TPL5110 [TI]

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器;
TPL5110
型号: TPL5110
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器

驱动 驱动器
文件: 总27页 (文件大小:1395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
用于电源门控的 TPL5110 毫微功耗系统计时器  
1 特性  
3 说明  
1
电源电压范围为 1.8V 5.5V  
TPL5110 是一款低功耗计时器,具有集成 MOSFET  
驱动器,专为占空比或电池供电型应用中的电源门控而  
设计。TPL5110 的电流消耗仅为 35nA,可用于支持电  
源线路,并可大幅降低睡眠期间的总系统待机电流。这  
一节能特性可以大幅减小能量采集或无线传感器应用中  
所使用的电池 尺寸。TPL5110 提供 100ms 7200s  
的可选计时间隔,适合用于电源门控 应用。此  
外,TPL5110 还具有独特的单次触发功能,可使计时  
器仅为 MOSFET 供电一个周期。TPL5110 采用 6 引  
SOT23 封装。  
电压为 2.5V 时,电流消耗为 35nA(典型值)  
可选计时间隔:100ms 7200s  
计时器精度:1%(典型值)  
可通过电阻选择时间间隔  
手动为 MOSFET 上电  
单次触发功能  
2 应用  
电池供电系统  
物联网 (IoT)  
出入探测  
器件信息(1)  
器件编号  
TPL5110  
封装  
SOT23 (6)  
封装尺寸(标称值)  
篡改检测  
3.00mm x 3.00mm  
家庭自动化传感器  
温度调节装置  
消费类电子产品  
远程传感器  
白色家电  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化应用电路原理图  
µC  
VOUT  
VIN  
TPL5110  
VDD  
EN/  
ONE_SHOT  
VDD  
GND  
Battery  
POWER MANAGEMENT  
GND  
DRV  
DELAY/  
M_DRV  
DONE  
GPIO  
REXT  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS650  
 
 
 
 
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes.......................................... 9  
7.5 Programming .......................................................... 10  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 16  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Ratings ........................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements ............................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 接收文档更新通知 ................................................. 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 术语表 ................................................................... 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
Changes from Original (January 2015) to Revision A  
Page  
已更改 说明文本...................................................................................................................................................................... 1  
Changed max IDD ................................................................................................................................................................. 5  
Changed TPL5110 Timing labels ........................................................................................................................................... 6  
Changed Circuitry text .......................................................................................................................................................... 12  
Changed TADC and RD equations in the Quantization Error section..................................................................................... 14  
添加了接收文档更新通知 .............................................................................................................................................. 19  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
5 Pin Configuration and Functions  
DDC Package  
6-Lead SOT-23  
Top View  
TPL5110  
EN/  
ONE_ SHOT  
1
2
3
VDD  
GND  
6
5
4
DRV  
DELAY/  
M_DRV  
DONE  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
APPLICATION INFORMATION  
NO.  
1
NAME  
VDD  
P
G
I
Supply voltage  
Ground  
2
GND  
3
DELAY/  
M_DRV  
Time interval set and manual  
MOSFET Power ON  
Resistance between this pin and GND is used to  
select the time interval. The manual MOSFET power  
ON switch is also connected to this pin.  
4
5
6
DONE  
DRV  
I
O
I
Logic Input for watchdog  
functionality  
Digital signal driven by the µC to indicate successful  
processing.  
Power Gating output signal  
generated every tIP  
The Gate of the MOSFET is connected to this pin.  
When DRV = LOW, the MOSFET is ON.  
EN/  
ONE_SHOT  
Selector of mode of operation  
When EN/ONE_SHOT = HIGH, the TPL5110 works  
as a TIMER. When EN/ONE_SHOT = LOW, the  
TPL5110 turns on the MOSFET one time for the  
programmed time interval. The next power on of the  
MOSFET is enabled by the manual power ON.  
(1) G= Ground, P= Power, O= Output, I= Input.  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–5  
MAX  
6
UNIT  
V
Supply Voltage (VDD-GND)  
Input Voltage at any pin(2)  
Input Current on any pin  
Junction Temperature, TJ(3)  
Storage Temperature, Tstg  
VDD + 0.3  
+5  
V
mA  
°C  
150  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The voltage between any two pins should not exceed 6 V.  
(3) The maximum power dissipation is a function of TJ(MAX), θJA, and the ambient temperature, TA. The maximum allowable power  
dissipation at any ambient temperature is PDMAX = (TJ(MAX) - TA)/ θJA. All numbers apply for packages soldered directly onto a  
printed-circuit board (PCB).  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human Body Model, per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Ratings  
MIN  
MAX  
5.5  
UNIT  
V
Supply Voltage (VDD-GND)  
Temperature  
1.8  
–40  
105  
°C  
6.4 Thermal Information  
TPL5110  
THERMAL METRIC(1)  
DDC (SOT-23)  
UNIT  
6 PINS  
163  
26  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
57  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.5  
ψJB  
57  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
6.5 Electrical Characteristics(1)  
Specifications are for TA= 25°C, VDD-GND = 2.5 V, unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
MAX(2) UNIT  
POWER SUPPLY  
IDD  
Supply current(4)  
Operation mode  
35  
50  
nA  
µA  
Digital conversion of external  
resistance (Rext)  
200  
400  
TIMER  
tIP  
Time interval Period  
1650 selectable  
Time intervals  
Minimum time  
interval  
100  
ms  
s
Maximum time  
interval  
7200  
Time interval Setting Accuracy(5)  
Excluding the precision of Rext  
±0.6%  
±25  
Time interval Setting Accuracy over 1.8 V VDD 5.5 V  
ppm/V  
supply voltage  
tOSC  
Oscillator Accuracy  
–0.5%  
0.5%  
Oscillator Accuracy over  
temperature(6)  
–40°C TA105°C  
1.8 V VDD 5.5 V  
±100  
±0.4  
±400 ppm/°C  
Oscillator Accuracy over supply  
voltage  
%/V  
Oscillator Accuracy over life time(7)  
±0.24%  
(6)  
tDONE  
tDRV  
DONE Pulse width  
100  
ns  
DRV Pulse width  
DONE signal not received  
tIP-50  
ms  
t_Rext  
Time to convert Rext  
100  
120  
ms  
DIGITAL LOGIC LEVELS  
VIH  
VIL  
Logic High Threshold DONE pin  
0.7 × VDD  
V
V
Logic Low Threshold DONE pin  
0.3 ×  
VDD  
Iout = 100 µA  
Iout = 1 mA  
VDD – 0.3  
VDD – 0.7  
V
V
V
V
V
VOH  
Logic output High Level DRV pin  
Logic output Low Level DRV pin  
Iout = -100 µA  
Iout = –1 mA  
0.3  
0.7  
VOL  
VIHM_DRV  
Logic High Threshold  
DELAY/M_DRV pin  
1.5  
(1) Electrical Characteristics values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in  
very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables  
under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which  
the device may be permanently degraded, either mechanically or electrically.  
(2) Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through  
correlations using statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped  
production material.  
(4) The supply current excludes load and pullup resistor current. Input pins are at GND or VDD.  
(5) The accuracy for time interval settings below 1 second is ±100 ms.  
(6) This parameter is specified by design and/or characterization and is not tested in production.  
(7) Operational life time test procedure equivalent to 10 years.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
6.6 Timing Requirements  
MIN(1)  
NOM(2)  
50  
MAX(1) UNIT  
trDRV  
tfDRV  
Rise Time DRV(3)  
Fall Time DRV(3)  
Capacitive load 50 pF  
Capacitive load 50 pF  
Minimum delay(4)  
ns  
ns  
ns  
50  
100  
tDRV  
tDDONE  
DONE to DRV delay  
(4)  
Maximum delay  
tM_DRV  
tDB  
Valid manual MOSFET Power ON  
Observation time 30 ms  
20  
ms  
ms  
De-bounce manual MOSFET Power  
ON  
20  
(1) Limits are specified by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are specified through  
correlations using statistical quality control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped  
production material.  
(3) This parameter is specified by design and/or characterization and is not tested in production.  
(4) From DRV falling edge.  
VDD  
EN/  
ONE_SHOT  
ttDDONE  
t
tDONE  
DONE  
t tDRV  
t
t tDRV + tDBt  
trDRV  
t tIPt  
DRV  
tfDRV  
t tIPt  
tR_EXT  
DELAY/  
M_DRV  
ttM_DRV  
Figure 1. TPL5110 Timing  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
6.7 Typical Characteristics  
80  
80  
70  
60  
50  
40  
30  
20  
TA= -40°C  
TA= 25°C  
TA= 70°C  
VDD= 1.8V  
VDD= 2.5V  
VDD= 3.3V  
VDD= 5.5V  
70  
60  
50  
40  
30  
20  
TA= 105°C  
1.5  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
5.5  
1
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 2. IDD vs. VDD  
Figure 3. IDD vs. Temperature  
2
1.5  
1
2
1.5  
1
TA= -40°C  
TA= 25°C  
TA= 70°C  
TA= 105°C  
VDD= 1.8V  
VDD= 2.5V  
VDD= 3.3V  
VDD= 5.5V  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
1.5  
1.9  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 4. Oscillator Accuracy vs. VDD  
Figure 5. Oscillator Accuracy vs. Temperature  
1000  
100  
10  
40%  
POR  
REXT READING  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
1
TIMER MODE  
0.1  
0.01  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
Time (s)  
0.6  
0.7  
0.8  
0.9  
-1  
-0.8  
-0.6  
-0.4  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
Accuracy (%)  
number of  
1s < tIP 7200s  
observations  
>20000  
Figure 7. Time interval Setting Accuracy  
Figure 6. IDD vs. Time  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPL5110 is a timer with power gating feature. It is ideal for use in power-cycled applications and provides  
selectable timing from 100 ms to 7200 s.  
Once configured in timer mode (EN/ONE_SHOT= HIGH) the TPL5110 periodically sends out a DRV signal to a  
MOSFET to turn on the µC. If the µC replies with a DONE signal within the programmed time interval (tDRV) the  
TPL5110 turns off the µC, otherwise the TPL5110 keeps the µC in the on state for a time equal to tDRV  
.
The TPL5110 can work also in a one-shot mode (EN/ONE_SHOT= LOW). In this mode the DRV signal is sent  
out just one time at the power on of the TPL5110 to turn on the µC. If the µC replies with a DONE signal within  
the programmed time interval (tDRV) the TPL5110 turns off the µC, otherwise the TPL5110 keeps the µC in the  
on state for a time equal to tDRV  
.
7.2 Functional Block Diagram  
VDD  
EN/  
ONE_SHOT  
LOW FREQUENCY  
OSCILLATOR  
FREQUENCY  
DIVIDER  
LOGIC  
CONTROL  
DRV  
DONE  
DELAY/  
M_DRV  
DECODER  
&
MANUAL RESET  
DETECTOR  
GND  
7.3 Feature Description  
The TPL5110 implements a periodical power gating feature or one shot power gating according to the  
EN/ONE_SHOT voltage. A manual MOSFET Power ON function is realized by momentarily pulling the  
DELAY/M_DRV pin to VDD.  
7.3.1 DRV  
The gate of the MOSFET is connected to the DRV pin. When DRV=LOW, the MOSFET is turned ON. The pulse  
generated at DRV is equal to the selected time interval period, minus 50 ms. It is shorter in the case of a DONE  
signal received from the µC. If the DONE signal is not received within the programmed time interval (minus 50  
ms), the DRV signal will be high for the last 50 ms of the time interval to turn off the MOSFET before the next  
cycle starts.  
The default value (after resistance reading) is HIGH. The signal is sent out from the TPL5110 when the  
programmed time interval starts. When the DRV is LOW, the manual power ON signal is ignored.  
7.3.2 DONE  
The DONE pin is driven by a µC to signal that the µC is working properly. The TPL5110 recognizes a valid  
DONE signal as a low to high transition. If two or more DONE signals are received within the time interval, only  
the first DONE signal is processed. The minimum DONE signal pulse length is 100 ns. When the TPL5110  
receives the DONE signal it asserts DRV logic HIGH.  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
7.4 Device Functional Modes  
7.4.1 Start-Up  
During start-up, after POR, the TPL5110 executes a one-time measurement of the resistance attached to the  
DELAY/M_DRV pin in order to determine the desired time interval for DRV. This measurement interval is tR_EXT  
During this measurement a constant current is temporarily flowing into REXT  
.
.
Once the reading of the external resistance is complete, the TPL5110 enters automatically in one of the two  
modes according to the EN/ONE_SHOT value. The EN/ONE_SHOT pin needs to be hard wired to GND or VDD  
according to the required mode of operation.  
ttIPt  
ttIPt  
ttDRV  
t
FORCED  
DRV  
DRV RISING  
MISSED  
DONE  
DONE  
EN/  
ONE_SHOT  
DELAY/  
M_DRV  
RESISTANCE  
READING  
POR  
Figure 8. Start-Up - Timer Mode  
7.4.2 Timer Mode  
During timer mode (EN/ONE_SHOT = HIGH), the TPL5110 asserts periodic DRV pulses according to the  
programmed time interval. The length of the DRV pulses is set by the receiving of a DONE pulse from the µC.  
See Figure 8.  
7.4.3 One-Shot Mode  
During one-shot mode (EN/ONE_SHOT = LOW), the TPL5110 generates just one pulse at the DRV pin which  
lasts according to the programmed time interval. In one-shot mode, other DRV pulses can be triggered using the  
DELAY/M_DRV pin. If a valid manual power ON occurs when EN/ONE_SHOT is LOW, the TPL5110 generates  
just one pulse at the DRV pin. The duration of the pulse is set by the programmed time interval. Also in this case,  
if a DONE signal is received within the programmed time interval (minus 50 ms), the MOSFET connected to the  
DRV pin is turned off. See Figure 9 and Figure 10.  
ttIP  
t
DRV  
DONE  
EN/  
ONE_SHOT  
DELAY/  
M_DRV  
RESISTANCE  
READING  
POR  
Figure 9. Start-Up One-Shot Mode (DONE Received Within tIP)  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
 
 
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
ttIPt  
ttDRV  
t
FORCED  
DRV  
DRV RISING  
MISSED  
DONE  
DONE  
EN/  
ONE_SHOT  
DELAY/  
M_DRV  
RESISTANCE  
READING  
POR  
Figure 10. Start-Up One-Shot Mode (No DONE Received Within tIP)  
7.5 Programming  
7.5.1 Configuring the Time Interval With the DELAY/M_DRV Pin  
The time interval between two adjacent DRV pulses (falling edges, in timer mode) is selectable through an  
external resistance (REXT) between the DELAY/M_DRV pin and ground. The resistance (REXT) must be in the  
range between 500 Ω and 170 kΩ. At least a 1% precision resistance is recommended. See section Selection of  
the External Resistance on how to set the time interval using REXT  
.
7.5.2 Manual MOSFET Power ON Applied to the DELAY/M_DRV Pin  
If VDD is connected to the DELAY/M_DRV pin, the TPL5110 recognizes this as a manual MOSFET Power ON  
condition. In this case the time interval is not set. If the manual MOSFET Power ON is asserted during the POR  
or during the reading procedure, the reading procedure is aborted and is restarted as soon as the manual  
MOSFET Power ON switch is released. A pulse on the DELAY/M_DRV pin is recognized as a valid manual  
MOSFET Power ON only if it lasts at least 20 ms (observation time is 30 ms). The manual MOSFET Power ON  
may be implemented using a switch (momentary mechanical action).  
If the DRV is already LOW (MOSFET ON) the manual MOSFET Power ON is ignored.  
ttIPt  
ttIPt  
DRV  
DONE  
EN/  
ONE_SHOT  
ttM_DRV  
t
ttM_DRV  
t
ttDB  
t
ttM_DRVt  
DELAY/  
M_DRV  
IGNORED M_DRV  
DRV ALREADY LOW  
VALID M_DRV  
NOT VALID M_DRV  
Figure 11. Manual MOSFET Power ON in Timer Mode  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
Programming (continued)  
ttIPt  
DRV  
DONE  
EN/  
ONE_SHOT  
ttM_DRV  
t
ttDB  
t
ttM_DRVt  
DELAY/  
M_DRV  
VALID M_DRV  
NOT VALID M_DRV  
Figure 12. Manual MOSFET Power ON in One-Shot Mode  
7.5.2.1 DELAY/M_DRV  
A resistance in the range between 500 Ω and 170 kΩ must to be connected to the DELAY/M_DRV pin to select a  
valid time interval. At the POR and during the reading of the resistance, the DELAY/M_DRV is connected to an  
analog signal chain through a mux. After the reading of the resistance, the analog circuit is switched off and the  
DELAY/M_DRV is connected to a digital circuit.  
In this state, a logic HIGH applied to the DELAY/M_DRV pin is interpreted by the TPL5110 as a manual power  
ON. The manual power ON detection is provided with a de-bounce feature (on both edges) which makes the  
TPL5110 insensitive to the glitches on the DELAY/M_DRV.  
The M_DRV must stay high for at least 20 ms to be valid. Once a valid signal at DELAY/M_DRV is understood  
as a manual power on, the DRV signal will be asserted in the next 10 ms. Its duration will be according to the  
programmed time interval (minus 50 ms), or less if the DONE is received.  
A manual power ON signal resets all the counters. The counters will restart as soon as a valid manual power ON  
signal is recognized and the signal at DELAY/M_DRV pin is asserted LOW. Due to the asynchronous nature of  
the manual power ON signal and its arbitrary duration, the LOW status of the DRV signal may be affected by an  
uncertainty of about ±5 ms.  
An extended assertion of a logic HIGH at the DELAY/M_DRV pin will turn on the MOSFET for a time longer than  
the programmed time interval. DONE signals received while the DELAY/M_DRV is HIGH are ignored. If the DRV  
is already LOW (MOSFET ON) the manual power ON is ignored.  
7.5.2.2 Circuitry  
The manual Power ON may be implemented using a switch (momentary mechanical action). The TPL5110 offers  
two possible approaches according to the power consumption constraints of the application.  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Programming (continued)  
µC  
VOUT  
VIN  
TPL5110  
VDD  
EN/  
ONE_SHOT  
VDD  
GND  
Battery  
POWER MANAGEMENT  
DRV  
DELAY/  
M_DRV  
DONE  
GPIO  
REXT  
GND  
GND  
Figure 13. Manual MOSFET Power ON With SPST Switch  
For use cases that do not require the lowest power consumption, using a single-pole single-throw switch may  
offer a lower-cost solution. The DELAY/M_DRV pin may be directly connected to VDD with REXT in the circuit.  
The current drawn from the supply voltage during the manual power ON is given by VDD/REXT  
.
µC  
VOUT  
TPL5110  
VIN  
VDD  
EN/  
ONE_SHOT  
VDD  
GND  
Battery  
POWER MANAGEMENT  
GND  
DRV  
DELAY/  
M_DRV  
DONE  
GPIO  
REXT  
GND  
Figure 14. Manual MOSFET Power ON With SPDT Switch  
The manual MOSFET Power ON function may also be asserted by switching DELAY/M_DRV from REXT to VDD  
using a single-pole double-throw switch, which will provide a lower power solution for the manual power ON,  
because no current flows.  
7.5.3 Selection of the External Resistance  
To set the time interval, the external resistance REXT is selected according to Equation 1:  
2
÷
- b + b - 4a  
2a  
(
c -100 T  
)
REXT =100  
«
÷
where  
T is the desired time interval in seconds.  
REXT is the resistance value to use in Ω.  
a, b, c are coefficients depending on the range of the time interval.  
(1)  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
Programming (continued)  
Table 1. Coefficients for Equation 1  
Time Interval  
Range (s)  
SET  
a
b
c
1
2
3
4
5
1 <T5  
0.2253  
-0.1284  
0.1972  
0.2617  
0.3177  
-20.7654  
46.9861  
570.5679  
-2651.8889  
692.1201  
5 <T10  
10 <T100  
100 <T1000  
T> 1000  
-19.3450  
-56.2407  
-136.2571  
5957.7934  
34522.4680  
EXAMPLE  
Required time interval: 8 s  
The coefficient set to be selected is the number 2. The formula becomes Equation 2.  
2
46.9861- 46.9861 +4*0.1284  
(
-2561.8889-100*8  
)
÷
REXT =100  
«
÷
2*0.1284  
(2)  
The resistance value is 10.18 k.  
Table 2 and Table 3 contain example values of tIP and their corresponding value of REXT  
.
Table 2. First 9 Time Intervals  
Parallel of two 1% tolerance resistors,  
tIP (ms)  
Resistance (Ω)  
Closest real value (Ω)  
(kΩ)  
100  
200  
300  
400  
500  
600  
700  
800  
900  
500  
500  
1.0 // 1.0  
-
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4501  
2.43 // 3.92  
-
4.42 // 5.76  
5.36 // 6.81  
4.75 // 13.5  
6.19 // 11.3  
6.19 // 16.5  
Table 3. Most Common Time Intervals Between 1s to 2h  
Closest Real Value  
Parallel of Two 1% Tolerance  
tIP  
Calculated Resistance (kΩ)  
(kΩ)  
Resistors,(kΩ)  
7.15 // 19.1  
12.4 // 15.0  
12.7// 19.1  
14.7 // 19.1  
16.5 // 19.1  
18.2 // 18.7  
19.1 // 19.6  
11.5 // 8.87  
17.8 // 26.7  
15.0 // 44.2  
16.9 // 97.6  
32.4 // 34.8  
22.6 // 110.0  
28.7 // 66.5  
1s  
2s  
5.20  
6.79  
5.202  
6.788  
3s  
7.64  
7.628  
4s  
8.30  
8.306  
5s  
8.85  
8.852  
6s  
9.27  
9.223  
7s  
9.71  
9.673  
8s  
10.18  
10.68  
11.20  
14.41  
16.78  
18.75  
20.047  
10.180  
10.68  
9s  
10s  
20s  
30s  
40s  
50s  
11.199  
14.405  
16.778  
18.748  
20.047  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
 
 
 
 
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Table 3. Most Common Time Intervals Between 1s to 2h (continued)  
Closest Real Value  
Parallel of Two 1% Tolerance  
tIP  
Calculated Resistance (kΩ)  
(kΩ)  
Resistors,(kΩ)  
1min  
2min  
3min  
4min  
5min  
6min  
7min  
8min  
9min  
10min  
20min  
30min  
40min  
50min  
1h  
22.02  
29.35  
34.73  
39.11  
42.90  
46.29  
49.38  
52.24  
54.92  
57.44  
77.57  
92.43  
104.67  
115.33  
124.91  
149.39  
170.00  
22.021  
29.349  
34.729  
39.097  
42.887  
46.301  
49.392  
52.224  
54.902  
57.437  
77.579  
92.233  
104.625  
115.331  
124.856  
149.398  
170.00  
40.2 // 48.7  
35.7 // 165.0  
63.4 // 76.8  
63.4 // 102.0  
54.9 // 196.0  
75.0 // 121.0  
97.6 // 100.0  
88.7 // 127.0  
86.6 // 150.0  
107.0 // 124.0  
140.0 // 174.0  
182.0 // 187.0  
130.0 // 536.00  
150.0 // 499.00  
221.0 // 287.00  
165.0 // 1580.0  
340.0 // 340.0  
1h30min  
2h  
7.5.4 Quantization Error  
The TPL5110 can generate 1650 discrete timer intervals in the range of 100 ms to 7200 s. The first 9 intervals  
are multiples of 100 ms. The remaining 1641 intervals cover the range between 1 s to 7200 s. Because they are  
discrete intervals, there is a quantization error associated with each value.  
The quantization error can be evaluated according to Equation 3:  
(
TDESIRED -TADC  
)
Err =100  
TDESIRED  
where  
1
é
ù
TADC = INT  
aR2 + bR + c  
(
)
D
D
ê
ú
100  
ë
û
REXT  
100  
RD  
=
(3)  
REXT is the resistance calculated with Equation 1 and a, b, c are the coefficients of the equation listed in Table 1.  
7.5.5 Error Due to Real External Resistance  
REXT is a theoretical value and may not be available in standard commercial resistor values. It is possible to  
closely approach the theoretical REXT using two or more standard values in parallel. However, standard values  
are characterized by a certain tolerance. This tolerance will affect the accuracy of the time interval.  
The accuracy can be evaluated using the following procedure:  
1. Evaluate the min and max values of REXT (REXT_MIN, REXT_MAX with Equation 1 using the selected commercial  
resistance values and their tolerances.  
2. Evaluate the time intervals (TADC_MIN[REXT_MIN], TADC_MAX[REXT_MAX]) with the TADC equation mentioned in  
Equation 3.  
3. Find the errors using Equation 3 with TADC_MIN, TADC_MAX  
.
The results of the formula indicate the accuracy of the time interval.  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
The example below illustrates the procedure.  
Desired time interval, T_desired = 600 s,  
Required REXT from Equation 1, REXT= 57.44 kΩ.  
From Table 3, REXT can be built with a parallel combination of two commercial values with 1% tolerance: R1 =1  
07 kΩ, R2 = 124 kΩ. The uncertainty of the equivalent parallel resistance can be found using Equation 4:  
2
2
u
u
R2  
R1 ’ ≈  
÷
uR =R//  
+
÷ ∆  
//  
R1  
R2  
«
◊ «  
where  
uRn (n=1,2) represent the uncertainty of a resistance (see Equation 5)  
(4)  
(5)  
SPACER  
Tolerance  
uR =Rn  
n
3
The uncertainty of the parallel resistance is 0.82%, which means the value of REXT may range between REXT_MIN  
= 56.96 kΩ and REXT_MAX = 57.90 kΩ.  
Using these value of REXT, the digitized timer intervals calculated by TADC equation mentioned in Equation 3 are  
respectively TADC_MIN = 586.85 s and TADC_MAX = 611.3 s, giving an error range of –1.88% / +2.19%. The  
asymmetry of the error range is due to the quadratic transfer function of the resistance digitizer.  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
 
 
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
In battery-powered applications, one design constraint is the need for low current consumption. The TPL5110 is  
designed for applications where there is a need to monitor environmental conditions at a fixed time interval. Often  
in these applications a watchdog or other internal timer in a µC is used to implement a wake-up function.  
Typically, the power consumption of these functions is not optimized. Using the TPL5110 to implement a  
periodical power gating of the µC or of the entire system the current consumption will be only tens of nA.  
8.2 Typical Application  
The TPL5110 can be used in environment sensor nodes such as humidity and temperature sensor node. The  
sensor node has to measure the humidity and the temperature and transmit the data through a low power RF  
micro such as the CC2531. The temperature and the humidity in home application do not change so fast, so the  
measurement and the transmission of the data can be done at very low rate, such as every 30 seconds. The RF  
micro should spend most of the time in counting the elapsed time, but using the TPL5110 it is possible to  
complete turn off the RF micro and extend the battery life. The TPL5110 will turn on the RF micro when the  
programmed time interval elapses or for debug purpose with the manual MOSFET Power ON switch.  
DC-DC  
BOOST  
VIN  
VOUT  
ENB  
GND  
CC2531  
Rp  
100k  
Rp  
100k  
RF  
TPL5110  
HDC1000  
VDD  
EN/  
ONE_SHOT  
VDD  
GND  
VDD  
DRV  
SCL  
SDA  
GND  
SCL  
+
DELAY/  
M_DRV  
Lithium  
ion battery  
DONE  
GPIO  
SDA  
GND  
-
Figure 15. Sensor Node  
8.2.1 Design Requirements  
The design is driven by the low current consumption constraint. The data are usually acquired on a rate which is  
in the range between 30 s and 60 s. The highest necessity is the maximization of the battery life. The TPL5110  
helps achieve this goal because it allows turning off the RF micro.  
8.2.2 Detailed Design Procedure  
When the focal constraint is the battery life, the selection of a low power voltage regulator and low leakage  
MOSFET to power gate the µC is mandatory. The first step in the design is the calculation of the power  
consumption of each device in the different mode of operations. An example is the HDC1000, in measurement  
mode the RF micro is in normal operation and transmission. The different modes offer the possibility to select the  
appropriate time interval which respect the application constraint and maximize the life of the battery.  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
Typical Application (continued)  
8.2.3 Application Curve  
Without TPL5110  
With TPL5110  
Time  
Figure 16. Effect of TPL5110 on Current Consumption  
9 Power Supply Recommendations  
The TPL5110 requires a voltage supply within 1.8 V and 5.5 V. A multilayer ceramic bypass X7R capacitor of 0.1  
μF between VDD and GND pin is recommended.  
10 Layout  
10.1 Layout Guidelines  
The DELAY/M_DRV pin is sensitive to parasitic capacitance. TI suggests that the traces connecting the  
resistance on this pin to GROUND be kept as short as possible to minimize parasitic capacitance. This  
capacitance can affect the initial set up of the time interval. Signal integrity on the DRV pin is also improved by  
keeping the trace length between the TPL5110 and the gate of the MOSFET short to reduce the parasitic  
capacitance. The EN/ONE_SHOT needs to be tied to GND or VDD with short traces.  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
TPL5110  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
10.2 Layout Example  
Figure 17. Layout  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
TPL5110  
www.ti.com.cn  
ZHCSEK5A JANUARY 2015REVISED SEPTEMBER 2018  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2018, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPL5110DDCR  
TPL5110DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
ZALX  
ZALX  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPL5110DDCR  
TPL5110DDCT  
SOT-  
23-THIN  
DDC  
DDC  
6
6
3000  
250  
178.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-  
178.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPL5110DDCR  
TPL5110DDCT  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPL5110-Q1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5110DDCR

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器 | DDC | 6 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5110DDCT

具有 MOS 驱动器和手动 MOSFET 加电功能的毫微功耗系统计时器 | DDC | 6 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5110QDDCRQ1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5110QDDCTQ1

具有手动复位功能和 MOS 驱动器的汽车 AEC-Q100 毫微功耗系统计时器

| DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5111

用于占空比应用电源门控的超低功耗系统计时器 (35nA)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5111DDCR

用于占空比应用电源门控的超低功耗系统计时器 (35nA) | DDC | 6 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL5111DDCT

用于占空比应用电源门控的超低功耗系统计时器 (35nA) | DDC | 6 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL521-2XGRSMT&R

Transistor Output Optocoupler,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ISOCOM

TPL521-4XGB

Transistor Output Optocoupler,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ISOCOM

TPL7407LA

30V、7 通道 NMOS 阵列低侧驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPL7407LA-Q1

30V、7 通道汽车类 NMOS 阵列低侧驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI