TPS2561AQDRCTQ1 [TI]

高电平有效的汽车类双通道 0.25-2.8A 可调节ILIMIT(可实现 2.3±0.2A 设置)、2.5-6.5V、44mΩ USB 电源开关 | DRC | 10 | -40 to 125;
TPS2561AQDRCTQ1
型号: TPS2561AQDRCTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高电平有效的汽车类双通道 0.25-2.8A 可调节ILIMIT(可实现 2.3±0.2A 设置)、2.5-6.5V、44mΩ USB 电源开关 | DRC | 10 | -40 to 125

开关 电源开关
文件: 总28页 (文件大小:1543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
TPS2561A-Q1 双通道精密汽车用可调  
限流电源开关  
1 特性  
3 说明  
1
符合 AEC-Q100  
TPS2561A-Q1是一款双通道配电开关,此开关用于对  
电流限制精度有要求或者会遇到重电容负载和短路的汽  
车应用。 这些器件通过一个外部电阻器为每个通道提  
供一个 250mA 2.8A 之间(典型值)的可编程电流  
限制阀值。 对电源开关的上升和下降次数进行控制以  
最大限度地降低接通/关闭期间的电流浪涌。  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
器件充电器件模型 (CDM) ESD 分类等级 C5  
2 个独立的电流限制通道  
满足 USB 电流限制要求  
可调电流限值,250mA-2.8A(典型值)  
精确的 2.1A(最小值)/2.5A(最大值)设置  
快速短路响应 - 3.5μs(典型值)  
当输出负载超过电流限制阀值时,通过切换至恒定电流  
模式,TPS2561A-Q1 器件的每个通道将输出电流限制  
到一个安全水平上。 在过流和过热条件下,每个通道  
FAULTx 逻辑输出单独置位为低电平。  
2 44mΩ 高侧金属氧化物半导体场效应晶体管  
(MOSFET)  
TPS2511-Q TPS2513A-Q1 一同使用,提供一个  
低损耗,符合汽车应用需要,USB 充电端口解决方  
案,此解决方案能够为目前普遍的手机和平板电脑充  
电。  
工作范围:2.5V 6.5V  
最大待机电源电流 2μA  
内置软启动  
15 kV/8kV 系统级静电放电 (ESD) 能力  
器件信息  
2 应用范围  
部件号  
封装  
封装尺寸(标称值)  
汽车 USB 充电端口  
TPS2561A-Q1  
SON (10)  
3.00mm x 3.00mm  
空白  
空白  
作为双端口汽车 USB 充电端口解决方案的典型应用范围  
USB  
Connector1  
5VOUT  
0.1­F  
VBUS  
D-  
D+  
OUT1  
OUT2  
IN  
IN  
100kŸ  
100kŸ  
TPS2561A-Q1  
RILIM  
GND  
FAULT2  
ILIM  
CUSB  
FAULT1  
EN1  
EN2  
Control Signal  
Control Signal  
GND  
PowerPad  
DC to DC  
Controller or converter  
(LM25117-Q1,  
USB  
Connector2  
VBUS  
COUT  
VIN  
DM1  
DP1  
TPS40170-Q1)  
D-  
D+  
TPS2513A-Q1  
DM2  
GND  
GND  
DP2  
CUSB  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCC6  
 
 
 
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
目录  
9.1 Overview ................................................................... 9  
9.2 Functional Block Diagram ......................................... 9  
9.3 Feature Description................................................... 9  
9.4 Device Functional Mode ......................................... 10  
10 Application and Implementation........................ 11  
10.1 Application Information.......................................... 11  
10.2 Typical Application ................................................ 11  
11 Power Supply Requirements ............................. 17  
12 Layout................................................................... 18  
12.1 Layout Guidelines ................................................. 18  
12.2 Layout Example .................................................... 18  
13 器件和文档支持 ..................................................... 19  
13.1 ....................................................................... 19  
13.2 静电放电警告......................................................... 19  
13.3 Glossary................................................................ 19  
14 机械封装和可订购信息 .......................................... 19  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Functions and Configurations....................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 7  
Detailed Description .............................................. 9  
8
9
4 修订历史记录  
Changes from Original (March 2014) to Revision A  
Page  
已将特性从:精确的 2.1A(最小值)/2.5A(最大值)设置(包括电阻器)更改为:精确的 2.1A(最小值)/2.5A(最  
大值)设置.............................................................................................................................................................................. 1  
Changed IOS, Current-limit. to include additional RILIM values. .............................................................................................. 5  
Changed Equation 1 ............................................................................................................................................................ 11  
Changed the Designing Above a Minimum Current Limit section........................................................................................ 12  
Changed the Designing Below a Maximum Current Limit section ....................................................................................... 13  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
5 Device Comparison Table  
MAXIMUM OPERATING  
DEVICE  
OUTPUTS  
ENABLES  
TYPICAL RDS(on) (m)  
PACKAGE  
CURRENT (A)  
TPS2556-Q1  
TPS2557-Q1  
TPS2561A-Q1  
5
5
1
1
2
Active-low  
Active-high  
Active-high  
22  
22  
44  
SON-8 (DRB)  
SON-8 (DRB)  
SON-10 (DRC)  
2.5  
6 Pin Functions and Configurations  
DRC PACKAGE  
(TOP VIEW)  
10  
9
1
2
3
4
5
GND  
IN  
IN  
FAULT1  
OUT1  
OUT2  
ILIM  
PAD  
8
7
6
EN1  
EN2  
FAULT2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
EN1  
EN2  
GND  
IN  
4
5
I
I
Enable input, logic high turns on channel one power switch  
Enable input, logic high turns on channel two power switch  
Ground connection; connect externally to PowerPAD  
1
2, 3  
I
Input voltage; connect a 0.1 μF or greater ceramic capacitor from IN to GND  
as close to the IC as possible.  
FAULT1  
FAULT2  
10  
6
O
O
Active-low open-drain output, asserted during overcurrent or overtemperature  
condition on channel one.  
Active-low open-drain output, asserted during overcurrent or overtemperature  
condition on channel two  
OUT1  
OUT2  
ILIM  
9
8
7
O
O
O
Power-switch output for channel one  
Power-switch output for channel two  
External resistor used to set current-limit threshold; recommended 20 kΩ ≤  
RILIM 187 k.  
Internally connected to GND; used to heat-sink the part to the circuit board  
traces. Connect PowerPAD to GND pin externally.  
PowerPAD™  
PAD  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted(1)  
(2)  
MIN  
–0.3  
–7  
MAX  
UNIT  
V
Voltage range on IN, OUTx, ENx, ILIM, FAULTx  
Voltage range from IN to OUTx  
Continuous output current  
7
7
V
Internally Limited  
25  
Internally Limited  
Continuous FAULTx sink current  
ILIM source current  
mA  
mA  
Internally  
Limited  
TJ  
Maximum junction temperature  
–40  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Voltages are referenced to GND unless otherwise noted.  
7.2 Handling Ratings  
MIN  
MAX  
150  
UNIT  
°C  
TSTG  
Storage temperature range  
Human Body Model (HBM)  
Charged Device Model (CDM)  
System level (contact/air)  
-65  
AEC-Q100 Classification Level H2  
AEC-Q100 Classification Level C5  
2
kV  
(1)  
VESD  
750  
V
8/15(2)  
kV  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Surges per EN61000-4-2, 1999 applied between USB connection for VBUS and GND of the TPS2560EVM (HPA424, replacing TPS2560  
with TPS2561A-Q1) evaluation module (documentation available on the Web.) These were the test level, no the failure threshold.  
7.3 Recommended Operating Conditions  
MIN  
2.5  
0
MAX  
6.5  
UNIT  
V
VIN  
Input voltage, IN  
VENx  
VIH  
Enable voltage  
6.5  
V
High-level input voltage on ENx  
Low-level input voltage on ENx  
Continuous output current per channel, OUTx  
Continuous FAULTx sink current  
Operating junction temperature  
Recommended resistor limit range  
1.1  
V
VIL  
0.66  
2.5  
IOUTx  
0
0
A
10  
mA  
°C  
TJ  
–40  
20  
125  
187  
RILIM  
kΩ  
7.4 Thermal Information(1)  
TPS2561A-Q1  
THERMAL METRIC  
UNIT  
DRC (10 TERMINALS)  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
38.1  
40.5  
13.6  
0.6  
θJCtop  
θJB  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
13.7  
3.4  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
 
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
7.5 Electrical Characteristics  
over recommended operating conditions, VENx = VIN (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP MAX UNIT  
POWER SWITCH  
TJ = 25°C  
44  
50  
70  
4
Static drain-source on-state  
resistance per channel, IN to OUTx  
rDS(on)  
mΩ  
–40°C TJ 125 °C  
VIN = 6.5 V  
1.5  
0.5  
0.5  
0.3  
3
2
tr  
tf  
Rise time, output  
Fall time, output  
VIN = 2.5 V  
3
CLx = 1 μF, RLx = 100 ,  
(see Figure 9)  
ms  
VIN = 6.5 V  
0.8  
0.6  
1.0  
0.8  
VIN = 2.5 V  
ENABLE INPUT EN  
Enable pin turn on/off threshold  
0.66  
–0.5  
1.1  
V
Hysteresis  
55(2)  
mV  
μA  
ms  
ms  
IEN  
ton  
toff  
Input current  
Turnon time  
Turnoff time  
VENx = 0 V or 6.5 V  
0.5  
9
CLx = 1 μF, RLx = 100 , (see Figure 9)  
6
CURRENT LIMIT  
RILIM = 20 kΩ  
2560 2750 2980  
2100 2250 2500  
RILIM = 24.3 kΩ  
RILIM = 61.9 kΩ  
RILIM = 100 kΩ  
RILIM = 47.5 kΩ  
OUTx connected to GND  
IOS  
Current-limit (see Figure 11)  
800  
470  
900 1005  
560 645  
mA  
OUT1 and OUT2 connected to GND  
VIN = 5 V (see Figure 10)  
2100 2300 2500  
3.5(2)  
tIOS  
Response time to short circuit  
μs  
SUPPLY CURRENT  
IIN(off)  
IIN(on)  
IREV  
Supply current, low-level output  
VIN = 6.5 V, No load on OUTx, VENx = 0 V  
0.1  
100  
85  
2.0  
125  
110  
1.0  
μA  
μA  
μA  
μA  
RILIM = 20 kΩ  
Supply current, high-level output  
Reverse leakage current  
VIN = 6.5 V, No load on OUT  
VOUTx = 6.5 V, VIN = 0 V  
RILIM = 100 kΩ  
TJ = 25°C  
0.01  
UNDERVOLTAGE LOCKOUT  
VUVLO Low-level input voltage, IN  
Hysteresis, IN  
FAULTx FLAG  
VOL Output low voltage, FAULTx  
VIN rising  
TJ = 25°C  
2.35  
35(2)  
2.45  
V
mV  
I FAULTx = 1 mA  
V FAULTx = 6.5 V  
180  
1
mV  
μA  
ms  
Off-state leakage  
FAULTx deglitch  
FAULTx assertion or de-assertion due to overcurrent condition  
6
9
13  
THERMAL SHUTDOWN  
Thermal shutdown threshold, OTSD2  
155  
135  
°C  
°C  
°C  
Thermal shutdown threshold in current-limit, OTSD  
Hysteresis  
20(2)  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only, and do not constitute part of TI's published specifications for purposes of TI's product  
warranty.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
7.6 Typical Characteristics  
2.335  
2.33  
700  
600  
2.325  
500  
400  
300  
200  
100  
UVLO Rising  
2.32  
V
= 6.5 V  
2.315  
2.31  
IN  
2.305  
V
= 2.5 V  
IN  
UVLO Falling  
2.3  
0
2.295  
2.29  
-50  
-100  
-50  
0
50  
- Junction Temperature - °C  
100  
150  
0
50  
100  
150  
T
T
- Junction Temperature - °C  
J
J
Figure 2. IIN – Supply Current, Output Disabled – nA  
Figure 1. UVLO – Undervoltage Lockout – V  
120  
120  
V
= 6.5 V  
V
= 5 V  
IN  
IN  
TJ = 125°C  
100  
80  
110  
100  
V
= 3.3 V  
V
= 2.5 V  
IN  
IN  
60  
40  
90  
80  
TJ = -40°C  
TJ = 25°C  
20  
0
70  
60  
-50  
0
50  
- Junction Temperature - °C  
100  
150  
2
3
4
5
6
7
T
Input Voltage - V  
J
RLIM = 20 kΩ  
RLIM = 20 kΩ  
Figure 4. IIN – Supply Current, Output Enabled – µA  
0.6  
Figure 3. IIN – Supply Current, Output Enabled – µA  
70  
60  
0.5  
0.4  
T
= -40°C  
= 25°C  
A
50  
40  
T
A
T
= 125°C  
0.3  
0.2  
A
30  
20  
10  
0
0.1  
0
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
V
- V  
- mV/div  
OUT  
T
- Junction Temperature - °C  
IN  
J
RLIM = 100 kΩ  
Figure 6. Switch Current Vs. Drain-Source Voltage Across  
Switch  
Figure 5. MOSFET rDS(on) Vs. Junction Temperature  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
1.0  
0.9  
0.8  
0.7  
3.0  
2.5  
2.0  
TJ = -40°C  
TJ = 25°C  
T
= -40°C  
= 25°C  
A
0.6  
0.5  
0.4  
0.3  
T
A
1.5  
T
= 125°C  
A
1.0  
0.5  
0
TJ = 125°C  
0.2  
0.1  
0
0
20  
40  
60  
80  
100  
- mV/div  
120  
140  
160  
0
50  
100  
150  
200  
V
- V  
OUT  
VIN-VOUT - mV  
IN  
RLIM = 61.9 kΩ  
RLIM = 20 kΩ  
Figure 7. Switch Current Vs. Drain-Source Voltage Across  
Switch  
Figure 8. Switch Current vs. Drain-Source Voltage Across  
Switch  
8 Parameter Measurement Information  
OUTx  
tr  
tf  
RLx  
CLx  
90%  
10%  
VOUTx  
90%  
10%  
TEST CIRCUIT  
VENx  
50%  
50%  
50%  
ton  
50%  
VENx  
toff  
ton  
toff  
90%  
90%  
VOUTx  
VOUTx  
10%  
10%  
VOLTAGE WAVEFORMS  
Figure 9. Test Circuit and Voltage Waveforms  
IOS  
IOUTx  
tIOS  
Figure 10. Response Time to Short Circuit Waveform  
Copyright © 2014, Texas Instruments Incorporated  
7
 
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Decreasing  
Load Resistance  
V
OUTx  
Decreasing  
Load Resistance  
I
OUTx  
I
OS  
Figure 11. Output Voltage vs. Current-Limit Threshold  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
9 Detailed Description  
9.1 Overview  
The TPS2561A-Q1 is a dual-channel, current-limited power-distribution switch using N-channel MOSFETs for  
automotive applications where short circuits or heavy capacitive loads will be encountered. This device allows  
the user to program the current-limit threshold between 250 mA and 2.8 A (typ) per channel via an external  
resistor. This device incorporates an internal charge pump and gate drive circuitry necessary to drive the N-  
channel MOSFETs. The charge pump supplies power to the driver circuit for each channel and provides the  
necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input  
voltages as low as 2.5 V and requires little supply current. The driver controls the gate voltage of the power  
switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large  
current and voltage surges and provides built-in soft-start functionality. Each channel of the TPS2561A-Q1 limits  
the output current to the programmed current-limit threshold IOS during an overcurrent or short-circuit event by  
reducing the charge pump voltage driving the N-channel MOSFET and operating it in the linear range of  
operation. The result of limiting the output current to IOS reduces the output voltage at OUTx because the N-  
channel MOSFET is no longer fully enhanced.  
9.2 Functional Block Diagram  
Current  
Sense  
CS  
IN  
OUT1  
FAULT1  
9-ms Deglitch  
Thermal  
Sense  
Charge  
Pump  
Current  
Limit  
EN1  
EN2  
Driver  
ILIM  
FAULT2  
UVLO  
Thermal  
Sense  
9-ms Deglitch  
GND  
CS  
OUT2  
Current  
Sense  
9.3 Feature Description  
9.3.1 Overcurrent Conditions  
The TPS2561A-Q1 responds to overcurrent conditions by limiting the output current per channel to IOS. When an  
overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage  
accordingly. Two possible overload conditions can occur.  
The first condition is when a short circuit or partial short circuit is present when the device is powered-up or  
enabled. The output voltage is held near zero potential with respect to ground and the TPS2561A-Q1 ramps the  
output current to IOS. The TPS2561A-Q1 devices will limit the current to IOS until the overload condition is  
removed or the device begins to thermal cycle.  
The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is  
enabled and powered on. The device responds to the overcurrent condition within time tIOS (see Figure 10). The  
current-sense amplifier is overdriven during this time and momentarily disables the internal current-limit  
MOSFET. The current-sense amplifier recovers and ramps the output current to IOS. Similar to the previous case,  
the TPS2561A-Q1 will limit the current to IOS until the overload condition is removed or the device begins to  
thermal cycle.  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
Feature Description (continued)  
The TPS2561A-Q1 thermal cycles if an overload condition is present long enough to activate thermal limiting in  
any of the above cases. The device turns off when the junction temperature exceeds 135°C (min) while in current  
limit. The device remains off until the junction temperature cools 20°C (typ) and then restarts. The TPS2561A-Q1  
cycles on/off until the overload is removed (see Figure 20) .  
9.3.2 FAULTx Response  
The FAULTx open-drain outputs are asserted (active low) on an individual channel during an overcurrent or  
overtemperature condition. The TPS2561A-Q1 asserts the FAULTx signal until the fault condition is removed and  
the device resumes normal operation on that channel. The TPS2561A-Q1 is designed to eliminate false FAULTx  
reporting by using an internal delay "deglitch" circuit (9-ms typ) for overcurrent conditions without the need for  
external circuitry. This ensures that FAULTx is not accidentally asserted due to normal operation such as starting  
into a heavy capacitive load. The deglitch circuitry delays entering and leaving current-limited induced fault  
conditions. The FAULTx signal is not deglitched when the MOSFET is disabled due to an overtemperature  
condition but is deglitched after the device has cooled and begins to turn on. This unidrectional deglitch prevents  
FAULTx oscillation during an overtemperature event.  
9.3.3 Thermal Sense  
The TPS2561A-Q1 self protects by using two independent thermal sensing circuits that monitor the operating  
temperature of the power switch and disable operation if the temperature exceeds recommended operating  
conditions. Each channel of the TPS2561A-Q1 operates in constant-current mode during an overcurrent  
conditions, which increases the voltage drop across the power switch. The power dissipation in the package is  
proportional to the voltage drop across the power switch, which increases the junction temperature during an  
overcurrent condition. The first thermal sensor (OTSD) turns off the individual power switch channel when the die  
temperature exceeds 135°C (min) and the channel is in current limit. Hysteresis is built into the thermal sensor,  
and the switch turns on after the device has cooled approximately 20°C.  
The TPS2561A-Q1 also has a second ambient thermal sensor (OTSD2). The ambient thermal sensor turns off  
both power switch channels when the die temperature exceeds 155°C (min) regardless of whether the power  
switch channels are in current limit and will turn on the power switches after the device has cooled approximately  
20°C. The TPS2561A-Q1 continues to cycle off and on until the fault is removed.  
9.4 Device Functional Mode  
9.4.1 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn-  
on threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage droop during turn on.  
9.4.2 Enable (ENx)  
The logic enables control the power switches and device supply current. The supply current is reduced to less  
than 2-μA when a logic low is present on ENx. A logic high input on ENx enables the driver, control circuits, and  
power switches. The enable inputs are compatible with both TTL and CMOS logic levels.  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
10 Application and Implementation  
10.1 Application Information  
The device is current-limited, power-distribution switch. It would limit the output current to IOS when short circuits  
or heavy capacitive loads are encountered.  
10.2 Typical Application  
10.2.1 Design Current Limit  
TPS2561A-Q1  
VIN = 5V  
0.1 uF  
VOUT1  
IN  
IN  
OUT1  
OUT2  
2x RFAULT  
100 kΩ  
VOUT2  
24.9kΩ  
2x 150 µF  
ILIM  
FAULT 1  
FAULT 2  
EN1  
Faultx Signals  
Control Signals  
GND  
EN2  
Power Pad  
Figure 12. Typical Characteristics Reference Schematic  
10.2.1.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMTER  
Input voltage  
EXAMPLE VALUE  
5V  
2A  
1A  
Minimum current limit  
Maximum current limit  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Determine Design Parameters  
Beginning the design process requires deciding on a few parameters. The designer must know the following:  
Input voltage  
Minimum current limit  
Maximum current limit  
10.2.1.2.2 Programming the Current-Limit Threshold  
The overcurrent threshold is user programmable via an external resistor, RILIM. RILIM sets the current-limit  
threshold for both channels. The TPS2561A-Q1 use an internal regulation loop to provide a regulated voltage on  
the ILIM pin. The current-limit threshold is proportional to the current sourced out of ILIM. The recommended 1%  
resistor range for RILIM is 20 kΩ ≤ RILIM 187 kto ensure stability of the internal regulation loop. Many  
applications require that the minimum current limit is above a certain current level or that the maximum current  
limit is below a certain current level, so it is important to consider the tolerance of the overcurrent threshold when  
selecting a value for RILIM. The following equations calculates the resulting overcurrent threshold for a given  
external resistor value (RILIM). The traces routing the RILIM resistor to the TPS2561A-Q1 should be as short as  
possible to reduce parasitic effects on the current-limit accuracy.  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
49497V  
R(ILIM)0.933kW  
IOSmax (mA) =  
IOSnom(mA) =  
IOSmin(mA) =  
- 37  
53098V  
R(ILIM)0.989kW  
50576V  
R(ILIM)0.987kW  
- 64  
(1)  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
IOS(max)  
IOS(typ)  
500  
IOS(min)  
250  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
RILIM – Current Limit Resistor – kΩ  
120  
130  
140  
150  
Figure 13. Current-Limit Threshold vs. RILIM  
10.2.1.2.3 Designing Above a Minimum Current Limit  
Some applications require that current limiting cannot occur below a certain threshold. For this example, assume  
that 2 A must be delivered to the load so that the minimum desired current-limit threshold is 2000 mA. Use the  
IOS equations and Figure 13 to select RILIM  
.
IOSmin(mA) = 2000 mA  
50576V  
R(ILIM)0.987kW  
IOSmin(mA) =  
- 64  
1
1
0.987  
æ
ö
÷
÷
ø
50576  
50576  
0.987  
æ
ö
R(ILIM)(kW) = ç  
=
= 25.56kW  
ç
÷
ç
è
IOS(min) + 64  
2000 + 64  
è
ø
(2)  
Select the closest 1% resistor less than the calculated value: RILIM = 25.5 k. This sets the minimum current-limit  
threshold at 2005 mA .  
50576  
R(ILIM)0.987kW  
50576  
(25.5)0.987  
IOSmin(mA) =  
- 64 =  
- 64 = 2005 mA  
(3)  
Use the IOS equations, Figure 13, and the previously calculated value for RILIM to calculate the maximum resulting  
current-limit threshold at 2374 mA.  
49497  
49497  
(25.5)0.933  
IOSmax (mA) =  
- 37 =  
- 37 = 2374 mA  
0.933  
R(ILIM)  
(4)  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
10.2.1.2.4 Designing Below a Maximum Current Limit  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that 1 A must be delivered to the load so that the minimum desired current-limit threshold is 1000 mA. Use the  
IOS equations and Figure 13 to select RILIM  
.
IOSmax (mA) = 1000 mA  
49497  
R(ILIM)0.933kW  
IOSmax (mA) =  
- 37  
1
1
0.933  
æ
ö
÷
÷
ø
49497  
49497  
0.933  
æ
ö
R(ILIM)(kW) = ç  
=
ç
= 63kW  
÷
ç
è
IOS(max)  
1000 + 37  
è
ø
(5)  
Select the closest 1% resistor greater than the calculated value: RILIM = 63.4 k. This sets the maximum current-  
limit threshold at 994 A.  
49497  
R(ILIM)0.933kW  
49497  
(63.4)0.933  
IOSmax (mA) =  
- 37 =  
- 37 = 994 mA  
(6)  
Use the IOS equations, Figure 13, and the previously calculated value for RILIM to calculate the minimum resulting  
current-limit threshold at 778 mA.  
50576  
50576  
(63.4)0.987  
IOSmin(mA) =  
- 64 =  
- 64 = 778 mA  
0.987  
R(ILIM)  
(7)  
10.2.1.2.5 Accounting for Resistor Tolerance  
The previous sections described the selection of RILIM given certain application requirements and the importance  
of understanding the current-limit threshold tolerance. The analysis focused only on the TPS2561A-Q1  
performance and assumed an exact resistor value. However, resistors sold in quantity are not exact and are  
bounded by an upper and lower tolerance centered around a nominal resistance. The additional RILIM resistance  
tolerance directly affects the current-limit threshold accuracy at a system level. The following table shows a  
process that accounts for worst-case resistor tolerance assuming 1% resistor values. Step one follows the  
selection process outlined in the application examples above. Step two determines the upper and lower  
resistance bounds of the selected resistor. Step three uses the upper and lower resistor bounds in the IOS  
equations to calculate the threshold limits. It is important to use tighter tolerance resistors, that is, 0.5% or 0.1%,  
when precision current limiting is desired.  
Table 2. Common RILIM Resistor Selections  
Desired  
Nominal  
Current Limit  
(mA)  
Resistor Tolerance  
Actual Limits  
IOS Nom (mA)  
Ideal Resistor  
Closest 1%  
Resistor (k)  
(k)  
1% low (k)  
1% high (k)  
IOS MIN (mA)  
IOS MAX (mA)  
300  
550  
187.5  
101.6  
69.5  
52.8  
42.6  
35.6  
30.6  
26.9  
23.9  
21.5  
19.6  
187  
102  
185.1  
101.0  
69.1  
51.8  
41.8  
35.3  
30.6  
26.4  
23.5  
21.3  
19.4  
188.9  
103.0  
70.5  
52.8  
42.6  
36.1  
31.2  
27.0  
23.9  
21.7  
19.8  
223  
457  
301  
548  
342  
631  
800  
69.8  
52.3  
42.2  
35.7  
30.9  
26.7  
23.7  
21.5  
19.6  
694  
797  
914  
1050  
1300  
1550  
1800  
2050  
2300  
2550  
2800  
944  
1060  
1311  
1547  
1784  
2062  
2320  
2554  
2799  
1208  
1484  
1741  
1998  
2295  
2569  
2817  
3075  
1182  
1406  
1631  
1894  
2138  
2360  
2592  
Copyright © 2014, Texas Instruments Incorporated  
13  
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
10.2.1.2.6 Power Dissipation and Junction Temperature  
The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It  
is good design practice to estimate power dissipation and junction temperature. The below analysis gives an  
approximation for calculating junction temperature based on the power dissipation in the package. However, it is  
important to note that thermal analysis is strongly dependent on additional system level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating  
power. Good thermal design practice must include all system level factors in addition to individual component  
analysis.  
Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating  
temperature. As an initial estimate, use the highest operating ambient temperature of interest and read RDS(on)  
from the typical characteristics graph. Using this value, the power dissipation can be calculated by:  
2
PD = (RDS(on) × IOUT1 2) +(RDS(on) × IOUT2  
)
Where:  
PD = Total power dissipation (W)  
rDS(on) = Power switch on-resistance of one channel ()  
IOUTx = Maximum current-limit threshold set by RILIM(A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature:  
TJ = PD × θJA + TA  
Where:  
TA = Ambient temperature (°C)  
θJA = Thermal resistance (°C/W)  
PD = Total power dissipation (W)  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the "refined" RDS(on) from the previous calculation as the new estimate. Two or three  
iterations are generally sufficient to achieve the desired result. The final junction temperature is highly dependent  
on thermal resistance θJA, and thermal resistance is highly dependent on the individual package and board  
layout. The Thermal Characteristics Table provides example thermal resistances for specific packages and board  
layouts.  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
10.2.1.2.7 Auto-Retry Functionality  
Some applications require that an overcurrent condition disables the part momentarily during a fault condition  
and re-enables after a pre-set time. This auto-retry functionality can be implemented with an external resistor and  
capacitor. During a fault condition, FAULTx pulls ENx low disabling the part. The part is disabled when ENx is  
pulled below the turn-off threshold, and FAULTx goes high impedance allowing CRETRY to begin charging. The  
part re-enables when the voltage on ENx reaches the turn-on threshold, and the auto-retry time is determined by  
the resistor, capacitor time constant. The part will continue to cycle in this manner until the fault condition is  
removed.  
TPS2561A-Q1  
Input  
0.1 μF  
VOUT1  
VOUT2  
OUT1  
OUT2  
IN  
RFAULT  
2x 100 kΩ  
2x CLOAD  
ILIM  
RILIM  
20 kΩ  
FAULT1  
EN1  
GND  
FAULT2  
EN2  
CRETRY  
2x 0.22 µF  
Power Pad  
Figure 14. Auto-Retry Functionality  
Some applications require auto-retry functionality and the ability to enable/disable with an external logic signal.  
The figure below shows how an external logic signal can drive EN through RFAULT and maintain auto-retry  
functionality. The resistor/capacitor time constant determines the auto-retry time-out period.  
TPS2561A-Q1  
Input  
0.1 μF  
OUT1  
OUT2  
VOUT1  
VOUT2  
IN  
External Logic  
Signal & Drivers  
2x CLOAD  
RFAULT  
2x 100 kΩ  
ILIM  
RILIM  
20 kΩ  
FAULT1  
EN1  
GND  
FAULT2  
EN2  
CRETRY  
2x 0.22 µF  
Power Pad  
Figure 15. Auto-Retry Functionality With External EN Signal  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
10.2.1.2.8 Two-Level Current-Limit Circuit  
Some applications require different current-limit thresholds depending on external system conditions. Figure 16  
shows an implementation for an externally controlled, two-level current-limit circuit. The current-limit threshold is  
set by the total resistance from ILIM to GND (see previously discussed Programming the Current-Limit Threshold  
section). A logic-level input enables/disables MOSFET Q1 and changes the current-limit threshold by modifying  
the total resistance from ILIM to GND. Additional MOSFET/resistor combinations can be used in parallel to  
Q1/R2 to increase the number of additional current-limit levels.  
NOTE  
ILIM should never be driven directly with an external signal.  
TPS2561A-Q1  
0.1 μF  
2.5V 6.5V  
VOUT1  
IN  
IN  
OUT1  
OUT2  
2x RFAULT  
100 kΩ  
VOUT2  
2x CLOAD  
R1  
187 kΩ  
Fault Signal  
FAULT1  
FAULT2  
EN1  
ILIM  
Fault Signal  
Control Signal  
Control Signal  
R2  
22.1 kΩ  
GND  
EN2  
Power Pad  
Q1  
Current Limit  
Control Signal  
Figure 16. Two-Level Current-Limit Circuit  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
10.2.2 Application Curves  
V
V
OUT1  
OUT1  
5 V/div  
5 V/div  
V
OUT2  
V
OUT2  
5 V/div  
5 V/div  
VEN1 = VEN2  
5 V/div  
VEN1 = VEN2  
5 V/div  
I
I
IN  
IN  
2 A/div  
2 A/div  
t - Time - 2 ms/div  
t - Time - 2 ms/div  
Figure 17. Turn-on Delay and Rise Time  
Figure 18. Turn-off Delay and Fall Time  
V
V
OUT1  
5 V/div  
OUT1  
5 V/div  
V
OUT2  
5 V/div  
V
OUT2  
5 V/div  
FAULT2_bar  
5 V/div  
FAULT2_bar  
5 V/div  
I
I
IN  
2 A/div  
IN  
2 A/div  
t - Time - 20 ms/div  
t - Time - 20 ms/div  
Figure 19. Full-Load to Short-Circuit Transient Response  
Figure 20. Short-Circuit to Full-Load Recovery Response  
11 Power Supply Requirements  
The device is designed to operate from an input voltage supply range of 2.5 V to 6.5 V. The current capability of  
upper power should exceed the max current limit of the power switch.  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS2561A-Q1  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
For all applications, a 0.1-µF or greater ceramic bypass capacitor between IN and GND is recommended as  
close to the device as possible for local noise decoupling. This precaution reduces ringing on the input due to  
power-supply transients. Additional input capacitance may be needed on the input to reduce voltage overshoot  
form exceeding the absolute-maximum voltage of the device during heavy transient conditions.  
Output capacitance is not required, but placing a high-value electrolytic capacitor on the output pin is  
recommended when large transient currents are expected on the output.  
The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects on  
the current limit accuracy.  
The PowerPAD™ should be directly connected to PCB ground plane using wide and short copper trace.  
12.2 Layout Example  
VIA to Power Ground Plane  
Power Ground  
FAULT1  
10  
9
1
2
3
4
OUT1  
OUT2  
High Frequency  
Bypass Capacitor  
IN  
8
7
6
ILIM  
5
FAULT2  
18  
版权 © 2014, Texas Instruments Incorporated  
TPS2561A-Q1  
www.ti.com.cn  
ZHCSC59A MARCH 2014REVISED JUNE 2014  
13 器件和文档支持  
13.1 商标  
PowerPAD is a trademark of Texas Instruments.  
13.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2561AQDRCRQ1  
TPS2561AQDRCTQ1  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2561AQ  
2561AQ  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2561AQDRCRQ1  
TPS2561AQDRCTQ1  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2561AQDRCRQ1  
TPS2561AQDRCTQ1  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2561DRC

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2561DRCR

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2561DRCT

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCHES
TI

TPS2561QDRCRQ1

DUAL CHANNEL PRECISION ADJUSTABLE CURRENT-LIMITED POWER SWITCH
TI

TPS25750

TPS25750 USB Type-C and USB PD Controller with Integrated Power Switches Optimized for Power Applications
TI

TPS25750D

TPS25750 USB Type-C® and USB PD Controller with Integrated Power Switches Optimized for Power Applications
TI

TPS25750DRJKR

TPS25750 USB Type-C® and USB PD Controller with Integrated Power Switches Optimized for Power Applications
TI

TPS25750S

TPS25750 USB Type-C® and USB PD Controller with Integrated Power Switches Optimized for Power Applications
TI

TPS25750SRSMR

TPS25750 USB Type-C® and USB PD Controller with Integrated Power Switches Optimized for Power Applications
TI

TPS25750_V01

TPS25750 USB Type-C® and USB PD Controller with Integrated Power Switches Optimized for Power Applications
TI

TPS25762-Q1

具有集成降压/升压稳压器的汽车类 USB Type-C® PD 控制器
TI

TPS25762CQRQLRQ1

具有集成降压/升压稳压器的汽车类 USB Type-C® PD 控制器 | RQL | 29 | -40 to 125
TI