TPS22918DBVR [TI]

具有可调节上升时间和可调节输出放电功能的 5.5V、2A、52mΩ 负载开关 | DBV | 6 | -40 to 105;
TPS22918DBVR
型号: TPS22918DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和可调节输出放电功能的 5.5V、2A、52mΩ 负载开关 | DBV | 6 | -40 to 105

开关
文件: 总28页 (文件大小:1178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
TPS22918 5.5V2A、导通电阻为 52mΩ 的负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
TPS22918 是一款单通道负载开关,可对上升时间和  
快速输出放电进行配置。此器件包括一个 N 沟道金属  
氧化物半导体场效应晶体管 (MOSFET),可在 1V 至  
5.5V 的输入电压范围内运行并可支持 2A 的最大持续  
电流。此开关由一个开关输入控制,能够直接连接低电  
压控制信号。  
环境工作温度范围:-40°C +105°C  
输入电压范围:1V 5.5V  
导通电阻 (RON  
)
RON = 52mΩVIN = 5V 时的典型值)  
RON = 53mΩVIN = 3.3V 时的典型值)  
2A 最大持续开关电流  
该器件的可配置上升时间可大幅降低大容量负载电容所  
产生的浪涌电流,从而降低或消除电源压降。  
TPS22918 具有 一个可配置的快速输出放电 (QOD) 引  
脚,用于控制器件的下降时间,以便针对掉电或排序进  
行灵活设计。  
低静态电流  
8.3µAVIN = 3.3V 时的典型值)  
低控制输入阈值,允许使用 1V 或电压更高的  
GPIO  
可调节快速输出放电 (QOD)  
TPS22918 采用小型、带引线的 SOT-23 封装  
可通过 CT 引脚配置的上升时间  
小外形尺寸晶体管 (SOT-23)-6 封装 (DBV)  
(DBV),方便对焊接点进行外观检查。该器件在自然通  
风环境下的额定运行温度范围为 –40°C +105°C。  
2.90mm × 2.80mm,间距为 0.95mm,  
高度为 1.45mm(带引线)  
器件信息 (1)  
静电放电 (ESD) 性能经测试符合 JESD 22 规范  
部件号  
TPS22918  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
±2kV 人体模型 (HBM) ±1kV 带电器件模型  
2.90mm x 1.60mm  
(CDM)  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
工业系统  
机顶盒  
血糖仪  
电子销售终端  
RON VIN 间的关系 (IOUT = –200mA)  
典型值  
简化电路原理图  
100  
VIN  
VOUT  
QOD  
Power  
Supply  
-40èC  
CIN  
25èC  
90  
REXT  
85èC  
GND  
105èC  
RL  
80  
CL  
ON  
OFF  
ON  
70  
60  
50  
40  
30  
CT  
TPS22918  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD76  
 
 
 
 
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 21  
11.3 Thermal Considerations........................................ 21  
12 器件和文档支持 ..................................................... 22  
12.1 器件支持................................................................ 22  
12.2 文档支持................................................................ 22  
12.3 社区资源................................................................ 22  
12.4 ....................................................................... 22  
12.5 静电放电警告......................................................... 22  
12.6 Glossary................................................................ 22  
13 机械、封装和可订购信息....................................... 22  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (February 2016) to Revision A  
Page  
已将器件状态由产品预览更改为量产数据.......................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
5 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
VIN  
GND  
ON  
1
2
3
6
5
4
VOUT  
QOD  
CT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Switch input. Place ceramic bypass capacitor(s) between this pin and GND. See the  
Detailed Description section for more information.  
1
VIN  
I
2
3
GND  
ON  
I
Device ground.  
Active high switch control input. Do not leave floating.  
Switch slew rate control. Can be left floating. See the Feature Description section for  
more information.  
4
CT  
O
Quick Output Discharge pin. This functionality can be enabled in one of three ways.  
Placing an external resistor between VOUT and QOD  
Tying QOD directly to VOUT and using the internal resistor value (RPD  
Disabling QOD by leaving pin floating  
5
6
QOD  
O
O
)
See the Quick Output Discharge (QOD) section for more information.  
VOUT  
Switch output.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
VIN  
Input voltage  
Output voltage  
ON voltage  
VOUT  
VON  
IMAX  
IPLS  
TJ  
6
V
6
V
Maximum continuous switch current, ambient temperature = 70°C  
Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle  
Maximum junction temperature  
2
A
2.5  
125  
150  
A
°C  
°C  
Tstg  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
V(ESD)  
Electrostatic discharge  
V
(2)  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
0
MAX UNIT  
VIN  
Input voltage  
5.5  
5.5  
VIN  
5.5  
0.5  
105  
V
V
VON  
ON voltage  
0
VOUT  
VIH, ON  
VIL, ON  
TA  
Output voltage  
V
High-level input voltage, ON  
Low-level input voltage, ON  
Operating free-air temperature range  
Input Capacitor  
VIN = 1 V to 5.5 V  
VIN = 1 V to 5.5 V  
1
0
V
V
(1)  
–40  
°C  
µF  
(2)  
CIN  
1
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(MAX)], the  
maximum power dissipation of the device in the application [PD(MAX)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(MAX) = TJ(MAX) – (θJA × PD(MAX)).  
(2) Refer to Application and Implementation section  
6.4 Thermal Information  
TPS22918  
(1)  
THERMAL METRIC  
DBV (SOT-23)  
6 PINS  
183.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
151.6  
34.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
37.2  
ψJB  
33.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
6.5 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the full ambient operating temperature  
–40°C TA +105°C. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
VIN = 5.5 V  
TA  
MIN  
TYP  
9.2  
8.7  
8.3  
10.2  
9.3  
8.9  
0.5  
0.5  
0.5  
0.5  
0.4  
0.4  
MAX  
16  
16  
15  
17  
16  
15  
5
UNIT  
VIN = 5 V  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1 V  
IQ, VIN  
Quiescent current VON = 5 V, IOUT = 0 A  
–40°C to +105°C  
µA  
VIN = 5.5 V  
VIN = 5 V  
4.5  
3.5  
2.5  
2
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 1 V  
ISD, VIN  
Shutdown current VON = 0 V, VOUT = 0 V  
–40°C to +105°C  
–40°C to +105°C  
µA  
2
ON pin input  
ION  
VIN = 5.5 V, IOUT = 0 A  
leakage current  
0.1  
µA  
25°C  
51  
52  
52  
53  
53  
55  
64  
71  
59  
71  
78  
59  
71  
79  
59  
71  
79  
59  
71  
80  
61  
75  
80  
65  
79  
88  
77  
88  
104  
85  
100  
116  
VIN = 5.5 V, IOUT = –200 mA  
VIN = 5.0 V, IOUT = –200 mA  
VIN = 4.2 V, IOUT = –200 mA  
VIN = 3.3 V, IOUT = –200 mA  
VIN = 2.5 V, IOUT = –200 mA  
VIN = 1.8 V, IOUT = –200 mA  
VIN = 1.2 V, IOUT = –200 mA  
VIN = 1.0 V, IOUT = –200 mA  
–40°C to +85°C  
–40°C to +105°C  
25°C  
mΩ  
–40°C to +85°C  
–40°C to +105°C  
25°C  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
RON  
On-Resistance  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
25°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
25°C  
mΩ  
VHYS  
ON pin hysteresis VIN = 1 V to 5.5 V  
VIN = 5.0 V, VON = 0 V  
107  
24  
mV  
–40°C to +105°C  
25°C  
30  
35  
60  
25  
45  
Output pull down  
VIN = 3.3 V, VON = 0 V  
resistance(1)  
RPD  
Ω
–40°C to +105°C  
25°C  
VIN = 1.8 V, VON = 0 V  
–40°C to +105°C  
(1) Output pull down resistance varies with input voltage. Please see Figure 7 for more information.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
6.6 Switching Characteristics  
Refer to the timing test circuit in Figure 21 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN is already in steady state condition before the ON pin is asserted high. VON = 5 V, TA = 25 °C, QOD =  
Open.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = 5 V  
tON  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
1950  
2
tOFF  
tR  
2540  
2
µs  
tF  
tD  
690  
VIN = 3.3 V  
tON  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
1430  
2
tOFF  
tR  
1680  
2
µs  
µs  
µs  
tF  
tD  
590  
VIN = 1.8 V  
tON  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
965  
2
tOFF  
tR  
960  
2
tF  
tD  
480  
VIN = 1 V  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CIN = 1 µF, CL = 0.1 µF, CT = 1000 pF  
725  
3
560  
2
tF  
tD  
430  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
6.7 Typical Characteristics  
6.7.1 DC Characteristics  
11  
10.5  
10  
3
2.5  
2
-40èC  
25èC  
85èC  
105èC  
9.5  
9
8.5  
8
1.5  
1
7.5  
-40èC  
7
25èC  
0.5  
0
85èC  
105èC  
6.5  
6
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
4.5  
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D002  
D003  
VON = 5 V  
IOUT = 0 A  
Figure 1. IQ vs VIN  
VON = 0 V  
IOUT = 0 A  
Figure 2. ISD vs VIN  
100  
100  
-40èC  
25èC  
85èC  
105èC  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
VIN= 1 V  
VIN = 1.05 V  
VIN = 1.2 V  
VIN = 1.8 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 5.5 V  
-40  
-20  
0
20  
40  
60  
80  
100  
1
1.5  
2
2.5  
3
3.5  
4
5
5.5  
Temperature (èC)  
Input Voltage (V)  
D004  
D001  
VON = 5 V  
IOUT = –200 mA  
VON = 5 V  
IOUT = –200 mA  
Figure 3. RON vs TJ  
Figure 4. RON vs VIN  
100  
140  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
-40èC  
VIN= 1 V  
VIN = 1.2 V  
VIN = 1.5 V  
VIN = 1.8 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5 V  
VIN = 5.5 V  
25èC  
85èC  
105èC  
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
1
1.5  
2
2.5  
3
3.5  
4
5 5.5  
Output Current (A)  
Input Voltage (V)  
D005  
D008  
VON = 5 V  
TA = 25°C  
IOUT = 0 A  
Figure 5. RON vs IOUT  
Figure 6. VHYS vs VIN  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
DC Characteristics (continued)  
275  
250  
225  
200  
175  
150  
125  
100  
75  
-40èC  
25èC  
85èC  
105èC  
50  
25  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D009  
VIN = VOUT  
VON = 0 V  
Figure 7. RPD vs VIN  
6.7.2 AC Characteristics  
3000  
2500  
2000  
1500  
1000  
500  
800  
700  
600  
500  
400  
300  
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D010  
D011  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
CIN = 1 µF  
RL = 10 Ω  
Figure 9. tD vs VIN  
CL = 0.1 µF  
CT = 1000pF  
Figure 8. tR vs VIN  
5
4
3
2
1
0
5
4
3
2
1
0
-40èC  
-40èC  
25èC  
85èC  
105èC  
25èC  
85èC  
105èC  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D012  
D013  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
QOD = Open  
CIN = 1 µF  
RL = 10 Ω  
Figure 11. tOFF vs VIN  
CL = 0.1 µF  
Figure 10. tF vs VIN  
8
Copyright © 2016, Texas Instruments Incorporated  
 
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
AC Characteristics (continued)  
2150  
1850  
1550  
1250  
950  
-40èC  
25èC  
85èC  
105èC  
650  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
D014  
CIN = 1 µF  
CT = 1000 pF  
RL = 10 Ω  
CL = 0.1 µF  
Figure 12. tON vs VIN  
VIN = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
CT = 1000 pF  
RL = 10 Ω  
QOD = Open  
Figure 14. tF at VIN = 5 V  
Figure 13. tR at VIN = 5 V  
VIN = 3.3 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 3.3 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
CT = 1000 pF  
RL = 10 Ω  
QOD = Open  
Figure 15. tR at VIN = 3.3 V  
Figure 16. tF at VIN = 3.3 V  
Copyright © 2016, Texas Instruments Incorporated  
9
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
AC Characteristics (continued)  
VIN = 1.8 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 1.8 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
CT = 1000 pF  
RL = 10 Ω  
QOD = Open  
Figure 17. tR at VIN = 1.8 V  
Figure 18. tF at VIN = 1.8 V  
VIN = 1.0 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 1.0 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
CT = 1000 pF  
RL = 10 Ω  
QOD = Open  
Figure 19. tR at VIN = 1.0 V  
Figure 20. tF at VIN = 1.0 V  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
7 Parameter Measurement Information  
(1) Rise and fall times of the control signal are 100 ns  
(2) Turn-off times and fall times are dependent on the time constant at the load. For TPS22918, the internal pull-down  
resistance RPD is enabled when the switch is disabled. The time constant is (RQOD || RL) × CL.  
Figure 21. Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
tON  
90%  
90%  
VOUT  
VOUT  
50%  
10%  
50%  
10%  
10%  
tD  
Figure 22. Timing Waveforms  
Copyright © 2016, Texas Instruments Incorporated  
11  
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS22918 is a 5.5 V, 2 A load switch in a 6-pin SOT-23 package. To reduce voltage drop for low voltage  
and high current rails, the device implements a low resistance N-channel MOSFET which reduces the drop out  
voltage across the device.  
The device has a configurable slew rate which helps reduce or eliminate power supply droop because of large  
inrush currents. Furthermore, the device features a QOD pin, which allows the configuration of the discharge rate  
of VOUT once the switch is disabled. During shutdown, the device has very low leakage currents, thereby  
reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge  
pump, and output discharge FET eliminates the need for any external components which reduces solution size  
and bill of materials (BOM) count.  
8.2 Functional Block Diagram  
VIN  
Charge Pump  
Control  
Logic  
ON  
CT  
VOUT  
QOD  
GND  
12  
Copyright © 2016, Texas Instruments Incorporated  
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
8.3 Feature Description  
8.3.1 On and Off Control  
The ON pin controls the state of the switch. ON is active high and has a low threshold, making it capable of  
interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used  
with any microcontroller with 1 V or higher GPIO voltage. This pin cannot be left floating and must be driven  
either high or low for proper functionality.  
8.3.2 Quick Output Discharge (QOD)  
The TPS22918 includes a QOD feature. The QOD pin can be configured in one of three ways:  
QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is  
controlled with the value of the internal resistance RPD. The value of this resistance is listed in the Electrical  
Characteristics table.  
QOD pin connected to VOUT pin using an external resistor REXT. After the switch becomes disabled, the  
discharge rate is controlled by the value of the total resistance of the QOD. To adjust the total QOD  
resistance, Equation 1 can be used:  
RQOD = RPD + REXT  
Where:  
RQOD = Total output discharge resistance  
RPD = Internal pulldown resistance  
REXT = External resistance placed between the VOUT and QOD pin.  
(1)  
QOD pin is unused and left floating. Using this method, there will be no quick output discharge functionality,  
and the output will remain floating after the switch is disabled.  
The fall times of the device depend on many factors including the total resistance of the QOD, VIN, and the  
output capacitance. When QOD is shorted to VOUT, the fall time will change over VIN as the internal RPD varies  
over VIN. To calculate the approximate fall time of VOUT for a given RQOD, use Equation 2 and Table 1.  
VCAP = VIN × e-t/τ  
Where:  
VCAP = Voltage across the capacitor (V)  
t = Time since power supply removal (s)  
τ = Time constant equal to RQOD × CL  
(2)  
The fall times' dependency on VIN becomes minimal as the QOD value increases with additional external  
resistance. See Table 1 for QOD fall times.  
Table 1. QOD Fall Times  
(1)FALL TIME (μs) 90% - 10%, CIN = 1 μF, IOUT = 0 A , VON = 0 V  
VIN (V)  
TA = 25°C  
CL = 10 μF  
190  
TA = 85°C  
CL = 10 μF  
210  
CL = 1 μF  
42  
CL = 100 μF  
1880  
CL = 1 μF  
40  
CL = 100 μF  
2150  
5.5  
5
43  
200  
1905  
45  
220  
2200  
3.3  
2.5  
1.8  
1.2  
1
47  
230  
2150  
50  
260  
2515  
58  
300  
2790  
60  
345  
3290  
75  
430  
4165  
80  
490  
4950  
135  
230  
955  
9910  
135  
210  
1035  
10980  
19270  
1830  
19625  
1800  
(1) TYPICAL VALUES WITH QOD SHORTED TO VOUT  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
 
 
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.3.2.1 QOD when System Power is Removed  
The adjustable QOD can be used to control the power down sequencing of a system even when the system  
power supply is removed. When the power is removed, the input capacitor discharges at VIN. Past a certain VIN  
level, the strength of the RPD will be reduced. If there is still remaining charge on the output capacitor, this will  
result in longer fall times. For further information regarding this condition, refer to Shutdown Sequencing During  
Unexpected System Power Loss.  
8.3.2.2 Internal QOD Considerations  
Special considerations must be taken when using the internal RPD by shorting the QOD pin to the VOUT pin. The  
internal RPD is a pulldown resistance designed to quickly discharge a load after the switch has been disabled.  
Care must be used to ensure that excessive current does not flow through RPD during discharge so that the  
maximum TJ of 125°C is not exceeded. When using only the internal RPD to discharge a load, the total capacitive  
load must not exceed 200 µF. Otherwise, an external resistor, REXT, must be used to ensure the amount of  
current flowing through RPD is properly limited and the maximum TJ is not exceeded. To ensure the device is not  
damaged, the remaining charge from CL must decay naturally through the internal QOD resistance and should  
not be driven.  
8.3.3 Adjustable Rise Time (CT)  
A capacitor to GND on the CT pin sets the slew rate of VOUT. The CT capacitor will charge up until shortly after  
the switch is turned on and VOUT becomes stable. Once VOUT become stable, the capactior will discharge to  
ground. An approximate formula for the relationship between CT and the slew rate is shown in Equation 3:  
SR = 0.55× CT + 30  
where  
SR = slew rate (in µs/V)  
CT = the capacitance value on the CT pin (in pF)  
The units for the constant 30 are µs/V. The units for the constant 0.52 are µs/(V × pF).  
(3)  
This equation accounts for 10% to 90% measurement on VOUT and does not apply for CT = 0 pF. Use Table 2 to  
determine rise times for when CT = 0 pF.  
Rise time can be calculated by multiplying the input voltage by the slew rate. Table 2 contains rise time values  
measured on a typical device.  
Table 2. Rise Time Table  
RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10 Ω  
(1)  
CT× (pF)  
VIN = 5 V VIN = 3.3 V VIN = 2.5 V VIN = 1.8 V VIN = 1.5 V VIN = 1.2 V VIN = 1.0 V  
0
135  
650  
95  
455  
75  
350  
60  
50  
45  
40  
220  
260  
220  
185  
160  
470  
1260  
2540  
5435  
12050  
26550  
850  
655  
480  
415  
340  
300  
1000  
2200  
4700  
10000  
1680  
3580  
7980  
17505  
1300  
2760  
6135  
13460  
960  
810  
660  
560  
2020  
4485  
9790  
1715  
3790  
8320  
1390  
3120  
6815  
1220  
2735  
5950  
(1) Typical values at 25°C with a 25 V X7R 10% ceramic capacitor on CT.  
As the voltage across the capacitor approaches the capacitor rated voltage, the effective capacitance reduces.  
Depending on the dielectric material used, the voltage coefficient changes. See Table 3 for the recommended  
minimum voltage rating for the CT capacitor. If using VIN = 1.2 V or 4 V, it is recommended to use the higher of  
the two CT Voltage ratings specified.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
Table 3. Recommended CT Capacitor Voltage Rating  
RECOMMENDED CT CAPACITOR VOLTAGE  
VIN (V)  
RATING (V)  
1 V to 1.2 V  
1.2 V to 4 V  
4 V to 5.5 V  
10  
16  
20  
8.4 Device Functional Modes  
Table 4 describes the connection of the VOUT pin depending on the state of the ON pin.  
Table 4. VOUT Connection  
QOD  
CONFIGURATION  
ON  
TPS22918 VOUT  
QOD pin connected to  
VOUT with REXT  
L
GND (via REXT+RPD)  
QOD pin tied to VOUT  
directly  
L
L
GND (via RPD  
Open  
)
QOD pin left open  
Any valid QOD  
configuration  
H
VIN  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
A PSPICE model for this device is also available in the product page of this device on www.ti.com (See the 器件  
支持 section for more information).  
9.2 Typical Application  
This typical application demonstrates how the TPS22918 can be used to power downstream modules.  
Figure 23. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the values listed in Table 5 as the design parameters:  
Table 5. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
Load Current  
5 V  
2 A  
CL  
22 µF  
4 ms  
Desired Fall Time  
Maximum Acceptable Inrush Current  
400 mA  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
9.2.2 Detailed Design Procedure  
9.2.2.1 Input Capacitor (CIN)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1 µF ceramic  
capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce  
the voltage drop during high-current application. When switching heavy loads, it is recommended to have an  
input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.  
9.2.2.2 Output Capacitor (CL) (Optional)  
Becuase of the integrated body diode in the MOSFET, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during startup.  
9.2.2.3 Shutdown Sequencing During Unexpected System Power Loss  
Microcontrollers and processors often have a specific shutdown sequence in which power needs to be removed.  
Using the adjustable Quick Output Discharge function of the TPS22918, adding a load switch to each power rail  
can be used to manage the power down sequencing in the event of an unexpected system power loss (i.e.  
battery removal). To determine the QOD values for each load switch, first confirm the power down order of the  
device you wish to power sequence. Be sure to check if there are voltage or timing margins that must be  
maintained during power down. Next, consult QOD Fall Time Table in the Quick Output Discharge (QOD) feature  
description to determine appropriate COUT and RQOD values for each power rail's load switch so that the load  
switches' fall times correspond to the order in which they need to be powered down. In the above example, we  
would like this power rail's fall time to be 4 ms. Using Equation 2, to determine the appropriate RQOD to achieve  
our desired fall time.  
Because fall times are measured from 90% of VOUT to 10% of VOUT, the equation becomes:  
.5 V = 4.5 V × e-(4 ms) / (R × (22 µF))  
(4)  
(5)  
RQOD = 83.333 Ω  
Refer to Figure 7, RPD at VIN = 5 V is approximately 25 Ω. Using Equation 1, the required external QOD  
resistance can be calculated:  
83.333 Ω = 25 Ω + REXT  
REXT = 58.333 Ω  
(6)  
(7)  
Figure 24 through Figure 29 are scope shots demonstrating an example of the QOD functionality when power is  
removed from the device (both ON and VIN are disconnected simultaneously). The input voltage is decaying in  
all scope shots below.  
Initial VIN = 3.3 V  
QOD = Open, 500 Ω, or shorted to VOUT  
CL = 1 μF, 10 μF  
VOUT is left floating  
NOTE: VIN may appear constant in some figures. This is because the time scale of the scope shot is too small to  
show the decay of CIN.  
Copyright © 2016, Texas Instruments Incorporated  
17  
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
VIN = 3.3 V  
VIN = 3.3 V  
VIN = 3.3 V  
CIN = 1 µF  
CL = 1 µF  
CL = 1 µF  
CL = 10 µF  
VIN = 3.3 V  
VIN = 3.3 V  
VIN = 3.3 V  
CIN = 1 µF  
CL = 1 µF  
QOD = Open  
QOD = 500 Ω  
Figure 24. tF at VIN = 3.3 V  
Figure 25. tF at VIN = 3.3 V  
CIN = 1 µF  
CIN = 1 µF  
CL = 10 µF  
QOD = VOUT  
QOD = Open  
Figure 26. tF at VIN = 3.3 V  
Figure 27. tF at VIN = 3.3 V  
CIN = 1 µF  
CIN = 1 µF  
CL = 10 µF  
QOD = 500 Ω  
QOD = VOUT  
Figure 28. tF at VIN = 3.3 V  
Figure 29. tF at VIN = 3.3 V  
18  
Copyright © 2016, Texas Instruments Incorporated  
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
9.2.2.4 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN conditions of the device. Refer to the RON specification of the device in  
the Electrical Characteristics table of this data sheet. When the RON of the device is determined based upon the  
VIN conditions, use 公式 8 to calculate the VIN to VOUT voltage drop:  
V = ILOAD × RON  
where  
ΔV = voltage drop from VIN to VOUT  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
(8)  
9.2.2.5 Inrush Current  
Use 公式 9 to determine how much inrush current will be caused by the CL capacitor:  
dVOUT  
I
= CL ´  
INRUSH  
dt  
where  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUT  
dt = Output Voltage rise time during the ramp up of VOUT when the device is enabled  
dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled  
(9)  
The appropriate rise time can be calculated using the design requirements and the inrush current equation. As  
we are calculating the rise time (measured from 10% to 90% of VOUT), we will account for this in our dVOUT  
parameter (80% of VOUT = 4 V).  
400 mA = 22 μF × 4 V/dt  
dt = 220 μs  
(10)  
(11)  
To ensure an inrush current of less than 400 mA, choose a CT value that will yield a rise time of more than 220  
μs. Consulting Table 2 at VIN = 5 V, CT = 220 μF will provide a typical rise time of 650 μs. Inputting this rise time  
and voltage into 公式 9, yields:  
IInrush = 22 μF × 4 V / 650 μs  
(12)  
(13)  
IInrush = 135 mA  
This inrush current can be seen in the Application Curves below. An appropriate CL value should be placed on  
VOUT such that the IMAX and IPLS specifications of the device are not violated.  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
9.2.3 Application Curves  
VIN = 5 V  
CL = 22 µF  
CT = 0 µF  
VIN = 5 V  
CL = 22 µF  
CT = 220 µF  
30. TPS22918 Inrush Current  
31. TPS22918 Inrush Current  
10 Power Supply Recommendations  
The device is designed to operate from a VIN range of 1 V to 5.5 V. This supply must be well regulated and  
placed as close to the device terminal as possible with the recommended 1-µF bypass capacitor. If the supply is  
located more than a few inches from the device terminals, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or  
ceramic capacitor of 1 µF may be sufficient.  
The TPS22918 operates regardless of power sequencing order. The order in which voltages are applied to VIN  
and ON will not damage the device as long as the voltages do not exceed the absolute maximum operating  
conditions. If voltage is applied to ON before VIN, the slew rate of VOUT will not be controlled.  
11 Layout  
11.1 Layout Guidelines  
VIN and VOUT traces should be as short and wide as possible to accommodate for high current.  
The VIN pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended  
bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the  
device pins as possible.  
20  
版权 © 2016, Texas Instruments Incorporated  
TPS22918  
www.ti.com.cn  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
11.2 Layout Example  
1
2
3
6
5
4
VIN VOUT  
GND QOD  
ON  
CT  
ëL! to ꢀower Dround ꢀlane  
32. Recommended Board Layout  
11.3 Thermal Considerations  
For best performance, all traces should be as short as possible. To be most effective, the input and output  
capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal and short-circuit operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic  
electrical effects along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use 公  
14:  
TJ(MAX) - TA  
PD(MAX)  
=
qJA  
where  
PD(MAX) = maximum allowable power dissipation  
TJ(MAX) = maximum allowable junction temperature (125°C for the TPS22918)  
TA = ambient temperature of the device  
θJA = junction to air thermal impedance. Refer to the Thermal Information table. This parameter is highly  
dependent upon board layout.  
(14)  
版权 © 2016, Texas Instruments Incorporated  
21  
 
TPS22918  
ZHCSEX3A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
关于 TPS22918 PSpice 瞬态模型,请参见 SLVMBI6。  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
TPS22918 5.5V2A、导通电阻为 50mΩ 的负载开关评估模块》SLVUAP0。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22918DBVR  
TPS22918DBVT  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
13MW  
13MW  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22918DBVT

具有可调节上升时间和可调节输出放电功能的 5.5V、2A、52mΩ 负载开关 | DBV | 6 | -40 to 105
TI

TPS22918TDBVRQ1

具有可调节上升时间和可调节输出放电功能的单通道、5.5V、2A、52mΩ 汽车负载开关 | DBV | 6 | -40 to 105
TI

TPS22918TDBVTQ1

具有可调节上升时间和可调节输出放电功能的单通道、5.5V、2A、52mΩ 汽车负载开关 | DBV | 6 | -40 to 105
TI

TPS22919

具有可调节输出放电功能的 5.5V、1.5A、90mΩ 负载开关
TI

TPS22919-Q1

符合 AEC Q100 标准、具有受控上升时间的单通道、5.5V、1.5A、90mΩ 自保护负载开关
TI

TPS22919DCKR

具有可调节输出放电功能的 5.5V、1.5A、90mΩ 负载开关 | DCK | 6 | -40 to 105
TI

TPS22919DCKT

具有可调节输出放电功能的 5.5V、1.5A、90mΩ 负载开关 | DCK | 6 | -40 to 105
TI

TPS22919QDCKRQ1

符合 AEC Q100 标准、具有受控上升时间的单通道、5.5V、1.5A、90mΩ 自保护负载开关

TI

TPS22920

Ultra-Low On-Resistance, 4-A Integrated Load Switch with Controlled Turn-on
TI

TPS22920LYZPR

3.6-V, 4-A, 5.3-m&Omega; load switch with output discharge 8-DSBGA -40 to 85
TI

TPS22920LYZPT

具有输出放电功能的 3.6V、4A、5.3mΩ 负载开关 | YZP | 8 | -40 to 85
TI

TPS22920YZPR

Ultra-Low On-Resistance, 4-A Integrated Load Switch with Controlled Turn-on
TI