TPS22810DBVR [TI]

具备可调节上升和可调节输出放电的 18V、3A、79mΩ 负载开关 | DBV | 6 | -40 to 105;
TPS22810DBVR
型号: TPS22810DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具备可调节上升和可调节输出放电的 18V、3A、79mΩ 负载开关 | DBV | 6 | -40 to 105

开关 驱动 光电二极管 接口集成电路 驱动器
文件: 总37页 (文件大小:2554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
TPS22810,具有热保护的 2.7V-18V79mΩ 导通电阻负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
TPS22810 是一款单通道负载开关,其具有可配置的  
上升时间并集成有快速输出放电 (QOD) 功能。此外,  
该器件还 具有 热关断保护,可防止器件结温过高,借  
此从内部确保器件处于安全工作区域。该器件包括一个  
N 通道金属氧化物半导体场效应晶体管 (MOSFET),  
可在 2.7V 18V 的输入电压范围内运行。SOT23-5  
(DBV) 封装可支持 2A 的最大电流。WSON (DRV) 封  
装可支持 3A 的最大电流。此开关由一个开关输入控  
制,能够直接连接低电压控制信号。  
运行环境温度范围:  
–40°C +105°C  
SOT23-6 (DBV)2A 最大持续工作电流1  
WSON (DRV)3A 最大持续电流 1  
输入电压范围:2.7V 18V  
绝对最大输入电压:20V  
导通电阻 (RON  
RON = 79mΩVIN = 12V 时的典型值)  
静态电流  
62µAVIN = 12V 时的典型值)  
关断电流  
)
该器件的可配置上升时间可大幅降低大容量负载电容所  
产生的浪涌电流,从而降低或消除电源压降。欠压闭锁  
用于在 VIN 电压降至阈值以下时关闭器件,以确保下  
游电路不会因为供电电压低于预期值而损坏。可配置的  
快速输出放电 (QOD) 引脚控制器件的下降时间,以便  
针对掉电进行灵活设计。  
500nAVIN = 12V 时的典型值)  
热关断  
欠压闭锁 (UVLO)  
可调节快速输出放电 (QOD)  
可通过 CT 引脚配置的上升时间  
小外形尺寸晶体管 (SOT) 23-6 封装  
TPS22810 采用方便目测检查焊点的带引线 SOT-23  
封装 (DBV) 以及 WSON 封装 (DRV)。该器件在自然  
通风环境下的额定运行温度范围为 -40˚C +105˚C。  
删除的 IMAX IPLS  
2.9mm × 2.8mm0.95mm 间距,  
1.45mm (DBV)  
WSON 封装  
2mm × 2mm0.65mm 间距,  
0.75mm (DRV)  
静电放电 (ESD) 性能经测试符合 JESD 22 规范  
Device Information(1)  
PART NUMBER  
PACKAGE  
SOT-23 (6)  
WSON (6)  
BODY SIZE (NOM)  
2.90mm x 2.80mm  
2.00mm × 2.00mm  
TPS22810  
±2kV 人体模型 (HBM) ±1kV 带电器件模型  
(CDM)  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
(1)  
必须考虑热性能  
简化原理图  
VIN  
VOUT  
QOD  
CT  
Power  
Supply  
2 应用  
CIN  
RL  
CL  
高清电视  
GND  
工业系统  
机顶盒  
ON  
监控系统  
EN/  
UVLO  
OFF  
TPS22810  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDH0  
 
 
 
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 17  
10 Application and Implementation........................ 18  
10.1 Application Information.......................................... 18  
10.2 ON and OFF Control............................................. 18  
10.3 Input Capacitor (Optional)..................................... 18  
10.4 Output Capacitor (Optional).................................. 18  
10.5 Typical Application ............................................... 18  
11 Power Supply Recommendations ..................... 23  
12 Layout................................................................... 24  
12.1 Layout Guidelines ................................................. 24  
12.2 Layout Example .................................................... 24  
12.3 Thermal Considerations........................................ 24  
13 器件和文档支持 ..................................................... 25  
13.1 器件支持................................................................ 25  
13.2 Documentation Support ........................................ 25  
13.3 接收文档更新通知 ................................................. 25  
13.4 Community Resources.......................................... 25  
13.5 ....................................................................... 25  
13.6 静电放电警告......................................................... 25  
13.7 Glossary................................................................ 25  
14 机械、封装和可订购信息....................................... 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Switching Characteristics.......................................... 7  
7.7 Typical DC Characteristics ....................................... 8  
7.8 Typical AC Characteristics........................................ 9  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 12  
9.1 Overview ................................................................. 12  
9.2 Functional Block Diagram ....................................... 13  
9.3 Feature Description................................................. 13  
8
9
4 修订历史记录  
Changes from Revision B (May 2017) to Revision C  
Page  
Changed Rise time can be calculated by multiplying to Rise time can be calculated by dividing in the Feature  
Description Section 9.3.4 Adjustable Rise Time (CT) .......................................................................................................... 17  
Changes from Revision A (December2016) to Revision B  
Page  
WSON (DRV) 的当前信息添加至特性 , 说明部分和建议运行条件.............................................................................. 1  
已添加 WSON (DRV) 封装 ..................................................................................................................................................... 1  
Changes from Original (December 2016) to Revision A  
Page  
绝对最大额定值表中............................................................................................................................................................ 1  
Deleted IMAX and IPLS from the Absolute Maximum Ratings table .......................................................................................... 4  
Changed the Quiescent current MAX value From: 70 µA To: 80 µA in the Electrical Characteristics table ......................... 5  
Changed the Quiescent current MAX value for VIN = 2.7 V From: 60 µA To: 70 µA in the Electrical Characteristics  
table ....................................................................................................................................................................................... 5  
Changed the Shutdown current MAX value From: 2.25 µA To: 2.3 µA in the Electrical Characteristics table...................... 5  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
5 Device Comparison Table  
MAXIMUM  
OUTPUT  
CURRENT  
QUICK OUTPUT  
DISCHARGE  
DEVICE  
RON at 12 V  
Package  
TA  
ENABLE  
TPS22810  
TPS22810  
79 m  
79 mΩ  
DBV  
DRV  
Configurable  
Configurable  
105°C  
105°C  
2 A  
3 A  
Active High  
Active High  
6 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
DRV Package  
6-Pin WSON  
Top View  
VOUT  
QOD  
CT  
1
6
VIN  
VOUT  
QOD  
CT  
VIN  
GND  
1
6
2
3
5
4
EN/UVLO  
GND  
5
2
3
4
EN/UVLO  
Pin Functions  
PIN  
NO,  
I/O  
DESCRIPTION  
NAME  
SOT23  
WSON  
CT  
4
3
O
I
Switch slew rate control. Can be left floating  
Active high switch control input and UVLO adjustment. Do not leave  
floating  
EN/UVLO  
GND  
3
2
5
4
Device ground  
Quick Output Discharge pin. This functionality can be enabled in one  
of three ways.  
Placing an external resistor between VOUT and QOD  
QOD  
5
2
O
Tying QOD directly to VOUT and using the internal resistor value  
(RPD  
)
Disabling QOD by leaving pin floating  
See the Quick Output Discharge (QOD) for more information  
VIN  
1
6
6
1
I
Switch input. Place ceramic bypass capacitor(s) between this pin and  
GND  
VOUT  
O
Switch output  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN  
Input voltage  
20  
VOUT  
VEN/UVLO  
TJ  
Output voltage  
min(VIN + 0.3, 20)  
V
EN/UVLO voltage  
Maximum junction temperature  
Storage temperature  
20  
V
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
Electrostatic  
discharge  
V(ESD)  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
0
MAX UNIT  
VIN  
Input voltage  
18  
18  
VIN  
2
V
V
V
VEN/UVLO  
VOUT  
EN/UVLO voltage  
Output voltage  
IMAX  
Maximum continuous switch current, TA = 65°C (DBV)  
A
Maximum continuous switch current, TA = 65°C (DRV)  
3
(1)  
TA  
Operating free-air temperature  
–40  
1(2)  
105  
°C  
µF  
CIN  
Input capacitor  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(MAX)], the  
maximum power dissipation of the device in the application [PD(MAX)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(MAX) = TJ(MAX) – (θJA × PD(MAX)).  
(2) See the Detailed Description section.  
7.4 Thermal Information  
TPS22810  
(1)  
THERMAL METRIC  
DBV (SOT23)  
6 PINS  
182  
DRV (WSON)  
6 PINS  
74.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
127.2  
80.3  
16.9  
44.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
26.4  
3.2  
ψJB  
36.3  
44.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
7.5 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the following ambient operating temperature  
–40°C TA +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
80  
UNIT  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
62  
VIN = 18 V  
85  
62  
59  
80  
VIN = 12 V  
85  
80  
Quiescent  
current  
IQ, VIN  
V = 18 V, I = 0 A  
VIN = 5 V  
VIN = 3.3 V  
µA  
85  
53  
80  
85  
49  
70  
VIN = 2.7 V  
85  
0.5  
0.5  
0.5  
0.5  
0.5  
2.3  
3.8  
2.3  
3.8  
2.3  
3.8  
2.3  
3.8  
2.3  
3.8  
VIN = 18 V  
VIN = 12 V  
Shutdown  
current  
ISD, VIN  
VON = 0 V, VOUT = 0 V VIN = 5 V  
µA  
VIN = 3.3 V  
VIN = 2.7 V  
EN/UVLO pin  
IEN/UVLO input leakage  
current  
VIN = 18 V, IOUT = 0 A  
–40°C to +105°C  
0.1  
µA  
V
VIN UVLO  
VUVR  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
2
2.54  
5%  
2.62  
threshold, rising  
VIN UVLO  
VUVhyst  
hysteresis  
EN threshold  
VENR  
1.13  
1.08  
1.23  
1.13  
1.3  
V
V
voltage, rising  
EN threshold  
VENF  
1.18  
voltage, falling  
EN threshold  
VSHUTF voltage for low  
IQ shutdown  
–40°C to +105°C  
0.5  
0.75  
0.9  
V
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, the specification in the following table applies over the following ambient operating temperature  
–40°C TA +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
86  
UNIT  
25°C  
79  
VIN = 18 V, IOUT = –200 mA  
–40°C to +85°C  
–40°C to +105°C  
25°C  
105  
115  
86  
79  
79  
79  
83  
86  
VIN = 12 V, IOUT = –200 mA  
VIN = 9 V, IOUT = –200 mA  
VIN = 5 V, IOUT = –200 mA  
VIN = 3.3 V, IOUT = –200 mA  
VIN = 2.7 V, IOUT = –200 mA  
–40°C to +85°C  
–40°C to +105°C  
25°C  
105  
115  
86  
–40°C to +85°C  
–40°C to +105°C  
25°C  
105  
115  
86  
RON  
On-resistance  
mΩ  
–40°C to +85°C  
–40°C to +105°C  
25°C  
105  
115  
92  
–40°C to +85°C  
–40°C to +105°C  
25°C  
115  
125  
95  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
120  
130  
350  
350  
400  
VIN = VOUT = 18 V, VEN/UVLO = 0 V  
VIN = VOUT = 12 V, VEN/UVLO = 0 V  
VIN = VOUT = 5 V, VEN/UVLO = 0 V  
290  
265  
250  
Output pull  
down resistance  
RPD  
TS  
Ω
Thermal  
shutdown  
Threshold, VIN = 18 V  
–40°C to +105°C  
160  
°C  
°C  
Thermal  
shutdown  
hysteresis  
TSHDN  
Hyst  
TSD hysteresis, VIN = 18 V  
–40°C to +105°C  
30  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
7.6 Switching Characteristics  
Refer to the timing test circuit in Figure 16 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN is already in steady state condition before the EN/UVLO pin is asserted high.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = 18 V, VEN/UVLO = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
520  
3.3  
700  
2
µs  
tF  
tD  
180  
VIN = 12 V, VEN/UVLO = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
380  
3.3  
460  
2
µs  
tF  
tD  
150  
VIN = 3.3 V, VEN/UVLO = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 2200 pF  
185  
3.3  
120  
2
µs  
tF  
tD  
130  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
7.7 Typical DC Characteristics  
90  
80  
70  
60  
50  
40  
30  
1.8  
1.6  
1.4  
1.2  
1
-40èC  
25èC  
85èC  
105èC  
0.8  
0.6  
0.4  
0.2  
0
-40èC  
25èC  
85èC  
105èC  
20  
10  
0
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
Input Voltage (V)  
D001  
D002  
VEN/UVLO = 5 V  
IOUT = 0 A  
VEN/UVLO = 0 V  
IOUT = 0 A  
Figure 1. Quiescent Current vs Input Voltage  
Figure 2. Shutdown Current vs Input Voltage  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
VIN = 2.7 V  
VIN = 3.3 V  
VIN í 5 V  
80  
60  
70  
40  
-40èC  
25èC  
85èC  
105èC  
60  
20  
50  
40  
0
-40  
-20  
0
20  
40  
60  
80  
100  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Temperature (èC)  
Input Voltage (V)  
D003  
D004  
VEN/UVLO = 5 V  
IOUT = –200 mA  
VEN/UVLO = 5 V  
IOUT = –200 mA  
Figure 3. On-Resistance vs Temperature  
Figure 4. On-Resistance vs Input Voltage  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.155  
1.15  
1.145  
1.14  
1.135  
1.13  
1.125  
1.12  
-40èC  
25èC  
1.115  
1.11  
-40 èC  
25èC  
85èC  
105èC  
85èC  
105èC  
1.105  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
Input Voltage (V)  
D006  
D007  
IOUT = 0 A  
Figure 5. EN VIL vs Input Voltage  
VIN = VOUT  
VEN/UVLO = 0 V  
Figure 6. Output Pull-Down Resistance vs Input Voltage  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
7.8 Typical AC Characteristics  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
40  
20  
0
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
Input Voltage (V)  
D008  
D009  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CT = 2200 pF  
CT = 2200 pF  
Figure 7. VOUT Rise Time (tR) vs Input Voltage  
Figure 8. Delay Time (tD) vs Input Voltage  
1.8  
1.6  
1.4  
1.2  
1
5
4.5  
4
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
0.5  
0
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
Input Voltage (V)  
D010  
D011  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 9. VOUT Fall Time (tF) vs Input Voltage  
Figure 10. Turnoff Time (tOFF) vs Input Voltage  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VIN  
VON  
VOUT  
-40èC  
25èC  
85èC  
105èC  
IIN  
2.7  
4.7  
6.7  
8.7  
10.7  
12.7  
14.7  
16.7 18  
Input Voltage (V)  
D012  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CT = 2200 pF  
Figure 11. Turnon Time (tON) vs Input Voltage  
VIN = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
CT = 2200 pF  
Figure 12. Rise Time tR at VIN = 5 V  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
Typical AC Characteristics (continued)  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
VIN = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
QOD = Open  
RL = 10 Ω  
CT = 2200 pF  
Figure 13. Fall Time tF at VIN = 5 V  
Figure 14. Rise Time tR at VIN = 12 V  
VIN  
VON  
VOUT  
IIN  
VIN = 12 V  
CIN = 1 µF  
QOD = Open  
CL = 0.1 µF  
RL = 10 Ω  
Figure 15. Fall Time tF at VIN = 12 V  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
8 Parameter Measurement Information  
VIN  
VOUT  
CIN = 1 µF  
+
-
CL  
ON  
(A)  
RL  
EN/UVLO  
GND  
OFF  
TPS22810  
GND  
GND  
A. Rise and fall times of the control signal are 100 ns  
Figure 16. Test Circuit  
VON  
50%  
50%  
tF  
tR  
tOFF  
tOUT  
90%  
90%  
VOUT  
VOUT  
50%  
50%  
10%  
10%  
100%  
tD  
Figure 17. Timing Waveforms  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS22810 is a 6-pin, 2.7-18-V load switch with thermal protection in two separate package options. To  
reduce voltage drop for low voltage and high current rails, the device implements a low resistance N-channel  
MOSFET which reduces the drop out voltage across the device.  
The device starts its operation by monitoring the VIN bus. When VIN exceeds the undervoltage-lockout threshold  
(VUVR), the device samples the EN/UVLO pin. A high level on this pin enables the internal MOSFET. As VIN  
rises, the internal MOSFET of the device starts conducting and allow current to flow from VIN to VOUT. When  
EN/UVLO is held low (below VENF), internal MOSFET is turned off.  
A voltage V(EN/UVLO) < V(ENF) on this pin turns off the internal FET, thus disconnecting VIN from VOUT, while  
voltage below V(SHUTF) takes the device into shutdown mode, with IQ less than 1 μA to ensure minimal power  
loss.  
The device has a configurable slew rate which helps reduce or eliminate power supply droop because of large  
inrush currents. The device also features an internal RPD resistor, which discharges VOUT once the switch is  
disabled.  
During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for  
downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET  
eliminates the need for any external components which reduces solution size and bill of materials (BOM) count.  
The device also features a QOD pin, which allows the configuration of the discharge rate of VOUT once the  
switch is disabled.  
The device has a thermal protection feature. Due to this device protects itself against thermal damage due to  
over-temperature and over-current conditions. Safe Operating Area (SoA) requirements are thus inherently met  
without any special design consideration by the board designer.  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
9.2 Functional Block Diagram  
VIN  
Charge Pump  
EN/UVLO  
Control Logic  
CT  
VOUT  
QOD  
2.54 V  
2.4 V  
1.23 V  
1.13 V  
Thermal  
Shutdown  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 On and Off Control  
TThe EN/UVLO pin controls the state of the switch. EN/UVLO is active high and has a low threshold, making it  
capable of interfacing with low-voltage signals. The EN/UVLO pin is compatible with standard GPIO logic  
threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left  
floating and must be driven either high or low for proper functionality.  
9.3.2 Quick Output Discharge (QOD)  
The TPS22810 includes a QOD feature. The QOD pin can be configured in one of three ways:  
QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is  
controlled with the value of the internal resistance RPD. The value of this resistance is listed in the Electrical  
Characteristics table.  
QOD pin connected to VOUT pin using an external resistor REXT. After the switch becomes disabled, the  
discharge rate is controlled by the value of the total resistance of the QOD. To adjust the total QOD  
resistance, Equation 1 can be used.  
RQOD = RPD + REXT  
where  
RQOD is the total output discharge resistance  
RPD is the internal pulldown resistance  
REXT is the external resistance placed between the VOUT and QOD pin.  
(1)  
13  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
QOD pin is unused and left floating. Using this method, there is no quick output discharge functionality, and  
the output remains floating after the switch is disabled.  
Note that during thermal shutdown, the QOD functionality is not available. The device does not discharge the  
load as RPD does not become engaged.  
The fall times of the device depend on many factors including the total resistance of the QOD, VIN, and the  
output capacitance. When QOD is connected to VOUT, the fall time changes over VIN as the internal RPD varies  
over VIN. To calculate the approximate fall time of VOUT for a given RQOD, use Equation 2 and Table 1.  
VCAP = VIN × e-t/τ  
where  
VCAP is the voltage across the capacitor (V)  
t is the time since power supply removal (s)  
τ is the time constant equal to RQOD × CL  
(2)  
The fall times' dependency on VIN becomes minimal as the QOD value increases with additional external  
resistance. See Table 1 for QOD fall times.  
Table 1. QOD Fall Times  
FALL TIME (μs) 90% - 10%, CIN = 1 μF, IOUT = 0 A , VIN = 0 V, ON = 0 V(1)  
VIN (V)  
TA = 25°C  
CL = 10 μF  
4700  
TA = 85°C  
CL = 10 μF  
4700  
CL = 1 μF  
470  
CL = 100 μF  
47000  
CL = 1 μF  
470  
CL = 100 μF  
47000  
18  
12  
9
450  
4500  
45000  
450  
4500  
45000  
440  
4400  
44000  
440  
4400  
44000  
5
500  
5000  
50000  
480  
4800  
48000  
3.3  
600  
6000  
60000  
570  
5700  
57000  
(1) TYPICAL VALUES WITH QOD SHORTED TO VOUT  
9.3.2.1 QOD when System Power is Removed  
The adjustable QOD can be used to control the power down sequencing of a system even when the system  
power supply is removed. When the power is removed, the input capacitor, CIN, discharges at VIN. Past the set  
UVLO level, the pull-down resistance RPD becomes disabled and the output no longer becomes discharged. If  
there is still remaining charge on the output capacitor, this results in longer fall times. Care must be taken such  
that CIN is large enough to meet the device UVLO settings.  
9.3.2.2 Internal QOD Considerations  
Special considerations must be taken when using the internal RPD by shorting the QOD pin to the VOUT pin. The  
internal RPD is a pulldown resistance designed to quickly discharge a load after the switch has been disabled.  
Care must be used to ensure that excessive current does not flow through RPD during discharge so that the  
maximum TJ of 125°C is not exceeded. When using only the internal RPD to discharge a load, the total capacitive  
load must not exceed 200 uF. Otherwise, an external resistor, REXT, must be used to ensure the amount of  
current flowing through RPD is properly limited and the maximum TJ is not exceeded. To ensure the device is not  
damaged, the remaining charge from CL needs to decay naturally through the internal QOD resistance and must  
not be driven.  
9.3.3 EN/UVLO  
As an input pin, EN/UVLO controls the ON and OFF state of the internal MOSFET. In its high state, the internal  
MOSFET is enabled. A low on this pin turns off the internal MOSFET. High and Low levels are specified in the  
parametric table of the datasheet  
A voltage V(EN/UVLO < V(ENF) on this pin turns off the internal FET, thus disconnecting VIN from VOUT, while  
voltage below V(SHUTF) takes the device into shutdown mode, with IQ less than 1 μA to ensure minimal power  
loss.  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
The EN/UVLO pin can be directly driven by a 1.8 V, 3.3 V or 5 V general purpose output pin.  
The internal de-glitch delay on EN/UVLO falling edge is intentionally kept low (2.5 μs typical) for quick detection  
of power failure. For applications where a higher de-glitch delay on EN/UVLO is desired, or when the supply is  
particularly noisy, it is recommended to use an external bypass capacitor from EN/UVLO to GND.  
The undervoltage lock out can be programmed by using an external resistor divider from supply VIN terminal to  
EN/UVLO terminal to GND as shown in Figure 18. When an undervoltage or input power fail event is detected,  
the internal FET is quickly turned off. If the Under-Voltage Lock-Out function is not needed, the EN/UVLO  
terminal must be connected to the VIN terminal. EN/UVLO terminal must not be left floating.  
The device also implements internal undervoltage-lockout (UVLO) circuitry on the VIN terminal. The device  
disables when the VIN terminal voltage falls below internal UVLO Threshold V(UVF). The internal UVLO  
threshold has a hysteresis of 125 mV (5% of V(UVR)). See Figure 19 and Figure 20.  
VIN  
CIN  
VOUT  
CL  
VIN  
2.54 V  
2.4 V  
GATE  
R1  
CONTROL  
EN/  
UVLO  
1.23 V  
1.13 V  
Thermal  
Shutdown  
R2  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Configuring UVLO with External Resistor Network  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
VIN  
VOUT  
CL  
VIN  
CIN  
2.54 V  
2.4 V  
GATE  
CONTROL  
EN/  
UVLO  
GPIO  
1.23 V  
1.13 V  
Thermal  
Shutdown  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Using 1.8 V/3.3 V GPIO Signal Directly from Processor  
VIN  
CIN  
VOUT  
CL  
VIN  
2.54 V  
2.4 V  
GATE  
CONTROL  
EN/  
UVLO  
1.23 V  
1.13 V  
Thermal  
Shutdown  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. Default UVLO Threshold V(UVR) Using No Additional External Components  
9.3.4 Adjustable Rise Time (CT)  
A capacitor to GND on the CT pin sets the slew rate. The voltage on the CT pin can be as high as 2.5 V. An  
approximate formula for the relationship between CT and slew rate is shown in Equation 3. This equation  
accounts for 10% to 90% measurement on VOUT and does NOT apply for CT < 1 nF.  
Use Table 2 to determine rise times for when Ct 1 nF.  
SR = 46.62 / Ct  
where  
SR is the slew rate (in V/µs)  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
CT is the the capacitance value on the CT pin (in pF)  
The units for the constant a are µs/V. The units for the constant b are µs/(V × pF).  
(3)  
Rise time can be calculated by dividing the input voltage by the slew rate. Table 2 contains rise time values  
measured on a typical device. Rise times shown below are only valid for the power-up sequence where VIN is  
already in steady state condition before the EN/UVLO pin is asserted high.  
Table 2. Rise Time Table  
RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10  
CT (pF)  
VIN = 18 V  
115  
VIN = 12 V  
91  
VIN = 9 V  
78  
VIN = 5 V  
60  
VIN = 3.3 V  
98  
0
470  
136  
94  
80  
63  
98  
1000  
2200  
4700  
10000  
27000  
310  
209  
158  
91  
102  
688  
464  
345  
198  
135  
1430  
3115  
8230  
957  
704  
397  
265  
2085  
5460  
1540  
4010  
864  
550  
2245  
1430  
9.3.5 Thermal Shutdown  
The switch disables when the junction temperature (TJ) rises above the thermal shutdown threshold, TSD. The  
switch re-enables once the temperature drops below the TSD – TSD,HYS value.  
9.4 Device Functional Modes  
The features of the TPS22810 depend on the operating mode. Table 3 summarizes the Device Functional  
Modes.  
Table 3. Function Table  
EN/UVLO  
Device State  
Disabled  
L
H
Enabled  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
 
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
A PSPICE model for this device is also available in the product page of this device on www.ti.com (See the 器件  
支持 section for more information).  
10.2 ON and OFF Control  
The EN/UVLO pin controls the state of the switch. Asserting EN/UVLO high enables the switch. EN/UVLO is  
active high and has a low threshold, making it capable of interfacing with low-voltage signals. The EN/UVLO pin  
is compatible with standard GPIO logic thresholds. It can be used with any microcontroller with 1.2 V or higher  
GPIO voltage. This pin cannot be left floating and must be driven either high or low for proper functionality.  
10.3 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor, a capacitor needs to be placed between VIN and GND. A 1-μF ceramic capacitor, CIN,  
placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop  
during high current applications. When switching heavy loads, it is recommended to have an input capacitor  
about 10 times higher than the output capacitor to avoid excessive voltage drop.  
10.4 Output Capacitor (Optional)  
Due to the integrated body diode in the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This can result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during startup; however, a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) can cause slightly more VIN dip upon  
turnon due to inrush currents.  
This can be mitigated by increasing the capacitance on the CT pin for a longer rise time.  
10.5 Typical Application  
This typical application demonstrates how the TPS22810 can be used to power downstream modules.  
VIN  
VOUT  
QOD  
CT  
Power  
Supply  
CIN  
RL  
CL  
GND  
ON  
EN/  
OFF  
UVLO  
TPS22810  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Typical Application Schematic  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
Typical Application (continued)  
10.5.1 Design Requirements  
For this design example, use the values listed in Table 4 as the design parameters:  
Table 4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
Load current  
12 V  
2 A  
CL  
22 µF  
20 ms  
400 mA  
Desired fall time  
Maximum acceptable inrush current  
10.5.2 Detailed Design Procedure  
10.5.2.1 Shutdown Sequencing During Unexpected Power Loss  
Using the adjustable Quick Output Discharge function of the TPS22810, adding a load switch to each power rail  
can be used to manage the power down sequencing in the event of an unexpected power loss (that is battery  
removal). To determine the QOD values for each load switch, first confirm the power down order of the device  
you wish to power sequence. Be sure to check if there are voltage or timing margins that must be maintained  
during power down. Next, consult Table 1 to determine appropriate CL and RQOD values for each power rail's  
load switch so that the load switches' fall times correspond to the order in which they need to be powered down.  
In the above example, we must have this power rail's fall time to be 4 ms. Using Equation 2, we can determine  
the appropriate RQOD to achieve our desired fall time.  
Since fall times are measured from 90% of VOUT to 10% of VOUT, using Equation 2, we get Equation 4 and  
Equation 5.  
1.2V = 10.8V ìe-(20ms)/(RQODì(22mF))  
(4)  
RQOD = 413.7 Ω  
(5)  
Consulting Figure 6, RPD at VIN = 12 V is approximately 250 Ω. Using Equation 1, the required external QOD  
resistance can be calculated as shown in Equation 6 and Equation 7.  
413.7 Ω = 250 Ω + REXT  
REXT = 163.7 Ω  
(6)  
(7)  
Figure 22 through Figure 25 are scope shots demonstrating an example of the QOD functionality when power is  
removed from the device (both ON and VIN are disconnected simultaneously). In the scope shots, the VIN = 12 V  
and correspond to when RQOD = 1000 Ω, RQOD= 500 Ω, and QOD = VOUT with two values of CL = 10 µF and 22  
µF.  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
 
 
 
 
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
VIN = 12 V  
CIN = 1 µF  
CL = 10 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 10 µF  
Figure 22. Fall Time tF at VIN = 12 V, RQOD = 1000 Ω  
Figure 23. Fall Time tF at VIN = 12 V, RQOD = 500 Ω  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
VIN = 12 V  
CIN = 1 µF  
CL = 10 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 22 µF  
Figure 24. tF at VIN = 12 V , QOD = VOUT  
Figure 25. tF at VIN = 12 V, RQOD = 1000 Ω  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
VIN = 12 V  
CIN = 1 µF  
CL = 22 µF  
VIN = 12 V  
CIN = 1 µF  
CL = 22 µF  
Figure 26. tF at VIN = 12 V, RQOD = 500 Ω  
Figure 27. tF at VIN = 12 V, QOD = VOUT  
10.5.2.2 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN conditions of the device. Refer to the RON specification of the device in  
the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based upon the  
VIN conditions, use Equation 8 to calculate the VIN to VOUT voltage drop.  
V = ILOAD × RON  
where  
ΔV is the voltage drop from VIN to VOUT  
ILOAD is the load current  
RON is the On-resistance of the device for a specific VIN  
(8)  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
10.5.2.3 Inrush Current  
To determine how much inrush current is caused by the CL capacitor, use Equation 9.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
where  
IINRUSH is the amount of inrush caused by CL  
CL is the capacitance on VOUT  
dt is the Output Voltage rise time during the ramp up of VOUT when the device is enabled  
dVOUT is the change in VOUT during the ramp up of VOUT when the device is enabled  
(9)  
The appropriate rise time can be calculated using the design requirements and the inrush current equation. As  
we calculate the rise time (measured from 10% to 90% of VOUT), we account for this in our dVOUT parameter  
(80% of VOUT = 9.6 V) as shown in Equation 10 and Equation 11.  
400 mA = 22 µF × 9.6 V/dt  
dt = 528 µs  
(10)  
(11)  
To ensure an inrush current of less than 400 mA, choose a CT value that yields a rise time of more than 528 μs.  
Consulting Table 2 at VIN = 12 V, CT = 4700 pF provides a typical rise time of 957 μs. Using this rise time and  
voltage into Equation 9, yields Equation 12 and Equation 13.  
IInrush = 22 µF × 9.6 V/ 957 µs  
Inrush = 220 mA  
(12)  
(13)  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
An appropriate CL value must be placed on VOUT such that the IMAX and IPLS specifications of the device are not  
violated.  
10.5.3 Application Curves  
See the oscilloscope captures below for an example of how the CT capacitor can be used to reduce inrush  
current for VIN = 12 V. See the Adjustable Rise Time (CT) section for rise times for corresponding CT values.  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
Figure 28. TPS22810 Inrush Current With  
CL = 22 µF, CT = 0 pF  
Figure 29. TPS22810 Inrush Current  
with CL = 22 µF, CT = 4700 pF  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
Figure 31. TPS22810 Inrush Current  
With CL = 100 µF, CT = 0 pF  
Figure 30. TPS22810 Inrush Current  
With CL = 22 µF, CT = 27000 pF  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
VIN  
VIN  
VON  
VON  
VOUT  
VOUT  
IIN  
IIN  
Figure 32. TPS22810 Inrush Current  
With CL = 100 µF, CT = 4700 pF  
Figure 33. TPS22810 Inrush Current  
With CL = 100 µF, CT = 27000 pF  
11 Power Supply Recommendations  
The device is designed to operate from a VIN range of 2.7 V to 18 V. This supply must be well regulated and  
placed as close to the device terminal as possible with the recommended 1-µF bypass capacitor. If the supply is  
located more than a few inches from the device terminals, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or  
ceramic capacitor of 1 µF may be sufficient.  
The TPS22810 operates regardless of power sequencing order. The order in which voltages are applied to VIN  
and ON does not damage the device as long as the voltages do not exceed the absolute maximum operating  
conditions.  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
TPS22810  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
1. VIN and VOUT traces must be as short and wide as possible to accommodate for high current.  
2. The VIN pin must be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-μF ceramic with X5R or X7R dielectric. This capacitor must be  
placed as close to the device pins as possible.  
12.2 Layout Example  
1 VIN  
VOUT 6  
QOD 5  
2 GND  
EN/UVLO  
CT  
3
4
VIA to Power Ground Plane  
Figure 34. Recommended Board Layout  
12.3 Thermal Considerations  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal and short-circuit operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic  
electrical effects along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature must be restricted to 150°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use  
Equation 14.  
TJ(MAX) - TA  
PD(MAX)  
=
qJA  
where  
PD(MAX) is the maximum allowable power dissipation  
TJ(MAX) is the maximum allowable junction temperature (150°C for the TPS22810)  
TA is the ambient temperature of the device  
θJA is the junction to air thermal impedance. Refer to the Thermal Information table. This parameter is highly  
dependent upon board layout.  
(14)  
24  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS22810  
www.ti.com.cn  
ZHCSFR6C DECEMBER 2016REVISED JANUARY 2018  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
关于 TPS22810 PSpice 瞬态模型,请参见 TPS22810 PSpice 瞬态模型》  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
TPS22810 负载开关评估模块  
选择一个负载开关以代替分立式解决方案  
负载开关的计时  
13.3 接收文档更新通知  
要接收文档更新通知(包括芯片勘误表),请转至 ti.com.cn 上您的器件对应的产品文件夹。单击右上角的提醒我”  
(Alert me) 按钮。点击后,您将每周定期收到已更改的产品信息(如果有的话)。有关更改的详细信息,请查看任  
意已修订文档的修订历史记录。  
13.4 Community Resources  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22810DBVR  
TPS22810DBVT  
TPS22810DRVR  
TPS22810DRVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DRV  
DRV  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
19HF  
19HF  
1CRH  
1CRH  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS22810 :  
Automotive : TPS22810-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22810DBVR  
TPS22810DBVT  
TPS22810DRVR  
TPS22810DRVT  
SOT-23  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DRV  
DRV  
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
2.3  
2.3  
3.2  
3.2  
2.3  
2.3  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q2  
Q2  
3000  
250  
1.15  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22810DBVR  
TPS22810DBVT  
TPS22810DRVR  
TPS22810DRVT  
SOT-23  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DRV  
DRV  
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22810DBVT

具备可调节上升和可调节输出放电的 18V、3A、79mΩ 负载开关 | DBV | 6 | -40 to 105
TI

TPS22810DRVR

具备可调节上升和可调节输出放电的 18V、3A、79mΩ 负载开关 | DRV | 6 | -40 to 105
TI

TPS22810DRVT

具备可调节上升和可调节输出放电的 18V、3A、79mΩ 负载开关 | DRV | 6 | -40 to 105
TI

TPS22810TDBVRQ1

具有可调节上升时间和可调节输出放电功能的单通道、18V、3A、79mΩ 汽车负载开关 | DBV | 6 | -40 to 105
TI

TPS22811

具有快速过压保护和电流监控功能的 2.7V 至 16V、10A、6mΩ 负载开关
TI

TPS22811LRPWR

具有快速过压保护和电流监控功能的 2.7V 至 16V、10A、6mΩ 负载开关 | RPW | 10 | -40 to 125
TI

TPS22860

0.73Ω、5V 超低泄漏负载开关
TI

TPS22860DBVR

0.73Ω、5V 超低泄漏负载开关 | DBV | 6 | -40 to 85
TI

TPS22901

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22901YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902B

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI