TPS22967 [TI]

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关;
TPS22967
型号: TPS22967
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关

开关
文件: 总26页 (文件大小:2481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
单通道、超低电阻负载开关  
查询样品: TPS22967  
1
特性  
说明  
2
集成的单通道负载开关  
TPS22967 是一款小型,超低 R导通 电阻,单通道负载  
开关,此开关具有受控开启功能。 此器件包含一个可  
0.8V 5.5V 输入电压范围内运行的 N 通道金属氧  
化物半导体场效应晶体管 (MOSFET),并且每通道支  
持最大 4A 的持续电流。 此开关可由一个打开/关闭输  
(ON) 控制,此输入可与低压控制信号直接对接。  
TPS22967 中,为了实现开关关闭时的快速输出放  
电,增加了一个 225Ω 的上拉电阻器。  
输入电压范围:0.8V 5.5V  
超低 R导通电阻  
V输入 = 5VV偏置 = 5V)时,R导通 = 22mΩ  
V输入 = 3.6VV偏置 = 5V)时,R导通 = 22mΩ  
V输入 = 1.8VV偏置 = 5V)时,R导通 = 22mΩ  
4A 最大持续开关电流  
低静态电流 (50µA)  
低控制输入阀值支持使用  
TPS22967 采用小型,节省空间的 2mm x 2mm 8 引  
SON 封装 (DSG),此类封装具有可实现高功率耗散  
的集成散热垫。 器件在自然通风环境下的额定运行温  
度范围为 -40°C 85°C。  
1.2V/1.8V/2.5V/3.3V 逻辑电路  
可配置的上升时间  
快速输出放电 (QOD)  
带有散热垫的小外形尺寸无引线 (SON) 8 引脚封装  
根据 JESD 22 测试得出的静电放电 (ESD) 性能  
特性列表  
3.6VV偏置 = 5V)时,R导通 的典型值  
上升时间(1)  
22mΩ  
2KV 人体模型 (HBM) 1KV 器件充电模型  
可调节  
(CDM)  
快速输出放电  
支持  
最大输出电流  
4A  
应用范围  
通用输入输出接口 (GPIO) 启用  
工作温度  
高电平有效  
-40°C 85°C  
Ultrabook™  
笔记本电脑/上网本  
平板电脑  
(1) CT 电容值与上升时间之间的关系请参见应用信息部分。  
(2) 这个特性通过一个 225Ω 电阻器将开关的输出放电至接地  
(GND),从而防止输出悬空。  
消费类电子产品  
机顶盒/家庭网关  
电信系统  
固态硬盘 (SSD)  
VIN  
ON  
VOUT  
Power  
Supply  
ON  
C
IN  
CL  
RL  
CT  
OFF  
GND  
GND  
VBIAS  
TPS22967  
典型应用  
ORDERING INFORMATION  
For package and ordering information, see the Package Option Addendum at the end of this document.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Ultrabook is a trademark of Intel.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSC42  
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
VALUE  
–0.3 to 6  
–0.3 to 6  
–0.3 to 6  
–0.3 to 6  
4
UNIT(2)  
VIN  
Input voltage range  
V
V
VOUT  
VBIAS  
VON  
IMAX  
IPLS  
TA  
Output voltage range  
Bias voltage range  
V
ON voltage range  
V
Maximum continuous switch current  
Maximum pulsed switch current, pulse <300 µs, 2% duty cycle  
Operating free-air temperature range(3)  
Maximum junction temperature  
Storage temperature range  
A
6
A
–40 to 85  
125  
°C  
°C  
°C  
°C  
TJ  
TSTG  
TLEAD  
–65 to 150  
300  
Maximum lead temperature (10-s soldering time)  
Human-Body Model (HBM)  
2000  
Electrostatic discharge  
protection  
ESD  
V
Charged-Device Model (CDM)  
1000  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(max) = TJ(max) – (θJA × PD(max)  
)
THERMAL INFORMATION  
TPS22967  
DSG (8 PINS)  
65.3  
THERMAL METRIC(1)  
UNITS  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
74.2  
35.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.2  
ψJB  
36.0  
θJCbot  
12.8  
(1) 有关传统和全新热度量的更多信息,请参阅 IC 封装热度量 应用报告 (文献号:ZHCA543。  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
RECOMMENDED OPERATING CONDITIONS  
MIN  
MAX UNIT  
VIN  
Input voltage range  
Bias voltage range  
0.8 VBIAS  
V
V
VBIAS  
VON  
VOUT  
VIH  
2.5  
0
5.5  
5.5  
VIN  
5.5  
0.5  
ON voltage range  
V
Output voltage range  
High-level input voltage, ON  
Low-level input voltage, ON  
Input capacitor  
V
VBIAS = 2.5 V to 5.5 V  
VBIAS = 2.5 V to 5.5 V  
1.2  
0
V
VIL  
V
CIN  
1(1)  
µF  
(1) Refer to Application Information section.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40°C TA ≤  
85°C (Full) and VBIAS = 5.0 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT = 0,  
VIN = VON = VBIAS = 5.0 V  
IIN(VBIAS-ON) VBIAS quiescent current  
IIN(VBIAS-OFF) VBIAS shutdown current  
Full  
Full  
50  
75  
µA  
µA  
VON = GND, VOUT = 0 V  
2
8
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 0.8 V  
0.2  
0.02  
3
VON = GND,  
VOUT = 0 V  
IIN(VIN-OFF)  
VIN off-state supply current  
ON pin input leakage current  
Full  
Full  
µA  
µA  
0.01  
2
0.005  
1
ION  
VON = 5.5 V  
0.5  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
22  
22  
22  
22  
22  
22  
33  
35  
33  
35  
33  
35  
33  
35  
33  
35  
33  
35  
VIN = 5.0 V  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
25°C  
Full  
25°C  
Full  
IOUT = –200 mA,  
VBIAS = 5.0 V  
RON  
ON-state resistance  
25°C  
Full  
25°C  
Full  
25°C  
Full  
mΩ  
RPD  
Output pulldown resistance  
VIN = 5.0 V, VON = 0V, IOUT = 15 mA  
Full  
225 300  
Copyright © 2013, Texas Instruments Incorporated  
3
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40°C TA ≤  
85°C (Full) and VBIAS = 2.5 V. Typical values are for TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IOUT = 0,  
VIN = VON = VBIAS = 2.5 V  
IIN(VBIAS-ON) VBIAS quiescent current  
IIN(VBIAS-OFF) VBIAS shutdown current  
Full  
Full  
20  
30  
µA  
µA  
VON = GND, VOUT = 0 V  
2
3
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 0.8 V  
0.01  
0.01  
2
VON = GND,  
VOUT = 0 V  
IIN(VIN-OFF)  
VIN off-state supply current  
ON pin input leakage current  
Full  
Full  
µA  
µA  
0.005  
0.003  
2
1
ION  
VON = 5.5 V  
0.5  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
26  
26  
25  
24  
24  
38  
40  
38  
40  
38  
40  
38  
40  
38  
40  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
mΩ  
mΩ  
mΩ  
mΩ  
25°C  
Full  
25°C  
Full  
IOUT = –200 mA,  
VBIAS = 2.5 V  
RON  
ON-state resistance  
25°C  
Full  
25°C  
Full  
mΩ  
RPD  
Output pulldown resistance  
VIN = 2.5 V, VON = 0V, IOUT = 1 mA  
Full  
275 325  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
SWITCHING CHARACTERISTIC MEASUREMENT INFORMATION  
VIN  
VOUT  
CT  
CIN = 1µF  
ON  
(A)  
ON  
CL  
+
-
RL  
OFF  
VBIAS  
GND  
TPS22967  
GND  
GND  
TEST CIRCUIT  
VON  
50%  
50%  
tF  
tOFF  
tR  
VOUT  
tON  
90%  
90%  
VOUT  
50%  
10%  
50%  
10%  
10%  
tD  
tON/tOFF WAVEFORMS  
(A) Rise and fall times of the control signal is 100ns.  
Figure 1. Test Circuit and Timing Waveforms  
SWITCHING CHARACTERISTICS  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN = VON = VBIAS = 5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
1325  
10  
RL = 10-Ω, CL = 0.1 µF, CT = 1000 pF  
1625  
3.5  
µs  
tF  
tD  
500  
VIN = 0.8 V, VON = VBIAS = 5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
600  
80  
RL = 10-Ω, CL = 0.1 µF, CT = 1000 pF  
300  
5.5  
460  
µs  
µs  
µs  
tF  
tD  
VIN = 2.5V, VON = 5 V, VBIAS = 2.5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
2200  
9
RL = 10-Ω, CL = 0.1 µF, CT = 1000 pF  
2275  
3.1  
tF  
tD  
1075  
VIN = 0.8 V, VON = 5 V, VBIAS = 2.5 V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
1450  
60  
RL = 10-Ω, CL = 0.1 µF, CT = 1000 pF  
875  
5.5  
tF  
tD  
1010  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
Charge  
Pump  
VBIAS  
Control  
Logic  
ON  
VOUT  
CT  
GND  
Figure 2. Functional Block Diagram  
Table 1. FUNCTIONAL TABLE  
ON  
L
VIN to VOUT  
VOUT to GND  
Off  
On  
On  
Off  
H
6
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
DSG PACKAGE  
1
2
3
4
8
7
6
5
8
7
6
5
1
2
3
4
VIN  
VIN  
VOUT  
VOUT  
VOUT  
CT  
VIN  
VOUT  
CT  
VIN  
ON  
ON  
VBIAS  
VBIAS  
GND  
GND  
BOTTOM VIEW  
TOP VIEW  
PIN DESCRIPTIONS  
TPS22967  
PIN NAME  
I/O  
DESCRIPTION  
DSG  
1
VIN  
I
I
Switch input. Input capacitor recommended for minimizing VIN dip. Recommended voltage range for  
this pin for optimal RON performance is 0.8V to VBIAS  
.
2
VIN  
Switch input. Input capacitor recommended for minimizing VIN dip. Recommended voltage range for  
this pin for optimal RON performance is 0.8V to VBIAS  
.
3
4
ON  
I
I
Active high switch control input. Do not leave floating.  
VBIAS  
Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5V to 5.5V.  
See Application Information section for more information.  
5
6
GND  
CT  
-
Device ground.  
O
Switch slew rate control. Can be left floating. See Application Information section for more  
information.  
7
8
VOUT  
O
O
-
Switch output.  
Switch output.  
VOUT  
Thermal Pad  
Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See Application  
Information for layout guidelines.  
Copyright © 2013, Texas Instruments Incorporated  
7
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
VBIAS vs. QUIESCENT CURRENT  
VBIAS vs. SHUTDOWN CURRENT  
60  
50  
40  
30  
20  
10  
0.7  
−40C  
25C  
70C  
85C  
−40C  
25C  
70C  
85C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
VIN=VBIAS, VON = 5V, VOUT=OPEN  
3.25 3.5 3.75 4.25 4.5 4.75 5.25 5.5  
VIN=VBIAS, VON=0V, VOUT=0V  
3.25 3.5 3.75 4.25 4.5 4.75 5.25 5.5  
2.5 2.75  
3
4
5
2.5 2.75  
3
4
5
VBIAS (V)  
VBIAS (V)  
G070  
G070  
TEMPERATURE vs. RON  
(VBIAS = 2.5V)  
VIN vs. OFF-STATE VIN CURRENT  
8.5  
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
VIN = 0.8V  
VIN = 1.05V  
VIN = 1.2V  
VIN = 1.5V  
VIN = 1.8V  
VIN =2.5V  
−40C  
25C  
70C  
85C  
VBIAS=5.5V, VON=0V, VOUT = 0V  
7.5  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
VBIAS=2.5V, IOUT=-200mA  
0.5  
0
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
-40  
-15  
10  
35  
60  
85  
Temperature (ºC)  
G067  
C002  
8
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
TEMPERATURE vs. RON  
(VBIAS = 5.5V)  
VIN vs. RON  
(VBIAS = 2.5V)  
28  
27.5  
27  
26.5  
26  
25.5  
25  
24.5  
24  
23.5  
23  
22.5  
22  
21.5  
21  
20.5  
20  
19.5  
19  
18.5  
18  
17.5  
17  
16.5  
16  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VIN = 0.8V  
VIN = 1.05V  
VIN = 1.2V  
VIN = 1.5V  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2V  
VIN =5V  
-40C  
25C  
85C  
70C  
VIN = 5.5V  
VBIAS=5.5V, IOUT = -200mA  
35 60  
VBIAS=2.5V, IOUT = -200mA  
-40  
-15  
10  
85  
0.8  
1.2  
1.6  
VIN (V)  
2
2.4  
Temperature (ƒC)  
C002  
C002  
VIN vs. RON  
(VBIAS = 5.5V)  
VIN vs. RON  
(TA = 25°C)  
27  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 3.6V  
VBIAS = 4.2V  
VBIAS = 5V  
-40C  
25C  
70C  
85C  
26  
25  
24  
23  
22  
21  
VBIAS = 5.5V  
Temperature=25C, IOUT = -200mA  
VBIAS=5.5V, IOUT = -200mA  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
C002  
C002  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN vs. RPD  
(VBIAS = 5.5V)  
VON vs. VOUT  
(TA = 25°C)  
231  
2.4  
2.2  
2
IPD=1mA, VBIAS=5.5V, VON=0V  
−40C  
25C  
70C  
85C  
VIN=2V, Tempeature = 25C  
230  
229  
228  
227  
226  
225  
224  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VBIAS = 2.5V  
VBIAS=3.3V  
VBIAS=3.6V  
VBIAS=4.2  
VBIAS=5V  
VBIAS=5.5V  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
VON (V)  
2
2.25 2.5  
G065  
G066  
VIN vs. tD  
(VBIAS = 2.5V, CT = 1nF)  
VIN vs. tD  
(VBIAS = 5.5V, CT = 1nF)  
1500  
1450  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
950  
650  
600  
550  
500  
450  
400  
350  
300  
VBIAS = 2.5V  
CT = 1nf  
VBIAS = 5.5V, CT = 1nf  
900  
850  
800  
−40C  
25C  
70C  
85C  
−40C  
25C  
70C  
85C  
750  
700  
650  
600  
0.8  
1
1.2  
1.4  
1.6  
VIN (V)  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.5  
G030  
G035  
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN vs. tF  
(VBIAS = 2.5V, CT = 1nF)  
VIN vs. tF  
(VBIAS = 5.5V, CT = 1nF)  
8
7
6
5
4
3
2
8
7
6
5
4
3
2
1
0
VBIAS = 2.5V  
CT = 1nf  
−40C  
25C  
70C  
85C  
VBIAS = 5.5V  
CT = 1nf  
−40C  
25C  
70C  
85C  
1
0.8  
1
1.2  
1.4  
1.6  
VIN (V)  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
G036  
G041  
VIN vs. tOFF  
(VBIAS = 2.5V, CT = 1nF)  
VIN vs. tOFF  
(VBIAS = 5.5V, CT = 1nF)  
80  
70  
60  
50  
40  
30  
20  
10  
125  
100  
75  
50  
25  
0
−40C  
25C  
70C  
85C  
VBIAS = 5.5V  
CT = 1nf  
−40C  
25C  
70C  
85C  
VBIAS = 2.5V  
CT = 1nf  
0
0.8  
1
1.2  
1.4  
1.6  
VIN (V)  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
G042  
G047  
Copyright © 2013, Texas Instruments Incorporated  
11  
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN vs. tON  
(VBIAS = 2.5V, CT = 1nF)  
VIN vs. tON  
(VBIAS = 5.5V, CT = 1nF)  
2700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
−40C  
25C  
70C  
85C  
−40C  
25C  
70C  
85C  
2600  
2500  
2400  
2300  
2200  
2100  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
800  
700  
600  
VBIAS = 2.5V  
CT = 1nf  
VBIAS = 5.5V  
CT = 1nf  
500  
400  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
VIN (V)  
G048  
G053  
VIN vs. tR  
(VBIAS = 2.5V, CT = 1nF)  
VIN vs. tR  
(VBIAS = 5.5V, CT = 1nF)  
2800  
2450  
2100  
1750  
1400  
1050  
700  
2000  
1750  
1500  
1250  
1000  
750  
−40C  
25C  
70C  
85C  
−40C  
25C  
70C  
85C  
500  
VBIAS= 2.5V  
CT = 1nf  
VBIAS = 5.5V  
CT = 1nf  
250  
0.8  
1
1.2  
1.4  
1.6  
VIN (V)  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
G061  
G059  
12  
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
VBIAS vs. tR  
(VIN = 2.5V, CT = 1nF)  
3000  
−40C  
25C  
70C  
2750  
85C  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
VIN = 2.5V  
CT = 1nf  
500  
2.5 2.8  
3
3.2 3.5 3.8  
4
4.2 4.5 4.8  
5
5.2 5.5  
VBIAS (V)  
G061  
Copyright © 2013, Texas Instruments Incorporated  
13  
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
TYPICAL AC SCOPE CAPTURES at TA = 25ºC, CT = 1nF  
TURN-ON RESPONSE TIME  
TURN-ON RESPONSE TIME  
(VIN = 0.8V, VBIAS = 2.5V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
(VIN = 0.8V, VBIAS = 5.0V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
CH1: VOUT, CH2: ON  
CH1: VOUT, CH2: ON  
TURN-ON RESPONSE TIME  
(VIN = 2.5V, VBIAS = 2.5V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
CH1: VOUT, CH2: ON  
TURN-ON RESPONSE TIME  
(VIN = 5.0V, VBIAS = 5.0V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
CH1: VOUT, CH2: ON  
TURN-OFF RESPONSE TIME  
(VIN = 0.8V, VBIAS = 2.5V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
CH1: VOUT, CH2: ON  
TURN-OFF RESPONSE TIME  
(VIN = 0.8V, VBIAS = 5.0V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
CH1: VOUT, CH2: ON  
14  
Copyright © 2013, Texas Instruments Incorporated  
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
TYPICAL AC SCOPE CAPTURES at TA = 25ºC, CT = 1nF (continued)  
TURN-OFF RESPONSE TIME  
TURN-OFF RESPONSE TIME  
(VIN = 2.5V, VBIAS = 2.5V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
(VIN = 5.0V, VBIAS = 5.0V, CIN = 1µF, CL = 0.1µF, RL = 10Ω)  
CH1: VOUT, CH2: ON  
CH1: VOUT, CH2: ON  
Copyright © 2013, Texas Instruments Incorporated  
15  
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
APPLICATION INFORMATION  
ON/OFF CONTROL  
The ON pin controls the state of the switch. Asserting ON high enables the switch. ON is active high and has a  
low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard  
GPIO logic thresholds. It can be used with any microcontroller with 1.2V or higher GPIO voltage. This pin cannot  
be left floating and must be driven either high or low for proper functionality.  
INPUT CAPACITOR (OPTIONAL)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic  
capacitor, CIN, placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce  
the voltage drop during high current applications. When switching heavy loads, it is recommended to have an  
input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.  
OUTPUT CAPACITOR (OPTIONAL)  
Due to the integrated body diode in the NMOS switch, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more VIN dip upon  
turn-on due to inrush currents. This can be mitigated by increasing the capacitance on the CT pin for a longer  
rise time (see below).  
VIN and VBIAS VOLTAGE RANGE  
For optimal RON performance, make sure VIN VBIAS. The device will still be functional if VIN > VBIAS but it will  
exhibit RON greater than what is listed in the ELECTRICAL CHARACTERISTICS table. See Figure 3 for an  
example of a typical device. Notice the increasing RON as VIN exceeds VBIAS voltage. Be sure to never exceed  
the maximum voltage rating for VIN and VBIAS.  
50  
VBIAS = 2.5V  
VBIAS = 3.3V  
45  
VBIAS = 3.6V  
VBIAS = 4.2V  
VBIAS = 5V  
40  
35  
30  
25  
20  
VBIAS = 5.5V  
Temperature=25C,  
IOUT=-200mA  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2 5.6  
C017  
Figure 3. RON vs. VIN (VIN > VBIAS  
)
16  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
ADJUSTABLE RISE TIME  
A capacitor to GND on the CT pin sets the VOUT slew rate. The voltage on the CT pin can be as high as 12V.  
Therefore, the minimum voltage rating for the CT cap should be 25V for optimal performance. An approximate  
formula for the relationship between CT and slew rate is (the equation below accounts for 10% to 90%  
measurement on VOUT and does NOT apply for CT = 0pF. Use table below to determine rise times for when CT  
= 0pF):  
SR = 0.39´CT +13.4  
(1)  
Where,  
SR = slew rate (in µs/V)  
CT = the capacitance value on the CT pin (in pF)  
The units for the constant 13.4 is in µs/V. The units for the constant 0.39 are in µs/(V*pF).  
Rise time can be calculated by multiplying the input voltage by the slew rate. The table below contains rise time  
values measured on a typical device. Rise times shown below are only valid for the power-up sequence where  
VIN and VBIAS are already in steady state condition, and the ON pin is asserted high.  
RISE TIME (µs) 10% - 90%, CL = 0.1µF, CIN = 1µF, RL = 10Ω  
TYPICAL VALUES at 25°C, 25V X7R 10% CERAMIC CAP  
CTx (pF)  
5V  
127  
3.3V  
93  
1.8V  
62  
1.5V  
55  
1.2V  
51  
1.05V  
46  
0.8V  
42  
0
220  
475  
314  
188  
162  
141  
125  
103  
188  
344  
681  
1568  
3449  
470  
939  
637  
359  
304  
255  
218  
1000  
2200  
4700  
10000  
1869  
4020  
8690  
18360  
1229  
2614  
5746  
12550  
684  
567  
476  
414  
1469  
3167  
6849  
1211  
2703  
5836  
1024  
2139  
4782  
876  
1877  
4089  
Copyright © 2013, Texas Instruments Incorporated  
17  
TPS22967  
ZHCSBE4 AUGUST 2013  
www.ti.com.cn  
SAFE OPERATING AREA (SOA)  
The SOA curves show the continuous current carrying capability of the device versus ambient temperature (TA)  
to ensure reliable operation over 70,000 hours of device lifetime. The different curves represent the percentage  
On time over device lifetime and can be used as a reference to understand the current carrying capability of  
TPS22967 under different use cases. It is recommended to maintain continuous current at or below the SOA  
curves shown in Figure 4.  
5
4
3
2
100% On time  
1
0
90% On time  
70% On time  
50% On time  
30% On time  
VBIAS=5.0V  
60  
-40  
-15  
10  
35  
85  
Ambient Temperature (ºC)  
C002  
“On time” is the duration of time that the device is enabled (ON VIH) over 70,000 hour lifetime.  
Figure 4. Safe Operating Area  
18  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS22967  
www.ti.com.cn  
ZHCSBE4 AUGUST 2013  
BOARD LAYOUT AND THERMAL CONSIDERATIONS  
For best performance, all traces should be as short as possible. To be most effective, the input and output  
capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects  
along with minimizing the case to ambient thermal impedance.  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use the  
following equation as a guideline:  
T
J(max) - TA  
P
=
D(max)  
QJA  
(2)  
Where:  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (125°C for the TPS22967)  
TA = ambient temperature of the device  
ΘJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly  
dependent upon board layout.  
The figure below shows an example of a layout. Notice the thermal vias located under the exposed thermal pad  
of the device. This allows for thermal diffusion away from the device.  
Copyright © 2013, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22967DSGR  
TPS22967DSGT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
ZTU  
ZTU  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22967DSGR

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关 | DSG | 8 | -40 to 85
TI

TPS22967DSGT

具有可调节上升时间和可调节输出放电功能的 5.5V、4A、22mΩ 负载开关 | DSG | 8 | -40 to 85
TI

TPS22968

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关
TI

TPS22968-Q1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关
TI

TPS22968DPUR

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968DPUT

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NDPUR

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NDPUT

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NQDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968NQDMGTQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968QDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968QDMGTQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI