a certain tolerance. This tolerance will affect the accuracy of the time interval.  
The accuracy can be evaluated using the following procedure:  
1. Evaluate the min and max values of REXT (REXT_MIN, REXT_MAX with Equation 1 using the selected commercial  
resistance values and their tolerances.  
2. Evaluate the time intervals (TADC_MIN[REXT_MIN], TADC_MAX[REXT_MAX]) with Equation 4.  
3. Find the errors using Equation 3 with TADC_MIN, TADC_MAX  
.
The results of the formula indicate the accuracy of the time interval.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
The example below illustrates the procedure.  
Desired time interval , T_desired = 600 s  
Required REXT, from Equation 1, REXT= 57.44 kΩ  
From Table 4, REXT can be built with a parallel combination of two commercial values with 1% tolerance: R1=107  
kΩ, R2=124 kΩ. The uncertainty of the equivalent parallel resistance can be found using Equation 6.  
2
2
u
u
R2  
÷
÷
R1  
uR =R//  
+
//  
R1  
R2  
«
«
(6)  
Where uRn (n=1,2) represent the uncertainty of a resistance,  
Tolerance  
uR =Rn  
n
3
(7)  
=
The uncertainty of the parallel resistance is 0.82%, meaning the value of REXT may range between REXT_MIN  
56.96 kΩ and REXT_MAX = 57.90 kΩ.  
Using these value of REXT, the digitized timer intervals calculated with Equation 4 are respectively TADC_MIN  
=
586.85 s and TADC_MAX = 611.3 s, giving an error range of –1.88% / +2.19%. The asymmetry of the error range is  
due to the quadratic transfer function of the resistance digitizer.  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
In battery-powered applications, one design constraint is the need for low current consumption. The TPL5010-Q1  
is ideal for applications where there is a need to monitor environmental conditions at a fixed time interval. Often  
in these applications, a watchdog or other internal timer in a µC is used to implement a wakeup function. Using  
the TPL5010-Q1 to implement the watchdog function will consume only tens of nA, significantly improving the  
power consumption of the system.  
9.2 Typical Application  
The TPL5010-Q1 can be used in conjunction with environment sensors to build a low-power environment data-  
logger, such as an air quality data-logger. In this application, due to the monitored phenomena, the µC and the  
front end of the sensor spend most of the time in the idle state, waiting for the next logging interval, usually a few  
hundred of milliseconds. Figure 13 illustrates a data logging application based on a µC, and a front end for a gas  
sensor based on the LMP91000.  
VOLTAGE  
REFERENCE  
VIN  
VOUT  
GND  
µC  
LMP91000  
Rp  
100k  
VOUT  
VIN  
Rp  
100k  
Rp  
100k  
TPL5010-Q1  
VDD  
SDA  
VDD  
SCL  
SDA  
VREF  
CE  
+
VDD  
RSTn  
WAKE  
DONE  
RST  
Lithium  
ion battery  
CE  
POWER MANAGEMENT  
GND  
GND  
GPIO  
GPIO  
SCL  
RE  
RE  
WE  
-
DELAY/  
M_RST  
ADC  
GND  
GPIO  
GPIO  
VOUT  
GND  
WE  
GAS  
SENSOR  
MENB  
w9óÇ  
GPIO  
GPIO  
Button  
Temp 29°C  
CO 0PPM  
Button  
Button  
TIME xx:xx  
Date xx/xx/xxxx  
DISPLAY  
KEYBOARD  
Figure 13. Data-Logger  
9.2.1 Design Requirements  
The design is driven by the low current consumption constraint. The data are usually acquired on a rate that  
ranges between 1 s and 10 s. The highest necessity is the maximization of the battery life. The TPL5010-Q1  
helps achieve that goal because it allows putting the µC in its lowest power mode. The TPL5010-Q1 will take  
care of the watchdog and the timing.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
When the main constraint is the battery life, the selection of a low-power voltage reference, µC, and display is  
mandatory. The first step in the design is the calculation of the power consumption of the devices in their  
different mode of operations. For instance, the LMP91000 burns most of the power when in gas measurement  
mode, then according to the connected gas sensor it has 2 idle states: stand-by and deep sleep. The same is  
true for the µC, such as one of the MSP430 family, which can be placed in one of its lower power modes, such  
as LMP3.5 or LMP4.5. In this case, the TPL5010-Q1 can be used to implement the watchdog and wakeup timing  
functions.  
After the power budget calculation it is possible to select the appropriate time interval which satisfies the  
application constraints and maximize the life of the battery.  
9.2.3 Application Curves  
Without TPL5010-Q1  
With TPL5010-Q1  
Time  
Figure 14. Effect of TPL5010-Q1 on Current Consumption  
Copyright © 2016, Texas Instruments Incorporated  
17  
TPL5010-Q1  
ZHCSFH0 SEPTEMBER 2016  
www.ti.com.cn  
10 Power Supply Recommendations  
The TPL5010-Q1 requires a voltage supply within 1.8 V and 5.5 V. A multilayer ceramic bypass X7R capacitor of  
0.1 μF between VDD and GND pin is recommended.  
11 Layout  
11.1 Layout Guidelines  
The DELAY/M_RST pin is sensitive to parasitic capacitance. It is suggested that the traces connecting the  
resistance on this pin to GROUND be kept as short as possible to minimize parasitic capacitance. This  
capacitance can affect the initial set up of the time interval. Signal integrity on the WAKE and RSTn pins is also  
improved by keeping the trace length between the TPL5010-Q1 and the µC short to reduce the parasitic  
capacitance.  
11.2 Layout Example  
Figure 15. Layout  
18  
版权 © 2016, Texas Instruments Incorporated  
TPL5010-Q1  
www.ti.com.cn  
ZHCSFH0 SEPTEMBER 2016  
12 器件和文档支持  
12.1 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPL5010QDDCRQ1  
TPL5010QDDCTQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
13VX  
13VX  
Samples  
Samples  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2022  
OTHER QUALIFIED VERSIONS OF TPL5010-Q1 :  
Catalog : TPL5010  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPL5100

TPL5100 Nano Power Programmable Timer with MOS driver
TI

TPL5100DGSR

TPL5100 Nano Power Programmable Timer with MOS driver
TI

TPL5100DGST

TPL5100 Nano Power Programmable Timer with MOS driver
TI

TPL5110

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器
TI

TPL5110-Q1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器
TI

TPL5110DDCR

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器 | DDC | 6 | -40 to 105
TI

TPL5110DDCT

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器 | DDC | 6 | -40 to 105
TI

TPL5110QDDCRQ1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125
TI

TPL5110QDDCTQ1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125
TI

TPL5111

用于占空比应用电源门控的超低功耗系统计时器 (35nA)
TI

TPL5111DDCR

用于占空比应用电源门控的超低功耗系统计时器 (35nA) | DDC | 6 | -40 to 105
TI

TPL5111DDCT

用于占空比应用电源门控的超低功耗系统计时器 (35nA) | DDC | 6 | -40 to 105
TI