TPS2559-Q1 [TI]

高电平有效的汽车类 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关;
TPS2559-Q1
型号: TPS2559-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高电平有效的汽车类 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关

开关 电源开关
文件: 总29页 (文件大小:3861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
TPS2559-Q1 高精度可调式限流配电开关  
1 特性  
3 说明  
1
适用于汽车电子 应用 具有符合 AEC-Q100 标准的  
下列结果:  
TPS2559-Q1 配电开关专门用于 需要低电阻、高精度  
限流开关或使用高容性负载 的应用。TPS2559-Q1 最  
高可提供 5.5A 的持续负载电流,通过单个接地电阻即  
可实现精确限流。当输出负载超出限流阈值时,可通过  
切换至恒流模式使输出电流保持在一个安全的级别。过  
载事件期间,输出电流被限制在由 R(ILIM) 设定的级  
别。如果出现持续过载,TPS2559-Q1 将进入热关断  
模式,从而避免自身发生损坏。  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C5  
2.5V 6.5V 工作电压范围  
1.2 4.7A 的可调节电流 I(LIMIT)4.7A 时的限流  
精度为 ±4.7%)  
3.5µs 短路关断响应时间(典型值)  
对电源开关的上升和下降次数进行控制以最大程度降低  
接通或关断期间的电流冲击。在过流或过热情况  
下,FAULT 逻辑输出被置为低电平。  
13mΩ 高侧金属氧化物半导体场效应晶体管  
(MOSFET)  
2μA 最大待机电源电流  
内置软启动  
器件信息(1)  
禁用时提供反向电流阻断  
8kV/15kV 系统级静电放电 (ESD) 能力  
器件型号  
封装  
封装尺寸(标称值)  
超薄小外形尺寸无引  
线 (VSON) (10)  
TPS2559-Q1  
3.00mm x 3.00mm  
具有可湿性侧面的 10 引脚小外形尺寸无引线  
(3mm × 3mm) 封装  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
汽车类 USB 端口/集线器  
汽车类内部负载开关  
LP38690 的  
TPS2559-Q1DRC  
2.5V-6.5V 0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
RFAULT  
COUT  
FAULT  
Signal  
10  
FAULT  
EN  
6
ILIM  
Control  
Signal  
5
Power  
PAD  
GND  
RILIM  
1
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD03  
 
 
 
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 10  
9.2 Functional Block Diagram ....................................... 10  
9.3 Feature Description................................................. 10  
9.4 Device Functional Modes........................................ 11  
10 Application and Implementation........................ 12  
10.1 Application Information.......................................... 12  
10.2 Typical Application ............................................... 12  
11 Power Supply Recommendations ..................... 19  
12 Layout................................................................... 20  
12.1 Layout Guidelines ................................................. 20  
12.2 Layout Example .................................................... 20  
13 器件和文档支持 ..................................................... 21  
13.1 社区资源................................................................ 21  
13.2 ....................................................................... 21  
13.3 静电放电警告......................................................... 21  
13.4 Glossary................................................................ 21  
14 机械、封装和可订购信息....................................... 21  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements ............................................... 6  
7.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
8
9
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
5 Device Comparison Table  
Operation  
Range (V)  
ICONT.  
Adj. Range (A)  
Device  
OCP Mode  
RDS(on) (m)  
IOS tolerance  
Package  
TPS2559-Q1  
TPS2553-Q1  
TPS2556/7-Q1  
2.5 - 6.5  
2.5 - 6.5  
2.5 - 6.5  
Auto Retry  
Auto Retry  
Auto Retry  
5.5  
1.2  
5
13  
85 (DBV)  
22  
±4.7% at 4.7 A  
±6.8% at 1.3 A  
±6.3% at 4.5 A  
DRC (SON-10)  
DBV (SOT-23)  
DRB (SON-8)  
TPS2561A-Q1  
(Dual Channels)  
2.5 - 6.5  
Auto Retry  
Auto Retry  
2.5  
2.5  
44  
60  
2.1 A to 2.5 A  
±6.3% at 2.7 A  
DRC (SON-10)  
DRV (SON-6)  
TPS25200-Q1  
(With OVP protection)  
2.5 - 6.5  
(Withstand up to 20V)  
6 Pin Configuration and Functions  
DRC Package  
SON-10 (10 Pins)  
Top View  
GND  
1
2
3
4
10  
9
8
7
6
FAULT  
OUT  
OUT  
OUT  
ILIM  
IN  
IN  
PAD  
IN  
EN  
5
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
1
Ground connection, connect externally to PowerPAD  
Input voltage, connect a 0.1 μF or greater ceramic capacitor from IN to GND as close to the  
IC as possible  
IN  
2,3,4  
I
I
EN  
ILIM  
5
6
Enable input, logic high turns on power switch.  
External resistor used to set current-limit threshold; recommended. 24.9 kΩ ≤ R(ILIM) 100  
kΩ.  
O
OUT  
7,8,9  
10  
O
O
Power-switch output  
FAULT  
Active-low open-drain output, asserted during over-current or overtemperature conditions.  
Internally connected to GND; used to heat-sink the part to the circuit board traces. Connect  
PowerPAD to GND pin externally.  
PowerPAD™  
PAD  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
–0.3  
–7  
MAX  
UNIT  
V
Voltage range  
IN, OUT, EN, ILIM, FAULT  
7
7
IN to OUT  
OUT  
V
Continuous output current, IOUT  
Continuous FAULT sink current  
ILIM source current  
Internally Limited  
mA  
mA  
mA  
°C  
20  
Internally Limited  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
to OTSD2  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltages are referenced to GND unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), ESD stress voltage, all pins(2)  
Charged device model (CDM), ESD stress voltage, all pins(3)  
Electrostatic  
discharge(1)  
V(ESD)  
V
Contact discharge  
Air discharge  
±8000  
±15000  
(4)  
System Level  
(1) Electrostatic discharge (ESD) to measure device sensitivity or immunity to damage caused by assembly-line electrostatic discharges  
into the device.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5.  
(4) Surges per EN61000-4-2, 1999 applied between USB and output ground of the TPS2559EVM (SLUUB15) evaluation module  
(documentation available on the Web.) These were the test levels, not the failure threshold.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX UNIT  
VIN  
Input voltage, IN  
6.5  
6.5  
5.5  
10  
V
V
VEN  
IOUT  
Input voltage, EN  
Continuous output current of OUT  
Continuous FAULT sink current  
Recommended resistor limit range  
Operating junction temperature  
A
mA  
kΩ  
°C  
(1)  
R(ILIM)  
TJ  
24.9  
-40  
100  
125  
(1) R(ILIM) is the resistor from ILIM pin to GND and ILIM pin can be shorted to GND.  
7.4 Thermal Information  
TPS2559-Q1  
THERMAL METRIC(1)  
UNIT  
DRC (10 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
40.6  
45.5  
15.9  
0.4  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
15.7  
2.8  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
7.5 Electrical Characteristics  
Conditions are –40°C TJ 125°C, 2.5 V VIN 6.5 V, V(EN) = VIN, R(ILIM) = 49.9 k. Positive current are into pins. Typical  
value is at 25°C. All voltages are with respect to GND (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCH  
TJ = 25°C  
13  
16  
21  
RDS(on) Input - Output Resistance(1)  
mΩ  
-40°C TJ 125°C  
ENABLE INPUT EN  
EN turn on/off threshold  
Hysteresis  
0.66  
–1  
1.1  
1
V
55(2)  
mV  
µA  
I(EN)  
Input current  
V(EN) = 0 V or V(EN) = 6.5 V  
CURRENT LIMIT  
R(ILIM) = 24.9 kΩ  
4490  
2505  
2215  
1780  
1080  
5860  
4730  
2660  
2360  
1900  
1180  
6700  
4931  
2805  
2490  
2015  
1265  
7460  
R(ILIM) = 44.2kΩ  
R(ILIM) = 49.9kΩ  
IOS  
OUT short circuit current limit  
mA  
R(ILIM) = 61.9 kΩ  
R(ILIM) = 100 kΩ  
ILIM pin short to GND (R(ILIM) = 0)  
SUPPLY CURRENT  
I(IN_OFF) Disabled, IN supply current  
V(EN) = 0 V, No load on OUT  
0.1  
97  
2
125  
135  
µA  
µA  
R(ILIM) = 100 kΩ, no load on OUT  
R(ILIM) = 24.9 kΩ, no load on OUT  
I(IN_ON) Enabled, IN supply current  
107  
VOUT = 6.5 V, VIN = 0 V, TJ = 25°C,  
Measure IOUT  
I(REV)  
Reverse leakage current  
0.01  
1
µA  
UNDERVOLTAGE LOCKOUT  
VUVLO  
IN rising UVLO threshold voltage  
2.36  
35(2)  
2.45  
V
Hysteresis  
mV  
FAULT  
VOL  
Output low voltage  
Off-state leakage  
IFAULT = 1 mA  
VFAULT = 6.5 V  
180  
1
mV  
µA  
THERMAL SHUTDOWN  
OTSD2 Thermal shutdown threshold  
OTSD1 Thermal shutdown threshold in current-limit  
Hysteresis  
155  
135  
°C  
(2)  
20  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately  
(2) These parameters are provided for reference only, and don’t constitute part of TI’s published device specifications for purposes of TI’s  
product warranty.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
7.6 Timing Requirements  
Conditions are –40°C TJ = 125°C, 2.5 V VIN 6.5 V, V(EN) = VIN, R(ILIM) = 49.9 k. Positive current are into pins. Typical  
value is at 25°C. All voltages are with respect to GND (unless otherwise noted).  
PARAMETER  
POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN = 6.5 V  
VIN = 2.5 V  
VIN = 6.5 V  
VIN = 2.5 V  
2.6  
1.3  
3.44  
2.01  
0.89  
0.58  
5.2  
tr  
tf  
OUT voltage rise time  
OUT voltage fall time  
3.9  
ms  
1.3  
CL = 1 µF, RL = 100 Ω, See Figure 13  
0.7  
0.42  
1.04  
ENABLE INPUT EN  
ton  
toff  
OUT voltage turn-on time  
OUT voltage turn-off time  
15  
ms  
8
CL = 1 µF, RL = 100 Ω, See Figure 14  
CURRENT LIMIT  
tIOS  
Short-circuit response time(1)  
VIN = 5 V, RSHORT = 50 mΩ, See Figure 15  
3.5(1)  
µs  
FAULT  
FAULT assertion or de-assertion due to overcurrent  
condition  
FAULT deglitch  
6
9
13  
ms  
(1) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
7.7 Typical Characteristics  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
Rising  
Falling  
0
50  
100  
150  
œ50  
0
50  
100  
150  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C002  
C001  
VIN = 6.5 V  
Figure 2. Supply Current, Output Disabled (IIN_OFF) vs  
Temperature  
Figure 1. Under-voltage Lockout (UVLO) vs Temperature  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
0
V=2.5 V  
V=2.5 V  
IN  
IN  
20  
VIN = 6.5 V  
VIN = 6.5 V  
0
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C003  
C004  
R(ILIM) = 100 KΩ  
R(ILIM) = 24.9 KΩ  
Figure 3. Supply Current, Output Enabled (IIN_ON) vs  
Temperature  
Figure 4. Supply Current, Output Enabled (IIN_ON) vs  
Temperature  
0.7  
18  
16  
14  
12  
10  
8
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
œ0.1  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C005  
C006  
VOUT = 6.5 V  
VIN = 5 V  
Figure 6. Input-Output Resistance (RDS(on)) vs Temperature  
Figure 5. Reverse Leakage Current (IREV) v. Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
8.0  
13  
12  
11  
10  
9
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
8
7
6
0
50  
100  
150  
œ50  
0
50  
100  
150  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C007  
C008  
VIN = 6.5 V  
ILIM pin short to GND  
V(FAULT) = 2.5 V  
Figure 7. Short Circuit Current (IOS) vs Temperature  
Figure 8. Deglitch Time (tFAULT) vs Temperature  
4.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V=2.5 V  
V=2.5V  
IN  
IN  
VIN = 6.5 V  
VIN = 6.5 V  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
R(LOAD) = 100 Ω  
Junction Temperature (°C)  
R(LOAD) = 100 Ω  
C009  
C010  
COUT = 1 µF  
COUT = 1 µF  
Figure 9. Output Rise Time (tR) vs Temperature  
Figure 10. Output Fall Time (tF) vs Temperature  
6
R
= 24.9 k  
ILIM  
R
= 44.9 kꢀ  
ILIM  
5
4
3
2
1
0
R
= 49.9 kꢀ  
ILIM  
R
= 61.9 kꢀ  
ILIM  
R
= 100 kꢀ  
ILIM  
0
50  
100  
150  
œ50  
Junction Temperature (°C)  
C011  
VIN = 6.5 V  
Figure 11. Short Circuit Current (IOS) vs Temperature  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
8 Parameter Measurement Information  
OUT  
90%  
VOUT  
RL  
CL  
tf  
tr  
10%  
Figure 12. Output Rise/Fall time Test Load  
spacer  
spacer  
Figure 13. Power-On and Off Timing  
IOUT  
IOS  
120% x IOS  
50%  
ton  
50%  
VEN  
toff  
0A  
90%  
tIOS  
VOUT  
10%  
Figure 14. Enable Timing, Active High Enable  
Figure 15. Output Short Circuit Parameters  
Copyright © 2015, Texas Instruments Incorporated  
9
 
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS2559-Q1 is a current-limited, power-distribution switch using N-channel MOSFETs for applications  
where short circuits or heavy capacitive loads will be encountered. This device allows the user to program the  
current-limit via an external resistor and the maximum continuous output current up to 5.5 A. This device  
incorporates an internal charge pump and the gate drive circuitry necessary to drive the N-channel MOSFET.  
The charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the  
MOSFET above the source. The charge pump operates from input voltages as low as 2.5 V and requires little  
supply current. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that  
controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in  
soft-start functionality. The TPS2559-Q1 limits the output current to the programmed current-limit threshold IOS  
during an overcurrent or short-circuit event by reducing the charge pump voltage driving the N-channel MOSFET  
and operating it in the linear range of operation. The result of limiting the output current to IOS reduces the output  
voltage at OUT because N-channel MOSFET is no longer fully enhanced.  
9.2 Functional Block Diagram  
2/3/4  
CS  
7/8/9  
IN  
OUT  
Current  
Sense  
Charge  
Pump  
Current  
Limit  
5
Driver  
EN  
10  
FAULT  
UVLO  
9-ms  
Deglitch  
6
1
ILIM  
Thermal  
Sense  
GND  
9.3 Feature Description  
9.3.1 Thermal Sense  
The TPS2559-Q1 self protects by using two independent thermal sensing circuits that monitor the operating  
temperature of the power switch and disable operation if the temperature exceeds recommended operating  
conditions. The TPS2559-Q1 device operates in constant-current mode during an over-current condition, which  
increases the voltage drop across power switch. The power dissipation in the package is proportional to the  
voltage drop across the power switch, which increases the junction temperature during an over-current condition.  
The first thermal sensor (OTSD1) turns off the power switch when the die temperature exceeds 135°C (min) and  
the part is in current limit. Hysteresis is built into the thermal sensor, and the switch turns on after the device has  
cooled approximately 20°C.  
The TPS2559-Q1 also has a second ambient thermal sensor (OTSD2). The ambient thermal sensor turns off the  
power switch when the die temperature exceeds 155°C (min) regardless of whether the power switch is in  
current limit and will turn on the power switch after the device has cooled approximately 20°C. The TPS2559-Q1  
continues to cycle off and on until the fault is removed.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
Feature Description (continued)  
9.3.2 Overcurrent Protection  
The TPS2559-Q1 responds to overcurrent conditions by limiting their output current to IOS. When an overload  
condition is present, the device maintains a constant output current, with the output voltage determined by (IOS  
RLOAD). Two possible overload conditions can occur.  
×
The first condition is when a short circuit or partial short circuit is present when the device is powered-up or  
enabled. The output voltage is held near zero potential with respect to ground and the TPS2559-Q1 ramps the  
output current to IOS. The TPS2559-Q1 limits the current to IOS until the overload condition is removed or the  
device begins to thermal cycle (see Figure 24).  
The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is  
enabled and powered on. The device responds to the overcurrent condition within time tIOS (see Figure 15). The  
response speed and shape will vary with the overload level, input circuit, and rate of application. The current-limit  
response will vary between simply settling to IOS, or turnoff and controlled return to IOS. Similar to the previous  
case, the TPS2559-Q1 limits the current to IOS until the overload condition is removed or the device begins to  
thermal cycle.  
The TPS2559-Q1 thermal cycles if an overload condition is present long enough to activate thermal limiting in  
any of the above cases. The device turns off when the junction temperature exceeds 135°C (min) while in current  
limit. The device remains off until the junction temperature cools 20°C (typ) and then restarts. The TPS2559-Q1  
cycles on/off until the overload is removed (see Figure 25).  
9.3.3 FAULT Response  
The FAULT open-drain output is asserted (active low) during an over-current or over-temperature condition. The  
TPS2559-Q1 asserts the FAULT signal until the fault condition is removed and the device resumes normal  
operation. The TPS2559-Q1 is designed to eliminate false FAULT reporting by using an internal delay "deglitch"  
circuit for over-current (9-ms typ.) conditions without the need for external circuitry. This ensures that FAULT is  
not accidentally asserted due to normal operation such as starting into a heavy capacitive load. The deglitch  
circuitry delays entering and leaving current-limit induced fault conditions. The FAULT signal is not deglitched  
when the MOSFET is disabled due to an over-temperature condition but is deglitched after the device has cooled  
and begins to turn on. This unidirectional deglitch prevents FAULT oscillation during an over-temperature event.  
9.4 Device Functional Modes  
9.4.1 Operation with VIN Undervoltage Lockout (UVLO) Control  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn-  
on threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage droop during turn on.  
9.4.2 Operation with EN Control  
The logic enable controls the power switch and device supply current. The supply current is reduced to less than  
2-μA when a logic low is present on EN. A logic high input on EN enables the driver, control circuits, and power  
switch. The enable input is compatible with both TTL and CMOS logic levels.  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS2559-Q1 current limited power switch uses N-channel MOSFETs in applications requiring up to 5.5 A of  
continuous load current. The device enters constant-current mode when the load exceeds the current limit  
threshold.  
The TPS2559-Q1 power switch is used to protect the up-stream power supply when the output is overloaded.  
10.2 Typical Application  
TPS2559-Q1  
5 V  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
150µF  
10k  
Fault  
Signal  
10  
FAULT  
EN  
6
ILIM  
Control  
Signal  
5
Power  
Pad  
*
GND  
RILIM  
1
Figure 16. Typical TPS2559-Q1 Power Switch  
Use the IOS in the Electrical Characteristics table or IOS in Equation 1 to select the RILIM  
.
10.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
DESIGN PARAMETERS  
Input Operation Voltage  
Rating Current  
EXAMPLE VALUE  
5 V  
3A or 4.5A  
3A  
Minimum Current Limit  
Maximum Current Limit  
5A  
When choose power switch, there are some several general steps:  
1. What is the power rail, 3.3 V or 5 V, and then choose the operation range of power switch can cover the  
power rail.  
2. What is the normal operation current, for example, the maximum allowable current drawn by portable  
equipment for USB 2.0 port is 500mA, so the normal operation current is 500mA and the minimum current  
limit of power switch must exceed 500 mA to avoid false trigger during normal operation.  
3. What is the maximum allowable current provided by up-stream power, and then decide the maximum current  
limit of power switch that must lower it to ensure power switch can protect the up-stream power when over-  
load is encountered at the output of power switch.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
NOTE  
Choosing power switch with tighter current limit tolerance can loosen the up-stream power  
supply design.  
10.2.2 Detailed Design Procedure  
10.2.2.1 Step by Step Design Procedure  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Normal Input Operation Voltage  
Rating Current  
Minimum Current Limit  
Maximum Current Limit  
10.2.2.2 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance should be  
optimized for the particular application. For all applications, a 0.1μF or greater ceramic bypass capacitor between  
IN and GND is recommended as close to the device as possible for local noise decoupling. This precaution  
reduces ringing on the input due to power-supply transients. Additional input capacitance may be needed on the  
input to reduce voltage undershoot from exceeding the UVLO of other load share one power rail with TPS2559-  
Q1 or overshoot from exceeding the absolute-maximum voltage of the device during heavy transient conditions.  
This is especially important during bench testing when long, inductive cables are used to connect the evaluation  
board to the bench power supply.  
Output capacitance is not required, but placing a high-value electrolytic capacitor on the output pin is  
recommended when large transient currents are expected on the output to reduce the undershoot, which caused  
by the inductance of the output power bus just after a short has occurred and the TPS2559-Q1 has abruptly  
reduced OUT current. Energy stored in the inductance will drive the OUT voltage down and potentially negative  
as it discharges.  
10.2.2.3 Programming the Current-Limit Threshold  
The overcurrent threshold is user programmable via an external resistor. The TPS2559-Q1 uses an internal  
regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the  
current sourced out of ILIM. The recommended 1% resistor range for R(ILIM) is 24.9 kΩ ≤ R(ILIM) 100 kΩ to  
ensure stability of the internal regulation loop.  
When ILIM pin short to GND (single point failure), maximum current limit is less than 8 A over temperature and  
process variation.  
Many applications require that the minimum current limit is above a certain current level or that the maximum  
current limit is below a certain current level, so it is important to consider the tolerance of the overcurrent  
threshold when selecting a value for R(ILIM). The equations and the graph below can be used to estimate the  
minimum and maximum variation of the current-limit threshold for a predefined resistor value within R(ILIM) is 24.9  
kΩ ≤ R(ILIM) 100 kΩ. This variation is an approximation only and does not take into account, for example, the  
resistor tolerance. For examples of more-precise variation of IOS refer to the current-limit section of the Electrical  
Characteristics table.  
118848 V  
R(ILIM)0.9918kW  
IOSmax (mA) =  
IOSnom(mA) =  
IOSmin(mA) =  
+ 30  
118079 V  
R(ILIM)1.0008kW  
113325 V  
- 47  
R(ILIM)1.0010kW  
(1)  
13  
24.9 kΩ ≤ R(ILIM) 100 kΩ  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
IOS (Min)  
IOS (Typ)  
IOS (Max)  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
Current Limit Resistor (k)  
C012  
Figure 17. Current-Limit vs R(ILIM)  
10.2.2.4 Design Above a Minimum Current Limit  
Some applications require that current limiting cannot occur below a certain threshold. For this example, assume  
that 3 A must be delivered to the load so that the minimum desired current-limit threshold is 3000 mA. Use the  
IOS equations and Figure 17 to select R(ILIM)  
.
IOSmin(mA) = 3000 mA  
113325 V  
R(ILIM)1.0010kW  
I
(mA) =  
- 47  
OSmin  
1
1
1.0010  
æ
ö
÷
÷
ø
113325  
113325 1.0010  
æ
ö
R(ILIM)(kW) = ç  
=
= 37.06 kW  
ç
÷
ç
è
IOS(min) + 47  
3000 + 47  
è
ø
(2)  
Select the closest 1% resistor less than the calculated value: R(ILIM) = 36.5 kΩ. This sets the minimum current-  
limit threshold at 3016 A.  
113325 V  
R(ILIM)1.0010kW  
113325  
36.5´1.01 1.0010  
IOSmin(mA) =  
- 47 =  
- 47 = 3016 mA  
(
)
(3)  
Use the IOS equations, Figure 17, and the previously calculated value for R(ILIM) to calculate the maximum  
resulting current-limit threshold.  
118848  
118848  
(36.5´0.99)0.9918  
IOSmax (mA) =  
+ 30 =  
+ 30 = 3417 mA  
0.9918  
R(ILIM)  
(4)  
The resulting maximum current-limit threshold minimum is 3016 mA and maximum is 3417 mA with a 36.5 k±  
1%.  
10.2.2.5 Design Below a Maximum Current Limit  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that 5A must be delivered to the load so that the minimum desired current-limit threshold is 5000 mA. Use the IOS  
equations and Figure 17 to select R(ILIM)  
.
IOSmax (mA) = 5000 mA  
118848  
R(ILIM)0.9918kW  
IOSmax (mA) =  
+ 30  
1
1
0.9918  
æ
ö
÷
÷
ø
118848  
118848 0.9918  
æ
ö
R(ILIM)(kW) = ç  
=
= 24.55 kW  
ç
÷
ç
è
IOS(max) - 30  
5000 - 30  
è
ø
(5)  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
Select the closest 1% resistor less than the calculated value: RILIM = 24.9 k. This sets the maximum current-  
limit threshold at 4950 A.  
118848  
R(ILIM)0.9918kW  
118848  
IOSmax (mA) =  
+ 30 =  
+ 30 = 4980 mA  
0.9918  
24.9´0.99  
(
)
(6)  
Use the IOS equations, Figure 17, and the previously calculated value for R(ILIM) to calculate the minimum  
resulting current-limit threshold.  
113325  
113325  
(24.9´1.01)1.0010  
IOSmin(mA) =  
- 47 =  
- 47 = 4445 mA  
1.0010  
R(ILIM)  
(7)  
The resulting minimum current-limit threshold minimum is 4445 mA and maximum is 4980 mA with a 24.9 k±  
1%.  
10.2.2.6 Accounting for Resistor Tolerance  
The previous sections described the selection of R(ILIM) given certain application requirements and the  
importance of understanding the current-limit threshold tolerance. The analysis focused only on the TPS2559-Q1  
is bounded by an upper and lower tolerance centered on a nominal resistance. The additional RILIM resistance  
tolerance directly affects the current-limit threshold accuracy at a system level. Table 1 shows a process that  
accounts for worst-case resistor tolerance assuming 1% resistor values.  
Step one follows the selection process outlined in the application examples above.  
Step two determines the upper and lower resistance bounds of the selected resistor.  
Step three uses the upper and lower resistor bounds in the IOS equations to calculate the threshold limits.  
It is important to use tighter tolerance resistors, that is, 0.5% or 0.1%, when precision current limiting is desired.  
Table 1. Common R(ILIM) Resistor Selections  
RESISTOR TOLERANCE  
ACTUAL LIMITS  
DESIRED NOMINAL  
CURRENT LIMIT  
(mA)  
CLOSEST 1%  
RESISTOR  
(kΩ)  
IDEAL  
RESISTOR  
(kΩ)  
1% LOW  
1% HIGH  
IOS MIN  
(mA)  
IOS NOM  
(mA)  
IOS MAX  
(mA)  
(kΩ)  
(kΩ)  
1250  
1500  
1750  
2000  
2250  
2500  
2750  
3000  
3250  
3500  
3750  
4000  
4250  
4500  
4750  
94.1  
78.4  
67.2  
58.8  
52.3  
47.1  
42.8  
39.2  
36.2  
33.6  
31.4  
29.4  
27.7  
26.2  
24.8  
93.1  
78.7  
66.5  
59  
92.2  
77.9  
65.8  
58.4  
51.8  
47  
94  
1152.7  
1372.5  
1633.2  
1847  
1263.7  
1495.1  
1769.7  
1994.8  
2550.6  
2478.2  
2725.1  
3003.4  
3225.7  
3463.1  
3726.4  
4005.4  
4205.9  
4512.3  
4729.9  
1368.2  
1610.9  
1893.3  
2133.7  
2400.9  
2638.4  
2895.8  
3185.7  
3417.2  
3664.1  
3937.8  
4227.7  
4435.8  
4753.9  
4979.6  
79.5  
67.2  
59.6  
52.8  
48  
52.3  
47.5  
43.2  
39.2  
36.5  
34  
2089.9  
2306  
42.8  
38.8  
36.1  
33.7  
31.3  
29.1  
27.7  
25.8  
24.7  
43.6  
39.6  
36.9  
34.3  
31.9  
29.7  
28.3  
26.4  
25.1  
2540.5  
2804.8  
3016  
3241.4  
3491.5  
3756.5  
3946.9  
4237.9  
4444.6  
31.6  
29.4  
28  
26.1  
24.9  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
10.2.2.7 Power Dissipation and Junction Temperature  
The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It  
is good design practice to estimate power dissipation and junction temperature. The below analysis gives an  
approximation for calculating junction temperature based on the power dissipation in the package. However, it is  
important to note that thermal analysis is strongly dependent on additional system level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating  
power. Good thermal design practice must include all system level factors in addition to individual component  
analysis. Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating  
temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on)  
from the typical characteristics graph. Using this value, the power dissipation can be calculated using Equation 8:  
2
PD = rDS(on) × IOUT  
(8)  
Where:  
PD = Total power dissipation (W)  
rDS(on) = Power switch on-resistance (Ω)  
IOUT = Maximum current-limit threshold (A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature:  
TJ = PD × θJA + TA  
(9)  
Where:  
TA = Ambient temperature (°C)  
θJA = Thermal resistance (°C/W)  
PD = Total power dissipation (W)  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the "refined" rDS(on) from the previous calculation as the new estimate. Two or three  
iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent  
on thermal resistance θJA and thermal resistance is highly dependent on the individual package and board  
layout.  
10.2.2.8 Auto-Retry  
Some applications require that an overcurrent condition disables the part momentarily during a fault condition  
and re-enables after a pre-set time. This auto-retry functionality can be implemented with an external resistor and  
capacitor. During a fault condition, FAULT pulls low EN. The part is disabled when EN is pulled below the turn-off  
threshold, and FAULT goes high impedance allowing C(RETRY) to begin charging. The part re-enables when the  
voltage on EN reaches the turn-on threshold. The part will continue to cycle in this manner until the fault  
condition is removed. The auto-retry cycling time is determined by the resistor/capacitor time constant, TPS2559-  
Q1 turn on time and FAULT deglitch time (see Figure 28).  
TPS2559-Q1  
VIN  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
COUT  
RFAULT  
100kW  
10  
FAULT  
EN  
6
ILIM  
5
CRETRY  
2.2mF  
Power  
Pad  
GND  
100k  
1
Figure 18. Auto-Retry Circuit  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
Some applications require auto-retry functionality and the ability to enable/disable with an external logic signal.  
Figure 19 shows how an external logic signal can drive EN through R(FAULT) and maintain auto-retry functionality.  
The resistor/capacitor time constant determines the auto-retry time-out period.  
TPS2559-Q1  
VIN  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
COUT  
10  
FAULT  
EN  
RFAULT  
External Logic  
Signal and Driver 100 kW  
6
ILIM  
5
Power  
Pad  
CRETRY  
2.2 mF  
GND  
100k  
1
Figure 19. Auto-Retry Circuit with External EN Signal  
If need to implement latch-off, refer to application report (SLVA282A).  
10.2.2.9 Two-level Current-limit  
Some applications require different current-limit thresholds depending on external system conditions. Figure 20  
shows an implementation for an externally-controlled, two-level current-limit circuit. The current-limit threshold is  
set by the total resistance from ILIM to GND (see previously discussed Programming the Current-Limit Threshold  
section). A logic-level input enables/disables MOSFET Q1 and changes the current-limit threshold by modifying  
the total resistance from ILIM to GND (see Figure 29 and Figure 30). Additional MOSFET/resistor combinations  
can be used in parallel to Q1/R2 to increase the number of additional current-limit levels.  
NOTE  
ILIM should never be driven directly with an external signal.  
TPS2559-Q1  
5 V  
0.1mF  
VOUT  
7/8/9  
2/3/4  
OUT  
IN  
10k  
COUT  
10  
R1  
100 kΩ  
FAULT  
EN  
6
ILIM  
Control  
Signal  
R2  
100 kΩ  
5
Current Limit  
Control Signal  
Power  
Pad  
GND  
1
Q1  
Figure 20. Two-Level Current-Limit Circuit  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
10.2.3 Application Curves  
6
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
6
5
3.0  
VEN
VOUT
IOUT
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
4
4
3
3
2
2
1
1
V
EN  
0
0
VOUT
IOUT
œ1  
œ1  
0
4
8
12  
16  
0
4
8
12  
16  
œ4  
œ4  
Time (ms)  
Time (ms)  
C013  
C014  
Figure 21. Output Rise with 150µF // 5Ω  
Figure 22. Output Fall with 150µF // 5Ω  
6
5
6
5
4
5
VEN  
VFAULT  
V
V
I
OUT
OUT
FAULT  
5
4
I
OUT  
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
œ1  
œ1  
œ1  
œ1  
0
20  
40  
60  
80 100 120 140 160  
œ40 œ20  
0
8
16  
Time (ms)  
24  
32  
œ8  
Time (ms)  
C016  
C015  
Figure 24. Full Load to Output Short Transient Response  
Figure 23. Enable into Output Short  
6
5
6
6
5
6
VOUT  
V
V
I
OUT  
OUT
FAULT  
I
OUT  
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
œ1  
œ1  
œ1  
œ1  
0
20  
0
2
4
6
8
œ80  
œ60  
œ40  
œ20  
œ2  
Time (ms)  
Time (ms)  
C017  
C019  
Figure 25. Output Short to Full Load Recovery Response  
Figure 26. 50mHot-Short  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
6
5
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT  
I
OUT  
4
3
2
1
0
œ1  
œ10  
œ20  
V
I
OUT
V
OUT  
FAULT  
œ2  
œ5  
œ0.2  
0
1
2
3
4
5
œ4  
œ3  
œ2  
œ1  
œ40  
0
40  
80 120 160 200 240 280 320 360  
Time (ms)  
Time (s)  
C020  
C021  
Figure 27. 50mHot-Short Response Time  
Figure 28. Auto-Retry Cycle  
5
4
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
6
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
œ0.5  
V
V
GATE  
V
FAULT
I
OUT  
OUT  
4
3
3
2
2
1
1
0
0
V
V
GATE
I
OUT  
OUT  
VFAULT  
œ1  
œ1  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0 0.1 0.2 0.3 0.4 0.5  
œ0.5 œ0.4 œ0.3 œ0.2 œ0.1  
Time (s)  
œ2.0 œ1.5 œ1.0 œ0.5  
Time (s)  
C022  
C023  
Figure 29. Two Level Current Limit with RLOAD = 2.5 Ω  
Figure 30. Two Level Current Limit with RLOAD = 1Ω  
11 Power Supply Recommendations  
Design of the devices is for operation from an input voltage supply range of 2.5 V to 6.5 V. The current capability  
of the power supply should exceed the maximum current limit of the power switch.  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPS2559-Q1  
ZHCSEM7 DECEMBER 2015  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Place the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low-  
inductance trace.  
Placing a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin is recommended  
when large transient currents are expected on the output.  
The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects on  
the current limit accuracy.  
The PowerPAD should be directly connected to PCB ground plane using wide and short copper trace.  
12.2 Layout Example  
VIA to Power Ground Plane  
Power Ground  
FAULT  
1
2
3
4
5
10
9
High Frequency  
Bypass Capacitor  
IN  
OUT  
8
7
ILIM  
6
Figure 31. TPS2559-Q1 Board Layout  
20  
版权 © 2015, Texas Instruments Incorporated  
TPS2559-Q1  
www.ti.com.cn  
ZHCSEM7 DECEMBER 2015  
13 器件和文档支持  
13.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.2 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
21  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2559QWDRCRQ1  
TPS2559QWDRCTQ1  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2559Q  
2559Q  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010K  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
S
C
A
 L
 E
3
0
.
A
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
1.65 0.1  
5
6
A
A
2X  
2
2.4 0.1  
10  
1
8X 0.5  
0.3  
0.2  
10X  
PIN 1 ID  
0.5  
0.3  
0.1  
C A B  
C
10X  
(OPTIONAL)  
0.05  
4222059/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010K  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SYMM  
10X (0.6)  
1
10  
10X (0.25)  
(2.4)  
8X (0.5)  
(0.95)  
(R0.05) TYP  
5
6
(0.575)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL EDGE  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222059/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010K  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
10X (0.25)  
METAL  
TYP  
SYMM  
1
10  
(0.635)  
8X (0.5)  
(1.07)  
6
5
(R0.05) TYP  
(1.5)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222059/B 02/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS2559DRCR

高电平有效的 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125
TI

TPS2559DRCT

高电平有效的 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125
TI

TPS2559QWDRCRQ1

高电平有效的汽车类 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125
TI

TPS2559QWDRCTQ1

高电平有效的汽车类 1.2-4.7A 可调节 ILIMIT、2.5-6.5V、13mΩ USB 电源开关 | DRC | 10 | -40 to 125
TI

TPS2560

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560A

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560ADRC

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560ADRCR

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560ADRCT

Dual Channel Precision Adjustable Current-Limited Power Switches
TI

TPS2560DRC

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560DRCR

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2560DRCT

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI