TPS2549-Q1 [TI]

具有压降补偿功能的汽车类 USB 充电端口控制器;
TPS2549-Q1
型号: TPS2549-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有压降补偿功能的汽车类 USB 充电端口控制器

控制器
文件: 总46页 (文件大小:3005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
TPS2549-Q1  
TPS2546-Q1 具有电缆补偿功能的汽车类 USB 充电端口控制器和电源开关  
充电电流过大也依然有效。这对于 USB 电缆较长的系  
统而言至关重要因为该系统在对便携式设备进行快速  
充电的过程中会产生大幅压降。  
1 特性  
符合 AEC-Q100 标准其中包括以下内容:  
– 器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
TP2549-Q1 47mΩ 电源开关具有两个可选的可编程电  
流限值可通过在相邻端口承载高负载时提供较低电流  
限值来支持端口电源管理。这对于具有多个端口并且上  
行电源无法同时为所有端口提供满载电流的系统而言至  
关重要。  
– 器件组件充电模式 (CDM) ESD 分类等级 C5  
4.5V 6.5V 的工作范围  
47mΩ典型值高侧 MOSFET  
3.2A 最大连续输出电流  
DCP_Auto 方案通过检测并选择合适的 D+ D– 设  
定与所连设备进行通信以便在满载电流条件下完成快  
速充电。集成的 CDP 检测支持针对多数采用同步数据  
通 信 的 便 携 式 设 备 进 行 快 速 充 电 充 电 电 流 高 达  
1.5A。  
用于电缆补偿的 ±5% 电流感测 (CS) 输出  
充电下行端口 (CDP) 模式符合 USB 电池充电规范  
1.2  
自动专用充电端口 (DCP) 模式选择:  
– 短路模式符合 BC1.2 YD/T 1591-2009  
2.7V 分压器 3 模式  
独特的客户端模式功能允许将软件更新为客户端设备,  
同时在保持数据线连接的情况下通过关闭内部电源开关  
来避免电源冲突。  
1.2V 模式  
面向系统更新的 D+ D– 客户端模式  
此外TPS2549-Q1 器件集成了针对 D+ D– 的  
VBUS 短路保护功能可避免在 D+ /D– 与 VBUS  
之 间 意 外 短 路 时 造 成 损 坏 。 为 了 节 省 应 用 空 间 ,  
TPS2549-Q1 器件还集成了 ESD 保护功能无需在 D  
+ D–中应用外部电路即可符合 IEC61000-4-2 标  
准。  
D+ DVBUS 短路保护  
D+ D±8kV 接触放电和 ±15kV 空气放电 ESD  
额定值 (IEC 61000-4-2)  
运行结温范围-40°C 125°C  
16 引脚 3mm x 3mm 四方扁平无引线 (QFN) 封装  
器件信息 (1)  
2 应用  
封装尺寸标称值)  
器件型号  
封装  
WQFN (16)  
汽车类 USB 端口USB 主机和集线器)  
汽车娱乐信息系统  
TPS2549-Q1  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
3 说明  
TPS2549-Q1 器件是一款具有电流感应输出可控制  
上行电源USB 充电端口控制器和电源开关。该器  
件可使 USB 端口电压维持在 5V 水平即使  
R(CABLE1)  
4.5 V to 6.5 V  
0.1 µF  
V(BAT)  
5 V  
IN  
OUT  
TPS2549-Q1  
Voltage  
Regulator  
R(STATUS)  
C(OUT)  
C(COMP)  
R(FAULT)  
R(FA)  
LMR14030  
LM53603-Q1  
LM25117-Q1  
TPS54340-Q1  
DM_IN  
DP_IN  
R(CABLE2)  
FAULT  
FAULT  
R(FB)  
STATUS  
GND  
STATUS  
CS  
FB  
ILIM_LO  
ILIM_HI  
EN  
Power Switch EN  
Mode Select I/O  
R(G)  
CTL1  
R_HI  
R_LO  
DM_OUT  
DP_OUT  
To Host  
Controller  
GND  
CTL2  
CTL3  
简化原理图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCE3  
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................25  
9 Application and Implementation..................................30  
9.1 Application Information............................................. 30  
9.2 Typical Application.................................................... 30  
9.3 Application Curves....................................................34  
10 Power Supply Recommendations..............................35  
11 Layout...........................................................................35  
11.1 Layout Guidelines................................................... 35  
11.2 Layout Example...................................................... 36  
12 Device and Documentation Support..........................37  
12.1 Documentation Support.......................................... 37  
12.2 Receiving Notification of Documentation Updates..37  
12.3 Support Resources................................................. 37  
12.4 Trademarks.............................................................37  
12.5 Electrostatic Discharge Caution..............................37  
12.6 Glossary..................................................................37  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................8  
6.7 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................15  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................17  
Information.................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2016) to Revision C (August 2020)  
Page  
更新了整个文档中的表格、图表和交叉参考的编号格式..................................................................................... 1  
Added Note (2) to Absolute Maximum Ratings table..........................................................................................4  
Added Footnote to Recommended Operating Conditions table......................................................................... 4  
Added paragraph to Typical Application section for clarification.......................................................................30  
Changes from Revision A (October 2015) to Revision B (July 2016)  
Page  
将最大输出电流更改为 3.2A............................................................................................................................... 1  
Changed maximum output current in Recommended Operating Conditions .................................................... 4  
Changed minimum current-set resistance in Recommended Operating Conditions .........................................4  
Added a row to the CURRENT LIMIT section in Electrical Characteristics ....................................................... 5  
Added a row to the CABLE COMPENSATION section of Electircal Characteristics ......................................... 5  
Added Receiving Notification of Documentation Updates section....................................................................37  
Changes from Revision * (October 2015) to Revision A (October 2015)  
Page  
将器件状态从“预量产”更改为“量产”...........................................................................................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
DM_OUT  
DP_OUT  
CS  
1
2
3
4
12  
11  
10  
9
OUT  
DM_IN  
DP_IN  
STATUS  
Thermal  
Pad  
5-1. RTE Package 16-Pin WQFN Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Provide sink current proportional to output current. For cable compensation, connect to the  
feedback divider of the up-stream voltage regulator.  
CS  
4
O
CTL1  
6
7
I
Logic-level control inputs for controlling the charging mode and the signal switches; (see 表  
CTL2  
I
8-2). These pins tie directly to IN or GND without a pullup or pulldown resistor.  
CTL3  
8
I
DM_IN  
DM_OUT  
DP_IN  
DP_OUT  
11  
2
I/O  
I/O  
I/O  
I/O  
Ddata line to downstream connector  
Ddata line to upstream USB host controller  
D+ data line to downstream connector  
D+ data line to upstream USB host controller  
10  
3
Logic-level control input for turning the power switch and the signal switches on/off. When  
EN is low, the device is disabled, the signal and power switches are OFF.  
EN  
5
I
Active-low open-drain output, asserted during overtemperature, overcurrent, and DP_IN and  
DM_IN overvoltage conditions. See 8-1.  
FAULT  
13  
O
GND  
14  
16  
Ground connection; should be connected externally to the thermal pad.  
Connect external resistor to ground to set the high current-limit threshold.  
ILIM_HI  
I
Connect external resistor to ground to set the low current-limit threshold and the load-  
detection current threshold.  
ILIM_LO  
IN  
15  
1
I
Input supply voltage; connect a 0.1 µF or greater ceramic capacitor from IN to GND as close  
to the IC as possible.  
PWR  
OUT  
12  
9
PWR  
O
Power-switch output  
STATUS  
Active-low open-drain output, asserted when the load exceeds the load-detection threshold  
Thermal pad on bottom of package. The thermal pad is internally connected to GND and is  
used to heat-sink the device to the circuit board. Connect the thermal pad to the GND plane.  
Thermal pad  
(1) I = Input, O = Output, I/O = Input and output, PWR = Power  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS2549-Q1  
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Voltages are with respect to GND unless otherwise noted(1)  
MIN  
MAX  
UNIT  
Voltage range  
CS, CTL1, CTL2, CTL3, EN, FAULT, ILIM_HI, ILIM_LO, IN,  
7
V
0.3  
OUT, STATUS  
DM_IN, DM_OUT, DP_IN, DP_OUT  
IN to OUT  
5.7(2)  
7
V
V
0.3  
7  
Continuous current in SDP, CDP or  
client mode  
DP_IN to DP_OUT or DM_IN to DM_OUT  
100  
mA  
100  
Continuous current in BC1.2 DCP  
mode  
DP_IN to DM_IN  
35  
mA  
35  
Continuous output current  
OUT  
Internally limited  
Internally limited  
25  
A
A
I(SRC)  
I(SNK)  
Continuous output source current  
Continuous output sink current  
ILIM_HI, ILIM_LO  
FAULT, STATUS  
CS  
mA  
A
Internally limited  
TJ  
Operating junction temperature  
Storage temperature  
Internally limited  
150  
°C  
°C  
40  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) If there is any risk for VBUS, DM_IN, DP_IN pins see voltage stresses beyond those listed under Absolute Maximum Ratings, for  
example, shorting to Car battery, please check TPS25840-Q1 and TPS254900A-Q1 with higher absolute maximum ratings  
6.2 ESD Ratings  
VALUE  
±2,000(2)  
±750(3)  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
IEC61000-4-2 contact discharge, DP_IN and DM_IN  
IEC61000-4-2 air di scharge, DP_IN and DM_IN  
±8,000  
IEC(4)  
±15,000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5  
(4) Surges per IEC61000-4-2, 1999 applied between DP_IN/DM_IN and output ground of the TPS2549Q1EVM-729 (SLVUAK6)  
evaluation module.  
6.3 Recommended Operating Conditions  
Voltages are with respect to GND unless otherwise noted.  
MIN  
4.5  
0
NOM  
MAX  
6.5  
UNIT  
V
V(IN)  
Supply voltage  
Input voltage  
IN  
CTL1, CTL2, CTL3, EN  
DM_IN, DM_OUT, DP_IN, DP_OUT  
OUT (40°C TA 85°C)  
DP_IN to DP_OUT or DM_IN to DM_OUT  
DP_IN to DM_IN  
6.5  
V
0
3.6  
V
I(OUT)  
Output continuous current  
3.2(1)  
30  
A
Continuous current in SDP, CDP or client mode  
Continuous current in BC1.2 DCP mode  
Continuous output sink current  
Current limit-set resistors  
mA  
mA  
mA  
k  
°C  
30  
15  
15  
FAULT, STATUS  
10  
R(ILIM_xx)  
TJ  
10.4  
1000  
125  
Operating junction temperature  
40  
(1) Operating at output continuous current greater than 3.2A is possible, however lifetime will be degraded.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
 
 
 
 
 
 
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
6.4 Thermal Information  
TPS2549-Q1  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
44.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.3  
17.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ψJT  
17.6  
ψJB  
RθJC(bot)  
4.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(CTL3) = V(IN)  
.
R(FAULT) = R(STATUS) = 10 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at  
25°C. All voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUT POWER SWITCH  
rDS(on)  
On-resistance(1)  
TJ = 25°C  
47  
47  
47  
57  
mΩ  
72  
80  
40°C TJ 85°C  
40°C TJ 125°C  
Ilkg(OUT)  
Reverse leakage current on  
OUT pin  
2
µA  
VOUT = 6.5 V, VIN = VEN = 0 V, 40°C TJ ≤  
85°C, measure I(OUT)  
OUT - DISCHARGE  
R(DCHG)  
OUT discharge resistance  
400  
500  
630  
Ω
EN, CTL1, CTL2, CTL3 INPUTS  
Input pin rising logic  
threshold voltage  
1
1.35  
1.15  
200  
2
V
V
Input pin falling logic  
threshold voltage  
0.85  
1.65  
Hysteresis(2)  
mV  
µA  
Input current  
Pin voltage = 0 V or 6.5 V  
1
1  
CURRENT LIMIT  
IOS  
OUT short-circuit current  
limit  
205  
600  
255  
660  
305 mA  
720  
R(ILIM_LO) = 210 kΩ  
R(ILIM_LO) = 80.6 kΩ  
R(ILIM_LO) = 23.2 kΩ  
R(ILIM_HI) = 20 kΩ  
2145  
2500  
2620  
3255  
3411  
3920  
4830  
5500  
2300  
2670  
2800  
3470  
3637  
4175  
5145  
7000  
2455  
2840  
2975  
R(ILIM_HI) = 19.1 kΩ  
R(ILIM_HI) = 15.4 kΩ  
R(ILIM_HI) = 14.7 kΩ  
R(ILIM_HI) = 12.9 kΩ  
R(ILIM_HI) = 10.4 kΩ  
R(ILIM_HI) shorted to GND  
3685  
3862  
4435  
5460  
8000  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS2549-Q1  
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(CTL3) = V(IN)  
.
R(FAULT) = R(STATUS) = 10 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at  
25°C. All voltages are with respect to GND.  
PARAMETER  
SUPPLY CURRENT  
I(IN_OFF)  
I(IN_ON)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Disabled IN supply current  
Enabled IN supply current  
0.1  
220  
226  
150  
115  
5
300  
300  
220  
190  
µA  
µA  
V(EN) = 0 V, V(OUT) = 0 V, 40°C TJ 85°C  
V(CTL)1 = V(CTL2) = V(CTL3) = V(IN)  
V(CTL1) = V(CTL2) = 0 V, V(CTL3) = V(IN)  
V(CTL2) = V(IN), V(CTL1) = V(CTL3) = 0 V  
V(CTL1) = V(IN), V(CTL2) = V(CTL3) = 0 V  
UNDERVOLTAGE LOCKOUT, IN  
V(UVLO)  
IN rising UVLO threshold  
3.9  
4.1  
4.3  
V
voltage  
Hysteresis(3)  
TJ = 25°C  
100  
mV  
FAULT  
Output low voltage  
Off-state leakage  
I(FAULT) = 1 mA  
V(FAULT) = 6.5 V  
100 mV  
µA  
2
STATUS  
Output low voltage  
Off-state leakage  
I(STATUS) = 1 mA  
V(STATUS) = 6.5 V  
100 mV  
2
µA  
THERMAL SHUTDOWN  
T(OTSD2) Thermal shutdown threshold  
T(OTSD1)  
155  
135  
°C  
°C  
Thermal shutdown threshold  
in current-limit  
Hysteresis(3)  
20  
°C  
LOAD DETECT (VCTL1 = VCTL2 = VCTL3 = VIN)  
I(LD)  
IOUT load detection threshold  
Hysteresis(3)  
630  
700  
50  
770 mA  
mA  
R(ILIM_LO) = 80.6 k, rising load current  
DP_IN AND DM_IN SHORT-TO-VBUS PROTECTION  
V(OV)  
Overvoltage protection trip  
threshold  
DP_IN and DM_IN rising  
3.7  
3.9  
4.15  
240  
V
Hysteresis(3)  
100  
210  
mV  
R(DCHG_Data)  
Discharge resistance after  
OVP  
V(DP_IN) = V(DM_IN) = 5 V  
160  
kΩ  
CABLE COMPENSATION  
I(CS) Sink current  
228  
214  
171  
149  
70  
240  
225  
180  
158  
75  
252  
236  
189  
166  
80  
µA  
Load = 3.2 A, 2.5 V V(CS) 6.5 V  
Load = 3 A, 2.5 V V(CS) 6.5 V  
Load = 2.4 A, 2.5 V V(CS) 6.5 V  
Load = 2.1 A, 2.5 V V(CS) 6.5 V  
Load = 1 A, 2.5 V V(CS) 6.5 V  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Unless otherwise noted, 40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(CTL3) = V(IN)  
.
R(FAULT) = R(STATUS) = 10 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive currents are into pins. Typical values are at  
25°C. All voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
HIGH-BANDWIDTH ANALOG SWITCH  
R(HS_ON)  
DP and DM switch on-  
resistance  
V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN) = 30  
mA  
2
2.9  
4
6
Ω
Ω
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN)  
=
15 mA  
Switch resistance mismatch V(DP_OUT) = V(DM_OUT) = 0 V, I(DP_IN) = I(DM_IN) = 30  
between DP and DM  
channels  
0.05  
0.05  
6.7  
0.15  
0.15  
|ΔR(HS_ON)  
|
mA  
V(DP_OUT) = V(DM_OUT) = 2.4 V, I(DP_IN) = I(DM_IN)  
=
15 mA  
C(IO_OFF)  
C(IO_ON)  
DP/DM switch off-state  
capacitance(4)  
VEN = 0 V, V(DP_IN) = V(DM_IN) = 0.3 V,  
Vac = 0.03 VPP , f = 1 MHz  
pF  
pF  
DP/DM switch on-state  
capacitance(4)  
V(DP_IN) = V(DM_IN) = 0.3 V,  
Vac = 0.03 VPP, f = 1 MHz  
10  
Off-state isolation(4)  
VEN = 0 V, f = 250 MHz  
f = 250 MHz  
27  
23  
dB  
dB  
On-state cross-channel  
isolation(4)  
Ilkg(OFF)  
BW  
Off-state leakage current,  
DP_OUT and DM_OUT  
VEN = 0 V, V(DP_IN) = V(DM_IN) = 3.6 V, V(DP_OUT)  
V(DM_OUT) = 0 V  
=
0.1  
1.5  
µA  
Bandwidth (3 dB)(4)  
R(L) = 50 Ω  
925  
MHz  
CHARGING DOWNSTREAM PORT DETECT  
V(DM_SRC)  
V(DAT_REF)  
DM_IN CDP output voltage  
0.5  
0.6  
50  
0.7  
0.4  
V
V
V(DP_IN) = 0.6 V, 250 µA < I(DM_IN) < 0 µA  
DP_IN rising lower window  
threshold for VDM_SRC  
activation  
0.36  
Hysteresis(4)  
mV  
V
V(LGC_SRC)  
DP_IN rising upper window  
threshold for VDM_SRC de-  
activation  
0.8  
40  
0.88  
V(LGC_SRC_HYS)  
I(DP_SINK)  
Hysteresis(4)  
100  
75  
mV  
µA  
DP_IN sink current  
V(DP_IN) = 0.6 V  
100  
200  
BC1.2 DCP MODE  
R(DPM_SHORT)  
DP_IN and DM_IN shorting  
resistance  
125  
Ω
DIVIDER3 MODE  
V(DP_DIV3)  
DP_IN output voltage  
DM_IN output voltage  
DP_IN output impedance  
DM_IN output impedance  
2.57  
2.57  
24  
2.7  
2.7  
30  
2.84  
2.84  
36  
V
V
V(DM_DIV3)  
R(DP_DIV3)  
I(DP_IN) = 5 µA  
I(DM_IN) = 5 µA  
kΩ  
kΩ  
R(DM_DIV3)  
1.2-V MODE  
V(DP_1.2V)  
24  
30  
36  
DP_IN output voltage  
DM_IN output voltage  
DP_IN output impedance  
DM_IN output impedance  
1.12  
1.12  
84  
1.2  
1.2  
1.26  
1.26  
126  
126  
V
V
V(DM_1.2V)  
R(DP_1.2V)  
100  
100  
I(DP_IN) = 5 µA  
I(DM_IN = 5 µA  
kΩ  
R(DM_1.2V)  
84  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS2549-Q1  
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
(3) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
(4) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
6.6 Switching Characteristics  
Unless otherwise noted 40°C TJ 125°C and 4.5 V V(IN) 6.5 V, V(EN) = V(IN), V(CTL1) = V(CTL2) = V(CTL3) = V(IN)  
.
R(FAULT) = R(STATUS) = 10 kΩ, R(ILIM_HI) = 19.1 kΩ, R(ILIM_LO) = 80.6 kΩ. Positive current is into pins. Typical value is at 25°C.  
All voltages are with respect to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
0.7  
TYP  
1.14  
0.35  
4.15  
1.8  
MAX UNIT  
tr  
OUT voltage rise time  
OUT voltage fall time  
OUT voltage turnon time  
OUT voltage turnoff time  
2
0.6  
6
ms  
ms  
ms  
ms  
s
V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω (see 7-1  
and 7-2)  
tf  
0.2  
ton  
V(IN) = 5 V, C(L) = 1 µF, R(L) = 100 Ω (see 7-1  
and 7-4)  
toff  
3
t(DCHG_L)  
Long OUT discharge hold  
time (SDP, CDP, or client  
mode to DCP_Auto)  
1.1  
2
2.9  
Time V(OUT) < 0.7 V (see 7-3)  
t(DCHG_S)  
Short OUT discharge hold  
time (DCP_Auto to SDP,  
CDP, or client mode)  
186  
320  
450  
ms  
Time V(OUT) < 0.7 V (see 7-3)  
t(IOS)  
OUT short-circuit response  
time(1)  
2
8
µs  
ms  
ns  
V(IN) = 5 V, R(SHORT) = 50 mΩ (see 6-25)  
t(OC_OUT_FAULT)  
OUT FAULT deglitch time  
Bidirectional deglitch applicable to current limit  
condition only (no deglitch assertion for OTSD)  
5.5  
11.5  
tpd  
Analog switch propagation  
delay (1)  
V(IN) = 5 V  
0.14  
0.02  
t(SK)  
Analog switch skew  
V(IN) = 5 V  
ns  
between opposite transitions  
of the same port (tPHL  
(1)  
tPLH  
)
t(LD_SET)  
t(LD_RESET)  
t(OV_D)  
Load-detect set time  
120  
1.8  
210  
3
280  
4.2  
ms  
s
V(IN) = 5 V (See 6-27)  
V(IN) = 5 V (See 6-28)  
V(OUT) = 5 V (See 6-29)  
Load-detect reset time  
DP_IN and DM_IN over-  
voltage protection response  
time  
2
µs  
t(OV_D_FAULT)  
DP_IN and DM_IN FAULT  
degltich time  
11  
16  
23  
ms  
V(OUT) = 5 V (See 6-30)  
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
70  
65  
60  
55  
50  
45  
40  
35  
30  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
D002  
D001  
VIN = 5 V  
VIN = 5 V  
6-2. Reverse Leakage Current vs Temperature  
6-1. Power Switch On-Resistance vs  
Temperature  
550  
4000  
3500  
3000  
V(IN) = 4.5 V  
V(IN) = 5 V  
V(IN) = 6.5 V  
540  
530  
520  
510  
500  
490  
480  
470  
2500  
R(ILIM_LO) = 210 kW  
2000  
R(ILIM_LO) = 80.6 kW  
R(ILIM_HI) = 20 kW  
1500  
R(ILIM_HI) = 19.1 kW  
R(ILIM_HI) = 15.4 kW  
1000  
500  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
D004  
D003  
VIN = 5 V  
A
6-4. OUT Short-Circuit Current Limit vs  
6-3. OUT Discharge Resistance vs Temperature  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
14  
280  
260  
240  
220  
200  
180  
V(IN) = 4.5 V  
V(IN) = 5 V  
V(IN) = 6.5 V  
V(IN) = 4.5 V  
V(IN) = 5 V  
V(IN) = 6.5 V  
12  
10  
8
6
4
2
0
-2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
D006  
D005  
CTL1 = 1  
CTL2 = 1  
CTL3 = 1  
CTL1 = 1  
CTL2 = 1  
CTL3 = 1  
6-6. Enabled IN Supply Current CDP (111) vs  
6-5. Disabled IN Supply Current vs Temperature  
Temperature  
290  
220  
V(IN) = 4.5 V  
V(IN) = 5 V  
V(IN) = 6.5 V  
V(IN) = 4.5 V  
V(IN) = 5 V  
V(IN) = 6.5 V  
270  
200  
250  
230  
210  
190  
180  
160  
140  
120  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
D007  
D008  
CTL1 = 0  
CTL2 = 0  
CTL3 = 1  
CTL1 = 0  
CTL2 = 1  
CTL3 = 0  
6-7. Enabled IN Supply Current DCP_Auto  
6-8. Enabled IN Supply Current SDP (010) vs  
(001) vs Temperature  
Temperature  
180  
720  
710  
700  
690  
680  
670  
660  
V(IN) = 4.5 V  
V(IN) = 5 V  
V(IN) = 6.5 V  
160  
140  
120  
100  
80  
650  
640  
I(LD), OUT Rising Load-Detect Threshold  
IOS, OUT Short-Circuit Current  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
D009  
D010  
CTL1 = 1  
CTL2 = 0  
CTL3 = 0  
R(ILIM_LO) = 80.6 kΩ  
6-9. Enabled IN Supply Current Client Mode  
6-10. IOUT Rising Load-Detect Threshold and  
(100) vs Temperature  
OUT Short-Circuit Current Limit vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
4.2  
4.2  
4.1  
4
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.9  
3.8  
3.7  
3.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
D012  
D011  
VIN = 5 V  
VIN = 5 V  
6-12. DM_IN Overvoltage Protection Threshold  
6-11. DP_IN Overvoltage Protection Threshold  
vs Temperature  
vs Temperature  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
I(OUT) = 1 A  
I(OUT) = 2.1 A  
I(OUT) = 2.4 A  
I(OUT) = 3 A  
I(OUT) = 1 A  
I(OUT) = 2.1 A  
I(OUT) = 2.4 A  
I(OUT) = 3 A  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (ºC)  
2.5  
3
3.5  
4
4.5  
CS Voltage (V)  
5
5.5  
6
6.5  
D013  
D014  
VIN = 5 V  
VCS = 2. 5 V  
VIN = 6.5 V  
6-13. ICS vs Temperature  
6-14. ICS vs VCS Voltage  
6-16. Off-State Data-Switch Isolation vs  
6-15. Data Transmission Characteristics vs  
Frequency  
Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
6-17. On-State Cross-Channel Isolation vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Forcing a page break between ImageMatrices  
6-18. Eye Diagram Using USB Compliance Test 6-19. Eye Diagram Using USB Compliance Test  
Pattern, Bypassing the TPS2549-Q1 Data Switch  
Pattern, Through the TPS2549-Q1 Data Switch  
V(EN)  
V(EN)  
5 V/div  
5 V/div  
V(OUT)  
V(OUT)  
2.5 V/div  
2.5 V/div  
I(IN)  
I(IN)  
0.5 A/div  
0.5 A/div  
C(LOAD) = 150 µF  
t = 1 ms/div  
C(LOAD) = 150 µF  
t = 1 ms/div  
R(LOAD) = 5 Ω  
R(LOAD) = 5 Ω  
6-20. Turnon Response  
6-21. Turnoff Response  
V(EN)  
V(EN)  
5 V/div  
5 V/div  
V(FAULT)  
5 V/div  
V(FAULT)  
5 V/div  
I(IN)  
I(IN)  
0.5 A/div  
1 A/div  
t = 2 ms/div  
t = 4 ms/div  
R(ILIM_HI) = 80.6 kΩ  
R(ILIM_HI) = 19.1 kΩ  
6-22. Enable Into Short  
6-23. Enable Into Short Thermal Cycling  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
V(FAULT)  
5 V/div  
V(OUT)  
2.5 V/div  
V(OUT)  
2.5 V/div  
I(IN)  
I(OUT)  
2 A/div  
10 A/div  
t = 1 µs/div  
t = 4 ms/div  
R(SHORT) = 50 mΩ  
R(ILIM_HI) = 19.1 kΩ  
6-25. Hot-Short Response Time  
6-24. Short-Circuit to Full-Load Recovery  
V(EN)  
V(OUT)  
2.5 V/div  
2.5 V/div  
V(STATUS)  
5 V/div  
I(OUT)  
I(OUT)  
0.5 A/div  
2 A/div  
t = 100 ms/div  
t = 1 ms/div  
R(ILIM_LO) = 80.6 kΩ  
R(ILIM_HI) = 19.1 kΩ R(SHORT) = 50 mΩ  
6-27. Load-Detection Set Time  
6-26. Hot Short  
V(STATUS)  
5 V/div  
V(DM_IN)  
V(OUT)  
2.5 V/div  
2.5 V/div  
V(DM_OUT)  
2.5 V/div  
I(OUT)  
0.5 A/div  
t = 1 s/div  
R(ILIM_LO) = 80.6 kΩ  
t = 1 µs/div  
R(DM_OUT) = 15 kΩ  
6-28. Load Detection Reset Time  
6-29. DM_IN Short to VBUS Response Time  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
V(FAULT)  
5 V/div  
V(FAULT)  
5 V/div  
V(DM_IN)  
2.5 V/div  
V(DM_IN)  
2.5 V/div  
V(DM_OUT)  
2.5 V/div  
V(DM_OUT)  
2.5 V/div  
t = 1 µs/div  
t = 4 ms/div  
R(DM_OUT) = 15 kΩ  
R(DM_OUT) = 15 kΩ  
6-31. DM_IN Short-to-VBUS Recovery  
6-30. DM_IN Short to VBUS  
7 Parameter Measurement Information  
OUT  
90%  
R(L)  
tr  
C(L)  
tf  
V(OUT)  
10%  
7-1. OUT Rise-Fall Test Load Figure  
7-2. Power-On and -Off Timing  
V(EN)  
50%  
50%  
5 V  
ton  
toff  
t(DCHG)  
V(OUT)  
90%  
V(OUT)  
0 V  
10%  
7-3. OUT Discharge During Mode Change  
7-4. Enable Timing, Active-High Enable  
IOS  
I(OUT)  
t(IOS)  
7-5. Output Short-Circuit Parameters  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS2549-Q1  
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS2549-Q1 device is a USB charging controller and power switch which integrates D+ and Dshort to  
VBUS protection, cable compensation and IEC ESD protection, and is suitable for automotive USB charging and  
USB port-protection applications.  
The TPS2549-Q1 device integrates a current-limited, power-distribution switch using N-channel MOSFETs for  
applications where short circuits or heavy capacitive loads can be encountered. The device allows the user to  
program the current-limit threshold via an external resistor. The device enters constant-current mode when the  
load exceeds the current limit threshold.  
The TPS2549-Q1 device also integrates CDP mode, defined in the BC1.2 specification, to enable up to 1.5-A  
fast charging of most of portable devices, meanwhile supporting data communication. In addition, the device  
integrates the DCP-auto feature to enable fast-charging of most portable devices including pads, tablets, and  
smart phones.  
The TPS2549-Q1 device integrates a cable compensation (CS) feature to compensate the voltage drop in long  
cables and keep the remote USB port output voltage constant.  
Additionally, the device integrates an IEC ESD cell to provide ESD protection up to ±8 kV (contact discharge)  
and ±15 kV (air discharge) per IEC 61000-4-2 on DP_IN and DM_IN, and integrates short-to-VBUS overvoltage  
protection on DP_IN and DM_IN to protect the upstream USB transceiver.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
8.2 Functional Block Diagram  
Current  
Sense  
CS  
OUT  
IN  
Disable + UVLO  
+ Discharge  
ILIM_HI  
ILIM_LO  
EN  
Current  
Limit  
Charge  
Pump  
8-ms  
Deglitch  
GND  
OC  
Driver  
FAULT  
UVLO  
Thermal  
Sense  
I(CS) = I(OUT) × 75 µA/A  
CS  
16-ms  
Deglitch  
OTSD  
OVP2  
OVP1  
DM_OUT  
DP_OUT  
DM_IN  
DP_IN  
CDP  
Detection  
CTL1  
CTL2  
DCP  
(Auto-Detection)  
STATUS  
Logic  
Control  
CTL3  
Discharge  
8.3 Feature Description  
8.3.1 FAULT Response  
The device features an active-low, open-drain fault output. FAULT goes low when there is a fault condition. Fault  
detection includes overtemperature, overcurrent, or DP_IN, DM_IN overvoltage. Connect a 10-kΩ pullup resistor  
from FAULT to IN.  
8-1 summarizes the conditions that generate a fault and actions taken by the device.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS2549-Q1  
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
8-1. Fault Conditions  
EVENT  
CONDITION  
ACTION  
Overcurrent on V(OUT)  
I(OUT) > IOS  
The device regulates switch current at IOS  
until thermal cycling occurs. The fault  
indicator asserts and de-asserts with an 8-ms  
deglitch (The device does not assert FAULT  
on overcurrent in SDP1 and DCP1 modes).  
Overvoltage on the data lines  
Overtemperature  
DP_IN or DM_IN > 3.9 V  
The device immediately shuts off the USB  
data switches. The fault indicator asserts with  
a 16-ms deglitch, and de-asserts without  
deglitch.  
TJ > OTSD2 in non-current-limited or TJ >  
OTSD1 in current-limited mode.  
The device immediately shuts off the internal  
power switch and the USB data switches.  
The fault indicator asserts immediately when  
the junction temperature exceeds OTSD2 or  
OTSD1 while in a current-limiting condition.  
The device has a thermal hysteresis of 20°C.  
8.3.2 Cable Compensation  
When a load draws current through a long or thin wire, there is an IR drop that reduces the voltage delivered to  
the load. In the vehicle from the voltage regulator 5-V output to the VPD_IN (input voltage of portable device),  
the total resistance of power switch rDS(on) and cable resistance causes an IR drop at the PD input.. So the  
charging current of most portable devices is less than their expected maximum charging current.  
V(OUT) With Compensation  
5.x  
VBUS With Compensation  
V(DROP)  
VBUS Without Compensation  
0
I(OUT) (A)  
0.5  
1
1.5  
2
2.5  
3
8-1. Voltage Drop  
TPS2549-Q1 device detects the load current and generates a proportional sink current that can be used to  
adjust output voltage of the upstream regulator to compensate the IR drop in the charging path. The gain G(CS)  
of the sink current proportional to load current is 75 µA/A.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
rDS(on)  
V(OUT)  
To Regulator OUT  
C(COMP)  
To Load  
VBUS  
IN  
OUT  
R1  
R2  
R(WIRE)  
R(LOAD)  
R(FA)  
C(OUT)  
R(FB)  
FB  
To Regulator  
Resistor Divider  
CS  
R(G)  
8-2. Cable Compensation Equivalent Circuit  
8.3.2.1 Design Procedure  
To start the procedure, the total resistance, including power switch rDS(on) and wire resistance R(WIRE), must to be  
known.  
1. Choose R(G) following the voltage-regulator feedback resistor-divider design guideline.  
2. Calculate R(FA) according to 方程式 1.  
RFA = (rDS(on) + R(WIRE) ) / G(CS)  
(1)  
3. Calculate R(FB) according to Equation 2.  
V
(OUT)  
R(FB)  
=
- R(G) - R(FA)  
V
/ R(G)  
(FB)  
(2)  
4. C(COMP) in parallel with R(FA) is needed to stablilize V(OUT) when C(OUT) is large. Start with C(COMP) 3 ×  
G(CS) × C(OUT), then adjust C(COMP) to optimize the load transient of the voltage regulator output. V(OUT)  
stability should always be verified in the end application circuit.  
8.3.3 D+ and DProtection  
D+ and Dprotection consists of ESD and OVP (overvoltage protection). The DP_IN and DM_IN pins integrate  
an IEC ESD cell to provide ESD protection up to ±15 kV air discharge and ±8 kV contact discharge per IEC  
61000-4-2 (See the ESD Ratings section for test conditions). Overvoltage protection (OVP) is provided for short-  
to-VBUS conditions in the vehicle harness to prevent damaging the upstream USB transceiver. Short-to-GND  
protection for D+ and Dis provided by the upstream USB transceiver.  
The ESD stress seen at DP_IN and DM_IN is impacted by many external factors like the parasitic resistance and  
inductance between ESD test points and the DP_IN and DM_IN pins. For air discharge, the temperature and  
humidity of the environment can cause some difference, so the IEC performance should always be verified in the  
end-application circuit.  
8.3.4 Output and D+ or DDischarge  
To allow a charging port to renegotiate current with a portable device, the TPS2549-Q1 device uses the OUT  
discharge function. This function turns off the power switch while discharging OUT with a 500-resistance, then  
turns the power switches to back on reassert the OUT voltage.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS2549-Q1  
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
For DP_IN and DM_IN, when OVP is triggered, the device turns on an internal discharge path with 210-Ω  
resistance. On removal of OVP, this path can discharge the remnant charges to automatically turn on analog  
switch and turn off this discharge path, thus back into normal mode.  
8.3.5 Port Power Management (PPM)  
PPM is the intelligent and dynamic allocation of power. PPM is for systems that have multiple charging ports but  
cannot power them all simultaneously.  
8.3.5.1 Benefits of PPM  
The benefits of PPM include the following:  
Delivers better user experience  
Prevents overloading of system power supply  
Allows for dynamic power limits based on system state  
Allows every port to potentially be a high-power charging port  
Allows for smaller power-supply capacity because loading is controlled  
8.3.5.2 PPM Details  
All ports are allowed to broadcast high-current charging. The current-limit is based on ILIM_HI. The system  
monitors the STATUS pin to see when high-current loads are present. Once the allowed number of ports asserts  
STATUS, the remaining ports are toggled to a non-charging port. The non-charging port current-limit is based on  
the ILIM_LO setting. The non-charging ports are automatically toggled back to charging ports when a charging  
port de-asserts STATUS.  
STATUS asserts in a charging port when the load current is above ILIM_LO + 40 mA for 210 ms (typical).  
STATUS de-asserts in a charging-port when the load current is below ILIM_LO 10 mA for 3 seconds (typical).  
8.3.5.3 Implementing PPM in a System With Two Charging Ports (CDP and SDP1)  
8-3 shows the implementation of the two charging ports with data communication, each with a TPS2549-Q1  
device and configured in CDP mode. In this example, the 5-V power supply for the two charging ports is rated at  
less than 3.5 A. Both TPS2549-Q1 devices have ILIM_LO of 1 A and ILIM_HI of 2.4 A. In this implementation,  
the system can support only one of the two ports at 2.4-A charging current, whereas the other port is set to  
SDP1 mode and I(LIMIT) corresponds to 1 A. In SDP1 mode, FAULT does not assert for overcurrent.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
TPS2549 -Q1 Port 1  
USB Charging  
Port 1  
5 V  
IN  
OUT  
EN1  
EN  
DM_IN  
DP_IN  
FAULT1  
FAULT  
STATUS  
ILIM _LO  
ILIM_HI  
CTL1  
CTL2  
R_HI  
R_LO  
GND  
100 kW  
CTL3  
TPS2549 -Q1 Port 2  
USB Charging  
Port 2  
IN  
OUT  
DM_IN  
DP_IN  
EN2  
EN  
FAULT2  
FAULT  
STATUS  
ILIM _LO  
ILIM_HI  
CTL1  
CTL2  
R_HI  
R_LO  
GND  
100 kW  
CTL3  
8-3. PPM With CDP and SDP1  
8.3.5.4 Implementing PPM in a System With Two Charging Ports (DCP and DCP1)  
8-4 shows the implementation of the two charging-only ports, each with a TPS2549-Q1 device and configured  
in DCP mode. In this example, the 5-V power supply for the two charging ports is rated at less than 3.5 A. Both  
TPS2549-Q1 devices have ILIM_LO of 1 A and ILIM_HI of 2.4 A. In this implementation, the system can support  
only one of the two ports at 2.4-A charging current, whereas the other port is set to DCP1 mode and I(LIMIT)  
corresponds to 1 A. In DCP1 mode, FAULT does not assert for overcurrent.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
TPS2549 -Q1 Port 1  
USB Charging  
Port 1  
5 V  
IN  
OUT  
EN1  
EN  
DM_IN  
DP_IN  
FAULT1  
FAULT  
STATUS  
ILIM _LO  
ILIM_HI  
CTL1  
CTL2  
R_HI  
R_LO  
GND  
100 kW  
CTL3  
TPS2549 -Q1 Port 2  
USB Charging  
Port 2  
IN  
OUT  
DM_IN  
DP_IN  
EN2  
EN  
FAULT2  
FAULT  
STATUS  
ILIM _LO  
ILIM_HI  
CTL1  
CTL2  
R_HI  
R_LO  
GND  
100 kW  
CTL3  
8-4. PPM With DCP and DCP1  
8.3.6 CDP and SDP Auto Switch  
The TPS2549-Q1 device is equipped with a CDP and SDP auto-switch feature to support some popular phones  
in the market. These popular phones do not comply with the BC1.2 specification because they fail to establish a  
data connection in CDP mode. These phones use primary detection (used to distinguish between an SDP and  
different types of charging ports) to only identify ports as SDP (data, no charge) or DCP (no data, charge). These  
phones do not recognize CDP (data, charge) ports. When connected to a CDP port, these phones classify the  
port as a DCP and only charge the battery. Because the charging ports are configured as CDP, users do not  
receive the expected data connection.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Device never signals  
connection and enumerates.  
Data connection is lost.  
Primary Detection  
D+  
D–  
VBUS  
VBUS Current  
8-5. CDP and SDP Auto-Switch  
To remedy this problem, the TPS2549-Q1 device employs a CDP and SDP auto-switch scheme to ensure these  
BC1.2 noncompliant phones establish data connection using the following steps.  
1. The TPS2549-Q1 device determines when a noncompliant phone has wrongly classified a CDP port as a  
DCP port and has not made a data connection.  
2. The TPS2549-Q1 device automatically completes an OUT (VBUS) discharge and reconfigures the port as an  
SDP.  
3. When reconfigured as an SDP, the phone detects a connection to an SDP and establishes a data connection.  
4. The TPS2549-Q1 device then switches automatically back to a CDP without doing an OUT (VBUS) discharge.  
5. The phone continues to operate as if connected to an SDP because OUT (VBUS) was not interrupted. The  
port is now ready in CDP if a new device is attached.  
8.3.7 Overcurrent Protection  
When an overcurrent condition is detected, the device maintains a constant output current and reduces the  
output voltage accordingly. Two possible overload conditions can occur. In the first condition, the output is  
shorted before the device enables or before the application of V(IN). The TPS2549-Q1 device senses the short  
and immediately switches into a constant-current output. In the second condition, a short or an overload occurs  
while the device is enabled. At the instant the overload occurs, high currents flow for 2 μs (typical) before the  
current-limit circuit reacts. The device operates in constant-current mode after the current-limit circuit has  
responded. Complete shutdown occurs only if the fault is presented long enough to activate overtemperature  
protection. The device remains off until the junction temperature cools to approximately 20°C and then restarts.  
The device continues to cycle on and off until the overcurrent condition is removed.  
8.3.8 Undervoltage Lockout  
The undervoltage-lockout (UVLO) circuit disables the device until the input voltage reaches the UVLO turnon  
threshold. Built-in hysteresis prevents unwanted oscillations on the output due to input voltage drop from large  
current surges.  
8.3.9 Thermal Sensing  
Two independent thermal-sensing circuits protect the TPS2549-Q1 device if the temperature exceeds  
recommended operating conditions. These circuits monitor the operating temperature of the power-distribution  
switch and disable operation. The device operates in constant-current mode during an overcurrent condition,  
which increases the voltage drop across power switch. The power dissipation in the package is proportional to  
the voltage drop across the power switch, so the junction temperature rises during an overcurrent condition.  
When the device is in a current-limiting condition, the first thermal sensor turns off the power switch when the die  
temperature exceeds OTSD1. If the device is not in a current-limiting condition, the second thermal sensor turns  
off the power switch when the die temperature exceeds OTSD2. Hysteresis is built into both thermal sensors,  
and the switch turns on after the device has cooled by approximately 20°C. The switch continues to cycle off and  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
then on until the fault is removed. The open-drain false-reporting output, FAULT, is asserted (low) during an  
overtemperature shutdown condition.  
8.3.10 Current Limit Setting  
The TPS2549-Q1 has two independent current-limit settings that are each programmed externally with a resistor.  
The ILIM_HI setting is programmed with R(ILIM_HI) connected between ILIM_HI and GND. The ILIM_LO setting is  
programmed with R(ILIM_LO) connected between ILIM_LO and GND. Consult the device truth table (8-2) to see  
when each current limit is used. Both settings have the same relation between the current limit and the  
programming resistor.  
R(ILIM_LO) is optional and the ILIM_LO pin may be left unconnected if the following conditions are met:  
The TPS2549-Q1 device is configured as DCP(001) or CDP(111).  
Load detection is not used.  
The following equation calculates the value of resistor for programming the typical current limit:  
53762 (V)  
R(ILIM_ xx)1.0021 (kW)  
I(OSnom) (mA) =  
(3)  
R(ILIM_xx) corresponds to either R(ILIM_HI) or R(ILIM_LO), as appropriate.  
Many applications require that the current limit meet specific tolerance limits. When designing to these tolerance  
limits, both the tolerance of the TPS2549-Q1 current limit and the tolerance of the external programming resistor  
must be taken into account. The following equations approximate the TPS2549-Q1 minimum and maximum  
current limits to within a few milliamperes and are appropriate for design purposes. The equations do not  
constitute part of TIs published device specifications for purposes of TIs product warranty. These equations  
assume an idealno variationexternal programming resistor. To take resistor tolerance into account, first  
determine the minimum and maximum resistor values based on its tolerance specifications and use these values  
in the equations. Because of the inverse relation between the current limit and the programming resistor, use the  
maximum resistor value in the I(OS_min) equation and the minimum resistor value in the I(OS_max) equation.  
50409 (V)  
R(ILIM_ xx)0.9982 (kW)  
I(OSmin) (mA) =  
- 35  
+ 41  
(4)  
(5)  
57813 (V)  
R(ILIM_ xx)1.0107 (kW)  
I(OSmax) (mA) =  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
700  
600  
500  
400  
300  
200  
100  
0
I(OSmin)  
I(OStyp)  
I(OSmax)  
I(OSmin)  
I(OStyp)  
I(OSmax)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
100 200 300 400 500 600 700 800 900 1000  
Current Limit Resistor (kW)  
Current Limit Resistor (kW)  
D019  
D020  
8-6. Current Limit Setting vs Programming  
8-7. Current Limit Setting vs Programming  
Resistor I  
Resistor II  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
The routing of the traces to the R(ILIM_xx) resistors should have a sufficiently low resistance so as to not affect the  
current-limit accuracy. The ground connection for the R(ILIM_xx) resistors is also very important. The resistors  
must reference back to the TPS2549-Q1 GND pin. Follow normal board layout practices to ensure that current  
flow from other parts of the board does not impact the ground potential between the resistors and the TPS2549-  
Q1 GND pin.  
8.4 Device Functional Modes  
8.4.1 Device Truth Table (TT)  
The device truth table (8-2) lists all valid combinations for the three control pins (CTL1 through CTL3), and the  
corresponding charging mode of each pin combination. The TPS2549-Q1 device monitors the CTL inputs and  
transitions to whichever charging mode it is commanded to go to. For example, if the USB port is a charging-only  
port, then the user must set the CTL pins of the TPS2549-Q1 device to correspond to the DCP-auto charging  
mode. However, when the USB port requires data communication, then the user must set control pins to  
correspond to the SDP or CDP mode, and so on.  
8-2. Truth Table  
STATUS  
OUTPUT  
(ACTIVE-  
LOW)  
FAULT  
OUTPUT  
(ACTIVE-  
LOW)  
CURRENT  
LIMIT  
SETTING  
CS FOR CABLE  
COMPENSATION  
CTL1  
CTL2  
CTL3  
MODE  
NOTES  
0
0
0
Lo  
Hi  
DCP1(1)  
OFF  
ON(2)  
ON  
ON  
DCP includes divider 3,  
1.2-V mode, and BC1.2  
mode  
0
0
1
DCP(1)  
ON  
ON  
DCP includes divider 3,  
1.2-V mode, and BC1.2  
mode  
0
1
1
0
X
X
Lo  
SDP  
OFF  
OFF  
ON  
ON  
Standard SDP port  
NA  
Client mode  
OFF  
OFF  
No current limit, power  
switch disabled, data  
switch bypassed  
1
1
1
1
0
1
Lo  
Hi  
SDP1(3)  
CDP(3)  
OFF  
ON  
ON(2)  
ON  
ON  
ON  
Standard SDP port  
CDP-SDP auto switch  
mode  
(1) No OUT discharge when changing between 000 and 001  
(2) FAULT not asserted on overcurrent  
(3) No OUT discharge when changing between 110 and 111  
8.4.2 USB Specification Overview  
The following overview references various industry standards. TI recommends consulting the most up-to-date  
standards to ensure the most recent and accurate information. Rechargeable portable equipment requires an  
external power source to charge batteries. USB ports are a convenient location for charging because of an  
available 5-V power source. Universally accepted standards are required to ensure host and client-side devices  
operate together in a system to ensure power-management requirements are met. Traditionally, host ports  
following the USB-2.0 specification must provide at least 500 mA to downstream client-side devices. Because  
multiple USB devices can be attached to a single USB port through a bus-powered hub, the client-side device  
sets the power allotment from the host to ensure the total current draw does not exceed 500 mA. In general,  
each USB device is granted 100 mA and can request more current in 100-mA unit steps up to 500 mA. The host  
grants or denies additional current based on the available current. A USB-3.0 host port not only provides higher  
data rate than a USB-2.0 port but also raises the unit load from 100 mA to 150 mA. Providing a minimum current  
of 900 mA to downstream client-side devices is required.  
Additionally, the success of USB has made the micro-USB and mini-USB connectors a popular choice for wall-  
adapter cables. A micro-USB or mini-USB allows a portable device to charge from both a wall adapter and USB  
port with only one connector. As USB charging has gained popularity, the 500-mA minimum defined by USB 2.0,  
or 900 mA for USB 3.0, has become insufficient for many handset and personal media players, which require a  
higher charging rate. Wall adapters provide much more current than 500 or 900 mA. Several new standards  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS2549-Q1  
 
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
have been introduced defining protocol handshaking methods that allow host and client devices to acknowledge  
and draw additional current beyond the 500-mA and 900-mA minimum defined by USB 2.0 and USB 3.0,  
respectively, while still using a single micro-USB or mini-USB input connector.  
The TPS2549-Q1 device supports four of the most-common USB-charging schemes found in popular hand-held  
media and cellular devices.  
USB Battery Charging Specification BC1.2  
Chinese Telecommunications Industry Standard YD/T 1591-2009  
Divider 3 mode  
1.2-V mode  
The BC1.2 specification includes three different port types:  
Standard downstream port (SDP)  
Charging downstream port (CDP)  
Dedicated charging port (DCP)  
BC1.2 defines a charging port as a downstream-facing USB port that provides power for charging portable  
equipment. Under this definition, CDP and DCP are defined as charging ports.  
8-3 lists the difference between these port types.  
8-3. Operating Modes Table  
PORT TYPE  
SUPPORTS USB2.0 COMMUNICATION  
MAXIMUM ALLOWABLE CURRENT  
DRAWN BY PORTABLE EQUIPMENT (A)  
SDP (USB 2.0)  
SDP (USB 3.0)  
CDP  
YES  
YES  
YES  
NO  
0.5  
0.9  
1.5  
1.5  
DCP  
8.4.3 Standard Downstream Port (SDP) Mode USB 2.0 and USB 3.0  
An SDP is a traditional USB port that follows USB 2.0 or USB 3.0 protocol. A USB 2.0 SDP supplies a minimum  
of 500 mA per port and supports USB 2.0 communications. A USB 3.0 SDP supplies a minimum of 900 mA per  
port and supports USB 3.0 communications. For both types, the host controller must be active to allow charging.  
8.4.4 Charging Downstream Port (CDP) Mode  
A CDP is a USB port that follows USB BC1.2 and supplies a minimum of 1.5 A per port. A CDP provides power  
and meets the USB 2.0 requirements for device enumeration. USB-2.0 communication is supported, and the  
host controller must be active to allow charging. The difference between CDP and SDP is the host-charge  
handshaking logic that identifies this port as a CDP. A CDP is identifiable by a compliant BC1.2 client device and  
allows for additional current draw by the client device.  
The CDP handshaking process occurs in two steps. During step one, the portable equipment outputs a nominal  
0.6-V output on the D+ line and reads the voltage input on the Dline. The portable device detects the  
connection to an SDP if the voltage is less than the nominal data-detect voltage of 0.3 V. The portable device  
detects the connection to a CDP if the Dvoltage is greater than the nominal data detect voltage of 0.3 V and  
optionally less than 0.8 V.  
The second step is necessary for portable equipment to determine whether the equipment is connected to a  
CDP or a DCP. The portable device outputs a nominal 0.6-V output on the Dline and reads the voltage input  
on the D+ line. The portable device concludes the equipment is connected to a CDP if the data line being read  
remains less than the nominal data detects voltage of 0.3 V. The portable device concludes it is connected to a  
DCP if the data line being read is greater than the nominal data detect voltage of 0.3 V.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
8.4.5 Dedicated Charging Port (DCP) Mode  
A DCP only provides power and does not support data connection to an upstream port. As shown in the  
following sections, a DCP is identified by the electrical characteristics of the data lines. The TPS2549-Q1 only  
emulates one state, DCP-auto state. In the DCP-auto state, the device charge-detection state machine is  
activated to selectively implement charging schemes involved with the shorted, divider3 and 1.2 v modes. The  
shorted DCP mode complies with BC1.2 and Chinese Telecommunications Industry Standard YD/T 1591-2009,  
whereas the divider3 and 1.2 V modes are employed to charge devices that do not comply with the BC1.2 DCP  
standard.  
8.4.5.1 DCP BC1.2 and YD/T 1591-2009  
Both standards specify that the D+ and Ddata lines must be connected together with a maximum series  
impedance of 200 Ω, as shown in 8-8.  
VBUS  
5 V  
D–  
200 Ω  
(ma x.)  
D+  
GND  
8-8. DCP Supporting BC1.2 and YD/T 1591-2009  
8.4.5.2 DCP Divider-Charging Scheme  
The device supports divider3, as shown in 8-9. In the Divider3 charging scheme the device applies 2.7 V and  
2.7 V to D+ and Ddata lines.  
VBUS  
5 V  
D–  
D+  
2.7 V  
2.7 V  
GND  
8-9. Divider 3 Mode  
8.4.5.3 DCP 1.2-V Charging Scheme  
The DCP 1.2-V charging scheme is used by some hand-held devices to enable fast charging at 2 A. The  
TPS2549-Q1 device supports this scheme in DCP-auto state before the device enters BC1.2 shorted mode. To  
simulate this charging scheme, the D+ and Dlines are shorted and pulled up to 1.2 V for a fixed duration.  
Then the device moves to DCP shorted mode as defined in the BC1.2 specification and as shown in 8-10.  
VBUS  
5 V  
200 Ω (ma x.) D–  
D+  
1.2 V  
GND  
8-10. 1.2-V Mode  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS2549-Q1  
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
8.4.6 DCP Auto Mode  
As previously discussed, the TPS2549-Q1 device integrates an auto-detect state machine that supports all the  
DCP charging schemes. The auto-detect state machine starts in the Divider3 scheme. However, if a BC1.2 or  
YD/T 1591-2009 compliant device is attached, the TPS2549-Q1 device responds by turning the power switch  
back on without output discharge and operating in 1.2-V mode briefly before entering BC1.2 DCP mode. Then  
the auto-detect state machine stays in that mode until the device releases the data line, in which case the auto-  
detect state machine goes back to the Divider3 scheme. When a Divider3-compliant device is attached, the  
TPS2549-Q1 device stays in the Divider3 state.  
5 V  
S1  
Divider 3 Mode  
VBUS  
S1, S2: ON  
S3, S4: OFF  
D–  
D+  
DM_IN  
DP_IN  
GND  
S2  
S3  
S4  
Shorted Mode  
S4 ON  
S1, S2, S3: OFF  
GND  
1.2-V Mode  
S1, S2: OFF  
S3, S4: ON  
2.7 V 2.7 V 1.2 V  
8-11. DCP Auto Mode  
8.4.7 Client Mode  
The TPS2549-Q1 device integrates client mode as shown in 8-12. The internal power switch is OFF and only  
the data analog switch is ON to block OUT power. This mode can be used for some software programming via  
the USB port.  
IN  
OUT  
DP_IN  
DM_IN  
OFF  
DP_OUT  
DM_OUT  
8-12. Client-Mode Equivalent Circuit  
8.4.8 High-Bandwidth Data-Line Switches  
The TPS2549-Q1 device passes the D+ and Ddata lines through the device to enable monitoring and  
handshaking while supporting the charging operation. A wide-bandwidth signal switch allows data to pass  
through the device without corrupting signal integrity. The data-line switches are turned on in any of the CDP,  
SDP, or client operating modes. The EN input must be at logic high for the data line switches to be enabled.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Note  
While in CDP mode, the data switches are ON, even during CDP handshaking.  
The data line switches are OFF if EN is low, or if in DCP mode. The switches are not automatically  
turned off if the power switch (IN to OUT) is in current-limit.  
The data switches are only for a USB-2.0 differential pair. In the case of a USB-3.0 host, the super-  
speed differential pairs must be routed directly to the USB connector without passing through the  
TPS2549-Q1 device.  
Data switches are OFF during OUT (VBUS) discharge.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS2549-Q1 device is a USB charging-port controller and power switch with cable compensation. It is  
typically used for automotive USB port protection and as a USB charging controller. The following design  
procedure can be used to select components for the TPS2549-Q1 device. This section presents a simplified  
discussion of how to design cable compensation.  
9.2 Typical Application  
Automotive USB port charging requires a voltage regulator to convert battery voltage to 5-V VBUS output.  
Because the VBUS, D+, and Dpins of a USB port are exposed, there is a need for a protection device that has  
VBUS overcurrent and D+ and DESD protection. An additional need is a charging controller with integrated  
CDP and DCP charging protocols on D+ and Dto support fast charging. A schematic of an application circuit  
with cable compensation is shown in 9-1. An LMR14030 device is used as the voltage regulator, and the  
TPS2549-Q1 device is used as the charging controller with protection features.  
Nowadays, automotive products have higher safety requirements; the exposed pins including VBUS / D+ / D-  
may also short to battery in real applications. More details can be learned through this application note:  
SLVAEI5. The TPS2549-Q1 has short to VBUS protection, but does not support short to battery protection. If  
short circuit to battery protection is needed, the TPS254900A-Q1 or TPS25830-Q1 are recommended options.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
0.1 µF  
10 µH  
SW  
BOOT  
12 V  
VIN  
LMR14030  
GND  
V(DC)  
EN  
60.4 kW  
0.75 V  
RT/SYNC  
SS  
FB  
0.018 µF  
To Portable Device  
R(BUS)  
0.1µF  
47 mΩ  
2 × 47 µF  
IN  
OUT  
VBUS  
TPS2549-Q1  
DM_IN  
DP_IN  
R(GN D)  
FAULT  
1.5-m USB Cable  
FAULT  
STATUS  
STATUS  
GND  
CS  
ILIM_LO  
ILIM_HI  
EN  
I/O  
CTL1  
20 kW  
80.6 kW  
DM_OUT  
DP_OUT  
CTL2  
CTL3  
ToHost  
Controller  
9-1. Typical Application Schematic: USB Port Charging With Cable Compensation  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage, V(IN)  
12 V  
Output voltage, V(DC)  
5 V  
Total parasitic resistance including TPS2549-Q1 rDS(on)  
Maximum continuous output current, I(OUT)  
Current limit, I(LIM)  
420 mΩ  
2.4 A  
2.5 A to 2.9 A  
9.2.2 Detailed Design Procedure  
To begin the design process, a few parameters must be decided upon. The designer needs to know the  
following:  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Total resistance including power switch rDS(on), cable resistance, and the contact resistance of connectors  
The maximum continuous output current for the charging port. The minimum current-limit setting of TPS2549-  
Q1 device must be higher than this current.  
The maximum output current of the upstream dc-dc converter. The maximum current-limit setting of  
TPS2549-Q1 device must be lower than this current.  
9.2.2.1 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance should be  
optimized for the particular application. All protection circuits including the TPS2549-Q1 device have the  
potential for input voltage droop, overshoot, and output-voltage undershoot.  
For all applications, TI recommends a 0.1-µF or greater ceramic bypass capacitor between IN and GND, placed  
as close as possible to the device for the local noise decoupling.  
The TPS2549-Q1 device is used for 5-V power rail protection when a hot-short occurs on the output or when  
plugging in a capacitive load. Due to the limited response time of the upstream power supply, a large load  
transient can deplete the charge on the output capacitor of the power supply, causing a voltage droop. If the  
power supply is shared with other loads, ensure that voltage droop from current surges of the other loads do not  
force the TPS2549-Q1 device into UVLO. Increasing the upstream power supply output capacitor can reduce  
this droop. Shortening the connection impedance (resistance and inductance) between the TPS2549-Q1 device  
and the upstream power supply can also help reduce the voltage droop and overshoot on the TPS2549-Q1 input  
power bus.  
Input voltage overshoots can be caused by either of two effects. The first cause is an abrupt application of input  
voltage in conjunction with input power-bus inductance and input capacitance when the IN terminal is in the  
high-impedance state (before turnon). Theoretically, the peak voltage is 2 times the applied voltage. The second  
cause is due to the abrupt reduction of output short-circuit current when the TPS2549-Q1 device turns off and  
energy stored in the input inductance drives the input voltage high. Applications with large input inductance (for  
example, connecting the evaluation board to the bench power supply through long cables) may require large  
input capacitance to prevent the voltage overshoot from exceeding the absolute maximum voltage of the device.  
For output capacitance, consider the following three application situations.  
The first, output voltage undershoot is caused by the inductance of the output power bus just after a short has  
occurred and the TPS2549-Q1 has abruptly reduced OUT current. Energy stored in the inductance will drive the  
OUT voltage down and potentially negative as it discharges. Applications with large output inductance (such as  
from a cable) benefit from use of a high-value output capacitor to control the voltage undershoot. Second, for  
USB-port application, because the OUT pin is exposed to the air, the application must withstand ESD stress  
without damage. Because there is no internal IEC ESD cell as on DP_IN and DM_IN, using a low-ESR  
capacitance can make this pin robust. Third, when plugging in apacitive load such as the input capacitor of any  
portable device, having a large output capacitance can help reduce the peak current and up-stream power  
supply output voltage droop. So for TPS2549-Q1 output capacitance, recommended practice is typically adding  
two 47-µF ceramic capacitors.  
9.2.2.2 Cable Compensation Calculation  
Based on the known total resistance, 9-1 shows the calculation.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
9-1. Cable Compensation Calculation  
CALCULATION EQUATION(1)  
CALCULATED VALUE  
ASSEMBLY VALUE  
V(DC) (V) without load  
R(G) (k)  
5
6.8  
6.8  
0.42  
0.075  
5.6  
R(total) ()  
G(CS) (mA/A)  
R(FA) (k)  
R(FA) = R(total) / G(CS)  
5.6  
33  
V(FB) (V)  
0.75  
32.93  
R(FB) (k)  
R(FB) = [V(DC) / (V(FB) / R(G))] –  
R
(G) R(FA)  
VCS = (V(FB) / R(G)) × (R(G)  
R(FB)  
V(CS) (V)(2)  
+
4.39  
)
2.84  
6.25  
Maximum IOS (A) at 20 kΩ  
V(DC,max) output (V)(3)  
V(DC,max) = 5 + I(OS,max)  
G(CS,max) × R(FA)  
×
C(OUT) (µF)  
2 × 47  
22  
C(COMP) (nF)(4)  
C(COMP) 3 × G(CS) × C(OUT)  
21.15  
(1) See 8-2 and Design Procedure.  
(2) Ensure that VCS exceeds 2.5 V.  
(3) Ensure that the maximum dc-dc output voltage is lower than 6.5 V when considering I(OS,max) and G(CS,max)  
.
(4) CCOMP impacts load-transient performance, so the output performance should always be verified in the end application circuit.  
9.2.2.3 Power Dissipation and Junction Temperature  
The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It  
is good design practice to estimate power dissipation and junction temperature. The following analysis gives an  
approximation for calculating junction temperature based on the power dissipation in the package. However, it is  
important to note that thermal analysis is strongly dependent on additional system-level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating  
power. Good thermal design practice must include all system-level factors in addition to individual component  
analysis. Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating  
temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on)  
from the typical characteristics graph. Using this value, the power dissipation can be calculated by:  
2
PD = rDS(on) ´ IOUT  
(6)  
where:  
PD = Total power dissipation (W)  
rDS(on) = Power-switch on-resistance (Ω)  
IOUT = Maximum current-limit threshold (A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature:  
TJ = PD ´ RqJA + TA  
(7)  
where:  
TA = Ambient temperature (°C)  
RθJA = Thermal resistance (°C/W)  
PD = Total power dissipation (W)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS2549-Q1  
 
 
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the refined rDS(on) from the previous calculation as the new estimate. Two or three iterations  
are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on  
thermal resistance RθJA, and thermal resistance is highly dependent on the individual package and board  
layout.  
9.3 Application Curves  
6.2  
VBUS  
V(DC)  
6
5.8  
5.6  
5.4  
V(DC) at 5-V Offset  
100 mV/div  
5.2  
I(OUT)  
5
200 mA/div  
4.8  
0
0.5  
1
1.5  
I(LOAD) (A)  
2
2.5  
D018  
t = 20 ms/div  
9-2. V(DC) and VBUS vs I(LOAD) Output  
9-3. Plugging In a Portable Device, V(DC)  
VBUS at 5-V Offset  
10 mV/div  
V(DC) at 5-V Offset  
100 mV/div  
I(OUT)  
200 mA/div  
I(OUT)  
200 mA/div  
t = 20 ms/div  
t = 20 ms/div  
9-4. Unplugging a Portable Device, V(DC)  
9-5. Plugging In Portable Device, VBUS  
V(DC) at 5-V Offset  
200 mV/div  
I(OUT)  
200 mA/div  
VBUS at 5-V Offset  
100 mV/div  
I(OUT)  
1 A/div  
t = 200 µs/div  
t = 20 ms/div  
9-7. 0.5-A 2.4-A Load Transient With 100-  
9-6. Unplugging Portable Device, VBUS  
mA/µs Slew Rate, V(DC)  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
V(DC)  
1 V/div  
VBUS at 5-V Offset  
200 mV/div  
I(OUT)  
I(OUT)  
1 A/div  
2 A/div  
t = 200 µs/div  
t = 200 µs/div  
9-8. 0.5-A 2.4-A Load Transient With 100-  
9-9. VBUS Shorted to GND, V(DC)  
mA/µs Slew Rate, VBUS  
10 Power Supply Recommendations  
The TPS2549-Q1 device is designed for a supply-voltage range of 4.5 V VIN 6.5 V. If the input supply is  
located more than a few inches from the device, an input ceramic bypass capacitor higher than 0.1 μF is  
recommended. The power supply should be rated higher than the TPS2549-Q1 current-limit setting to avoid  
voltage droops during overcurrent and short-circuit conditions.  
11 Layout  
11.1 Layout Guidelines  
For the trace routing of DP_IN, DM_IN, DP_OUT, and DM_OUT: Route these traces as micro-strips with  
nominal differential impedance of 90 Ω. Minimize the use of vias in the high-speed data lines. Keep the  
reference GND plane devoid from cuts or splits above the differential pairs to prevent impedance  
discontinuities. For more information, see the High Speed USB Platform Design Guideline from Intel.  
The trace routing from the upstream regulator to the TPS2549-Q1 IN pin should as short as possible to  
reduce the voltage drop and parasitic inductance.  
The traces routing from the RILIM_HI and RILIM_LO resistors to the device should be as short as possible to  
reduce parasitic effects on the current-limit accuracy.  
The thermal pad should be directly connected to the PCB ground plane using a wide and short copper trace.  
The trace routing from the CS pin to the feedback divider of the upstream regulator should not be routed near  
any noise sources that can capacitively couple to the feedback divider.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS2549-Q1  
 
 
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
11.2 Layout Example  
Top Layer Signal Trace  
Top Layer Signal Ground Plane  
Bottom Layer Signal Trace  
Via to Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal  
16 15 14 13  
IN  
1
12  
OUT  
2
3
4
11  
10  
9
DM_IN  
DP_IN  
DM_OUT  
DP_OUT  
CS  
STATUS  
5
6
7
8
11-1. TPS2549-Q1 Layout Diagram  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS2549-Q1  
 
TPS2549-Q1  
ZHCSEA2C OCTOBER 2015 REVISED AUGUST 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
High Speed USB Platform Design Guidelines, Intel  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS2549-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2549IRTERQ1  
TPS2549IRTETQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
2549Q  
2549Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2549IRTERQ1  
TPS2549IRTETQ1  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2549IRTERQ1  
TPS2549IRTETQ1  
WQFN  
WQFN  
RTE  
RTE  
16  
16  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS254900-Q1

具有 BATT 短路保护和压降补偿功能的汽车类 USB 充电端口控制器
TI

TPS254900A-Q1

带 VBATT 短路保护功能的汽车类 USB 主机充电器
TI

TPS254900AIRVCRQ1

带 VBATT 短路保护功能的汽车类 USB 主机充电器 | RVC | 20 | -40 to 85
TI

TPS254900AIRVCTQ1

带 VBATT 短路保护功能的汽车类 USB 主机充电器 | RVC | 20 | -40 to 85
TI

TPS254900IRVCRQ1

具有 BATT 短路保护和压降补偿功能的汽车类 USB 充电端口控制器 | RVC | 20 | -40 to 85
TI

TPS254900IRVCTQ1

具有 BATT 短路保护和压降补偿功能的汽车类 USB 充电端口控制器 | RVC | 20 | -40 to 85
TI

TPS2549IRTERQ1

具有压降补偿功能的汽车类 USB 充电端口控制器 | RTE | 16 | -40 to 85
TI

TPS2549IRTETQ1

具有压降补偿功能的汽车类 USB 充电端口控制器 | RTE | 16 | -40 to 85
TI

TPS2549RTER

具有电缆补偿功能的 USB 汽车类充电端口控制器和 3A 电源开关 | RTE | 16 | -40 to 125
TI

TPS2549RTET

具有电缆补偿功能的 USB 汽车类充电端口控制器和 3A 电源开关 | RTE | 16 | -40 to 125
TI

TPS2550

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2550DBV

ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI