TPS22968 [TI]

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关;
TPS22968
型号: TPS22968
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关

开关
文件: 总33页 (文件大小:1628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
TPS22968 双通道、超低电阻负载开关  
1 特性  
2 应用  
1
集成式双通道负载开关  
Ultrabook™  
笔记本电脑和上网本  
平板电脑  
输入电压范围:0.8V 5.5V  
VBIAS 电压范围:2.5V 5.5V  
消费类电子产品  
机顶盒  
非常适合 1S 电池配置  
超低 RON 电阻  
电信系统  
VIN = 5V (VBIAS = 5V) 时,RON = 27mΩ  
VIN = 3.3V (VBIAS = 5V) 时,RON = 25mΩ  
VIN = 1.8V (VBIAS = 5V) 时,RON = 25mΩ  
3 说明  
TPS22968x 是一款具有受控接通功能的小型、超低  
RON 双通道负载开关。此器件包含两个可在 0.8 至  
5.5V 输入电压范围内运行的 N 沟道 MOSFET,并且  
每个沟道可支持最大  
每通道最大 4A 持续开关电流  
低静态电流  
VBIAS = 5V 时为 55µA(两个通道)  
VBIAS = 5V 时为 55µA(单通道)  
4A 的持续电流。每个开关由一个导通/关断输入(ON1  
ON2)单独控制,此输入可与低电压控制信号直接  
连接。为了能够在开关关闭时快速进行输出放  
电,TPS22968 中添加了一个 270Ω 的片上负载电阻  
器。  
低控制输入阈值支持使用  
1.2V1.8V2.5V3.3V 逻辑  
可配置上升时间(1)  
快速输出放电 (QOD)(2)(可选)  
带有散热垫的 SON 14 引脚封装  
ESD 性能经测试符合 JEDEC 标准  
TPS22968x 采用小型、节省空间的封装 (DPU),该封  
装具有集成式散热垫,从而支持高功率耗散。该器件在  
自然通风环境下的额定运行温度范围为 –40 +105°  
C。  
2kV 人体放电模式 (HBM) 1kV 器件充电模型  
(CDM)  
闩锁性能超出 100mA,符合 JESD 78 II 类规范的  
要求  
器件信息(1)  
通用输入输出 (GPIO) 使能 - 高电平有效  
TPS22968N:仅限产品预览  
器件型号  
TPS22968  
TPS22968N  
封装  
封装尺寸(标称值)  
(1)  
有关 CT 值与上升时间之间的关系,请参阅申请资料 部分  
WSON (14)  
3.00mm x 2.00mm  
(2)  
此特性通过一个 270Ω 电阻器将开关的输出放电至接地  
(GND),从而防止输出悬空。  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用电路原理图  
VIN1  
ON1  
VBIAS  
VOUT1  
CT1  
CT2  
ON  
Dual Power  
CIN  
CL  
RL  
Supply  
OFF  
Or  
GND  
Dual DC/DC  
converter  
VOUT2  
ON  
ON2  
CIN  
CL  
RL  
OFF  
GND  
TPS22968x  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCG3  
 
 
 
 
 
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 17  
10 Application and Implementation........................ 18  
10.1 Application Information.......................................... 18  
10.2 Typical Application ................................................ 21  
11 Power Supply Recommendations ..................... 24  
12 Layout................................................................... 24  
12.1 Layout Guidelines ................................................. 24  
12.2 Layout Example .................................................... 24  
13 器件和文档支持 ..................................................... 25  
13.1 器件支持 ............................................................... 25  
13.2 文档支持 ............................................................... 25  
13.3 相关链接................................................................ 25  
13.4 接收文档更新通知 ................................................. 25  
13.5 社区资源................................................................ 25  
13.6 ....................................................................... 25  
13.7 静电放电警告......................................................... 25  
13.8 Glossary................................................................ 26  
14 机械、封装和可订购信息....................................... 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics (VBIAS = 5 V)..................... 6  
7.6 Electrical Characteristics (VBIAS = 2.5 V).................. 7  
7.7 Switching Characteristics.......................................... 8  
7.8 Typical DC Characteristics........................................ 8  
7.9 Typical AC Characteristics...................................... 12  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
8
9
4 修订历史记录  
Changes from Revision D (March 2016) to Revision E  
Page  
QOD 说明 从(仅限 TPS22968更改成了(可选)(在特性部分中............................................................................ 1  
Changes from Revision E (July 2016) to Revision F  
Page  
已更改 Functional Block Diagram........................................................................................................................................... 1  
Changes from Revision C (October 2015) to Revision D  
Page  
Made Changes to Thermal Considerations.......................................................................................................................... 22  
Changes from Revision B (June 2015) to Revision C  
Page  
更新了 TPS22968N 发行版的信息。 ...................................................................................................................................... 1  
Updated “TEST CONDITIONS” for RON. ............................................................................................................................. 6  
Updated “TEST CONDITIONS” for RON. ............................................................................................................................. 7  
Changes from Revision A (July 2014) to Revision B  
Page  
Updated Typical Characteristics graphs. ............................................................................................................................... 8  
Changes from Original (January 2014) to Revision A  
Page  
已添加 添加了处理额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关建议 部分、布局 部分、  
器件和文档支持 部分以及机械、封装和可订购信息 部分 ....................................................................................................... 1  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
5 Device Comparison  
Ron (typ) at  
VIN = 3.3 V,  
VBIAS = 5 V  
QUICK  
OUTPUT  
DISCHARGE  
MAXIMUM  
OUTPUT  
CURRENT  
DEVICE  
ENABLE  
TPS22968  
25 mΩ  
25 mΩ  
Yes  
No  
4 A  
4 A  
Active High  
Active High  
TPS22968N  
6 Pin Configuration and Functions  
DPU PACKAGE  
14-Pin WSON  
Top View  
DPU PACKAGE  
14-Pin WSON  
Bottom View  
1
14  
14  
VOUT1  
VIN1  
1
VOUT1  
VIN1  
VIN1  
VOUT1  
VIN1  
VOUT1  
1
1
CT  
ON  
1
1
ON  
CT  
GND  
VBIAS  
ON2  
GND  
VBIAS  
ON2  
2
CT  
2
CT  
VIN2  
VIN2  
VOUT2  
VOUT2  
VIN2  
VIN2  
VOUT2  
VOUT2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
1
2
3
VIN1  
I
Switch 1 input. Bypass this input with a ceramic capacitor to GND  
Active-high switch 1 control input. Do not leave floating  
ON1  
VBIAS  
ON2  
I
I
I
Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 V to 5.5  
V. See the VIN and VBIAS Voltage Range section  
4
5
Active-high switch 2 control input. Do not leave floating  
6
VIN2  
I
Switch 2 input. Bypass this input with a ceramic capacitor to GND  
7
8
VOUT2  
O
Switch 2 output  
9
10  
11  
12  
13  
14  
CT2  
GND  
CT1  
O
O
Switch 2 slew rate control. Can be left floating  
Ground  
Switch 1 slew rate control. Can be left floating  
VOUT1  
O
Switch 2 output  
Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See the Application  
Information section for layout guidelines  
15  
Thermal Pad  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN1,2  
VBIAS  
Input voltage  
Bias voltage  
6
6
V
VOUT1,2 Output voltage  
6
V
VON1,2  
IMAX  
IPLS  
TJ  
ON voltage  
6
V
Maximum continuous switch current per channel, TA = 30 °C  
Maximum pulsed switch current, pulse < 300 µs, 2% duty cycle  
Maximum junction temperature  
4
A
6
A
125  
150  
°C  
°C  
Tstg  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
MIN  
0.8  
2.5  
0
MAX  
VBIAS  
5.5  
UNIT  
V
VIN1,2  
Input voltage  
VBIAS  
Bias voltage  
V
VON1,2  
VOUT1,2  
VIH, ON1,2  
VIL, ON1,2  
CIN1,2  
ON voltage  
5.5  
V
Output voltage  
VIN  
V
High-level input voltage, ON1,2  
Low-level input voltage, ON1,2  
Input capacitor  
VBIAS = 2.5 V to 5.5 V  
VBIAS = 2.5 V to 5.5 V  
1.2  
0
1(1)  
5.5  
V
0.5  
V
µF  
°C  
(2)  
TA  
Operating free-air temperature  
–40  
105  
(1) See the Application Information section.  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (RθJA), as given by the following equation: TA(max) = TJ(max) – (RθJA × PD(max)).  
7.4 Thermal Information  
TPS22968  
(1) (2)  
THERMAL METRIC  
DPU (WSON)  
14 PINS  
62.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
70.2  
23.2  
ψJT  
2.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
Thermal Information (continued)  
TPS22968  
(1) (2)  
THERMAL METRIC  
DPU (WSON)  
UNIT  
14 PINS  
23.2  
9
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
RθJC(bot)  
7.5 Electrical Characteristics (VBIAS = 5 V)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA +105°C (full) and VBIAS = 5 V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
POWER SUPPLIES AND CURRENTS  
VBIAS quiescent current (both  
TEST CONDITIONS  
TA  
MIN TYP MAX UNIT  
IOUT1 = IOUT2 = 0, VIN1,2 = VON1,2 = VBIAS = 5 V  
–40°C to +105°C  
–40°C to +105°C  
55  
55  
70  
68  
µA  
channels)  
IQ, VBIAS  
VBIAS quiescent current (single  
IOUT1 = IOUT2 = 0, VON2 = 0 V, VIN1,2 = VON1 = VBIAS  
5 V  
=
µA  
µA  
channel)  
ISD, VBIAS  
ISD, VIN1,2  
ION1,2  
VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
1
2
8
0.5  
VIN1,2 = 5 V  
10  
3
0.1  
0.07  
0.05  
0.04  
VIN1,2 = 3.3 V  
4
2
VIN1,2 shutdown current (per  
channel)  
VON1,2 = 0 V, VOUT1,2 = 0 V  
VIN1,2 = 1.8 V  
VIN1,2 = 1.2 V  
VIN1,2 = 0.8 V  
µA  
3
1
2
1
2
ON pin input leakage current  
VON = 5.5 V  
0.1  
µA  
RESISTANCE CHARACTERISTICS  
25°C  
27  
25  
36  
40  
42  
34  
38  
40  
34  
38  
40  
34  
38  
40  
34  
38  
40  
34  
38  
40  
320  
VIN = 5 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
25  
–40°C to +85°C  
–40°C to +105°C  
25°C  
IOUT = –200 mA, VBIAS = 5 V  
VON1,2 = 5 V  
RON  
On-state resistance  
25  
–40°C to +85°C  
–40°C to +105°C  
25°C  
25  
–40°C to +85°C  
–40°C to +105°C  
25°C  
25  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
mΩ  
(1)  
RPD  
Output pulldown resistance  
VIN = 5 V, VON = 0 V, IOUT = 10 mA  
270  
Ω
(1) TPS22968 only.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
 
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
7.6 Electrical Characteristics (VBIAS = 2.5 V)  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40 °C TA +105 °C (full) and VBIAS = 2.5 V. Typical values are for TA = 25°C (unless otherwise noted).  
MA  
UNIT  
X
PARAMETER  
TEST CONDITIONS  
TA  
MIN TYP  
POWER SUPPLIES AND CURRENTS  
VBIAS quiescent current (both  
channels)  
IOUT1 = IOUT2 = 0, VIN1,2 = VON1,2 = VBIAS = 2.5 V  
–40°C to +105°C  
–40°C to +105°C  
18  
18  
27  
27  
µA  
IQ, VBIAS  
VBIAS quiescent current (single  
channel)  
IOUT1 = IOUT2 = 0, VON2 = 0 V, VIN1,2 = VON1 = VBIAS  
2.5 V  
=
µA  
µA  
ISD, VBIAS  
ISD, VIN1,2  
ION1,2  
VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
0.5  
0.1  
2
2
VIN1,2 = 2.5 V  
4
0.07  
0.05  
0.04  
2
VIN1,2 = 1.8 V  
3
VIN1,2 shutdown current (per  
channel)  
VON1,2 = 0 V, VOUT1,2 = 0 V  
µA  
1
VIN1,2 = 1.2 V  
2
1
VIN1,2 = 0.8 V  
2
ON pin input leakage current  
VON = 5.5 V  
0.1  
µA  
RESISTANCE CHARACTERISTICS  
25°C  
30  
28  
28  
27  
26  
39  
44  
46  
36  
41  
43  
36  
41  
43  
36  
41  
43  
35  
39  
41  
VIN = 2.5 V  
VIN = 1.8 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
mΩ  
mΩ  
mΩ  
mΩ  
–40°C to +85°C  
–40°C to +105°C  
25°C  
IOUT = –200 mA, VBIAS = 2.5 V  
VIN = 1.5 V  
RON  
On-state resistance  
–40°C to +85°C  
–40°C to +105°C  
25°C  
VON1,2 = 5 V  
VIN = 1.2 V  
–40°C to +85°C  
–40°C to +105°C  
25°C  
VIN = 0.8 V  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
mΩ  
(1)  
RPD  
Output pulldown resistance  
VIN = 2.5 V, VON = 0 V, IOUT = 10 mA  
270 320  
Ω
(1) TPS22968 only.  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
7.7 Switching Characteristics  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN = VON = VBIAS = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1128  
5
1387  
2
µs  
tF  
tD  
455  
VIN = 0.8 V, VON = VBIAS = 5 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
508  
33  
273  
2
µs  
µs  
µs  
tF  
tD  
377  
VIN = 2.5 V, VON = 5 V, VBIAS = 2.5V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1718  
7
1701  
2
tF  
tD  
859  
VIN = 0.8 V, VON = 5 V, VBIAS = 2.5 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turnon time  
Turnoff time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1117  
30  
651  
2
tF  
tD  
775  
7.8 Typical DC Characteristics  
60  
60  
50  
40  
30  
20  
10  
0
-40èC  
25èC  
-40èC  
25èC  
85èC  
105èC  
50  
85èC  
105èC  
40  
30  
20  
10  
0
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
Bias Voltage (V)  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
Bias Voltage (V)  
D051  
D052  
VIN1 = VIN2 = VBIAS  
VON1 = VON2 = 5 V  
VOUT = Open  
VIN1 = VIN2 = VBIAS  
VON1 = 5 V  
VON2 = 0 V  
VOUT = Open  
1. Bias Voltage vs Quiescent Current  
2. Bias Voltage vs Quiescent Current  
(Both Channels)  
(Single Channel)  
版权 © 2014–2017, Texas Instruments Incorporated  
7
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
Typical DC Characteristics (接下页)  
1.2  
0.12  
0.1  
-40èC  
25èC  
-40èC  
25èC  
85èC  
105èC  
1
85èC  
105èC  
0.8  
0.08  
0.06  
0.04  
0.02  
0
0.6  
0.4  
0.2  
0
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
Bias Voltage (V)  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
D053  
D054  
VIN1 = VIN2 = VBIAS  
VON1 = VON2 = 0 V  
VOUT = 0 V  
VBIAS = 5 V  
VON1 = VON2 = 0 V  
VOUT = 0 V  
3. Bias Voltage vs Shutdown Current  
4. Input Voltage vs Shutdown Current  
(Both Channels)  
34  
32  
30  
28  
26  
24  
22  
29  
28.5  
28  
27.5  
27  
26.5  
26  
25.5  
25  
24.5  
24  
23.5  
23  
22.5  
22  
21.5  
VIN = 5 V  
VIN = 3.3 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.5 V  
VIN = 1.2 V  
VIN = 0.8 V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D055  
D056  
VBIAS = 2.5 V  
VBIAS = 5 V  
IOUT = –200 mA  
IOUT = –200 mA  
5. Temperature vs On-Resistance  
6. Temperature vs On-Resistance  
34  
32  
30  
28  
26  
24  
22  
20  
18  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
Input Voltage (V)  
4
4.4 4.8 5.2  
Input Voltage (V)  
D057  
D058  
VBIAS = 2.5 V  
VBIAS = 5 V  
I OUT = –200 mA  
IOUT = –200 mA  
7. Input Voltage vs On-Resistance  
8. Input Voltage vs On-Resistance  
8
版权 © 2014–2017, Texas Instruments Incorporated  
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
Typical DC Characteristics (接下页)  
2.5  
2
280  
-40èC  
25èC  
85èC  
105èC  
275  
270  
265  
260  
1.5  
1
VBIAS = 2.5 V  
VBIAS = 3.3 V  
VBIAS = 3.6 V  
VBIAS = 4.2 V  
VBIAS = 5 V  
0.5  
0
VBIAS = 5.5 V  
2.5  
2.9  
3.3  
3.7  
4.1  
4.5  
4.9  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
Input Voltage (V)  
ON Voltage (V)  
D059  
D025  
TA = 25°C  
VIN = 2 V  
VBIAS = 5 V  
VON = 0 V  
IOUT = 1 mA  
10. ON Voltage vs Output Voltage  
9. Input Voltage vs Pulldown Resistance (TPS22968 Only)  
(Single Channel)  
1200  
550  
500  
450  
400  
350  
300  
-40èC  
-40èC  
25èC  
85èC  
105èC  
25èC  
1100  
85èC  
105èC  
1000  
900  
800  
700  
600  
500  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
Input Voltage (V)  
4
4.4 4.8 5.2  
Input Voltage (V)  
D060  
D061  
VBIAS = 2.5 V  
CT= 1 nF  
VBIAS = 5 V  
CT = 1 nF  
11. Input Voltage vs Delay Time  
12. Input Voltage vs Delay Time  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
-40èC  
-40èC  
25èC  
85èC  
105èC  
25èC  
85èC  
105èC  
1.9  
1.8  
1.7  
1.6  
1.9  
1.8  
1.7  
1.6  
1.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
1.5  
0.8  
Input Voltage (V)  
D063  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
Input Voltage (V)  
VBIAS = 5 V  
CT = 1 nF  
D062  
VBIAS = 2.5 V  
CT = 1 nF  
14. Input Voltage vs Fall Time  
13. Input Voltage vs Fall Time  
版权 © 2014–2017, Texas Instruments Incorporated  
9
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
Typical DC Characteristics (接下页)  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
45  
35  
25  
15  
5
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D064  
D065  
VBIAS = 2.5 V  
CT = 1 nF  
VBIAS = 5 V  
CT = 1 nF  
15. Input Voltage vs Turnoff Time  
16. Input Voltage vs Turnoff Time  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
1200  
1150  
1100  
1050  
1000  
950  
900  
850  
800  
750  
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
700  
650  
600  
550  
500  
900  
0.8  
450  
0.5  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D066  
D067  
VBIAS = 2.5 V  
CT = 1 nF  
VBIAS = 5 V  
CT = 1 nF  
17. Input Voltage vs Turnon Time  
18. Input Voltage vs Turnon Time  
1800  
1600  
1400  
1200  
1000  
800  
1600  
1400  
1200  
1000  
800  
-40èC  
25èC  
85èC  
105èC  
-40èC  
25èC  
85èC  
105èC  
600  
400  
600  
0.8  
200  
0.5  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
D068  
D069  
VBIAS = 2.5 V  
CT = 1 nF  
VBIAS = 5 V  
CT = 1 nF  
19. Input Voltage vs Rise Time  
20. Input Voltage vs Rise Time  
10  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
7.9 Typical AC Characteristics  
VIN = 0.8 V  
VBIAS = 2.5 V  
CIN = 1 µF  
VIN = 0.8 V  
VBIAS = 5 V  
CIN = 1 µF  
RL = 10 Ω  
CL = 0.1 µF  
RL = 10 Ω  
CL = 0.1 µF  
21. Turnon Response Time  
22. Turnon Response Time  
VIN = 2.5 V  
VBIAS = 2.5 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 5 V  
VBIAS = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
RL = 10 Ω  
23. Turnon Response Time  
24. Turnon Response Time  
VIN = 0.8 V  
VBIAS = 2.5 V  
CIN = 1 µF  
CL = 0.1 µF  
VIN = 0.8 V  
VBIAS = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
RL = 10 Ω  
25. TurnOff Response Time  
26. Turnoff Response Time  
版权 © 2014–2017, Texas Instruments Incorporated  
11  
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
Typical AC Characteristics (接下页)  
VIN = 2.5 V  
VBIAS = 2.5 V  
CIN = 1 µF  
VIN = 5 V  
VBIAS = 5 V  
CIN = 1 µF  
CL = 0.1 µF  
RL = 10 Ω  
CL = 0.1 µF  
RL = 10 Ω  
27. Turnoff Response Time  
28. Turnon Response Time  
12  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
8 Parameter Measurement Information  
VIN  
VOUT  
CT1, 2  
CIN = 1µF  
VBIAS  
RL  
CL  
+
+
ON  
(A)  
ON  
GND  
œ
œ
TPS22968x  
OFF  
GND  
GND  
Single channel shown for clarity.  
Copyright © 2016, Texas Instruments Incorporated  
TEST CIRCUIT  
VON  
50%  
50%  
tF  
tR  
tOFF  
tON  
90%  
90%  
VOUT  
VOUT  
50%  
10%  
50%  
10%  
10%  
tD  
TIMING DIAGRAMS  
A. Rise and fall times of the control signal is 100 ns.  
29. Test Circuit and Timing Waveforms  
版权 © 2014–2017, Texas Instruments Incorporated  
13  
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS22968 is a 5.5-V, 4-A, dual-channel ultra-low RON load switch with controlled turnon. The device  
contains two N-channel MOSFETs. Each channel can support a maximum continuous current of 4 A and is  
controlled by an on and off GPIO-compatible input. The ON pin must be connected and cannot be left floating.  
The device is designed to control the turnon rate and therefore the inrush current. By controlling the inrush  
current, power supply sag can be reduced during turnon. The slew rate for each channel is set by connecting a  
capacitor to GND on the CT pins.  
The slew rate is proportional to the capacitor on the CT pin. See the Adjustable Rise Time section to determine  
the correct CT value for a desired rise time.  
The internal circuitry is powered by the VBIAS pin, which supports voltages from 2.5 V to 5.5 V. This circuitry  
includes the charge pump, QOD (optional), and control logic. For these internal blocks to function correctly, a  
voltage between 2.5 V and 5.5 V must be supplied to VBIAS.  
When a voltage is supplied to VBIAS, the ON1 pin goes low, and the ON2 pins go low, the QOD turns on. This  
connects VOUT1 and VOUT2 to GND through an on-chip resistor. The typical pulldown resistance (RPD) is  
270 Ω.  
9.2 Functional Block Diagram  
VIN1  
ON1  
CT1  
Control Logic  
VOUT1  
Not Present in  
TPS22968N  
GND  
VBIAS  
Charge Pump  
Not Present in  
TPS22968N  
VOUT2  
CT2  
ON2  
VIN2  
Control Logic  
Copyright © 2017, Texas Instruments Incorporated  
14  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
9.3 Feature Description  
9.3.1 ON and OFF Control  
The ON pins control the state of the switch. Asserting ON high enables the switch. ON is active high and has a  
low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard  
GPIO logic threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot  
be left floating and must be tied either high or low for proper functionality.  
9.3.2 Input Capacitor (Optional)  
When the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between  
VIN and GND to limit the voltage drop on the input supply caused by transient inrush currents. A 1-µF ceramic  
capacitor (CIN), placed close to the pins, is sufficient. Higher values of CIN can be used to further reduce the  
voltage drop during high-current application. When switching heavy loads, TI recommends having an input  
capacitor 10x higher than the output capacitor to avoid excessive voltage drop.  
9.3.3 Output Capacitor (Optional)  
TI highly recommends a CIN greater than CL, because of the integrated body diode in the NMOS switch. A CL  
greater than CIN can cause the voltage on VOUT to exceed VIN when the system supply is removed. This could  
result in current flow through the body diode from VOUT to VIN. TI recommends a CIN to CL ratio of 10 to 1 for  
minimizing VIN dip caused by inrush currents during startup.  
9.3.4 QOD (Optional)  
The TPS22968 includes a QOD feature. When the switch is disabled, a discharge resistor is connected between  
VOUT and GND. This resistor has a typical value of 270 and prevents the output from floating while the switch  
is disabled.  
9.3.5 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN VBIAS. The device is still functional if VIN > VBIAS, but it exhibits  
RON greater than what is listed in the Electrical Characteristics (VBIAS = 5 V) and Electrical Characteristics (VBIAS  
= 2.5 V) table. See 30 for an example of a typical device. Notice the increasing RON as VIN exceeds VBIAS  
voltage. Be sure to never exceed the maximum voltage rating for VIN and VBIAS  
.
50  
VBIAS = 2.5 V  
VBIAS = 3.3 V  
47.5  
VBIAS = 3.6 V  
VBIAS = 4.2 V  
VBIAS = 5 V  
45  
42.5  
40  
VBIAS = 5.5 V  
37.5  
35  
32.5  
30  
27.5  
25  
22.5  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
Input Voltage (V)  
4
4.4 4.8 5.2 5.6  
D070  
Temperature = 25°C  
IOUT = 200 mA  
30. On-Resistance vs Input Voltage  
版权 © 2014–2017, Texas Instruments Incorporated  
15  
 
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
9.3.6 Adjustable Rise Time  
A capacitor to GND on the CT pins sets the slew rate for each channel. The capacitor to GND on the CT pins  
must be rated for 25 V and above. An approximate formula for the relationship between CT and slew rate with  
VBIAS = 5 V is shown in 公式 1.  
SR = 0.32 × CT + 13.7  
where  
SR is the slew rate (in µs/V)  
CT is the capacitance value on the CT pin (in pF)  
The units for the constant 13.7 is in µs/V.  
(1)  
Rise time can be calculated by multiplying the input voltage by the slew rate. 1 contains rise time values  
measured on a typical device.  
1. Rise Time Table  
(1)  
Typical values at 25°C with a 25-V X7R 10% ceramic capacitor on CT  
CTx (pF)  
VIN = 5 V VIN = 3.3 V VIN = 2.5 V VIN = 1.8 V VIN = 1.5 V VIN = 1.2V VIN = 0.8 V  
0
65  
378  
48  
41  
35  
31  
131  
234  
449  
991  
2213  
4600  
29  
111  
192  
372  
825  
1828  
3841  
24  
83  
220  
253  
197  
152  
470  
704  
474  
363  
272  
140  
273  
595  
1349  
2805  
1000  
2200  
4700  
10000  
1387  
3062  
7091  
14781  
931  
717  
544  
2021  
4643  
9856  
1536  
3547  
7330  
1173  
2643  
5507  
(1) RISE TIME (µs) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10 , VBIAS = 5 V  
9.4 Device Functional Modes  
2 lists the device function table.  
2. Functional Table  
ONx  
L
VINx to VOUTx  
VOUTx to GND  
Off  
On  
On  
Off  
H
16  
版权 © 2014–2017, Texas Instruments Incorporated  
 
 
 
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section highlights some of the design considerations for implementing this device in various applications. A  
PSPICE model for this device is also available on the product page for additional information.  
10.1.1 Parallel Configuration  
To increase the current capabilities and lower the RON by approximately 50%, both channels can be placed in  
parallel as shown in 31 (parallel configuration). With this configuration, the CT1 and CT2 pins can be tied  
together to use one capacitor, CT, as shown in 31. With a single CT capacitor, the rise time is half of the  
typical rise-time value. Refer to the 1 for typical timing values.  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
System  
Module  
Source  
TPS22968  
VIN2  
ON2  
VOUT2  
CT2  
µC GPIO  
GND  
31. Parallel Configuration  
版权 © 2014–2017, Texas Instruments Incorporated  
17  
 
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
Application Information (接下页)  
10.1.2 Standby Power Reduction  
Any end equipment that is powered from the battery has a need to reduce current consumption to keep the  
battery charged for a longer time. TPS22968 helps to accomplish this by turning off the supply to the modules  
that are in standby state, and therefore, significantly reduces the leakage current overhead of the standby  
modules. See 32.  
Always ON  
Module  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
Source  
TPS22968  
GND  
Standby  
Module  
µC GPIO  
Single channel shown for clarity.  
32. Standby Power Reduction  
10.1.3 Power Supply Sequencing Without a GPIO Input  
In many end equipments, there is a need to power up various modules in a predetermined manner. The  
TPS22968 can solve the problem of power sequencing without adding any complexity to the overall system. See  
33.  
µC GPIO  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
Module 1  
Source  
TPS22968  
VIN2  
ON2  
VOUT2  
CT2  
Power  
Module 2  
Source  
GND  
VIN1 must be greater VIH  
.
33. Power Sequencing Without a GPIO Input  
18  
版权 © 2014–2017, Texas Instruments Incorporated  
 
 
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
Application Information (接下页)  
10.1.4 Reverse Current Blocking  
In certain applications, it may be desirable to have reverse current blocking. Reverse current blocking prevents  
current from flowing from the output to the input of the load switch when the device is disabled. With the following  
configuration, the TPS22968 can be converted into a single-channel switch with reverse current blocking. In this  
configuration, VIN1 or VIN2 can be used as the input and VIN2 or VIN1 is the output. See 34.  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
Source  
TPS22968  
VIN2  
ON2  
VOUT2  
CT2  
System  
Module  
GND  
µC GPIO  
34. Reverse Current Blocking  
版权 © 2014–2017, Texas Instruments Incorporated  
19  
 
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
10.2 Typical Application  
This application demonstrates how the TPS22968 can be used to power downstream modules with large  
capacitances. The example in 35 TPS22968 is powering a 100-µF capacitive output load.  
VIN1  
ON1  
VBIAS  
VOUT1  
CT1  
CT2  
ON  
OFF  
Dual Power  
Supply  
CIN  
CL  
RL  
Or  
GND  
Dual DC/DC  
converter  
VOUT2  
ON  
OFF  
ON2  
CIN  
CL  
RL  
GND  
TPS22968x  
GND  
Copyright © 2016, Texas Instruments Incorporated  
35. Typical Application Schematic for Powering a Downstream Module  
10.2.1 Design Requirements  
For this design example, use the following 3 as the input parameters.  
3. Design Parameters  
DESIGN PARAMETER  
VIN  
EXAMPLE VALUE  
3.3 V  
5 V  
VBIAS  
Load current  
4 A  
Output capacitance (CL)  
Allowable inrush current on VOUT  
22 µF  
0.33 A  
10.2.2 Detailed Design Procedure  
To begin the design process, the designer must know the following:  
VIN voltage  
VBIAS voltage  
Load current  
Allowable inrush current on VOUT due to CL capacitor  
10.2.2.1 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the  
device in the Electrical Characteristics (VBIAS = 5 V) and Electrical Characteristics (VBIAS = 2.5 V) . After the RON  
of the device is determined based upon the VIN and VBIAS conditions, use 公式 2 to calculate the VIN to VOUT  
voltage drop:  
DV = ILOAD ´RON  
where  
ΔV is the voltage drop from VIN to VOUT  
ILOAD is the load current  
RON is the On-resistance of the device for a specific VIN and VBIAS combination  
(2)  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
10.2.2.2 Inrush Current  
To determine how much inrush current is caused by the CL capacitor, use 公式 3.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
where  
20  
版权 © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
IINRUSH is the amount of inrush caused by CL  
CL is the capacitance on VOUT  
dt is the time it takes for change in VOUT during the ramp up of VOUT when the device is enabled  
dVOUT is the change in VOUT during the ramp up of VOUT when the device is enabled  
(3)  
The device offers adjustable rise time for VOUT. This feature allows the user to control the inrush current during  
turnon through the CTx pins. The appropriate rise time can be calculated using the design requirements and the  
inrush current equation ( 公式 3). See 公式 4 and 公式 5.  
330 mA = 22 µF × 3.3 V / dt  
dt = 220 µs  
(4)  
(5)  
To ensure an inrush current of less than 330 mA, choose a CT based on 1 or 公式 1 value that yields a rise  
time of more than 220 µs. See the oscilloscope captures in the Application Curves for an example of how the CT  
capacitor can be used to reduce inrush current. See 1 for correlation between rise times and CT values.  
An appropriate CL value must be placed on VOUT such that the IMAX and IPLS specifications of the device are not  
violated.  
10.2.2.3 Thermal Considerations  
The maximum IC junction temperature must be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use 公  
6.  
TJ(MAX) - TA  
=
P
D(MAX)  
RθJA  
where  
PD(max) is the maximum allowable power dissipation  
TJ(max) is the maximum allowable junction temperature (125°C for the TPS22968)  
TA is the ambient temperature of the device  
RθJA is the junction to air thermal impedance. See the Thermal Information table. This parameter is highly  
dependent upon board layout.  
(6)  
公式 7 to 公式 10 and 公式 11 to 公式 13 show two examples to determine how to use this information correctly:  
For VBIAS = 5 V, VIN = 5 V, the maximum ambient temperature with a 4-A load through each channel can be  
determined by using 公式 7 to 公式 10:  
White Space  
PD = I2 × R × 2 (multiplied by 2 because there are two channels)  
(7)  
White Space  
2ìI2 ìR =  
TJ(MAX) - TA  
RJA  
(8)  
(9)  
White Space  
TA = TJ(MAX) – RθJA × 2 × I2 × R  
White Space  
TA = 125°C – 62.5°C/W × 2 × (4 A)2 × 27 mΩ = 71°C  
(10)  
White Space  
For VBIAS = 5 V, VIN = 5 V, the maximum continuous current for an ambient temperature of 85°C with the same  
current flowing through each channel can be determined by using 公式 11 to 公式 13:  
Space  
TJ(MAX) - TA  
2´I2 ´R =  
RθJA  
(11)  
Space  
版权 © 2014–2017, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
TJ(MAX) - TA  
I =  
2´ R ´ RθJA  
(12)  
Space  
125°C – 105°C  
I =  
= 3.44 A per channel  
2´ 27mW ´ 62.5°C/ W  
(13)  
10.2.3 Application Curves  
The twp scope captures show the usage of a CT capacitor in conjunction with the device. A higher CT value  
results in a slower rise and a lower inrush current.  
VBIAS = 5 V  
CT = Open  
VIN = 3.3 V  
TA = 25°C  
VBIAS = 5 V  
CT = 220 pF  
VIN = 3.3 V  
TA = 25°C  
36. Inrush Current Without CT Capacitor  
37. Inrush Current With CT = 220 pF  
22  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
11 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5 V to 5.5 V and VIN range of 0.8 V to 5.5 V. This  
supply must be well regulated and placed as close to the device pin as possible with the recommended 1-µF  
bypass capacitor. If the supply is located more than a few inches from the device pins, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is  
required, an electrolytic, tantalum, or ceramic capacitor of 10 µF may be sufficient.  
12 Layout  
12.1 Layout Guidelines  
VIN and VOUT traces must be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
VINx pins must be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended  
bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor must be placed as close to the  
device pins as possible.  
VOUTx pins must be bypassed to ground with low-ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VINx bypass capacitor of X5R or X7R dielectric rating.  
This capacitor must be placed as close to the device pins as possible.  
The VBIAS pin must be bypassed to ground with low-ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.  
The CTx capacitors must be placed as close to the device pins as possible. The typical recommended CTx  
capacitance is a capacitor of X5R or X7R dielectric rating with a rating of 25 V or higher.  
12.2 Layout Example  
VOUT1 capacitor  
CT1 capacitor  
VIN1 capacitor  
Thermal  
relief vias  
VIN2 capacitor  
CT2 capacitor  
VOUT2 capacitor  
版权 © 2014–2017, Texas Instruments Incorporated  
23  
TPS22968, TPS22968N  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
有关 TPS22968 TPS22968-Q1 PSpice 瞬态模型,请参阅 SLVMA29。  
有关 TPS22968N TPS22968N-Q1 PSpice 瞬态模型,请参阅 SLVMBA9。  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
《管理浪涌电流》SLVA670A  
《负载开关功耗之静态电流与关断电流》SLVA757  
TPS22968EVM-007 双路 4A 负载开关》SLVUA30  
《负载开关热效应注意事项》SLVUA74  
TPS22968/68N-Q1 双通道 5.5V 4A 27mΩ 负载开关 EVM 用户指南》SLVUAE2A  
TPS22968NEVM 双路 4A 负载开关》SLVUAL0  
13.3 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TPS22968  
TPS22968N  
13.4 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
13.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.6 商标  
E2E is a trademark of Texas Instruments.  
Ultrabook is a trademark of Intel.  
13.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
24  
版权 © 2014–2017, Texas Instruments Incorporated  
TPS22968, TPS22968N  
www.ti.com.cn  
ZHCSCN4F JANUARY 2014REVISED JULY 2017  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22968DPUR  
TPS22968DPUT  
TPS22968NDPUR  
TPS22968NDPUT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DPU  
DPU  
DPU  
DPU  
14  
14  
14  
14  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
RB968  
NIPDAU  
NIPDAU  
NIPDAU  
RB968  
RB968N  
RB968N  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22968DPUR  
TPS22968DPUT  
TPS22968NDPUR  
TPS22968NDPUT  
WSON  
WSON  
WSON  
WSON  
DPU  
DPU  
DPU  
DPU  
14  
14  
14  
14  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
1.05  
1.05  
1.05  
1.05  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22968DPUR  
TPS22968DPUT  
TPS22968NDPUR  
TPS22968NDPUT  
WSON  
WSON  
WSON  
WSON  
DPU  
DPU  
DPU  
DPU  
14  
14  
14  
14  
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22968-Q1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关
TI

TPS22968DPUR

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968DPUT

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NDPUR

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NDPUT

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、25mΩ 负载开关 | DPU | 14 | -40 to 105
TI

TPS22968NQDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968NQDMGTQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968QDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968QDMGTQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22969

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关
TI

TPS22969DNYR

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22969DNYT

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI