TPS22969 [TI]

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关;
TPS22969
型号: TPS22969
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关

开关
文件: 总30页 (文件大小:1955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
TPS22969 5.5V6A4.4mΩ 导通电阻负载开关  
1 特性  
3 说明  
1
集成单通道负载开关  
TPS22969 是一款小型,超低 RON,单通道负载开  
关,此开关具有受控开启功能。 此器件包含一个可在  
0.8V 5.5V 的输入电压范围内运行的 N 通道金属氧  
化物半导体场效应晶体管 (MOSFET),并且支持 6A 的  
最大持续  
VBIAS 电压范围:2.5V 5.5V  
VIN 电压范围:0.8V 5.5V  
超低 RON 电阻  
VIN = 1.05V (VBIAS = 5V) 时,RON = 4.4m  
电流。  
6A 最大持续开关电流  
低静态电流(VBIAS = 5V 时为 20µA(典型值))  
低关断电流(VBIAS = 5V 时为 1µA(典型值))  
器件的超低 RON 和高电流处理能力的组合使得此器件  
非常适合于驱动具有非常严格压降耐受的处理器电源  
轨。 器件的受控上升时间大大减少了由大容量负载电  
容导致的涌入电流,从而减少或消除了电源损耗。 此  
开关可由 ON 端子单独控制,此端子能够与微控制器  
或低压离散逻辑电路生成的低压控制信号直接对接。  
通过集成一个 224Ω 下拉电阻器,在开关关闭时实现  
快速输出放电 (QOD),此器件进一步减少总体解决方  
案尺寸。  
低控制输入阀值允许使用 1.2V 或更高通用输入输  
(GPIO) 接口  
V
BIAS VIN 范围内的受控和固定转换率  
VIN = 1.05V (VBIAS = 5V) 时,tR = 599µs  
快速输出放电 (QOD)  
带有散热焊盘的小外形尺寸无引线 (SON) 8 端子封  
静电放电 (ESD) 性能经测试符合 JESD 22 规范  
TPS22969 采用小型 3mm x 3mm SON-8 封装  
2kV 人体模型 (HBM)  
(DNY)DNY 封装集成有一个散热焊盘,此散热焊盘  
可在高电流和高温应用中实现高功率耗散。 器件在自  
然通风环境下的额定运行温度范围为 -40°C 85°C。  
1kV 充电器件模型 (CDM)  
2 应用范围  
Ultrabook™/笔记本电脑  
台式个人电脑  
工业用个人电脑  
Chromebook  
服务器  
器件信息  
订货编号  
封装  
封装尺寸  
3mm x 3mm  
超薄小外形尺寸封装  
(WSON) (8)  
TPS22969DNY  
机顶盒  
电信系统  
平板电脑  
4 简化电路原理图  
RON VIN 之间的关系(此时,VBIAS = 5VIOUT = -  
200mA)  
6
5.5  
5
4.5  
4
典型应用:驱动用于处理器的高电流内核电  
源轨  
3.5  
-40ƒC  
3
25ƒC  
2.5  
85ƒC  
2
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
DG007  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCJ7  
 
 
 
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 15  
Applications and Implementation ...................... 16  
9.1 Application Information............................................ 16  
9.2 Typical Application .................................................. 16  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Electrical Characteristics........................................... 6  
7.7 Switching Characteristics.......................................... 7  
7.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 14  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 Trademarks........................................................... 21  
12.2 Electrostatic Discharge Caution............................ 21  
12.3 Glossary................................................................ 21  
13 机械封装和可订购信息 .......................................... 21  
8
5 修订历史记录  
Changes from Original (February 2014) to Revision A  
Page  
完整版的最初发布版本。 ....................................................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
6 Terminal Configuration and Functions  
DNY PACKAGE  
8 TERMINAL  
VOUT  
1
2
3
4
VIN  
8
7
6
5
VOUT  
VOUT  
8
7
6
5
VIN  
VIN  
1
2
3
4
VOUT  
VIN  
VIN  
(Exposed thermal  
pad)  
VIN  
(Exposed thermal  
pad)  
VBIAS  
ON  
VOUT  
GND  
VBIAS  
ON  
VOUT  
GND  
Top View  
Bottom View  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See the Detailed  
Description section for more information.  
VIN  
1, 2  
I
I
Exposed thermal  
Pad  
Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See the Detailed  
Description section for more information.  
VIN  
VBIAS  
ON  
3
4
5
I
I
Bias voltage. Power supply to the device.  
Active high switch control input. Do not leave floating.  
Ground.  
GND  
Switch output. Place ceramic bypass capacitor(s) between this terminal and GND. See the Detailed  
Description section for more information.  
VOUT  
6, 7, 8  
O
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
VIN  
Input voltage range  
VBIAS  
VOUT  
VON  
IMAX  
IPLS  
TA  
Bias voltage range  
6
V
Output voltage range  
6
V
ON terminal voltage range  
6
V
Maximum Continuous Switch Current  
Maximum Pulsed Switch Current, pulse < 300-µs, 2% duty cycle  
Operating free-air temperature range  
Maximum junction temperature  
6
A
8
A
–40  
85  
125  
°C  
°C  
TJ  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
°C  
TSTG  
Storage temperature range  
–65  
150  
300  
2
TLEAD  
Maximum lead temperature (10-s soldering time)  
Human-Body Model (HBM)(2)  
Charged-Device Model (CDM)(3)  
°C  
kV  
(1)  
VESD  
1
kV  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
0.8  
2.5  
0
MAX  
VBIAS  
5.5  
UNIT  
V
VIN  
Input voltage range  
Bias voltage range  
ON voltage range  
Output voltage range  
VBIAS  
VON  
VOUT  
V
5.5  
V
VIN  
V
VIH, ON High-level voltage, ON  
VIL, ON Low-level voltage, ON  
VBIAS = 2.5V to 5.5V  
VBIAS = 2.5V to 5.5V  
1.2  
0
5.5  
V
0.5  
V
CIN  
Input Capacitor  
1(1)  
µF  
(1) Refer to Detailed Description section.  
7.4 Thermal Information  
TPS22969  
THERMAL METRIC(1)  
UNIT  
DNY  
8 TERMINALS  
RθJA  
Junction-to-ambient thermal resistance  
44.6  
44.4  
17.6  
0.4  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
17.4  
1.1  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
7.5 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA 85°C (Full) and VBIAS = 5.0V. Typical values are for TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CURRENTS AND THRESHOLDS  
IOUT = 0, VIN = VBIAS  
VON = 5.0V  
,
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
Full  
Full  
20.4  
1.1  
26.0  
µA  
µA  
ISD, VBIAS  
VON = 0V, VOUT = 0V  
1.5  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
VIN = 5.0V  
VIN = 3.3V  
VIN = 1.8V  
VIN = 1.05V  
VIN = 0.8V  
VON = 0V,  
VOUT = 0V  
ISD, VIN  
VIN shutdown current  
Full  
µA  
ION  
ON terminal leakage current  
ON terminal hysteresis  
VON = 5.5V  
VBIAS = VIN  
Full  
µA  
VHYS, ON  
25°C  
113  
4.4  
4.4  
4.4  
4.4  
4.4  
4.4  
mV  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
5.0  
5.6  
5.0  
5.6  
5.0  
5.6  
5.0  
5.6  
5.0  
5.6  
5.0  
5.6  
VIN = 5.0V  
VIN = 3.3V  
VIN = 2.5V  
VIN = 1.8V  
VIN = 1.05V  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
25°C  
Full  
25°C  
Full  
IOUT = –200mA,  
VBIAS = 5.0V  
25°C  
Full  
RON  
On-state resistance  
25°C  
Full  
25°C  
Full  
VIN = 0.8V  
IOUT = –6A,  
VBIAS = 5.0V  
VIN = 1.05V  
Full  
Full  
4.6  
5.8(1)  
233  
mΩ  
RPD  
Output pulldown resistance  
VIN = 5.0V, VON = 0V, VOUT = 1V  
224  
(1) Parameter verified by design and characterization, but not tested in production.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
7.6 Electrical Characteristics  
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  
–40°C TA 85°C (Full) and VBIAS = 2.5V. Typical values are for TA = 25°C unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CURRENTS AND THRESHOLDS  
IOUT = 0, VIN = VBIAS  
VON = 5.0V  
,
IQ, VBIAS  
VBIAS quiescent current  
VBIAS shutdown current  
Full  
Full  
9.9  
0.5  
12.5  
µA  
µA  
ISD, VBIAS  
VON = 0V, VOUT = 0V  
0.65  
0.1  
0.1  
0.1  
0.1  
VIN = 2.5V  
VIN = 1.8V  
VIN = 1.05V  
VIN = 0.8V  
VON = 0V,  
VOUT = 0V  
ISD, VIN  
VIN shutdown current  
Full  
µA  
ON terminal input leakage  
current  
ION  
VON = 5.5V  
VBIAS = VIN  
Full  
0.1  
µA  
VHYS, ON  
ON terminal hysteresis  
25°C  
83  
4.7  
4.6  
4.5  
4.5  
224  
mV  
RESISTANCE CHARACTERISTICS  
25°C  
Full  
5.3  
6.0  
5.2  
5.8  
5.1  
5.7  
5.1  
5.7  
233  
VIN =2.5V  
VIN =1.8V  
VIN =1.05V  
VIN = 0.8V  
mΩ  
mΩ  
mΩ  
25°C  
Full  
IOUT = –200mA,  
VBIAS = 2.5V  
RON  
On-state resistance  
25°C  
Full  
25°C  
Full  
mΩ  
RPD  
Output pulldown resistance  
VIN = 2.5V, VON = 0V, VOUT = 1V  
Full  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
7.7 Switching Characteristics  
Refer to the timing test circuit in Figure 1 (unless otherwise noted) for references to external components used for the test  
condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up  
sequence where VIN and VBIAS are already in steady state condition before the ON terminal is asserted high.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN = 5V, VON = VBIAS = 5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
2397  
4
RL = 10Ω, CL = 0.1µF  
2663  
2
µs  
tF  
tD  
1009  
VIN = 1.05V, VON = VBIAS = 5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
1064  
4
RL = 10Ω, CL = 0.1µF  
599  
2
µs  
µs  
µs  
µs  
µs  
tF  
tD  
727  
VIN = 0.8V, VON = VBIAS = 5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
981  
4
RL = 10Ω, CL = 0.1µF  
500  
2
tF  
tD  
714  
VIN = 2.5V, VON = 5V, VBIAS = 2.5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
1576  
8
RL = 10Ω, CL = 0.1µF  
1372  
2
tF  
tD  
865  
VIN = 1.05V, VON = 5V, VBIAS = 2.5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
1080  
8
RL = 10Ω, CL = 0.1µF  
604  
2
tF  
tD  
738  
VIN = 0.8V, VON = 5V, VBIAS = 2.5V, TA = 25ºC (unless otherwise noted)  
tON  
tOFF  
tR  
Turn-on time  
Turn-off time  
VOUT rise time  
VOUT fall time  
Delay time  
994  
8
RL = 10Ω, CL = 0.1µF  
502  
2
tF  
tD  
723  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
VIN  
ON  
VOUT  
CIN = 1µF  
ON  
(A)  
CL  
+
-
RL  
OFF  
VBIAS  
GND  
TPS22969  
GND  
GND  
Timing Test Circuit  
VON  
50%  
50%  
tF  
tOFF  
tR  
VOUT  
tON  
90%  
90%  
VOUT  
50%  
50%  
10%  
10%  
10%  
tD  
Timing Waveforms  
(A) Rise and fall times of the control signal is 100ns.  
Figure 1. Switching Characteristics Measurement Setup and Definitions  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
7.8 Typical Characteristics  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VBIAS (V)  
DG001  
VBIAS (V)  
DG002  
VIN = VBIAS  
VON = 5V  
IOUT = 0A  
VIN = VBIAS  
VON = 0V  
VOUT = 0V  
Figure 2. IQ,VBIAS vs VBIAS  
Figure 3. ISD,VBIAS vs VBIAS  
6
0.03  
5.5  
5
0.025  
0.02  
0.015  
0.01  
0.005  
0
4.5  
4
3.5  
3
-40ƒC  
25ƒC  
85ƒC  
VIN = 0.8V  
VIN =1.2V  
VIN =1.8V  
VIN = 1.05V  
VIN =1.5V  
VIN =2.5V  
2.5  
2
-40  
-15  
10  
35  
60  
85  
DG004  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
DG003_5V  
Ambient Temperature (ƒC)  
VBIAS = 2.5V  
VON = 5V  
IOUT = –200mA  
VBIAS = 5V  
VON = 0V  
VOUT = 0V  
Figure 5. RON vs Ambient Temperature  
Figure 4. ISD,VIN vs VIN  
6
5.5  
5
6
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
-40ƒC  
25ƒC  
85ƒC  
2.4  
VIN = 0.8V  
VIN = 1.2V  
VIN = 2.5V  
VIN = 4.2V  
VIN = 1.05V  
VIN = 1.8V  
VIN = 3.3V  
VIN =5V  
2.5  
2
2.5  
2
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
-40  
-15  
10  
35  
60  
85  
DG006  
DG005  
VIN (V)  
Ambient Temperature (ƒC)  
VBIAS = 5V  
VON = 5V  
IOUT = –200mA  
VBIAS = 2.5V  
VON = 5V  
IOUT = –200mA  
Figure 6. RON vs Ambient Temperature  
Figure 7. RON vs VIN  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
6
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
-40ƒC  
25ƒC  
VBIAS = 2.5V  
VBIAS = 5V  
2.5  
2
2.5  
2
85ƒC  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
DG007  
DG012  
VBIAS = 5V  
VON = 5V  
IOUT = –200mA  
TA = 25°C  
VON = 5V  
IOUT = –200mA  
Figure 8. RON vs VIN  
Figure 9. RON vs VIN  
6
240  
235  
230  
225  
220  
215  
210  
205  
200  
5.5  
5
4.5  
4
3.5  
3
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
2.5  
2
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
DG010  
VIN (V)  
DG016  
VBIAS (V)  
VBIAS = 2.5V  
VON = 5V  
IOUT = -6A  
VON = 0V  
VIN = 1.05V  
VOUT = 1V  
Figure 11. RON vs VIN at 6A load  
Figure 10. RPD vs VBIAS  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
DG017HYS  
DG011  
VBIAS (V)  
VBIAS = 5V  
VON = 5V  
IOUT = -6A  
VIN = VBIAS  
Figure 12. RON vs VIN at 6A load  
Figure 13. VHYS vs VBIAS  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
Typical Characteristics (continued)  
1.2  
1.2  
1.1  
1
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.9  
0.8  
0.7  
0.6  
0.5  
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
DG098  
DG017H  
VBIAS (V)  
VBIAS (V)  
VIN = VBIAS  
IOUT = 0A  
VIN = VBIAS  
IOUT = 0A  
Figure 14. VIL,ON vs VBIAS  
Figure 15. VIH,ON vs VBIAS  
1000  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
900  
800  
700  
600  
500  
400  
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
0.8  
1.05  
1.3  
1.55  
VIN (V)  
1.8  
2.05  
2.3  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
DG018  
DG019  
VBIAS = 2.5V  
RL = 10Ω  
CL = 0.1µF  
VBIAS = 5V  
RL = 10Ω  
CL = 0.1µF  
Figure 16. tD vs VIN  
Figure 17. tD vs VIN  
4
3
2
1
0
4
3
2
1
0
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
0.8  
1.05  
1.3  
1.55  
VIN (V)  
1.8  
2.05  
2.3  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8  
DG020  
DG021  
VBIAS = 2.5V  
RL = 10Ω  
CL = 0.1µF  
VBIAS = 5V  
RL = 10Ω  
CL = 0.1µF  
Figure 18. tF vs VIN  
Figure 19. tF vs VIN  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
12  
6
5
4
3
2
11  
10  
9
8
7
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
6
5
4
0.8  
1.05  
1.3  
1.55  
VIN (V)  
1.8  
2.05  
2.05  
2.05  
2.3  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4
4
4.4 4.8  
DG022  
DG024  
VBIAS = 2.5V  
RL = 10Ω  
CL = 0.1µF  
VBIAS = 5V  
RL = 10Ω  
CL = 0.1µF  
Figure 20. tOFF vs VIN  
Figure 21. tOFF vs VIN  
1800  
3000  
2500  
2000  
1500  
1000  
500  
1600  
1400  
1200  
1000  
800  
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
600  
0.8  
1.05  
1.3  
1.55  
VIN (V)  
1.8  
2.3  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4.4 4.8  
DG025  
DG026  
VBIAS = 2.5V  
RL = 10Ω  
CL = 0.1µF  
VBIAS = 5V  
RL = 10Ω  
CL = 0.1µF  
Figure 22. tON vs VIN  
Figure 23. tON vs VIN  
1600  
3000  
2500  
2000  
1500  
1000  
500  
1400  
1200  
1000  
800  
-40ƒC  
25ƒC  
85ƒC  
-40ƒC  
25ƒC  
85ƒC  
600  
400  
0
0.8  
1.05  
1.3  
1.55  
VIN (V)  
1.8  
2.3  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4.4 4.8  
DG027  
DG028  
VBIAS = 2.5V  
RL = 10Ω  
CL = 0.1µF  
VBIAS = 5V  
RL = 10Ω  
CL = 0.1µF  
Figure 24. tR vs VIN  
Figure 25. tR vs VIN  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
Typical Characteristics (continued)  
3500  
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
VIN = 0.8V  
VIN = 1.05V  
VIN =1.5V  
VIN =2.5V  
VIN =3.6V  
VIN =5.0V  
3750  
3250  
2750  
2250  
1750  
1250  
750  
VIN =1.2V  
VIN =1.8V  
VIN =3.3V  
VIN =4.2V  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 3.6V  
VBIAS = 4.2V  
VBIAS = 5.0V  
VBIAS = 5.5V  
250  
500  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
VIN (V)  
4
4.4 4.8 5.2  
VBIAS (V)  
DG030  
DG023  
TA = 25°C  
RL = 10Ω  
CL = 0.1µF  
TA = 25°C  
RL = 10Ω  
CL = 0.1µF  
Figure 27. tR vs VBIAS for Various VIN  
Figure 26. tR vs VIN for Various VBIAS  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device is a 5.5V, 6A load switch in a 8-terminal SON package. To reduce voltage drop for low voltage and  
high current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out  
voltage through the device.  
The device has a controlled and fixed slew rate which helps reduce or eliminate power supply droop due to large  
inrush currents. During shutdown, the device has very low leakage currents, thereby reducing unneccessary  
leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output  
discharge FET eliminates the need for any external components, which reduces solution size and BOM count.  
8.2 Functional Block Diagram  
VIN  
Charge  
Pump  
VBIAS  
Control  
Logic  
Driver  
ON  
VOUT  
GND  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
8.3 Feature Description  
8.3.1 On/off Control  
The ON terminal controls the state of the load switch, and asserting the terminal high (active high) enables the  
switch. The ON terminal is compatible with standard GPIO logic threshold and can be used with any  
microcontroller or discrete logic with 1.2-V or higher GPIO voltage. This terminal cannot be left floating and must  
be tied either high or low for proper functionality.  
8.3.2 Input Capacitor (CIN)  
To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a  
discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-µF ceramic  
capacitor, CIN, placed close to the terminals, is usually sufficient. Higher values of CIN can be used to further  
reduce the voltage drop in high-current application. When switching heavy loads, it is recommended to have an  
input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop; however, a 10 to 1  
ratio for capacitance is not required for proper functionality of the device, but a ratio smaller than 10 to 1 (such as  
1 to 1) could cause a VIN dip upon turn-on due to inrush currents based on external factor such as board  
parasitics and output bulk capacitance.  
8.3.3 Output Capacitor (CL)  
Due to the integrated body diode in the N-channel MOSFET, a CIN greater than CL is highly recommended. A CL  
greater than CIN can cause VOUT to exceed VIN when the system supply is removed. This could result in current  
flow through the body diode from VOUT to VIN. A CIN to CL ratio of 10 to 1 is recommended for minimizing VIN  
dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper  
functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a VIN dip upon turn-on due to  
inrush currents based on external factor such as board parasitics and output bulk capacitance.  
8.3.4 VIN and VBIAS Voltage Range  
For optimal RON performance, make sure VIN VBIAS. The device may still be functional if VIN > VBIAS but it will  
exhibit RON greater than what is listed in the Electrical Characteristics table. See Figure 28 for an example of a  
typical device. Notice the increasing RON as VIN increases. Be sure to never exceed the maximum voltage rating  
for VIN and VBIAS. Performance of the device is not guaranteed for VIN > VBIAS  
.
10  
VBIAS = 2.5V  
VBIAS = 3.3V  
VBIAS = 4.2V  
VBIAS =5.5V  
VBIAS = 3.0V  
VBIAS = 3.6V  
VBIAS =5.0V  
9
8
7
6
5
4
3
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8 5.2  
DG055  
VIN (V)  
Figure 28. RON vs VIN (VIN > VBIAS  
)
Copyright © 2014, Texas Instruments Incorporated  
15  
 
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
9 Applications and Implementation  
9.1 Application Information  
This section will highlight some of the design considerations when implementing this device in various  
applications. A PSPICE model for this device is also available in the product page of this device on www.ti.com  
for further aid.  
9.2 Typical Application  
This application demonstrates how the TPS22969 can be used to power downstream modules with large  
capacitances. The example below is powering a 100-µF capacitive output load.  
VIN  
VOUT  
VIN  
VOUT  
VIN  
(exposed  
pad)  
CIN  
CL = 100µF  
VBIAS  
VBIAS  
GND  
ON  
ON  
Figure 29. Typical Application Schematic for Powering a Downstream Module  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
VBIAS  
1.05V  
5.0V  
6A  
Load current  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer needs to know the following:  
VIN voltage  
VBIAS voltage  
Load current  
9.2.2.1 VIN to VOUT Voltage Drop  
The VIN to VOUT voltage drop in the device is determined by the RON of the device and the load current. The  
RON of the device depends upon the VIN and VBIAS conditions of the device. Refer to the RON specification of the  
device in the Electrical Characteristics table of this datasheet. Once the RON of the device is determined based  
upon the VIN and VBIAS conditions, use Equation 1 to calculate the VIN to VOUT voltage drop:  
DV = ILOAD ´RON  
(1)  
where  
ΔV = voltage drop from VIN to VOUT  
ILOAD = load current  
RON = On-resistance of the device for a specific VIN and VBIAS combination  
An appropriate ILOAD must be chosen such that the IMAX specification of the device is not violated.  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
9.2.2.2 Inrush Current  
To determine how much inrush current will be caused by the CL capacitor, use Equation 2:  
dVOUT  
I
= CL ´  
INRUSH  
dt  
(2)  
where  
IINRUSH = amount of inrush caused by CL  
CL = capacitance on VOUT  
dt = time it takes for change in VOUT during the ramp up of VOUT when the device is enabled  
dVOUT = change in VOUT during the ramp up of VOUT when the device is enabled  
An appropriate CL value should be placed on VOUT such that the IMAX and IPLS specficiations of the device are  
not violated.  
Figure 30. Inrush current (VBIAS = 5V, VIN = 1.05V, CL = 100µF)  
9.2.2.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use  
Equation 3.  
TJ(MAX) - TA  
=
P
D(MAX)  
θJA  
(3)  
where  
PD(max) = maximum allowable power dissipation  
TJ(max) = maximum allowable junction temperature (125°C for the TPS22969)  
TA = ambient temperature of the device  
ΘJA = junction to air thermal impedance. See Thermal Information section. This parameter is highly  
dependent upon board layout.  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
 
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
9.2.3 Application Curves  
VBIAS = 5V  
CL = 0.1µF  
VIN = 5V  
CIN = 1µF  
CIN = 1µF  
CIN = 1µF  
VBIAS = 5V  
CL = 0.1µF  
VIN = 1.05V  
CIN = 1µF  
Figure 31. tR at VBIAS = 5V  
Figure 32. tR at VBIAS = 5V  
VBIAS = 2.5V  
CL = 0.1µF  
VIN = 2.5V  
VBIAS = 2.5V  
CL = 0.1µF  
VIN = 1.05V  
CIN = 1µF  
Figure 33. tR at VBIAS = 2.5V  
Figure 34. tR at VBIAS = 2.5V  
VBIAS = 5V  
CL = 0.1µF  
VIN = 5V  
VBIAS = 5V  
CL = 0.1µF  
VIN = 2.5V  
CIN = 1µF  
Figure 35. tF at VBIAS = 5V  
Figure 36. tF at VBIAS = 5V  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
VBIAS = 2.5V  
CL = 0.1µF  
VIN = 2.5V  
CIN = 1µF  
VBIAS = 2.5V  
CL = 0.1µF  
VIN = 0.8V  
CIN = 1µF  
Figure 37. tF at VBIAS = 2.5V  
Figure 38. tF at VBIAS = 2.5V  
10 Power Supply Recommendations  
The device is designed to operate from a VBIAS range of 2.5-V to 5.5-V and VIN range of 0.8-V to 5.5-V. This  
supply must be well regulated and placed as close to the device terminal as possible with the recommended 1µF  
bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is  
required, an electrolytic, tantalum, or ceramic capacitor of 10-µF may be sufficient.  
11 Layout  
11.1 Layout Guidelines  
VIN and VOUT traces should be as short and wide as possible to accommodate for high current.  
Use vias under the exposed thermal pad for thermal relief for high current operation.  
The VIN terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be  
placed as close to the device terminals as possible.  
The VOUT terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating.  
This capacitor should be placed as close to the device terminals as possible.  
The VBIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 0.1-µF ceramic with X5R or X7R dielectric.  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS22969  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
www.ti.com.cn  
11.2 Layout Example  
VIA to Power Ground Plane  
VIA to VIN Plane  
VIN Bypass  
VIN  
Capacitor  
VIN  
VOUT Bypass  
Capacitor  
VIN  
To Bias Supply  
VBIAS  
ON  
GND  
To GPIO  
control  
Exposed Thermal  
Pad Area  
Figure 39. Recommended Board Layout  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS22969  
www.ti.com.cn  
ZHCSCB5A MARCH 2014REVISED MARCH 2014  
12 器件和文档支持  
12.1 Trademarks  
Ultrabook is a trademark of Intel.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
21  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22969DNYR  
TPS22969DNYT  
ACTIVE  
ACTIVE  
WSON  
WSON  
DNY  
DNY  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
969A0  
969A0  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22969DNYR  
TPS22969DNYT  
WSON  
WSON  
DNY  
DNY  
8
8
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS22969DNYR  
TPS22969DNYT  
WSON  
WSON  
DNY  
DNY  
8
8
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WSON - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DNY0008A  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6±0.1  
SYMM  
0.5  
0.3  
EXPOSED THERMAL  
PAD  
5X  
(0.2) TYP  
6X 0.65  
4
5
SYMM  
2X  
1.95  
2.4±0.1  
0.35  
0.25  
8X  
0.1  
C A B  
C
8
1
0.05  
PIN1 ID  
(OPTIONAL)  
2X (0.2)  
0.5  
0.3  
4221022/E 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WSON - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
DNY0008A  
(1.6)  
5X (0.6)  
5X (0.3)  
SYMM  
(0.6)  
1
8
3X (0.65)  
SYMM  
(1.6)  
(0.325)  
(2.4)  
(0.95)  
(0.975)  
5
4
(R0.05) TYP  
(0.55)  
(2.8)  
(Ø0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MAX  
0.07 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221022/E 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WSON - 0.8 mm max height  
DNY0008A  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (1.47)  
SYMM  
5X (0.6)  
5X (0.3)  
(0.6)  
8
1
(0.325)  
(1.6)  
(0.63)  
SYMM  
2X  
(1.06)  
(0.975)  
5
3X (0.65)  
4
(R0.05) TYP  
METAL  
TYP  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4221022/E 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22969DNYR

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22969DNYT

具有输出放电功能的 5.5V、6A、4.4mΩ 负载开关 | DNY | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22970

具有输出放电功能的 3.6V、4A、4.7mΩ 负载开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22970YZPR

具有输出放电功能的 3.6V、4A、4.7mΩ 负载开关 | YZP | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22970YZPT

具有输出放电功能的 3.6V、4A、4.7mΩ 负载开关 | YZP | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22971

具有可调节上升时间、电源正常指示和输出放电功能的 3.6V、3A、6.7mΩ 负载开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22971YZPR

具有可调节上升时间、电源正常指示和输出放电功能的 3.6V、3A、6.7mΩ 负载开关 | YZP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22971YZPT

具有可调节上升时间、电源正常指示和输出放电功能的 3.6V、3A、6.7mΩ 负载开关 | YZP | 8 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22975

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22975DSGR

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22975DSGT

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS22975NDSGR

具有可调节上升时间、可选输出放电和热关断功能的 5.7V、6A、16mΩ 负载开关 | DSG | 8 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI