TPS22968NQDMGTQ1 [TI]

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125;
TPS22968NQDMGTQ1
型号: TPS22968NQDMGTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125

开关
文件: 总33页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
TPS22968-Q1 5.5V4A27mΩ 导通电阻负载开关  
1 特性  
2 应用  
1
集成双通道负载开关  
符合汽车应用要求:  
汽车电子产品  
信息娱乐  
仪表板  
器件温度 1 级(工作环境温度范围:-40°C 至  
125°C)  
ADAS  
输入电压范围:0.8V 5.5V  
VBIAS 电压范围:2.5V 5.5V  
导通电阻  
3 说明  
TPS22968-Q1 是一款具有可配置上升时间的小型双通  
道负载开关。 此器件包含两个可在 0.8 5.5V 输入电  
压范围内运行的 N 通道 MOSFET,并且每通道可支持  
最大 4A 的持续电流。 每个开关可由一个打开/关闭输  
入(ON1 ON2)独立控制,此输入可与低压控制信  
号直接对接。 TPS22968-Q1 包含一个 270Ω 片上负  
载电阻,用于在此开关被关闭时进行快速输出放电。  
VIN = 5V (VBIAS = 5V) 时,RON = 29mΩ  
VIN = 3.3V (VBIAS = 5V) 时,RON = 27mΩ  
VIN = 1.8V (VBIAS = 5V) 时,RON = 26mΩ  
每通道最大 4A 持续开关电流  
低静态电流  
VBIAS = 5V 时为 58μA(双通道)  
低控制输入阈值支持使用 1.2/1.8/2.5/3.3V 逻辑器  
可通过 CT 引脚(1) 配置上升时间  
快速输出放电 (QOD)(2)  
TPS22968-Q1 采用节省空间的小型封装 (DMG),并且  
具有可湿性侧面和集成散热焊盘。 可湿性侧面支持目  
视焊接检查。 器件在自然通风环境下的额定运行温度  
范围为 40°C 125°C。  
10 引脚晶圆级小外形无引线 (WSON) 封装,具有  
可湿性侧面  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
静电放电 (ESD) 性能经测试符合 JEDEC STD 标准  
TPS22968-Q1  
WSON (10)  
2.00mm x 3.00mm  
±2kV 人体模型 (HBM) ±1kV 器件充电模型  
(CDM)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
锁断性能达 100mA,符合 JESD 78 II 类规范的要  
通用输入输出 (GPIO) 使能 - 高电平有效  
(1)  
有关 CT 值与上升时间的关系,请参见 Adjustable Rise Time  
(2)  
此特性通过一个 270Ω 电阻将开关的输出放电至接地 (GND),  
从而防止输出悬空。  
典型应用电路原理图  
VIN1  
VOUT1  
Dual  
Power  
Supply  
ON  
CIN  
ON1  
CL  
RL  
CT1  
CT2  
OFF  
GND  
or  
VBIAS  
Dual  
DC/DC  
converter  
VIN2  
ON2  
VOUT2  
ON  
CIN  
CL  
RL  
OFF  
GND  
TPS22968-Q1  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCP7  
 
 
 
 
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application .................................................. 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics (VBIAS = 5 V)..................... 5  
6.6 Electrical Characteristics (VBIAS = 3.3 V).................. 6  
6.7 Electrical Characteristics (VBIAS = 2.5 V).................. 7  
6.8 Switching Characteristics.......................................... 8  
6.9 Typical DC Characteristics........................................ 9  
6.10 Typical AC Characteristics.................................... 11  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 15  
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 23  
11.3 Thermal Considerations........................................ 24  
12 器件和文档支持 ..................................................... 25  
12.1 ....................................................................... 25  
12.2 静电放电警告......................................................... 25  
12.3 术语表 ................................................................... 25  
13 机械封装和可订购信息 .......................................... 25  
7
8
4 修订历史记录  
Changes from Original (November 2014) to Revision A  
Page  
已将器件状态更改为量产数据 ................................................................................................................................................. 1  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
5 Pin Configuration and Functions  
DMG Package  
(Top View)  
DMG Package  
(Bottom View)  
1
1
VIN1  
ON1  
VOUT1  
VOUT1  
VIN1  
ON1  
CT1  
CT1  
GND  
VBIAS  
ON2  
GND  
CT2  
VBIAS  
ON2  
CT2  
VIN2  
VOUT2  
VOUT2  
VIN2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VIN1  
ON1  
NO.  
1
I
I
Switch 1 input. Bypass this input with a ceramic capacitor to GND.  
Active-high switch 1 control input. Do not leave floating.  
2
Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 to 5.5 V. See  
VIN and VBIAS Voltage Range.  
VBIAS  
3
I
ON2  
4
5
I
Active-high switch 2 control input. Do not leave floating.  
VIN2  
I
Switch 2 input. Bypass this input with a ceramic capacitor to GND.  
VOUT2  
CT2  
6
O
O
O
O
Switch 2 output  
7
Switch 2 slew rate control. Can be left floating.  
GND  
8
Ground  
CT1  
9
Switch 1 slew rate control. Can be left floating.  
VOUT1  
Thermal Pad  
10  
Switch 1 output  
Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See Layout Guidelines.  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature (unless otherwise noted)(1)  
(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VIN1,2  
VBIAS  
Input voltage  
Bias voltage  
6
6
V
VOUT1,2 Output voltage  
6
V
VON1,2  
IMAX  
IPLS  
ON voltage  
6
V
Maximum continuous switch current per channel, TA = 50 °C  
4
A
Maximum pulsed switch current, pulse <300 µs, 2% duty cycle  
Maximum junction temperature  
6
A
TJ  
150  
300  
150  
°C  
°C  
°C  
TLEAD  
Tstg  
Maximum lead temperature (10-s soldering time)  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged-Device Model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
VBIAS  
5.5  
UNIT  
V
VIN1,2  
Input voltage range  
Bias voltage range  
ON voltage range  
Output voltage range  
0.8  
2.5  
0
VBIAS  
V
VON1,2  
VOUT1,2  
5.5  
V
VIN  
V
VIH, ON1,2 High-level input voltage, ON1,2  
VIL, ON1,2 Low-level input voltage, ON1,2  
VBIAS = 2.5 to 5.5 V  
VBIAS = 2.5 to 5.5 V  
1.2  
0
5.5  
V
0.5  
V
CIN1,2  
TA  
Input capacitor  
1(1)  
µF  
°C  
(2)  
Operating free-air temperature  
–40  
125  
(1) Refer to Application Information.  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (RθJA), as given by the following equation: TA(max) = TJ(max) – (RθJA × PD(max)).  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
6.4 Thermal Information  
TPS22968-Q1  
UNIT  
THERMAL METRIC(1) (2)  
DMG (10 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
55.6  
71.0  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
21.7  
°C/W  
1.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
21.7  
7.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
6.5 Electrical Characteristics (VBIAS = 5 V)  
VBIAS = 5 V. Typical values are for TA = 25°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX  
UNIT  
POWER SUPPLIES AND CURRENTS  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
58  
58  
70  
70  
68  
68  
2
VBIAS quiescent current (both  
channels)  
IOUT1 = IOUT2 = 0 A,  
VIN1,2 = VON1,2 = VBIAS = 5 V  
µA  
µA  
µA  
IQ, VBIAS  
VBIAS quiescent current (single IOUT1 = IOUT2 = 0 A,  
channel)  
VON2 = 0 V, VIN1,2 = VON1 = VBIAS = 5.0 V  
1
ISD, VBIAS  
VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
2
0.5  
0.1  
0.07  
0.05  
0.04  
8
VIN1,2 = 5 V  
36  
3
VIN1,2 = 3.3 V  
13  
2
VIN1,2 shutdown current (per  
channel)  
VON1,2 = 0 V,  
VIN1,2 = 1.8 V  
VOUT1,2 = 0 V  
ISD, VIN1,2  
µA  
6
1
VIN1,2 = 1.2 V  
4
1
VIN1,2 = 0.8 V  
4
ION1,2  
ON pin input leakage current  
VON = 5.5 V  
0.1  
µA  
mΩ  
mΩ  
mΩ  
mΩ  
RESISTANCE CHARACTERISTICS  
25°C  
29  
27  
35  
40  
43  
32  
36  
40  
32  
36  
39  
32  
36  
39  
32  
36  
39  
320  
VIN = 5 V  
–40°C to 85°C  
–40°C to 125°C  
25°C  
VIN = 3.3 V  
–40°C to 85°C  
–40°C to 125°C  
25°C  
26  
IOUT = –200 mA,  
VIN = 1.8 V  
RON  
ON-state resistance  
–40°C to 85°C  
–40°C to 125°C  
25°C  
VBIAS = 5 V  
26  
VIN = 1.2 V  
–40°C to 85°C  
–40°C to 125°C  
25°C  
26  
VIN = 0.8 V  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
mΩ  
RPD  
Output pulldown resistance  
VIN = 5 V, VON = 0 V, IOUT = 5 mA  
270  
Ω
Copyright © 2014–2015, Texas Instruments Incorporated  
5
 
 
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
6.6 Electrical Characteristics (VBIAS = 3.3 V)  
VBIAS = 3.3 V. Typical values are for TA = 25°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX  
UNIT  
POWER SUPPLIES AND CURRENTS  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
27  
27  
40  
40  
40  
40  
1
VBIAS quiescent current (both  
channels)  
IOUT1 = IOUT2 = 0 A,  
VIN1,2 = VON1,2 = VBIAS = 3.3 V  
µA  
µA  
µA  
IQ, VBIAS  
VBIAS quiescent current (single IOUT1 = IOUT2 = 0 A, VON2 = 0 V,  
channel)  
VIN1,2 = VON1 = VBIAS = 3.3 V  
0.5  
ISD, VBIAS  
VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
1
0.1  
3
VIN1,2 = 3.3 V  
VIN1,2 = 1.8 V  
VIN1,2 = 1.2 V  
VIN1,2 = 0.8 V  
13  
2
0.07  
0.05  
0.04  
6
VIN1,2 shutdown current (per  
channel)  
VON1,2 = 0 V,  
VOUT1,2 = 0 V  
ISD, VIN1,2  
µA  
1
4
1
4
ION1,2  
ON pin input leakage current  
VON = 5.5 V  
0.1  
µA  
mΩ  
mΩ  
mΩ  
RESISTANCE CHARACTERISTICS  
25°C  
32  
28  
38  
44  
48  
33  
38  
42  
33  
38  
41  
32  
37  
40  
320  
VIN = 3.3 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 0.8 V  
–40°C to 85°C  
–40°C to 125°C  
25°C  
–40°C to 85°C  
–40°C to 125°C  
25°C  
IOUT = –200 mA,  
VBIAS = 3.3 V  
RON  
ON-state resistance  
27  
–40°C to 85°C  
–40°C to 125°C  
25°C  
27  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
mΩ  
RPD  
Output pulldown resistance  
VIN = 3.3 V, VON = 0 V, IOUT = 5 mA  
270  
Ω
6
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
6.7 Electrical Characteristics (VBIAS = 2.5 V)  
VBIAS = 2.5 V. Typical values are for TA = 25°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX  
UNIT  
POWER SUPPLIES AND CURRENTS  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
19  
19  
27  
27  
27  
27  
1
VBIAS quiescent current (both  
channels)  
IOUT1 = IOUT2 = 0,  
VIN1,2 = VON1,2 = VBIAS = 2.5 V  
µA  
µA  
µA  
IQ, VBIAS  
VBIAS quiescent current (single IOUT1 = IOUT2 = 0,  
channel)  
VON2 = 0 V, VIN1,2 = VON1 = VBIAS = 2.5 V  
0.4  
ISD, VBIAS  
VBIAS shutdown current  
VON1,2 = 0 V, VOUT1,2 = 0 V  
1
0.1  
2
VIN1,2 = 2.5 V  
9
0.07  
0.05  
0.04  
2
VIN1,2 = 1.8 V  
VIN1,2 = 1.2 V  
VIN1,2 = 0.8 V  
6
VIN1,2 shutdown current (per  
channel)  
VON1,2 = 0 V,  
VOUT1,2 = 0 V  
ISD, VIN1,2  
µA  
1
4
1
4
ION1,2  
ON pin input leakage current  
VON = 5.5 V  
0.1  
µA  
mΩ  
mΩ  
mΩ  
RESISTANCE CHARACTERISTICS  
25°C  
39  
34  
45  
52  
57  
39  
46  
50  
37  
42  
46  
35  
41  
44  
320  
VIN = 2.5 V  
VIN = 1.8 V  
VIN = 1.2 V  
VIN = 0.8 V  
–40°C to 85°C  
–40°C to 125°C  
25°C  
–40°C to 85°C  
–40°C to 125°C  
25°C  
IOUT = –200 mA,  
VBIAS = 2.5 V  
RON  
ON-state resistance  
31  
–40°C to 85°C  
–40°C to 125°C  
25°C  
30  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 125°C  
mΩ  
RPD  
Output pulldown resistance  
VIN = 2.5 V, VON = 0 V, IOUT = 5 mA  
270  
Ω
Copyright © 2014–2015, Texas Instruments Incorporated  
7
 
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
MAX UNIT  
6.8 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VIN = VON = VBIAS = 5 V, TA = 25 °C (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1150  
4
1400  
2
µs  
µs  
µs  
µs  
µs  
µs  
tF  
tD  
469  
VIN = 0.8 V, VON = VBIAS = 5 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
514  
31  
271  
2
tF  
tD  
382  
VIN = 3.3 V, VON = 5 V, VBIAS = 3.3 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1455  
5
1592  
2
tF  
tD  
681  
VIN = 0.8 V, VON = 5 V, VBIAS = 3.3 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
805  
31  
455  
2
tF  
tD  
577  
VIN = 2.5 V, VON = 5 V, VBIAS = 2.5 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1800  
6
1830  
2
tF  
tD  
909  
VIN = 0.8 V, VON = 5 V, VBIAS = 2.5 V, TA = 25 ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
ON delay time  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
RL = 10 Ω, CL = 0.1 µF, CT = 1000 pF  
1140  
28  
664  
2
tF  
tD  
798  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
6.9 Typical DC Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
-40°C  
25°C  
90  
25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
125°C  
125°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VBIAS (V)  
VBIAS (V)  
C001  
C001  
VON = 5 V  
VOUT = Open  
VON = 5 V  
VOUT = Open  
Figure 1. IQ, VBIAS vs VBIAS (Single Channel)  
Figure 2. IQ, VBIAS vs VBIAS (Dual Channel)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-40°C  
25°C  
-40°C  
25°C  
125°C  
105°C  
125°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VBIAS (V)  
VIN (V)  
C001  
C001  
VON = 0 V  
VOUT = 0 V  
VBIAS = 5 V  
VOUT = 0 V  
VON = 0 V  
Figure 3. ISD, VBIAS vs VBIAS  
Figure 4. ISD, VIN vs VIN (One Channel)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VIN = 0.8V  
VIN = 0.8V  
VIN = 3.3V  
VIN = 5.0V  
VIN = 1.8V  
VIN = 3.3V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Ambient Temperature (ƒC)  
Ambient Temperature (ƒC)  
C001  
C001  
IOUT = –200 mA  
IOUT = –200 mA  
Figure 5. RON vs Ambient Temperature, VBIAS = 3.3 V  
Figure 6. RON vs Ambient Temperature , VBIAS = 5 V  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
Typical DC Characteristics (continued)  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
-40°C  
-40°C  
25°C  
45  
40  
35  
30  
25  
20  
15  
10  
25°C  
125°C  
125°C  
0.0  
0.0  
2.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
C001  
C001  
IOUT = –200 mA  
IOUT = –200 mA  
Figure 7. RON vs VIN, VBIAS = 3.3 V  
Figure 8. RON vs VIN, VBIAS = 5 V  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VIN = 0.8V  
VIN = 3.3V  
VIN = 5V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
1.0  
2.0  
3.0  
4.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
IOUT (A)  
VBIAS (V)  
C001  
C001  
TA = 25°C  
VBIAS = 5 V  
TA = 25°C  
IOUT = –200 mA  
Figure 9. RON vs IOUT  
Figure 10. RON vs VBIAS  
320  
310  
300  
290  
280  
270  
260  
250  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
25°C  
125°C  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 5V  
VBIAS = 5.5V  
3.0  
4.0  
5.0  
6.0  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
VBIAS (V)  
VON (V)  
C001  
C001  
VIN = VBIAS  
VON = 0 V  
IOUT = 5 mA  
TA = 25°C  
VIN = 2 V  
Figure 11. RPD vs VBIAS  
Figure 12. VOUT vs VON  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
6.10 Typical AC Characteristics  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω, CT = 1 nF (unless otherwise specified)  
900  
800  
700  
600  
500  
400  
300  
550  
500  
450  
400  
350  
300  
-40°C  
25°C  
-40°C  
25°C  
125°C  
125°C  
0.0  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
5.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
C001  
C001  
Figure 13. tD vs VIN, VBIAS = 3.3 V  
Figure 14. tD vs VIN, VBIAS = 5 V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
-40°C  
25°C  
-40°C  
25°C  
125°C  
125°C  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
2.0  
3.0  
4.0  
6.0  
VIN (V)  
VIN (V)  
C001  
C001  
Figure 15. tF vs VIN, VBIAS = 3.3 V  
Figure 16. tF vs VIN, VBIAS = 5 V  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
-40°C  
25°C  
25°C  
125°C  
125°C  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
2.0  
3.0  
4.0  
6.0  
VIN (V)  
VIN (V)  
C001  
C001  
Figure 17. tOFF vs VIN, VBIAS = 3.3 V  
Figure 18. tOFF vs VIN, VBIAS = 5 V  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
Typical AC Characteristics (continued)  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω, CT = 1 nF (unless otherwise specified)  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
1200  
1100  
1000  
900  
-40°C  
25°C  
-40°C  
25°C  
125°C  
125°C  
800  
700  
600  
500  
800  
700  
400  
0.0  
0.0  
2.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
C001  
C001  
Figure 19. tON vs VIN, VBIAS = 3.3 V  
Figure 20. tON vs VIN, VBIAS = 5 V  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
-40°C  
25°C  
1800  
1600  
1400  
1200  
1000  
800  
125°C  
125°C  
600  
400  
600  
400  
200  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
VIN (V)  
C001  
C001  
Figure 21. tR vs VIN, VBIAS = 3.3 V  
Figure 22. tR vs VIN, VBIAS = 5 V  
2000  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
VIN = 5V  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
25°C  
VIN = 3.3V  
VIN = 1.8V  
125°C  
600  
400  
3.0  
3.5  
4.0  
4.5  
5.0  
2000  
4000  
6000  
8000  
10000  
VBIAS (V)  
CT (pF)  
C001  
C001  
VIN = 2.5 V  
VBIAS = 5 V  
TA = 25°C  
Figure 23. tR vs VBIAS  
Figure 24. tR vs CT  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
Typical AC Characteristics (continued)  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω, CT = 1 nF (unless otherwise specified)  
Figure 25. Turn-On Response Time  
(VIN = 0.8 V, VBIAS = 2.5 V)  
Figure 26. Turn-On Response Time  
(VIN = 0.8 V, VBIAS = 5 V)  
Figure 27. Turn-On Response Time  
(VIN = 2.5 V, VBIAS = 2.5 V)  
Figure 28. Turn-On Response Time  
(VIN = 5 V, VBIAS = 5 V)  
Figure 29. Turn-Off Response Time  
(VIN = 0.8 V, VBIAS = 2.5 V)  
Figure 30. Turn-Off Response Time  
(VIN = 0.8 V, VBIAS = 5 V)  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
Typical AC Characteristics (continued)  
CIN = 1 µF, CL = 0.1 µF, RL = 10 Ω, CT = 1 nF (unless otherwise specified)  
Figure 31. Turn-Off Response Time  
(VIN = 2.5 V, VBIAS = 2.5 V)  
Figure 32. Turn-Off Response Time  
(VIN = 5 V, VBIAS = 5 V)  
7 Parameter Measurement Information  
VIN  
VOUT  
CT1,2  
CIN = 1 μF  
VBIAS  
ON  
CL  
+
RL  
+
 
ON  
(A)  
GND  
TPS22968-Q1  
GND  
GND  
OFF  
Single channel shown for clarity.  
Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
VOUT  
tON  
90%  
90%  
VOUT  
50%  
50%  
10%  
10%  
10%  
tD  
Timing Waveforms  
A. Rise and fall times of the control signal is 100 ns.  
Figure 33. Test Circuit and Timing Waveforms  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
8 Detailed Description  
8.1 Overview  
The device is a 5.5-V, 4-A, dual-channel ultra-low RON load switch with controlled turn on. The device contains  
two N-channel MOSFETs. Each channel can support a maximum continuous current of 4 A. Each channel is  
controlled by an on/off GPIO-compatible input. The ON pin must be connected and cannot be left floating. The  
device is designed to control the turn-on rate and therefore the inrush current. By controlling the inrush current,  
power supply sag can be reduced during turn-on. The slew rate for each channel is set by connecting a capacitor  
to GND on the CT pins.  
The slew rate is proportional to the capacitor on the CT pin. Refer to Adjustable Rise Time to determine the  
correct CT value for a desired rise time.  
The internal circuitry is powered by the VBIAS pin, which supports voltages from 2.5 to 5.5 V. This circuitry  
includes the charge pump, QOD, and control logic. For these internal blocks to function correctly, a voltage  
between 2.5 and 5.5 V must be supplied to VBIAS.  
When a voltage is supplied to VBIAS and the ON1, 2 pin goes low, the QOD turns on. This connects VOUT1, 2  
to GND through an on-chip resistor. The typical pulldown resistance (RPD) is 270 Ω.  
8.2 Functional Block Diagram  
VIN1  
Control  
Logic  
ON1  
CT1  
VOUT1  
GND  
VBIAS  
Charge Pump  
VOUT2  
CT2  
Control  
Logic  
ON2  
VIN2  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 ON/OFF Control  
The ON pins control the state of the switch. Asserting ON high enables the switch. ON is active high and has a  
low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard  
GPIO logic threshold. It can be used with any microcontroller with 1.2-V or higher GPIO voltage. This pin cannot  
be left floating and must be tied either high or low for proper functionality.  
8.3.2 Quick Output Discharge (QOD)  
The TPS22968-Q1 includes a QOD feature. When the switch is disabled, a discharge resistor is connected  
between VOUT and GND. This resistor has a typical value of 270 and prevents the output from floating while  
the switch is disabled.  
8.3.3 Adjustable Rise Time  
A capacitor to GND on the CT pins sets the slew rate for each channel. The capacitor to GND on the CT pins  
should be rated for 25 V and above. An approximate formula for the relationship between CT and slew rate with  
VBIAS = 5 V is:  
SR = 0.35 × CT + 25  
where  
SR = slew rate (in µs/V)  
CT = the capacitance value on the CT pin (in pF)  
The units for the constant 25 is in µs/V.  
(1)  
Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values  
measured on a typical device.  
Table 1. Rise Time Table  
Rise Time (µs)(1) (2)  
CTx (pF)  
VIN = 5 V  
84  
VIN = 3.3 V  
63  
VIN = 2.5 V  
52  
VIN = 1.8 V  
43  
VIN = 1.2 V  
35  
VIN = 0.8 V  
27  
0
220  
418  
285  
223  
168  
122  
88  
470  
711  
479  
372  
276  
196  
139  
1000  
2200  
4700  
10000  
1405  
3236  
6415  
13872  
952  
738  
545  
385  
271  
2174  
4306  
9261  
1684  
3317  
7150  
1246  
2454  
5253  
876  
615  
1725  
3694  
1217  
2591  
(1) 10% - 90%, CL = 0.1 µF, CIN = 1 µF, RL = 10 , VBIAS = 5 V  
(2) Typical values at 25°C with a 25-V X7R 10% ceramic capacitor on CT  
8.4 Device Functional Modes  
Table 2. Functional Table  
ONx  
L
VINx to VOUTx  
VOUTx to GND  
Off  
On  
On  
Off  
H
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section highlights some of the design considerations for implementing this device in various applications. A  
PSPICE model for this device is also available on the product page for further aid.  
9.1.1 Input Capacitor (Optional)  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor, a capacitor must be placed between VIN and GND. A 1-µF ceramic capacitor, CIN,  
placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop  
during high-current applications. When switching heavy loads, TI recommends to have an input capacitor about  
10× higher than the output capacitor to avoid excessive voltage drop.  
9.1.2 Output Capacitor (Optional)  
Due to the integrated body diode in the NMOS switch, TI highly recommends a CIN greater than CL. A CL greater  
than CIN can cause the voltage on VOUT to exceed VIN when the system supply is removed. This could result in  
current flow through the body diode from VOUT to VIN. TI recommends a CIN to CL ratio of 10 to 1 for minimizing  
VIN dip caused by inrush currents during startup.  
9.1.3 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN VBIAS. The device is still functional if VIN > VBIAS, but it will exhibit  
RON greater than what is listed in the Electrical Characteristics (VBIAS = 5 V) and Electrical Characteristics (VBIAS  
= 2.5 V). See Figure 34 for an example of a typical device. Notice the increasing RON as VIN exceeds VBIAS  
voltage. Be sure to never exceed the maximum voltage rating for VIN and VBIAS  
.
50  
VBIAS = 2.5V  
VBIAS = 3.3V  
45  
VBIAS = 5V  
40  
35  
30  
25  
20  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VIN (V)  
C001  
TA = 25°C  
IOUT = –200 mA  
Figure 34. RON vs VIN  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
 
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
Application Information (continued)  
9.1.3.1 Parallel Configuration  
To increase the current capabilities and lower the RON by approximately 50%, both channels can be placed in  
parallel as shown in Figure 35 (parallel configuration). With this configuration, the CT1 and CT2 pins can be tied  
together to use one capacitor, CT, as shown in Figure 35. With a single CT capacitor, the rise time will be half of  
the typical rise-time value. Refer to the Table 1 for typical timing values.  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
System  
Module  
Source  
TPS22968-Q1  
VIN2  
ON2  
VOUT2  
CT2  
µC GPIO  
GND  
Figure 35. Parallel Configuration Schematic  
9.1.3.2 Standby Power Reduction  
TPS22968-Q1 can help to reduce the standby power consumption of a module. Some loads will consume a non-  
trivial amount of power when turned off. If the power to the load is removed by the load switch, the standby  
power consumption can be significantly reduced.  
Always ON  
Module  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
Source  
TPS22968-Q1  
GND  
Standby  
Module  
µC GPIO  
Single channel shown for clarity.  
Figure 36. Standby Power Reduction Schematic  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
Application Information (continued)  
9.1.3.3 Power Supply Sequencing Without a GPIO Input  
In many end equipments, there is a need to power up various modules in a predetermined manner. TPS22968-  
Q1 can solve the problem of power sequencing without adding any complexity to the overall system.  
µC GPIO  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
Module 1  
Source  
TPS22968-Q1  
VIN2  
ON2  
VOUT2  
CT2  
Power  
Module 2  
Source  
GND  
A. VIN1 must be greater VIH  
.
Figure 37. Power Sequencing Without a GPIO Input Schematic  
9.1.3.4 Reverse Current Blocking  
In certain applications, it may be desirable to have reverse current blocking. Reverse current blocking prevents  
current from flowing from the output to the input of the load switch when the device is disabled. With the following  
configuration, the TPS22968-Q1 can be converted into a single-channel switch with reverse current blocking. In  
this configuration, VIN1 or VIN2 can be used as the input and VIN2 or VIN1 is the output.  
VBIAS  
VIN1  
ON1  
VOUT1  
CT1  
Power  
Source  
TPS22968-Q1  
VIN2  
ON2  
VOUT2  
CT2  
System  
Module  
GND  
µC GPIO  
Figure 38. Reverse Current Blocking Schematic  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
9.2 Typical Application  
This application demonstrates how the TPS22968-Q1 can be used to power a downstream load with a large  
capacitance. The example in Figure 39 is powering a 22-µF capacitive output load.  
VIN1  
ON1  
VOUT1  
Dual  
Power  
Supply  
ON  
CIN  
CL  
RL  
CT1  
CT2  
OFF  
GND  
or  
VBIAS  
Dual  
DC/DC  
converter  
VIN2  
ON2  
VOUT2  
ON  
CIN  
CL  
RL  
OFF  
GND  
TPS22968-Q1  
GND  
Figure 39. Typical Application Schematic for Powering a Downstream Module  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
3.3 V  
5.0 V  
VBIAS  
Output capacitance (CL)  
Allowable inrush current on VOUT  
22 µF  
0.400 A  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VIN voltage  
VBIAS voltage  
Output capacitance (CL)  
Allowable inrush current on VOUT due to CL capacitor  
9.2.2.1 Inrush Current  
To determine how much inrush current will be caused by the CL capacitor, use Equation 2.  
dVOUT  
I
= CL ´  
INRUSH  
dt  
where  
IINRUSH = amount of inrush current caused by CL  
CL = capacitance on VOUT  
dt = VOUT rise time  
dVOUT = increase in VOUT during the rise time  
(2)  
Inrush current is proportional to rise time. The rise time is adjustable by use of the CT capacitor. The appropriate  
rise time can be calculated using the design requirements and the inrush current equation (Equation 2).  
400 mA = 22 µF × 3.3 V / dt  
dt = 182 µs  
(3)  
(4)  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
To ensure an inrush current of less than 400 mA, choose a CT capacitor value that will yield a rise time of more  
than 182 µs. See the oscilloscope captures in the Application Curves for an example of how the CT capacitor  
can be used to reduce inrush current. See Table 1 for correlation between rise times and CT values.  
An appropriate CL value should be placed on VOUT such that the IMAX and IPLS specifications of the device are  
not violated.  
9.2.3 Application Curves  
The two scope captures below show how the CT capacitor can be used to reduce inrush current.  
VBIAS = 5 V  
CT = Open  
VIN = 3.3 V  
CL = 22 µF  
TA = 25°C  
VBIAS = 5 V  
CT = 220 pF  
VIN = 3.3 V  
CL = 22 µF  
TA = 25°C  
Figure 40. Inrush Current Without CT Capacitor  
Figure 41. Inrush Current With CT = 220 pF  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
 
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5 to 5.5 V and VIN range of 0.8 to 5.5 V. This supply  
must be well regulated and placed as close to the device pin as possible with the recommended 1-µF bypass  
capacitor. If the supply is located more than a few inches from the device pins, additional bulk capacitance may  
be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic,  
tantalum, or ceramic capacitor of 10 µF may be sufficient.  
11 Layout  
11.1 Layout Guidelines  
VIN and VOUT traces should be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
VINx pins should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended  
bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to  
the device pins as possible.  
VOUTx pins should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VINx bypass capacitor of X5R or X7R dielectric rating.  
This capacitor should be placed as close to the device pins as possible.  
The VBIAS pin should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.  
The CTx capacitors should be placed as close to the device pins as possible. The typical recommended CTx  
capacitance is a capacitor of X5R or X7R dielectric rating with a rating of 25 V or higher.  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
11.2 Layout Example  
VIN1  
ON1  
VOUT1  
CT1  
VBIAS  
ON2  
GND  
CT2  
VIN2  
VOUT2  
Dual-channel layout  
VIN1  
ON1  
VOUT1  
CT1  
VBIAS  
ON2  
GND  
CT2  
VIN2  
VOUT2  
Single-channel layout  
Via to internal  
or bottom layer  
Via to GND  
Figure 42. Layout Schematic  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
TPS22968-Q1  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
www.ti.com.cn  
11.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 150°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given ambient temperature, use Equation 5.  
TJ(MAX) - TA  
=
P
D(MAX)  
RθJA  
where  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (150°C for the TPS22968-Q1)  
TA = ambient temperature of the device  
R
θJA = junction to air thermal impedance. See Thermal Information. This parameter is highly dependent upon  
board layout. (5)  
Following are two examples demonstrating how to use the above information: For VBIAS = 5 V, VIN = 5 V, the  
maximum allowable ambient temperature with a 3-A load through each channel can be determined by using the  
following calculations.  
NOTE  
When calculating power dissipation in the switch, it is important to use the correct RON  
value. RON is dependent on the junction temperature of the device.  
PD = I2 × R × 2 (multiplied by 2 because there are two channels)  
(6)  
TJ(MAX)  TA  
2uI2 uR   
R-$  
(7)  
(8)  
(9)  
TA = TJ(MAX) – RθJA × 2 × I2 × R  
TA = 150°C – 55.6°C/W × 2 × (3 A)2 × 45 mΩ = 105°C  
For VBIAS = 5 V, VIN = 5 V, the maximum continuous current for an ambient temperature of 85°C with the same  
current flowing through each channel can be determined by using the following calculation:  
TJ(MAX) - TA  
2´I2 ´R =  
RθJA  
(10)  
TJ(MAX) - TA  
I =  
2´ R ´ RθJA  
(11)  
ꢀꢁꢂq& ± ꢃꢁq&  
2 u 45 m: u 55.6qC / W  
I   
  3.6 A  
(12)  
24  
版权 © 2014–2015, Texas Instruments Incorporated  
 
TPS22968-Q1  
www.ti.com.cn  
ZHCSDD9A NOVEMBER 2014REVISED FEBRUARY 2015  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22968NQDMGRQ1  
TPS22968NQDMGTQ1  
TPS22968QDMGRQ1  
TPS22968QDMGTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DMG  
DMG  
DMG  
DMG  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
11C  
11C  
SIV  
SIV  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS22968-Q1 :  
Catalog : TPS22968  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22968NQDMGRQ1 WSON  
DMG  
DMG  
DMG  
DMG  
10  
10  
10  
10  
3000  
250  
179.0  
179.0  
179.0  
179.0  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
3.2  
3.2  
3.2  
3.2  
1.0  
1.0  
1.0  
1.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
TPS22968NQDMGTQ1  
TPS22968QDMGRQ1  
TPS22968QDMGTQ1  
WSON  
WSON  
WSON  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22968NQDMGRQ1  
TPS22968NQDMGTQ1  
TPS22968QDMGRQ1  
TPS22968QDMGTQ1  
WSON  
WSON  
WSON  
WSON  
DMG  
DMG  
DMG  
DMG  
10  
10  
10  
10  
3000  
250  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DMG0010A  
WSON - 0.8 mm max height  
SCALE 4.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
A
-
A
3
0
.
0
0
0
SECTION A-A  
TYPICAL  
SEATING PLANE  
(0.2) TYP  
0.8  
0.7  
C
0.08 C  
0.05  
0.00  
0.84 0.1  
EXPOSED  
THERMAL PAD  
5
6
2X  
2
A
A
2.4 0.1  
10  
1
8X 0.5  
0.3  
0.2  
10X  
0.1  
0.05  
C A B  
C
PIN 1 ID  
(OPTIONAL)  
0.35  
10X  
0.25  
4222056/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMG0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.5)  
10X (0.25)  
(0.84)  
(R0.05) TYP  
10  
1
(0.95)  
(2.4)  
SYMM  
8X (0.5)  
6
5
SYMM  
(1.9)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL EDGE  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222056/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMG0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
SYMM  
10X (0.5)  
1
10  
10X (0.25)  
(1.08)  
SYMM  
(0.64)  
METAL  
TYP  
5
6
(R0.05) TYP  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
86% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4222056/B 02/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS22968QDMGRQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22968QDMGTQ1

具有可调节上升时间和输出放电功能的 2 通道、5.5V、4A、27mΩ 汽车负载开关 | DMG | 10 | -40 to 125
TI

TPS22969

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关
TI

TPS22969DNYR

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22969DNYT

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85
TI

TPS22970

具有输出放电功能的 3.6V、4A、4.7mΩ 负载开关
TI

TPS22970YZPR

具有输出放电功能的 3.6V、4A、4.7mΩ 负载开关 | YZP | 8 | -40 to 105
TI

TPS22970YZPT

具有输出放电功能的 3.6V、4A、4.7mΩ 负载开关 | YZP | 8 | -40 to 105
TI

TPS22971

具有可调节上升时间、电源正常指示和输出放电功能的 3.6V、3A、6.7mΩ 负载开关
TI

TPS22971YZPR

具有可调节上升时间、电源正常指示和输出放电功能的 3.6V、3A、6.7mΩ 负载开关 | YZP | 8 | -40 to 85
TI

TPS22971YZPT

具有可调节上升时间、电源正常指示和输出放电功能的 3.6V、3A、6.7mΩ 负载开关 | YZP | 8 | -40 to 85
TI

TPS22975

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关
TI