TPS25762-Q1 [TI]

具有集成降压/升压稳压器的汽车类 USB Type-C® PD 控制器;
TPS25762-Q1
型号: TPS25762-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成降压/升压稳压器的汽车类 USB Type-C® PD 控制器

控制器 光电二极管 稳压器
文件: 总90页 (文件大小:11729K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
具有降/压稳压器的 TPS25762-Q1 车类 USB Type-C® 送控制器  
1 特性  
3 说明  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 1–40°C +125°C 环境工作温  
度范围  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C2B  
增强型连接器引脚 ESD 保护功能  
具有可编程电源 (PPS) 支持的 USB 电力输送 (PD)  
控制器  
TPS25762-Q1 是一款完全集成的 USB Type-C® 电力  
输送 (PD) 解决方案,具有集成的降压/升压转换器,适  
用于汽车单 USB 端口应用。功能包括:带 4 个电源  
开关的集成式降压/升压转换器;一个 ARM® Cortex®-  
M0;带 Type-C 电缆插拔和方向检测的 USB 端口控制  
器;USB 电池充电规范版本 1.2 (BC1.2) 检测;USB  
端点 PHY;器件电源管理和监控电路;连接器引脚过  
压和短路保护。  
VIN5.5V 18V(最大 40V)  
集成降压/升压 4 个电源开关,支持高达 65W 的  
USB PD 输出功率  
一个智能的系统策略管理器有效地增加了传输的 USB  
电力,同时保护系统免受汽车电池瞬态和过热情况的影  
响。  
– VBUS 输出:3V 21V,步长为 ±20mV  
– IBUS 输出:0A 3A,电流限值步长为 ±50mA  
– VBUS 短接 VBAT 和接地保护  
– VBUS 电缆压降补偿  
器件配置设置通过一个直观的图形用户界面 (GUI) 进行  
选择。  
器件信息  
封装  
– MFi 过流保护  
器件型号  
封装尺寸  
开关频率:300kHz400kHz450kHz  
具有抖动的直流/直流同步输入/输出  
USB 端口配置选项  
TPS25762-Q1  
RQL (QFN-29)  
6.00mm × 5.00mm  
VBAT  
– 1 USB-PD 端口 (TPS25762-Q1)  
– 2 USB-PD 端口 (TPS25772-Q1)  
符合 USB 要求  
– USB Type-C® 电力输送 3.1 版  
PGND  
IN  
ON  
PA_CC1  
PA_CC2  
PA_DP  
OFF  
EN  
LDO5V  
PA_DM  
CSN/BUS  
CSP  
CC 逻辑、VCONN 拉电流和放电电流  
LDO3V3  
LDO1V5  
3-21V  
USB 电缆极性检测  
OUT  
AGND  
TVSP  
3V3  
电池充电规范 1.2 版  
LS_GD  
NTC  
DCP:专用充电端口  
传统快速充电  
IRQ  
E2PROM  
(32kB)  
SCL1  
SDA1  
– 2.7V 分压器 3 模式  
– 1.2V 分压器模式  
高压 DCP 协议  
微控制器内核允许  
GPIO0  
GPIO1  
固件更新  
TPS25762-Q1  
根据电源电压和温度提供电源管理  
短接 VBUS VBAT 保护  
– VBUS  
– Px_ DP Px_DM  
– Px_CC1 Px_CC2  
2 应用  
汽车类 USB 充电  
汽车媒体中心  
汽车音响主机  
汽车后座娱乐系统  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGL9  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings .............................................................. 7  
7.3 Recommended Operating Conditions.........................7  
7.4 Recommended Components...................................... 8  
7.5 Thermal Information....................................................9  
7.6 Buck-Boost Regulator.................................................9  
7.7 CC Cable Detection Parameters...............................13  
7.8 CC VCONN Parameters........................................... 13  
7.9 CC PHY Parameters.................................................14  
7.10 Thermal Shutdown Characteristics.........................15  
7.11 Oscillator Characteristics........................................ 15  
7.12 ADC Characteristics................................................15  
7.13 TVS Parameters..................................................... 16  
7.14 Input/Output (I/O) Characteristics........................... 16  
7.15 BC1.2 Characteristics............................................. 17  
7.16 I2C Requirements and Characteristics................... 18  
7.17 Typical Characteristics............................................21  
8 Parameter Measurement Information..........................29  
9 Detailed Description......................................................31  
9.1 Overview...................................................................31  
9.2 Functional Block Diagram.........................................32  
9.3 Feature Description...................................................32  
9.4 Device Functional Modes..........................................63  
10 Application and Implementation................................65  
10.1 Application Information........................................... 65  
10.2 Typical Application.................................................. 65  
11 Power Supply Recommendations..............................80  
12 Layout...........................................................................81  
12.1 Layout Guidelines................................................... 81  
12.2 Layout Example...................................................... 82  
13 Device and Documentation Support..........................83  
13.1 Documentation Support.......................................... 83  
13.2 接收文档更新通知................................................... 83  
13.3 支持资源..................................................................83  
13.4 Trademarks.............................................................83  
13.5 Electrostatic Discharge Caution..............................83  
13.6 术语表..................................................................... 83  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 84  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
TPS25762-Q1  
TPS25772-Q1  
Port A  
Port B  
Port A Output Power  
Port B Output Power  
n/a  
USB-PD  
65 W  
65 W  
n/a  
USB-PD  
65 W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
GPIO2 | I2C_SCL2  
GPIO1 | IRQ2(o)  
GPIO0  
1
2
3
4
5
6
7
25  
24  
23  
22  
21  
GPIO6 | SYNC  
GPIO9 | IRQ  
I2C_SCL1  
I2C_SDA1  
AGND  
TVSP  
LDO_5V  
EN/UVLO  
LDO_1V5  
20 PA_CC1  
19  
18  
PA_CC2  
PA_DP | GPIO8  
8
GPIO5 | NTC  
6-1. RQL Package 29-Pin (VQFN) Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
6-1. Pin Descriptions  
PIN  
DESCRIPTION  
NAME  
NO.  
Enable pin. For EN/UVLO < 0.3 V, the TPS25762-Q1 is in a low current shutdown mode. For  
EN/UVLO > 1.3 V, the full functionality is enabled, provided LDO_5V exceeds the LDO_5V UVLO  
threshold.  
EN/UVLO  
6
The input supply pin to the IC. Connect VIN to a supply voltage between 5.5 V and 18 V (40-V  
ABS MAX transient).  
IN  
15  
PGND  
SW1  
13  
14  
12  
Power ground of the IC. The high current ground connection to the low-side gate drivers.  
The buck side switching node.  
SW2  
The boost side switching node.  
An external capacitor is required between the BOOT1 and the SW1 pins to provide bias to the  
high-side MOSFET gate drivers.  
BOOT1  
BOOT2  
16  
10  
An external capacitor is required between the BOOT2 and the SW2 pins to provide bias to the  
high-side MOSFET gate drivers.  
AGND  
OUT  
5
Analog ground of the IC.  
11  
28  
29  
Output of the buck-boost regulator. Connect to bulk capacitance.  
Positive input of the current sense amplifier.  
CSP  
CSN/BUS  
Negative input of the current sense amplifier. This is the PA_VBUS supply.  
Output of internal 5 V LDO for buck-boost low-side FET drivers, and Px_VCONN supply. Connect  
bypass capacitor to PGND. May be overdriven from external 5-V supply.  
LDO_5V  
21  
27  
Output of internal 3.3-V LDO for analog circuitry and GPIO drivers. Connect bypass capacitor to  
AGND.  
LDO_3V3  
LDO_1V5  
I2C_SCL1  
I2C_SDA1  
7
3
Output of internal 1.5-V LDO for digital circuitry. Connect bypass capacitor to AGND.  
Controller I2C Clock Input/Output.  
4
Controller I2C Data Input/Output.  
GPIO2 (I2C_SCL2)  
GPIO3 (I2C_SDA2)  
25  
26  
Multifunction pin. GPIO; or target I2C Clock Input.  
Multifunction pin. GPIO; or target I2C Data Input.  
Multifunction pin. Interrupt I/O and fault flag for I2C1 or I2C2; or GPIO depending upon firmware  
configuration. Reports fault conditions set by application configuration firmware.  
IRQ (GPIO9)  
PA_CC1  
2
Analog input/output. Port A Type-C current advertisement, VCONN, and USB PD modem.  
Connect to Port A Type-C connector CC1 pin.  
20  
19  
18  
17  
Analog input/output. Port A Type-C current advertisement, VCONN, and USB PD modem.  
Connect to Port A Type-C connector CC2 pin.  
PA_CC2  
Multifunction pin. BC1.2 USB 2.0 D+ data line input/output. Connect to Port A Type-C USB data  
line DP connector pins. May also be used as GPIO depending upon firmware configuration.  
PA_DP (GPIO8)  
PA_DM (GPIO7)  
Multifunction pin. BC1.2 USB 2.0 D- data line input/output. Connect to Port A Type-C USB data  
line DM connector pins. May also be used as GPIO depending upon firmware configuration.  
GPIO0  
23  
24  
GPIO  
GPIO1 or IRQ2(o)  
Multifunction pin. GPIO or Interrupt I/O depending upon firmware configuration.  
Multifunction pin. GPIO; thermistor input (can use either negative temperature coefficient resistor  
or positive temperature coefficient resistor).  
GPIO5 (NTC)  
8
1
Multifunction pin. GPIO; SYNC(o) - clock out to synchronize slave DC/DC regulators to internal  
DC/DC switching frequency; SYNC(i) - clock input to synchronize internal DC/DC to an external  
clock.  
GPIO6 (SYNC)  
PA_LSGD  
TVSP  
9
Charge pump output for external NFET for VBUS bulk capacitance blocking.  
Transient voltage protection and firmware setting pin. See 9-3 for boot configuration. See 表  
9-2 for R-C network component values.  
22  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of -40°C to 150°C and AGND = PGND (unless otherwise  
noted)(1) (2)  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Input voltage range  
Output voltage range  
Output voltage range  
Output voltage range  
Output voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
IN (3) (4) to PGND  
40  
IN with respect to SW1  
EN/UVLO (5) to AGND  
BOOT1 with respect to SW1  
BOOT2 with respect to SW2 (6)  
SW1 (7) to PGND  
25  
–0.3 internally limited  
–0.3  
–0.3  
–0.3  
–0.3  
6
6
24  
24  
17.5  
24  
24  
0.3  
0.3  
24  
6
SW2 (8) to PGND  
SW2 to OUT  
CSP to PGND  
–0.3  
–0.3  
-0.3  
CSN/BUS to PGND  
CSP to CSN  
AGND to PGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
OUT to PGND  
LDO_5V to PGND  
LDO_3V3 to AGND  
LDO_1V5 to AGND  
TVSP to PGND  
6
2
30  
6
I2C_SCL1 to AGND  
I2C_SDA1 to AGND  
GPIO9, IRQ1 to AGND  
PA_CC1 to AGND  
PA_CC2 to AGND  
PA_DM to AGND  
6
6
30  
30  
30  
6
GPIO7 to AGND  
PA_DP to AGND  
30  
6
GPIO8 to AGND  
GPIO0 to AGND  
6
GPIO1, IRQ2 to AGND  
GPIO2, I2C_SCL2 to AGND  
GPIO3, I2C_SDA2 to AGND  
PA_LSGD to PGND  
GPIO5, NTC to AGND  
GPIO6, SYNC to AGND  
PA_LSGD to CSN/BUS  
6
6
6
30  
6
6
10  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.1 Absolute Maximum Ratings (continued)  
Over the recommended operating junction temperature range of -40°C to 150°C and AGND = PGND (unless otherwise  
noted)(1) (2)  
MIN  
MAX  
UNIT  
mA  
A
Input current  
EN/UVLO  
0
2
Output current  
Output current  
Output current  
Positive source current on PA_CC1, PA_CC2  
GPIO 2, 3, 5, 6, 7, 8  
internally limited  
0.0010  
A
GPIO 0, 1, 4, 9  
0.005  
A
positive sink current for I2C_SDA1, I2C_SCL1,  
I2C_SDA2, I2C2_SCL2  
Output current  
Output current  
internally limited  
internally limited  
A
A
positive source current for LDO_5V, LDO_3V3,  
LDO_1V5  
TA Operating ambient temperature  
TJ Operating junction temperature  
TSTG Storage temperature  
–40  
–40  
–55  
125  
150  
150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to PGND or AGND. Connect the PGND pin directly to the Ground plane of the board. The PGND  
and AGND traces can be connected near the AGND pin.  
(3) When the buck-boost is operating and VIN exceeds 18 V, the positive slew rate dVIN/dt must not exceed 200V/ms.  
(4) When applying VIN, the time from VIN exceeding 5 V to VIN exceeding 25 V must not be less than 2 µs. This is normally achieved by  
properly sizing the input EMI filter.  
(5) EN/UVLO pin is internally clamped to 10V. Ensure input current rating is not exceeded by connecting current limit resistor.  
(6) BOOT2 with respect to SW2 during OUT overvoltage conditions can be -15 V due to internal clamp.  
(7) SW1 can undershoot PGND by -1 V during negative switching transients as up to 10A (peak) may flow through the body diode. Typical  
duration ~20 ns. SW1 can overshoot OUT by 1 V during positive transients. Typical duration ~ 20 ns.  
(8) SW2 can undershoot PGND by -2 V during switching transients as up to 10A (peak) may flow through the body diode. Typical duration  
~20 ns. SW2 can overshoot OUT by 1 V during positive transients. Typical duration ~20 ns.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per  
AEC Q100-002  
V(ESD)  
V(ESD)  
V(ESD)  
V(ESD)  
V(ESD)  
V(ESD)  
Electrostatic discharge  
Electrostatic discharge  
Electrostatic discharge  
Electrostatic discharge  
Electrostatic discharge  
Electrostatic discharge  
±2000(1)  
V
Charged-device model (CDM), per  
AEC Q100-011  
±750(2)  
±2000(3)  
±2000(3)  
±2000(3)  
±2000(3)  
V
V
V
V
V
IEC61000-4-2 Contact discharge  
150 pF, 330 Ω.  
OUT, CSP, CSN/BUS, PA_CC1,  
PA_CC2, PA_DP, PA_DM  
IEC61000-4-2 Contact  
discharge 150 pF, 330 Ω.  
OUT, CSP, CSN/BUS, PA_CC1,  
PA_CC2, PA_DP, PA_DM  
ISO 10605 Contact discharge 330 OUT, CSP, CSN/BUS, PA_CC1,  
pF, 330 Ω. PA_CC2, PA_DP, PA_DM  
ISO 10605 Air-gap discharge 330 OUT, CSP, CSN/BUS, PA_CC1,  
pF, 330 Ω. PA_CC2, PA_DP, PA_DM  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification C2b.  
(3) Test conducted on Texas Instruments evaulation board.  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of -40°C to 150°C (unless otherwise noted)  
MIN  
MAX  
UNIT  
Input voltage range (up to 65W  
output)  
VI  
VI  
IN  
IN  
6.8  
18  
V
Input voltage range (up to 30W  
output)  
5.5  
18  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
Over the recommended operating junction temperature range of -40°C to 150°C (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VI  
II  
Input voltage range  
Input current  
EN/UVLO  
EN/UVLO  
0
7 (2)  
0
1
mA  
LDO_5V when overdriven by  
external supply  
VI  
Input voltage range  
Input voltage range  
Input voltage range  
Output voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
I/O voltage range  
Output current(1)  
4.75  
0
5.5  
22  
V
V
VI  
CSP, CSN/BUS  
PB_VBUS (GPIO4 when  
configured as PB_VBUS)  
VI  
3
22  
V
VO  
VIO  
VIO  
VIO  
VIO  
VIO  
IO  
OUT  
0
21  
V
PA_CC1, PA_CC2, PB_CC1,  
PB_CC2  
0
5.5  
3.6  
5.5  
3.6  
3.6  
5
V
PA_DP, PA_DM, PB_DP, PB_DM  
0
V
I2C_SDAn, I2C_SCLn, IRQn (n=1  
or 2)  
0
V
GPIOn (n = 0 - 9)  
0
V
NTC monitor (GPIO5), SYNC  
(GPIO6)  
0
V
IOUT  
A
PA_CC1, PA_CC2, PB_CC1,  
PB_CC2  
IO  
Output current  
225  
10  
mA  
mA  
kHz  
IO  
Output current (from LDO_3V3)  
GPIOn (n = 0 - 9)  
Buck-boost converter switching  
frequency driven from SYNC pin  
fsw  
250  
500  
TA  
TJ  
Ambient operating temperature  
Operating junction temperature  
–40  
–40  
125  
150  
°C  
°C  
(1) Average LC filtered output current from buck-boost power stage. Operation with IOUT > 3A with VOUT > 10 V may result in thermal  
shutdown.  
(2) EN/UVLO MAX specification specification applies when current into pin is not externally limited.  
7.4 Recommended Components  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER (1)  
VOLTAGE RATING  
MIN  
TYP  
MAX  
UNIT  
CIN  
Capacitance on VIN  
40 V  
10 V  
22  
47  
µF  
Capacitance on LDO_5V (supplied  
internally)  
CLDO_5V  
4.7  
10  
10  
µF  
µF  
Capacitance on LDO_5V (supplied  
externally)  
CLDO_5V  
10 V  
47  
100  
CLDO_3V3  
CLDO_1V5  
CPx_CCy  
Capacitance on LDO_3V3  
Capacitance on LDO_1V5  
Capacitance on Px_CCy pins(2)  
Boot charge capacitance  
RC snubber resistor on SW1  
RC snubber capacitor on SW1  
RC snubber resistor on SW2  
RC snubber capacitor on SW2  
Capacitance on OUT (4)  
6.3 V  
6.3 V  
6.3 V  
10 V  
4.7  
4.7  
10  
10  
µF  
µF  
pF  
µF  
200  
0.08  
330  
0.1  
1.1  
1
480  
0.3  
CBOOT1, CBOOT2  
RSnubber_SW1  
CSnubber_SW1  
RSnubber_SW2  
CSnubber_SW2  
COUT  
35 V, 0.25 W  
35 V  
nF  
35 V, 0.25 W  
35 V  
1.1  
3.3  
33  
nF  
µF  
µF  
µH  
35 V  
30  
100  
3.3  
40  
150  
5.6  
CBUS  
Capacitance on PA_VBUS  
Inductor (4)  
35 V  
120  
4.7  
L
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER (1)  
VOLTAGE RATING  
MIN  
47  
TYP  
MAX  
UNIT  
kΩ  
NTC  
Thermistor  
100  
REN/UVLO  
Enable/UVLO pull up resitance  
47  
kΩ  
TVPS pin components  
(CTVSP || (DamperR + C))  
CTVSP Capacitance on TVSP pin  
40 V  
0.08  
8
0.1  
10  
0.12  
12  
µF  
(3)  
TVPS pin components  
(CTVSP || (DamperR + C)) network in Parallel with CTVSP  
Damper resistor R of R + C  
0.25W  
40 V  
TVPS pin components Damper capacitor C of R + C  
(CTVSP || (DamperR + C)) network in Parallel with CTVSP  
0.376  
0.47 0.564  
µF  
mΩ  
nH  
TVSP Capacitor ESR (eq series  
ESRCTVSP  
resistance)  
10  
1
TVSP Capacitor ESL (eq series  
inductance)  
ESLCTVSP  
(1) Capacitance values do not include any derating factors. For example, if 5.0 µF is required and the external capacitor value reduces by  
50% at the required operating voltage, then the required external capacitor value would be 10 µF.  
(2) This includes all capacitance to the Type-C receptacle.  
(3) Maximum capacitance allowed on TVSP pin to ensure propoer decode of device configuration during boot.  
(4) See applications section for recommended L and COUT combinations.  
7.5 Thermal Information  
TPS25762-Q1  
THERMAL METRIC(1)  
Hot Rod  
29 PINS  
33.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
13.1  
7.3  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.3  
ψJB  
7.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.6 Buck-Boost Regulator  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, VEN/UVLO = 2V unless otherwise stated. (1)  
PARAMETER  
SUPPLY VOLTAGE (VIN)  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
IQ  
IQ  
VIN shutdown current  
VIN operating current  
VEN/UVLO = 0 V  
130  
µA  
VEN/UVLO = 2V, VOUT = 5 V, IOUT = 0  
A
8
mA  
VEN/UVLO = 1V, VOUT = 0 V, IOUT = 0  
A
IQ  
IQ  
VIN operating current  
VIN operating current  
4.5  
8
mA  
mA  
VEN/UVLO = 2V, VOUT = 0 V, IOUT = 0  
A
VIN(OVP_R)  
VIN(OVP_F)  
VIN rising overvoltage threshold  
VIN falling overvoltage threshold  
hysteresis  
VIN rising.  
VIN falling.  
18.4  
18.0  
19.2  
18.8  
0.4  
20  
V
V
V
V
V
V
19.6  
VIN(UVLO_R)  
VIN(UVLO_F)  
VIN undervoltage lockout rising  
VIN undervoltage lockout falling  
hysteresis  
VIN rising.  
VIN falling.  
5.14  
5.04  
5.30  
5.20  
0.1  
5.46  
5.36  
LDO_5V OUTPUT  
7V ≤ VIN ≤ 18 V, 0 < ILDO_5V  
125mA, VEN = 2 V.  
<
VLDO_5V  
LDO_5V Output Regulation voltage  
4.5  
4.63  
4.75  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, VEN/UVLO = 2V unless otherwise stated. (1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VLDO_5V(UVLO_R)  
VLDO_5V(UVLO_F)  
LDO_5V Undervoltage lockout rising  
4.29  
4.4  
4.51  
V
LDO_5V Undervoltage lockout  
falling  
4.09  
4.2  
4.31  
V
Undervoltage hysteresis  
drop out voltage  
200  
mV  
V
VLDO_5V_DO  
VIN = 5.5 V; ILDO_5V = 125mA  
4.3  
VLDO_V5V = 0 to 3.5 V,  
RLDO_V5V_LOAD = 1 Ω  
ILDO_5V(ILIMIT)  
LDO_5V current limit  
125  
200  
400  
3.6  
mA  
LDO_3V3 OUTPUT  
7V ≤ VIN ≤ 18 V, VEN = 2 V,  
LDO_3V3 Output regulation voltage VLDO_5V(UVLO) < VLDO_5V < 5.5 V, 0  
< ILDO_3V3 < 25mA  
VLDO_3V3  
3.4  
3.5  
3.3  
V
LDO_3V3 Undervoltage lockout  
rising  
VLDO_3V3(UVLO_R)  
VLDO_3V3(UVLO_F)  
3.2  
3.4  
V
V
LDO_3V3 Undervoltage lockout  
falling  
3.05  
3.15  
150  
3.25  
Undervoltage hysteresis  
mV  
V
VLDO_3V3_DO  
drop out voltage  
VIN = 4.5 V, ILDO_3V3 = 30mA  
3.3  
35  
VLDO_3V3 = 0 to 2.5 V, RLDO_3V3_LOAD  
= 1 Ω  
ILDO_3V3(ILIMIT)  
LDO_1V5 OUTPUT  
VLDO_1V5  
LDO_3V3 current limit  
50  
80  
mA  
4.5 < VLDO_5V < 5.5V, 0 < ILDO_1V5  
10 mA  
<
LDO_1V5 Output Regulation voltage  
1.49  
1.44  
1.37  
1.55  
1.49  
1.65  
1.54  
1.47  
V
V
LDO_1V5 Undervoltage lockout  
rising  
VLDO_1V5(UVLO_R)  
VLDO_1V5(UVLO_F)  
LDO_1V5 Undervoltage lockout  
falling  
1.42  
70  
V
Undervoltage hysteresis  
LDO_1V5 current limit  
mV  
mA  
VLDO_1V5 = 0 to 1.2 V, RLDO_1V5_LOAD  
= 1 Ω  
ILDO_1V5(ILIMIT)  
EN/UVLO  
15  
20  
28  
EN input level required to turn on  
internal LDOs  
VEN(LDO_V5V_R)  
EN/UVLO rising  
1.05  
V
V
V
EN input level required to turn off  
internal LDOs  
VEN(LDO_V5V_F)  
VEN(OPER)  
VEN(STBY)  
VEN(HYS)  
EN/UVLO falling  
0.3  
1.2  
1.1  
EN input level required to start  
operation  
EN/UVLO rising Precision EN  
EN/UVLO falling  
1.25  
1.3  
1.2  
EN input level required to stop  
operation  
1.15  
100  
9
V
mV  
V
Hysteresis  
VEN/UVLO > VEN(CLAMP), 10 µA < IEN/  
VEN(CLAMP)  
EN input clamp voltage  
Leakage current into EN pin  
6
12  
1
< 1 mA  
UVLO  
IEN(LEAK)  
0 V < VEN < 6 V  
µA  
OUTPUT VOLTAGE  
VCSN/BUS(3V)  
VCSN/BUS(5V)  
VCSN/BUS(21V)  
VCNS/BUS regulation accuracy at 3V 0 ≤ IOUT ≤ 3A  
VCNS/BUS regulation accuracy at 5V 0 ≤ IOUT ≤ 3A  
VCNS/BUS regulation accuracy at 21V 0 ≤ IOUT ≤ 3A  
2.9  
4.85  
3
5
3.1  
5.15  
V
V
V
20.48  
21  
21.53  
Output voltage step size (12-bit  
DAC)  
VCSN/BUS_STP  
VDAC Resolution  
IDISCHG  
10  
12  
mV  
Bits  
mA  
Resolution of VBUS DAC  
CSN/BUS discharge current when  
transitioning to VSafe0V  
VCSP = VCSN/BUS. VCSN/BUS = 3V.  
Measure current into BUS.  
40  
VBUS = 21 V (max), CBULK =  
220 µF, time to discharge BUS to <  
5.5 V (per USB PD specification)  
CSN/BUS discharge time when  
transitioning to VSafe5V  
tDISCHG  
275  
650  
ms  
ms  
VBUS = 21 V (max), CBULK =  
220 µF, time to discharge BUS to <  
0.8 V (per USB PD specification)  
CSN/BUS discharge time when  
transitioning to VSafe0V  
tDISCHG  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, VEN/UVLO = 2V unless otherwise stated. (1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Weak discharge resistance on BUS EN = 2V; measure BUS to PGND  
RDISCHG  
60  
135  
kΩ  
pin when not sourcing VBUS  
resistance.  
BUS to GND resistance, RDISCH  
disabled, not sourcing VBUS  
EN = 2V measure BUS to PGND  
resistance.  
RBUS-GND(PWR)  
RBUS-GND(UNPWR)  
120  
500  
kΩ  
kΩ  
VIN = EN = 0V measure BUS to  
PGND resistance.  
BUS to GND resistance, unpowered  
2
CABLE VOLTAGE DROP COMPENSATION  
Gain setting = 0.1V/A: VCSP  
VCSN/BUS = 50 mV  
-
-
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
VOUT_CDC  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
ΔVOUT increase vs IOUT  
465  
85  
500  
100  
375  
75  
535  
115  
404  
89  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Gain setting = 0.1V/A: VCSP  
VCSN/BUS = 10 mV  
Gain stetting = 0.075V/A: VCSP  
VCSN/BUS = 50 mV  
-
346  
61  
Gain setting = 0.075V/A: VCSP  
VCSN/BUS = 10 mV  
-
Gain setting = 0.05V/A: VCSP  
VCSN/BUS = 50 mV  
-
227  
37  
250  
50  
273  
63  
Gain setting = 0.05V/A: VCSP  
VCSN/BUS = 10 mV  
-
Gain setting = 0.025V/A: VCSP  
VCSN/BUS = 50 mV  
-
-
109  
14  
125  
25  
141  
36  
Gain setting = 0.025V/A: VCSP  
VCSN/BUS = 10 mV  
Gain setting = 0V/A: 0 mV ≤ VCSP  
VCSN/BUS ≤ 50 mV  
-
-5  
20  
BUCK-BOOST PEAK CURRENT LIMITS  
Boost peak current limit (in boost  
IPEAK(BOOST)  
IPEAK(BOOST)  
IPEAK(BOOST)  
IPEAK(BOOST)  
IPEAK(BOOST)  
IPEAK(BOOST)  
IPEAK(BUCK)  
IPEAK(BUCK)  
IPEAK(BUCK)  
IPEAK(BUCK)  
IPEAK(BUCK)  
IPEAK(BUCK)  
IPEAK(BUCK)  
IPEAK(BUCK)  
INEG(BUCK)  
12.3  
10.8  
9.3  
7.9  
6.3  
4.8  
8.2  
9.0  
9.7  
10.4  
5.3  
6
14.5  
12.8  
11.0  
9.3  
16.7  
14.7  
12.6  
10.6  
8.6  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
mode)  
Boost peak current limit (in boost  
mode)  
Boost peak current limit (in boost  
mode)  
Boost peak current limit (in boost  
mode)  
Boost peak current limit (in boost  
mode)  
7.5  
Boost peak current limit (in boost  
mode)  
5.7  
6.5  
Buck peak current limit (in buck  
mode)  
9.7  
11.2  
12.1  
13.1  
14.1  
7.2  
Buck peak current limit (in buck  
mode)  
10.6  
11.4  
12.3  
6.2  
Buck peak current limit (in buck  
mode)  
Buck peak current limit (in buck  
mode)  
Buck peak current limit (in buck  
mode)  
Buck peak current limit (in buck  
mode)  
7.1  
8.2  
Buck peak current limit (in buck  
mode)  
6.8  
7.5  
-4.6  
8.0  
9.1  
Buck peak current limit (in buck  
mode)  
8.8  
10.1  
-3  
Buck negative current limit (in buck  
mode)  
- 3.8  
OUT CURRENT DAC  
IDAC_Resolution  
8
Bits  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, VEN/UVLO = 2V unless otherwise stated. (1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
CURRENT LIMIT  
1 A ≤ IOUT ≤ 3 A, VCSN/BUS < 2.5 V;  
RS = 10 mΩ.  
ILIMIT_LO  
Current limit accuracy  
-250  
-150  
-20  
250  
150  
20  
mA  
mA  
%
1 A ≤ IOUT ≤ 3 A, VCSN/BUS ≥ 2.5  
V; RS = 10 mΩ  
ILIMIT_LO  
ILIMIT_HI  
ILIMIT_HI  
Current limit accuracy < 1 A  
Current limit accuracy > 3 A  
Current limit accuracy > 3 A  
IOUT > 3 A, VCSN/BUS < 2.5 V; RS  
10 mΩ  
=
=
IOUT > 3 A, VCSN/BUS ≥ 2.5 V; RS  
10 mΩ  
-5  
1
5
%
ILIMIT_MIN  
Minimum programmable current limit  
Current limit step size  
A
ICL_STEP  
1 A ≤ IOUT ≤ 5 A; RS = 10 mΩ  
50  
mA  
FREQUENCY  
fSW(1)  
Switching Frequency 1  
Switching Frequency 2  
Switching Frequency 3  
285  
380  
428  
300  
400  
450  
315  
420  
473  
kHz  
kHz  
kHz  
fSW(2)  
fSW(3)  
FREQUENCY DITHER  
Positive frequency deviation during  
dither  
FSSS  
8
10  
12  
-8  
%
%
Negative frequency deviation during  
dither  
-12  
-10  
FSSS_MOD  
FSSS_MOD  
Modulation frequency of dither  
Modulation frequency of dither  
DITHER_FREQ = 0  
DITHER_FREQ = 1  
9
10  
25  
11  
kHz  
kHz  
22.5  
27.5  
OVERVOLTAGE PROTECTION  
Fixed output overvoltage threshold  
VCSN/BUS_OVP_R  
22.0  
20.5  
23  
24  
V
at CSN/BUS pin  
VCSN/BUS_OVP_F  
Falling  
21.5  
1.5  
22.5  
V
V
Hysteresis  
POWER SWITCHES  
VIN = 12V; (VBOOT1 - VSW1) = 4.5V;  
ISW1 = -1 A  
RDS(ON)  
M1  
4.5  
mΩ  
RDS(ON)  
RDS(ON)  
M2  
M4  
VIN = 12V; ISW1 = 1 A  
VIN = 12V; ISW2 = 1 A  
20  
6
mΩ  
mΩ  
VIN = VOUT = 12V: (VBOOT2 - VSW2) =  
4.5V, ISW2 = -1 A  
RDS(ON)  
M3 + M5  
18  
4
mΩ  
V
BOOT1 to SW1 rising UVLO  
threshold  
VUV_BOOT1_R  
VUV_BOOT1_F  
3.5  
2.9  
4.4  
3.7  
BOOT1 to SW1 falling UVLO  
threshold  
3.4  
680  
5.3  
V
mV  
V
BOOT1 to SW1 UVLO hysteresis  
BOOT1 to SW1 rising OVP  
threshold  
VOV_BOOT1_R  
VOV_BOOT1_F  
4.6  
5.9  
BOOT1 to SW1 falling OVP  
threshold  
4.3  
250  
3.5  
5
300  
4
5.6  
350  
4.4  
V
mV  
V
BOOT 1 OVP hysteresis  
BOOT2 to SW2 rising UVLO  
threshold  
VUV_BOOT2_R  
VUV_BOOT2_F  
BOOT2 to SW2 falling UVLO  
threshold  
2.9  
4.6  
3.4  
680  
5.3  
3.7  
5.9  
V
mV  
V
BOOT2 to SW2 UVLO hysteresis  
BOOT2 to SW1 rising OVP  
threshold  
VOV_BOOT2_R  
VOV_BOOT2_F  
BOOT2 to SW1 falling OVP  
threshold  
4.3  
5
5.6  
V
BOOT2 OVP hysteresis  
250  
300  
350  
mV  
BUCK-BOOST CHARACTERISTICS  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, VEN/UVLO = 2V unless otherwise stated. (1)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
tSS  
Soft-start time  
6
ms  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical processcontrol.  
7.7 CC Cable Detection Parameters  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
Type-C Source (Rp pull-up)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Unattached Px_CCy open circuit  
voltage while Rp enabled, no load  
VOC_3.3  
VOC_5  
IRev  
RCC = 47 kΩ  
1.85  
2.95  
V
V
Attached Px_CCy open circuit  
voltage while Rp enabled, no load  
RCC = 47 kΩ  
Unattached reverse current on  
Px_CCy  
VCCy = 5.5V, VCCx = 0V, measure  
current into CCy  
10  
µA  
IRpStd  
IRp1.5  
IRp3.0  
current source - Standard  
current source - 1.5A  
current source - 3.0A  
0 < VCCy < 1.0 V, measure ICCy  
0 < VCCy < 1.5 V, measure ICCy  
0 < VCCy < 2.45 V, measure ICCy  
64  
166  
304  
80  
180  
330  
96  
194  
356  
µA  
µA  
µA  
Type-C Sink (Rd pull-down)  
0V ≤ VPx_CCy ≤ 2.1 V, measure  
resistance on Px_CCy  
RSNK  
Rd pulldown resistance  
VCONN discharge resistance  
4.6  
4.0  
5.6  
6.6  
kΩ  
kΩ  
0V ≤ VPx_CCy ≤ 5.5 V, measure  
resistance on Px_CCy  
RVCONN_DIS  
Common (Source and Sink)  
deglitch time for comparators on  
Px_CCy, this applies for VSRC1  
VSRC2, VSRC3, VSNK1, VSNK2  
VSNK3, and VSNK4  
,
tCC  
2.56  
ms  
,
.
7.8 CC VCONN Parameters  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VLDO_5V = 5V, IL = 200 mA,  
measure resistance from  
LDO_5V to Px_CCy  
RPP_CABLE  
Rdson of the VCONN path  
1.2  
Ω
setting 0, VLDO_5V = 5V,  
RL=10mΩ , measure IPx_CCy  
30  
50  
70  
ILIMVC  
short circuit current limit  
mA  
setting 1, VLDO_5V = 5V,  
RL=10mΩ , measure IPx_CCy  
235  
275  
315  
VCONN disabled, TJ ≤  
125 oC, VPx_CCy = 5.5 V,  
measure IPx_CCy  
Leakage current into Px_Cy  
pins  
ICCyLKG  
-1  
0
10  
µA  
V
Over-voltage protection  
threshold for Px_CCy  
VVC_OVP  
VLDO_5V rising  
5.6  
5.9  
6.2  
Reverse current protection  
threshold for Px_CCy,  
sourcing VCONN through  
CCx  
VLDO_5V = 5 V, VCCx rising,  
setting 1.  
VVC_RCP  
230  
310  
390  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Reverse current protection  
threshold for Px_CCy,  
sourcing VCONN through  
CCx  
VLDO_5V = 5 V, VCCx rising,  
setting 2.  
VVC_RCP  
60  
155  
250  
mV  
Time to disable Px_Cy  
VCONN after VLDO_5V  
VVC_OVP or VCCx - VLDO_5V  
VVC_RCP  
>
tPP_CABLE_FSD  
CL=0  
1.5  
µs  
>
from disable signal to  
Px_CCy at 10% of final  
value  
IL = 200 mA, VLDO_5V = 5V,  
CL=0  
tPP_CABLE_off  
tiOS_PP_CABLE  
tiOS_PP_CABLE  
100  
225  
300  
2
µs  
µs  
µs  
External VLDO_5V = 5V, for  
response time to short circuit short circuit RL = 10mΩ. Set  
VCONILIM = 1.  
Internal VLDO_5V = 5V, for  
response time to short circuit short circuit RL = 10mΩ. Set  
VCONILIM = 0.  
0.3  
7.9 CC PHY Parameters  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN = 2V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Transmitter  
Transmit high voltage on  
Px_CCy  
VTXHI  
Standard External load  
Standard External load  
1.05  
-75  
1.125  
1.2  
75  
V
Transmit low voltage on  
Px_CCy  
VTXLO  
mV  
Transmit output impedance  
while driving the CC line  
using Px_CCy  
ZDRIVER  
measured at 750 kHz  
33  
75  
Ω
Rise time. 10 % to 90  
% amplitude points on  
tRise  
Px_CCy, minimum is under CPx_CCy= 520 pF  
an unloaded condition.  
300  
ns  
Maximum set by TX mask  
Fall time. 90 % to 10  
% amplitude points on  
tFall  
Px_CCy, minimum is under CPx_CCy= 520 pF  
an unloaded condition.  
Maximum set by TX mask  
300  
5.5  
ns  
V
Initially VCC1 ≤ 5.5 V and  
VCC2 ≤ 5.5 V, then VCCx  
rises.  
OVP detection threshold for  
USB PD PHY.  
VPHY_OVP  
8.5  
Receiver  
Does not include pull-up  
or pulldown resistance from  
cable detect. Transmitter is  
Hi-Z.  
Receiver input impedance  
on Px_CCy  
(2)  
ZBMCRX  
1
MΩ  
pF  
Capacitance looking into the  
CC pin when in receiver  
mode  
Receiver capacitance on  
Px_CCy(1)  
CCC  
120  
Rising threshold on Px_CCy  
for receiver comparator  
VRX_SNK_R  
VRX_SRC_R  
sink mode (rising)  
499  
784  
525  
825  
551  
866  
mV  
mV  
Rising threshold on Px_CCy  
for receiver comparator  
source mode (rising)  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN = 2V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Falling threshold on Px_CCy  
for receiver comparator  
VRX_SNK_F  
VRX_SRC_F  
sink mode (falling)  
230  
250  
270  
mV  
Falling threshold on Px_CCy  
for receiver comparator  
source mode (falling)  
523  
550  
578  
mV  
(1) CCC includes only the internal capacitance on a Px_CCy pin when the pin is configured to be receiving BMC data. External  
capacitance is needed to meet the required minimum capacitance per the USB-PD Specifications (cReceiver). Therefore, TI  
recommends adding CPx_CCy externally.  
(2) Guaranteed, but not production tested.  
7.10 Thermal Shutdown Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Temperature shutdown  
threshold  
TSD_BB  
Temperature rising  
160  
167  
175  
°C  
Temperature shutdown  
hysteresis  
TSD_HYS  
hysteresis  
18  
166  
20  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
Temperature shutdown  
threshold  
TSD_PA_VCONN  
TSD_HYS  
TSD_PA_VBUS_DISCH  
Temperature rising  
hysteresis  
152  
155  
165  
179  
177  
188  
Temperature shutdown  
hysteresis  
Temperature shutdown  
threshold  
Temperature rising  
hysteresis  
166  
20  
Temperature shutdown  
hysteresis  
TSD_HYS  
TSD_LDO5V  
TSD_HYS  
Temperature shutdown  
threshold  
Temperature rising  
hysteresis  
177  
15  
Temperature shutdown  
hysteresis  
7.11 Oscillator Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
Trimmed.  
MIN  
TYP  
MAX  
UNIT  
FOSC(100K)  
FOSC(24M)  
100KHz oscillator  
89  
103  
111  
kHz  
Trimmed. 0 ≤ TA ≤  
70 ℃  
24MHz oscillator  
24MHz oscillator  
23.64  
23.3  
24.2  
24.2  
24.36  
24.5  
MHz  
MHz  
Trimmed. -40 ≤ TA ≤  
150 ℃  
FOSC(24M)  
7.12 ADC Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.6V max scaling, voltage  
divider of 3  
LSB  
LSB  
least significant bit  
14  
mV  
25.2V max scaling, voltage  
divider of 21  
least significant bit  
98  
27  
mV  
(VCSP - VCSN/BUS)= 10 mV,  
30 mV  
LSB  
EG  
least significant bit  
Gain error  
mA  
%
0 A ≤ ITVSP ≤ 0.9 mA  
–2.7  
2.7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.05V ≤ VGPIOx  
3.6V, VGPIOx ≤ VLDO_3V3  
EG  
Gain error  
–2.7  
2.7  
%
EG  
EG  
Gain error  
Gain error  
2.7V ≤ VLDO_3V3 ≤ 3.6V  
0.6V ≤ VPx_VBUS ≤ 22V  
–2.4  
–2.4  
2.4  
2.4  
%
%
(VCSP - VCSN/BUS)= 10 mV,  
30 mV  
EG  
Gain error, current sense  
–2.4  
2.4  
%
EG  
Gain error  
VIN  
–2.4  
–2.4  
–4.1  
2.4  
2.4  
15  
%
%
EG  
Gain error  
4.3 V ≤ VLDO_5V ≤ 5.5V  
0 A ≤ ITVSP ≤ 0.9 mA  
VOS(E)  
Offset error(1)  
mV  
0.05V ≤ VGPIOx  
VOS(E)  
Offset error(1)  
–4.1  
4.1  
mV  
3.6V, VGPIOx ≤ VLDO_3V3  
2.7V ≤ VLDO_3V3 ≤ 3.6V  
0.6V ≤ VPx_VBUS ≤ 22V  
VOS(E)  
VOS(E)  
Offset error(1)  
Offset error(1)  
-4.1  
-4.1  
4.1  
4.1  
mV  
mV  
(VCSP - VCSN/BUS)= 10 mV,  
30 mV  
VOS(E)  
Offset error(1)  
-4.5  
4.5  
mA  
VOS(E)  
VOS(E)  
Offset error(1)  
Offset error(1)  
VIN  
-4.1  
-4.1  
4.1  
4.1  
mV  
mV  
4.3 V ≤ VLDO_5V ≤ 5.5V  
(1) The offset error is specified after the voltage divider.  
7.13 TVS Parameters  
VIN = 13.5V, EN = 2V. over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TVSP  
Pull up voltage for  
configuration (1)  
VTVSP_PU  
0 < ITVSP < 1 mA  
5.3  
5.5  
5.7  
V
Decode 0  
Decode 1  
Decode 2  
Decode 3  
Decode 4  
Decode 5  
Decode 6  
Decode 7  
Decode 8  
Device configuration decode RTVS = Open  
Device configuration decode RTVS = 93.1 kΩ  
Device configuration decode RTVS = 47.5 kΩ  
Device configuration decode RTVS = 29.4 kΩ  
Device configuration decode RTVS = 20.0 kΩ  
Device configuration decode RTVS = 14.7 kΩ  
Device configuration decode RTVS = 11.0 kΩ  
Device configuration decode RTVS = 8.45 kΩ  
Device configuration decode RTVS = 6.65 kΩ  
1
61.2  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
56.9  
111.6  
180.3  
265  
120  
193.9  
285  
360.5  
481.8  
627.2  
797  
387.8  
518.2  
674.6  
857.1  
CTVSP = open; RTVSP = open.  
Current limit when TVSP is  
sourcing.  
All Px_Dy = 0 V and Px_CCy  
= 0 V. VTVSP = 0 V. Measure  
current flowing out of TVSP.  
ITVSP(ILIMIT)  
1.1  
1.44  
1.83  
mA  
(1) For proper device configuration, VIN must be ≥ 7.6 V at time of configuration read.  
7.14 Input/Output (I/O) Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GPIO0-9 (Inputs) (1)  
VIH  
VIL  
GPIOx high-Level input voltage  
GPIOx low-level input voltage  
1.3  
V
V
0.54  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
0.09  
–8  
TYP  
MAX  
UNIT  
GPIOx input hysteresis voltage  
GPIOx leakage current  
GPIOx internal pull-up  
GPIOx internal pull-down  
GPIOx input deglitch  
V
II(LEAKAGE)  
RPU  
VGPIOx = 5.5 V  
8
150  
150  
µA  
kΩ  
kΩ  
ns  
pull-up enabled  
50  
100  
100  
20  
RPD  
pull-down enabled  
50  
tDG  
GPIO 2, 3, 5, 6 (Outputs)  
VOH  
GPIOx output high voltage  
IGPIOx= -5mA  
IGPIOx=5mA  
2.9  
2.9  
V
V
VOL  
GPIOx output low voltage  
0.4  
0.4  
GPIO 0, 1, 4, 7, 8, 9 (Outputs) (2)  
VOH  
GPIOx output high voltage  
IGPIOx= -2mA  
IGPIOx=2mA  
V
V
VOL  
GPIOx output low voltage  
SYNC OUT  
Phase difference between fsw  
and GPIO6 when configured as  
SYNC(O).  
GPIOx when configured as phase  
shifted DC/DC fsw clock output  
ϕ shift_00  
ϕ shift_90  
ϕ shift_120  
ϕ shift_180  
0
90  
degrees  
degrees  
degrees  
degrees  
Phase difference between fsw  
and GPIO6 when configured as  
SYNC(O).  
GPIOx when configured as phase  
shifted DC/DC fsw clock output  
Phase difference between fsw  
and GPIO6 when configured as  
SYNC(O).  
GPIOx when configured as phase  
shifted DC/DC fsw clock output  
120  
180  
Phase difference between fsw  
and GPIO6 when configured as  
SYNC(O).  
GPIOx when configured as phase  
shifted DC/DC fsw clock output  
SYNC IN  
Valid external clock frequency  
(fSW_internal = 300kHz)  
fSYNC(300kHz)  
250  
334  
376  
353  
470  
530  
kHz  
kHz  
kHz  
Valid external clock frequency  
(fSW_internal = 400kHz)  
fSYNC(400kHz)  
Valid external clock frequency  
(fSW_internal = 450kHz)  
fSYNC(450kHz)  
LSGD  
0 V ≤ VCSN/BUS ≤ 21 V; 0 V ≤  
(VLSGD - VCSN/BUS) ≤ 4 V  
ILSGD_ON  
NFET driver sourcing current  
Sourcing voltage while enabled  
10  
6
13  
16  
µA  
0 V ≤ VCSN/BUS ≤ 21 V; ILSGD  
4 µA. Measure voltage between  
LSGD and CSN/BUS.  
VLSGD_ON  
8
V
(VLSGD - VCSN/BUS  
)
RLSGD_OFF  
Sinking resistance when disabled  
VLSGD = VCSN/BUS = 5 V  
160  
300  
kΩ  
(1) GPIO9 is normally configured as I2C_IRQ1m (master): input pin. I2C specification requires use of external pullup resistor. Input  
thresholds (VIH; VIL) leakage current (II(LEAKAGE))and deglitch timing (tDG) specifications are apply when used as I2C_IRQ1m. Internal  
pullup and pulldown resistors are not used during this mode of operation.  
(2) GPIO9 or GPIO1 may be configured as I2C_IRQ2s (slave): open-drain output pin. I2C specification requires use of external pullup  
resistor. Output threshold (VOL) applies. Internal pullup and pulldown resistors are not used during this mode of operation.  
7.15 BC1.2 Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
BC1.2 RESISTANCES  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Dedicated Charging Port Resistance  
between Px_DP and Px_DM  
VPx_DP = 0.6 V, VPx_DM = 0V, measure  
DP to DM shorted resistance  
RDCP_DAT  
200  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated.  
PARAMETER  
RDM_DWN_15k Px_DM line pulldown resistance  
RDM_DWN_20k Px_DM line pulldown resistance  
DIVIDER MODES  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPx_DM = 3.6V  
12  
15  
18  
kΩ  
VPx_DM = 3.6V  
14.25  
19.53  
24.8  
kΩ  
V2.7V  
V2.7V  
R2.7V  
R2.7V  
V1.2V  
R1.2V  
Output Voltage on DPy pin  
Output Voltage on DMy pin  
Output Impedance on DPy  
Output Impedance on DMy  
Output Voltage on DMy  
No load on DPy pin  
No load on DMy pin  
5µA pulled from DPy pin  
5µA pulled from DMy pin  
No load on DMy  
2.57  
2.57  
24  
2.7  
2.7  
30  
2.83  
2.83  
36  
V
V
kΩ  
kΩ  
V
24  
30  
36  
1.12  
80  
1.2  
102  
1.28  
130  
Output Impedance on DMy  
5µA pulled from DMy  
kΩ  
HVDCP THRESHOLD VOLTAGES  
Data detection voltage on DP or DM  
VDAT_REF  
0.25  
1.8  
0.325  
2
0.4  
2.2  
V
V
pin  
VSEL_REF  
Output selection voltage DP or DM pin  
DP AND DM OVERVOLTAGE PROTECTION  
OVP detection threshold for USB  
VDy_OVP  
Initially VPxDy ≤ 3.6 V, then  
VPx_Dy rises.  
5.5  
8.5  
V
Px_DP and Px_DM pins  
7.16 I2C Requirements and Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated. VDD = I2C pullup voltage (3.3 V or 1.8 V)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C_IRQ1s, I2C_IRQ2  
I2C_IRQ1m  
SDA and SCL Characteristics (Standard, Fast, Fast-mode Plus)  
VIL  
VIH  
Input low signal  
Input high signal  
0.54  
0.9  
V
V
1.3  
VDD = 3.3 V INPUT LOGIC THRESHOLDS  
VIL  
Input low signal  
V
V
V
VIH  
Input high signal  
2.31  
VHYS  
VOL  
VOL  
IOL  
Input hysteresis  
0.165  
Output low voltage  
Output low voltage  
Max output low current  
Input leakage current  
pin capacitance (internal)  
VDD = 1.8V, IOL=2 mA  
0.36  
0.4  
VDD = 3.3V, IOL=3 mA  
VOL=0.4 V  
V
12  
–5  
mA  
µA  
pF  
ILEAK  
CI  
Voltage on pin = 3.3V  
5
10  
Capacitive load for each bus line  
(external). Applies in Standard-  
mode and Fast-mode.  
Cb  
Cb  
400  
550  
pF  
pF  
Capacitive load for each bus line  
(external). Applies in Fast-mode  
Plus.  
COMMON TIMING  
tSP  
I2C pulse width surpressed  
50  
ns  
SDA and SCL Characteristics (Standard Mode)  
fSCLS  
Clock frequency (slave)  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V  
100  
kHz  
µs  
Start or repeated start condition  
hold time  
tHD;STA  
4
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated. VDD = I2C pullup voltage (3.3 V or 1.8 V)  
PARAMETER  
TEST CONDITIONS  
MIN  
4.7  
4
TYP  
MAX  
UNIT  
tLOW  
tHIGH  
SCL Clock low time  
SCL Clock high time  
VDD = 1.8V or 3.3V  
µs  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V  
µs  
Start or repeated start condition  
setup time  
tSU;STA  
4.7  
µs  
Serial data hold time (1)  
VDD = 1.8V or 3.3V  
0 (2)  
250  
-
ns  
ns  
(3)  
tHD;DAT  
tSU;DAT  
Serial data setup time  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V; RPU = 2.8 kΩ;  
tr  
Rise time of SCL and SDA signals Cb = 400pF; measure 0.3 × VDD to  
0.7 × VDD  
1000  
ns  
Output fall time from VIH(MIN) to  
VIL(MAX)  
VDD = 1.8V or 3.3V; measure 0.3 ×  
VDD to 0.7 × VDD  
tof  
tf  
250 (4)  
300  
ns  
ns  
Fall time of SCL and SDA signals VDD = 1.8V, RPU = 2.8 kΩ; 10 pF ≤  
(2) (4) (5)  
Cb ≤ 400 pF  
Fall time of SCL and SDA signals VDD = 3.3V, RPU = 2.8 kΩ; 10 pF ≤  
tf  
300  
ns  
µs  
µs  
(2) (4) (5)  
Cb ≤ 400 pF  
tSU;STO  
tBUF  
tVD;DAT  
Stop condition setup time  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V  
4
Bus free time between stop and  
start  
4.7  
Transmitting Data; VDD = 1.8V or  
3.3V, SCL low to SDA output valid  
Valid data time (6)  
3.45 (3)  
3.45 (3)  
µs  
µs  
Transmitting Data; VDD = 1.8V or  
3.3V, ACK signal from SCL low to  
SDA valid  
tVD;ACK  
Valid data time of ACK condition  
SDA and SCL Characteristics (Fast Mode)  
fSCLS  
Clock frequency (slave)  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V  
400  
kHz  
µs  
Start or repeated start condition  
hold time  
tHD;STA  
0.6  
tLOW  
tHIGH  
SCL Clock low time  
SCL Clock high time  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V  
1.3  
0.6  
µs  
µs  
Start or repeated start condition  
setup time  
tSU;STA  
VDD = 1.8V or 3.3V  
0.6  
µs  
(3)  
tHD;DAT  
tSU;DAT  
Serial data hold time (1)  
VDD = 1.8V or 3.3V  
0 (2)  
-
ns  
ns  
Serial data setup time  
VDD = 1.8V or 3.3V  
100 (7)  
VDD = 1.8V or 3.3V; RPU = 850 Ω;  
tr  
Rise time of SCL and SDA signals Cb = 400 pF; measure 0.3 × VDD to  
0.7 × VDD  
20  
300  
ns  
Output fall time from VIH(MIN) to  
VIL(MAX)  
VDD = 1.8V; measure 0.3 × VDD to  
0.7 × VDD  
tof  
tof  
tf  
6.55  
12  
250 (4)  
250 (4)  
300  
ns  
ns  
ns  
Output fall time from VIH(MIN) to  
VIL(MAX)  
VDD = 3.3V; measure 0.3 × VDD to  
0.7 × VDD  
Fall time of SCL and SDA signals VDD = 1.8V; RPU = 850 Ω; 10 pF ≤  
6.55  
(2) (4) (5)  
Cb ≤ 400 pF  
Fall time of SCL and SDA signals VDD = 3.3V; RPU = 850 Ω; 10 pF ≤  
tf  
12  
0.6  
1.3  
300  
ns  
µs  
µs  
(2) (4) (5)  
Cb ≤ 400 pF  
tSU;STO  
tBUF  
Stop condition setup time  
VDD = 1.8V or 3.3V  
VDD = 1.8V or 3.3V  
Bus free time between stop and  
start  
Transmitting Data; VDD = 1.8V or  
3.3V, SCL low to SDA output valid  
tVD;DAT  
Valid data time (6)  
0.9 (3)  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the –40°C to 150°C junction temperature  
range unless otherwise stated.VIN = 13.5 V, EN =2 V, unless otherwise stated. VDD = I2C pullup voltage (3.3 V or 1.8 V)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Transmitting Data; VDD = 1.8V or  
3.3V, ACK signal from SCL low to  
SDA (out) low  
tVD;ACK  
Valid data time of ACK condition  
0.9 (3)  
µs  
(1) tHD;DAT = the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.  
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(MIN) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
(3) The maximum tHD;DAT could be 3.45 µs and 0.9 µs for Standard-mode and Fast-mode, but must be less than the maximum tVD;DAT or  
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretches the SCL, the data must be valid by the setup time before it releases the clock.  
(4) The maximum tf for the SDA and SCL bus lines is stated in these tables as 300 ns is longer than the specified maximum tof for the  
output stages (250 ns). This allows series protection resistors (RS) to be connected between the SDA and SCL pins and the SDA and  
SCL bus lines without exceeding the maximum specified tf.  
(5) In Fast-mode Plus, fall time is specified the same for both ouput stage and bus timing. If series resistors (RS) are used, designers  
should allow for this when considering bus timing.  
(6) tVD;DAT = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).  
(7) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
60  
55  
50  
45  
40  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
EN = 2 V  
USB Port(s) not  
connected  
EN = 0 V  
7-1. IQ VIN Shutdown Current vs Temperature  
7-2. IQ VIN Standby Current vs Temperature  
9
8.7  
8.4  
8.1  
7.8  
7.5  
7.2  
VIN = 6.8 V  
VIN = 13.5 V  
VIN = 18 V  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
7-3. ENABLE/UVLO Thresholds vs Temperature  
7-4. EN Clamp Voltage vs Temperature  
7-5. EN Leakage Current vs Temperature  
7-6. VIN(UVLO) vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
19.5  
19  
4.71  
4.7  
4.69  
4.68  
4.67  
4.66  
4.65  
4.64  
4.63  
4.62  
4.61  
4.6  
18.5  
VIN = 6.8 V, 125 mA  
VIN = 6.8 V, 0 mA  
VIN = 13.5 V, 0 mA  
VIN = 18 V, 0 mA  
RISING  
FALLING  
18  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-7. VIN(OVP) vs Temperature  
7-8. LDO_5V vs VIN and Temperature  
7-9. LDO_5V Current Limit vs VIN and Temperature  
7-10. LDO_3V3 vs VIN and Temperature  
1.6  
1.59  
1.58  
1.57  
1.56  
1.55  
1.54  
1.53  
1.52  
1.51  
1.5  
58  
57  
56  
55  
54  
53  
52  
51  
50  
VIN = 6.8 V  
VIN = 13.5 V  
VIN = 18 V  
VIN = 6.8 V, 10 mA  
VIN = 6.8 V, 0 mA  
VIN = 13.5 V, 0 mA  
VIN = 18 V, 0 mA  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-11. LDO_3V3 Current Limit vs VIN and Temperature  
7-12. LDO_1V5 vs VIN and Temperature  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
22  
21.5  
21  
20.5  
20  
VIN = 6.8 V  
VIN = 13.5 V  
VIN = 18 V  
19.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
7-13. LDO_1V5 Current Limit vs VIN and Temperature  
7-14. VTVSP_PU vs Temperature  
1.51  
40  
35  
30  
25  
20  
15  
10  
5
1.5  
1.49  
1.48  
1.47  
1.46  
M1  
M2  
M4  
M3+M5  
0
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-15. ITVSP(ILIMIT) vs Temperature  
7-16. Buck-Boost Power FET RDS(ON) vs Temperature  
7-17. Boost Peak Current Limit vs Temperature (upper  
7-18. Boost Peak Current Limit vs Temperature (lower  
settings)  
settings)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
7-19. Buck Peak Current Limit vs Temperature (upper  
7-20. Buck Peak Current Limit vs Temperature (lower  
settings)  
settings)  
-3.8  
-3.85  
-3.9  
-3.95  
-4  
-4.05  
-4.1  
-4.15  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
7-21. Buck Negative Current Limit vs Temperature  
7-22. BOOTx UVLO vs Temperature  
5.6  
5.55  
5.5  
1.4  
1.2  
1
5.45  
0.8  
0.6  
0.4  
0.2  
0
5.4  
5.35  
5.3  
VOV_BOOT1_R  
VOV_BOOT1_F  
VOV_BOOT2_R  
VOV_BOOT2_F  
5.25  
5.2  
-0.2  
5.15  
5.1  
-0.4  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-23. BOOTx OVP vs Temperature  
Percentage Change from Nominal  
7-24. Buck-Boost Switching Frequency Variation vs  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
11.5  
11  
VSNS = 10 mV, VBUS = 3 V  
VSNS = 10 mV, VBUS = 12 V  
VSNS = 10 mV, VBUS = 20 V  
10.5  
10  
9.5  
9
8.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
7-25. fSW Dither Modulation Frequency vs Temperature  
Target VSNS for Current Limit = 10 mV  
Current Limiting Engaged  
7-26. Current Loop Regulation Voltage vs VBUS and  
Temperature  
31.5  
52.5  
VSNS = 30 mV, VBUS = 3 V  
VSNS = 30 mV, VBUS = 12 V  
VSNS = 30 mV, VBUS = 20 V  
VSNS = 50 mV, VBUS = 3 V  
VSNS = 50 mV, VBUS = 12 V  
VSNS = 50 mV, VBUS = 20 V  
52  
31  
30.5  
30  
51.5  
51  
50.5  
50  
49.5  
49  
29.5  
29  
48.5  
48  
28.5  
47.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
Target VSNS for Current Limit = 30 mV  
Current Limiting Engaged  
Target VSNS for Current Limit = 50 mV  
Current Limiting Engaged  
7-27. Current Loop Regulation Voltage vs VBUS and  
7-28. Current Loop Regulation Voltage vs VBUS and  
Temperature  
Temperature  
150  
500  
Gain = 0.025V/A; VSNS = 10 mV  
Gain = 0.050V/A; VSNS = 10 mV  
Gain = 0.075V/A; VSNS = 10 mV  
Gain = 0.100V/A; VSNS = 10 mV  
Gain = 0.025V/A; VSNS = 50 mV  
Gain = 0.050V/A; VSNS = 50 mV  
450  
400  
350  
300  
250  
200  
150  
100  
100  
50  
0
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
7-29. Cable Voltage Droop Compensation vs Temperature  
7-30. Cable Voltage Droop Compensation vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
500  
450  
400  
350  
300  
250  
200  
25  
20  
15  
10  
5
150  
100  
Gain = 0.075V/A; VSNS = 50 mV  
Gain = 0.100V/A; VSNS = 50 mV  
0
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
0
0.5  
1
1.5  
IBUS (A)  
2
2.5  
3
3.5  
Temperature (C)  
7-31. Cable Voltage Droop Compensation vs Temperature  
VIN = 13.5 V  
VBUS = 20 V (CV) ILIMIT = 3.15 A (CC)  
7-32. Constant Voltage to Constant Current Transition  
7-34. VBUS Discharge Current vs Temperature  
IBUS = 0 A  
7-33. Buck-boost Output Voltage Regulation vs Temperature  
24.45  
24.35  
24.25  
24.15  
24.05  
23.95  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
7-35. (M0) 24 MHz Oscillator vs Temperature  
7-36. (M0) 100 kHz Oscillator vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
7-38. Type-C Cable Detect: RSNK vs Temperature  
7-37. Type-C Cable Detect: IRp vs Temperature  
7-40. VCONN Power Path: Current Limit vs Temperature  
7-39. VCONN Power Path: RDS(ON) vs Temperature  
7-42. USB BC1.2: DP to DM Shorting Resistance, RDCP_DAT  
7-41. Type-C Cable Detect & VCONN: Over-voltage Protection  
Thresholds vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
7.17 Typical Characteristics (continued)  
At VIN = 12 V, fsw = 400 kHz, unless otherwise stated.  
23  
22  
21  
20  
19  
18  
17  
16  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (C)  
7-43. USB BC1.2: DM to AGND 15 kΩ Resistance,  
7-44. USB BC1.2: DM to AGND 20 kΩ Resistance,  
RDM_DWN_15k  
RDM_DWN_20k  
4
3.5  
3
2.5  
2
VOH  
VOL  
1.5  
1
0.5  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (C)  
7-45. USB BC1.2: DP and DM Pin Over-voltage Protection  
GPIO 0, 1, 4, 7, 8, 9  
IO = ±2 mA  
Thresholds vs Temperature  
7-46. GPIO: Output Voltage vs Output Current and  
Temperature  
7-48. GPIO: Input Voltage Thresholds vs Temperature  
GPIO 2, 3, 5, 6  
IO = ±5 mA  
7-47. GPIO: Output Voltage vs Output Current and  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
t
f
t
r
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
cont.  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
SCL  
cont.  
t
HD;STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD;ACK  
t
t
t
t
SU;STO  
SU;STA  
HD;STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
002aac938  
8-1. I2C Slave Interface Timing  
VPU 1.65 V VPU 5.5 V  
RPU  
From Output  
Under Test  
From Output  
Under Test  
1 M  
1 M  
CL  
CL  
Push-Pull Load Circuit  
Open-Drain Load Circuit  
Internal Signal from M0  
Internal Signal from M0  
tprop_delay_z  
tprop_delay  
tprop_delay  
VOH  
VOL  
VPU  
90%  
90%  
90%  
90%  
GPIOx Output  
GPIOx Output  
10%  
10%  
10%  
10%  
0 V  
tr  
tf  
tf  
tr  
GPIO Push-Pull Output Timing Diagram  
GPIO Open-Drain Output Timing Diagram  
GPIO Input  
tsu  
th  
VOH  
VOL  
Internal Signal to M0  
GPIO Input Timing Diagram  
8-2. GPIO Output Timing Diagram (rise/fall vs capacitive load)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
t
t
FALL_EP  
RISE_EP  
V
V
OH  
OL  
90%  
90%  
10%  
10%  
8-3. USB Endpoint Transmitter Rise and Fall Time  
VOH  
Differential  
VCRS  
VCRS  
Data Lines  
VOL  
(a) Output Crossover Voltage  
2.0 V  
Differential  
Data Lines  
V
CRS  
V
CRS  
0.8 V  
(b) Input Crossover Voltage  
8-4. USB Endpoint Crossover Voltages  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS25762-Q1 is a fully-integrated AEC-Q100 USB Power Delivery (USB-PD) source intended for use in  
12-V automotive battery systems. Input supply pin, VIN, must be connected to a load dump clamped battery  
supply, VBAT, and never exceed 40 V (ABS MAX).  
The device consists of seven sub-blocks: USB-PD controller; Type-C cable plug and orientation detection  
circuitry; USB Endpoint; USB Battery Charging Specification Version 1.2 (BC1.2) detection circuitry; digital  
core; device power management and supervisory circuitry; and a buck-boost converter integrated with 4 power  
switches.  
The USB-PD controller provides the physical layer (PHY) functionality of the USB-PD protocol. The USB-PD  
data is output through either the Px_CC1 pin or the Px_CC2 pin, depending on the orientation of the reversible  
USB Type-C cable. For a high-level block diagram of the USB-PD physical layer, a description of its features and  
more detailed circuitry, see USB-PD Physical Layer.  
The cable plug and orientation detection analog circuitry automatically detects a USB Type-C cable plug  
insertion and also automatically detects the cable orientation. For a high-level block diagram of cable plug  
and orientation detection, a description of its features and more detailed circuitry, see Cable Plug and Orientation  
Detection.  
A USB Endpoint is included for downloading configuration information and firmware updates. When enabled by  
firmware, the USB Endpoint connects to the Port A DP and DM pins.  
The USB BC1.2 sub-block contains circuitry to support legacy USB charging methods which signal on the USB  
DP and DM data lines including: DCP, Divider-3, 1.2 V mode, and HVDCP. See BC 1.2, legacy and fast charging  
modes (Px_DP, Px_DM).  
The power management and supervisory circuitry generates the LDO_5V, LDO_3V3, and LDO_1V5 voltage  
rails used by the device. LDO_5V supplies the LDO_3V3 and LDO_1V5 rails. For a high-level block diagram  
of the power management circuitry, a description of its features and more detailed operation, see Internal LDO  
Regulators section.  
The digital core contains an ARM Cortex-M0 with 160-kB ROM and 27-kB RAM memory. The ROM contains  
firmware code to execute device functionality. RAM stores application configuration code created using the  
Graphical User Interface (GUI) and post-manufacturing firmware updates. The digital core is the engine for  
autonomously managing the system including: USB port connection status and communication; system power  
budget and allocation; system thermal monitoring and load shedding; and fault detection and reporting. All  
devices contain one controller I2C port (I2C1) for controlling external peripherals such as external EEPROM  
memory; DC/DC converters; USB data multiplexers/redrivers; GPIO expanders; and additional temperature  
sensors. Some devices include an I2C target port (I2C2) for connection to an external processor, HUB or  
embedded controller. An integrated 8-bit analog-to-digital converter ADC (see the ADC section), monitors USB  
port telemetry information. USB port connection status, voltage, current and fault information can be read from  
I2C2 target port. For a high-level block diagram of the digital core and a description of its features, see the Digital  
Core section.  
The integrated buck-boost converter is the PA_VBUS power source. It operates in buck mode when VIN is  
greater than VOUT and boost mode when VIN is less than VOUT. When VIN and VOUT are nearly the same, it  
operates in transition mode.  
Single Port Device  
TPS25762-Q1 is a single USB-PD port device. Refer to Device Comparison Table for dual port options. The  
TPS25762-Q1 device consists of a single 3 to 21 V output internal buck-boost converter, one USB-PD port  
controller providing cable plug and orientation detection, one internal VCONN source path, legacy USB Battery  
Charging Specification v1.2 Dedicated Charging Port (DCP) as well as legacy (non-USB compliant) charger  
detection including: Divider-3, 1.2 V, and HVDCP modes. The TPS25762-Q1 device communicates with its  
connected USB Type-C cable and downstream USB device at the opposite end of the cable to determine  
connection state and enables VBUS sourcing as appropriate.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
SW1  
SW2  
BOOT2  
BOOT1  
BUCK BOOST  
OUT  
IN  
CSP  
CURRENT SENSE,  
CURRENT LIMIT, CABLE  
COMPENSATION  
EN/UVLO  
CSN/VBUS  
LDO_5V  
MUXes  
I/O  
BUFFERS,  
PD PHY  
(Port A)  
ENABLE, LDOs, BIAS,  
VCONN SUPPLY  
PA_CC1  
PA_CC2  
PA_CABLE  
DET &  
VCONN  
LDO_1V5  
PA_DP | GPIO8  
PA_DM | GPIO7  
LDO_3V3  
TVSP  
LDO_3V3  
SYNC | GPIO6  
NTC | GPIO5  
M0  
NTC  
NFET  
CHARGE  
PUMPS  
ADC  
CONFIG,  
ESD,  
GPIO0  
STBUS/STBAT  
IRQ2(o) | GPIO1  
GPIO2 | I2C_SCL2  
GPIO3 | I2C_SDA2  
MUXes,  
I/O  
IRQ | GPIO9  
I2C_SCL1  
PA_LSGD  
BUFFERS  
I2C PORT 1  
CONTROLLER  
I2C_SDA1  
AGND  
PGND  
I2C PORT 2  
TARGET  
9.3 Feature Description  
9.3.1 Device Power Management and Supervisory Circuitry  
9.3.1.1 VIN UVLO and Enable/UVLO  
The TPS25762-Q1 has one internally fixed VIN UVLO and one user programmable UVLO using the EN/UVLO  
pin. Both thresholds must be cleared for the device to start up.  
The fixed VIN(UVLO) has a rising threshold between 5 and 5.5 V to ensure internal circuits have sufficient  
headroom for proper operation.  
The EN/UVLO pin provides the user with a resistor programmable UVLO threshold and master enable /  
disable for the device.  
The EN/UVLO pin has three distinct voltage ranges: shutdown, standby, and operating. When the EN/UVLO  
pin is below the standby threshold VEN(STBY), the device is disabled in a low power shutdown. When EN/UVLO  
voltage is greater than the standby threshold VEN(STBY) but less than the operating threshold VEN(OPER), the  
internal bias rails, LDO_5V, LDO_3V3, and LDO_1V5 regulators are enabled but remaining device functions  
are disabled. When EN/UVLO is greater than the operating threshold VEN(OPER) and LDO_5V, LDO_3V3 and  
LDO_1V5 regulators are above their respective undervoltage threshold UVLO thresholds, the device is fully  
functional. The EN/UVLO pin includes fixed hysteresis between the shutdown mode and the standby mode.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
EN/UVLO  
VEN(OP)  
VLDO_5V(UVLO_R)  
LDO_5V  
VLDO_3V3(UVLO_R)  
LDO_3V3  
VLDO_1V5(UVLO_R)  
LDO_1V5  
3-4 ms  
M0  
Disabled  
Enabled  
trim enabled  
9-1. EN/UVLO and LDO Sequencing  
9-1. EN/UVLO and LDO_UVLO Operation  
EN/UVLO (1)  
LDOs  
DEVICE OPERATION  
Shutdown: LDO_5V, LDO_3V3  
VEN/UVLO < VEN(LDO_V5V_F)  
and LDO_1V5 OFF. M0 (MCU)  
is OFF.  
Standby: LDO_5V, LDO_3V3  
and LDO_1V5 ON. M0 (MCU) is  
OFF.  
VEN(LDO_V5V_R) < VEN/UVLO  
VEN(STBY)  
<
LDO_5V < VLDO_5V(UVLO_R), or  
LDO_3V3 < VLDO_3V3(UVLO_R); or  
LDO_1V5 < VLDO_1V5(UVLO_R)  
LDO_5V, LDO_3V3 and  
LDO_1V5 ON, M0 (MCU) is  
OFF.  
VEN/UVLO > VEN(OPER)  
LDO_5V > VLDO_5V(UVLO_R), and  
LDO_3V3 > VLDO_3V3(UVLO_R), and  
LDO_1V5 > VLDO_1V5(UVLO_R)  
VEN/UVLO > VEN(OPER)  
Operating: M0 (MCU) is ON.  
(1) Valid when VIN > VIN(UVLO_R)  
.
In some cases an input UVLO level different than that provided by the internal VIN(UVLO) is needed. This can  
be accomplished by using the circuit shown in UVLO Threshold Programming. The input voltage at which the  
device turns on is designated VON; while the turnoff voltage is VOFF. First a value for RENB is chosen in the range  
of 13 kΩ to 22 kΩ. Use 方程式 1 and 方程式 2 to calculate RENT and VOFF  
.
V
ON  
R
=
1 × R  
ENB  
(1)  
ENT  
V
EN OPER  
The hysteresis between the UVLO turn-on threshold and turn-off threshold is set by the upper resistor in the  
EN/UVLO resistor divider and is given by:  
V
EN HYS  
V
= 1 −  
× V  
ON  
(2)  
OFF  
V
EN OPER  
VIN  
RENT  
EN/UVLO  
RENB  
AGND  
9-2. UVLO Threshold Programming  
Where  
VON = VIN turn-on voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS25762-Q1  
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VOFF = VIN turn-off voltage  
Note: Ensure RENT ≥ 47 kΩ  
If the programmable UVLO is not required, the EN/UVLO pin can be connected to the IN pin with a 47 kΩ, or  
larger, resistor.  
9.3.1.2 Internal LDO Regulators  
Three internal LDOs provide regulated supplies for operation of internal circuitry.  
LDO_5V: Supplies buck-boost gate drive circuitry, LDO_3V3, LDO_1V5, and PA and PB VCONN power  
paths. External bypass capacitance, CLDO_5V is required for proper operation. It is highly recommended to  
include an additional high frequency 0.1 μF capacitor in parallel with CLDO_5V. CLDO_5V and the parallel  
high frequency should be placed as close to the LDO_5V pin as possible. This capacitance: 1) provides  
energy storage for the buck-boost internal FET gate drivers, and 2) is required to stabilize the internal 5-V  
LDO in applications where an external 5-V supply is not connected. The TPS25762-Q1 will not operate  
(release reset) until VLDO_5V(UVLO_R) threshold is met. Hard reset occurs when VLDO_5V < VLDO_5V(UVLO_F)  
threshold. Current from LDO_5V returns to PGND pin. The LDO_5V output may be used to supply a small  
external loads such as indicator LEDs. When supplying external components, it is recommended that the  
total external load current not exceed 25 mA (MAX).  
– 0.1W VCONN: when enabled in the application configuration GUI, LDO_5V is capable of sourcing 20 mA  
each to PA_VCONN and PB_VCONN.  
– 1W VCONN: when enabled in the application configuration GUI, this mode of operation requires an  
external 4.75 - 5.5 V, 500-mA capable supply connected to LDO_5V. Back-feeding of LDO_5V is allowed.  
LDO_3V3: Supplies internal analog circuits, GPIO buffers, USB PD and the USB Endpoint PHYs. External  
bypass capacitance of CLDO_3V3 is required for proper operation. An additional 0.1 μF capacitor in parallel  
with CLDO_3V3 is highly recommended to filter high frequency noise from the I/O buffers and PHYs. The  
LDO_3V3 can supply external circuits at up to 25 mA. Expected loads include: EEPROM (5mA), NTC resistor  
divider network (< 1 mA). Current may be drawn up to ILDO_3V3(ILIMIT). Note: the USB PD and Endpoint PHYs  
draw current from LDO_3V3. If a CCx or Dx pin is shorted to GND during a transmission the current drawn  
may reach the current limit threshold. Similarly, if any GPIO pins are configured as push-pull outputs and a  
GPIO short to GND event occurs, the LDO_3V3 current limit may be reached. Current returns to AGND pin.  
LDO_1V5: Supplies digital core. External bypass capacitance of CLDO_1V5 is required for proper operation.  
An additional 0.1 μF capacitor in parallel with CLDO_1V5 is highly recommended to filter noise generated by  
the digital core. The M0 is held in reset until all three UVLO_R (rising) thresholds are met. Current returns to  
AGND pin.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VIN  
LDO_5V  
(125mA)  
LDO_5V  
PGND  
LDO_3V3  
(25 mA)  
LDO_3V3  
GND  
LDO_1V5  
(10 mA)  
LDO_1V5  
GND  
Note: LDO_5V max regulation current includes LDO_3V3  
(25 mA) and LDO_1V5 (10 mA)  
9-3. Internal LDO Connection Diagram  
9.3.2 TVSP Device Configuration and ESD Protection  
The Transient Voltage protection and firmware Setting Pin (TVSP) has three functions: 1) Boot configuration  
settings; 2) USB connector pin short to VBUS or VBAT protection; and 3) USB connector pin enhanced ESD  
protection.  
RTVSP: At power on, the resistance between the TVSP pin and PGND determines the boot method, USB PD  
port I2C addresses and I2C logic thresholds. Refer to 9-3. The most common configuration is shown in 图  
9-4 with RTVSP open, corresponding to TVSP Index 0. During device initialization and boot, typically within 4  
seconds after power on, VIN must be above 7.6 V to ensure proper bias of the TVSP pin to 5.5 V. Once boot  
is complete the device can operate over the full VIN range.  
CTVSP: A 0.1-µF capacitor (CTVSP) must be connected to PGND. Place CTVSP as close to the TVSP pin  
as possible to minimize parasitic inductance. CTVSP is part of the centralized protection circuitry fortifying  
connector pins Px_CCy, Px_DP and Px_DM from damage during short to VBUS, VBAT and ESD events. A  
40-V 0.1-µF capacitor is recommended for proper operation of the internal TVSP regulator circuit.  
TVSP Damper Network: Capacitance, CDAMP, and resistance, RDAMP, form an RC network preventing  
excessive current from flowing inside the device durging connector pin over-voltage and ESD events.  
CDAMP: A 0.47-µF capacitor must be connected in series with RDAMP to PGND. A 40-V 0.47-µF capacitor  
is recommended.  
RDAMP: A 10-Ω resistor must be connected in series with CDAMP to PGND. A 0.25-W rating is  
recommended.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO5V  
Px_DP  
ESD  
ESD  
BC1.2  
Functions  
Bias  
~5.5V  
PGND  
TVSP  
Px_DM  
Px_CC1  
ESD  
ESD  
I mirror  
to ADC  
USB PD  
Functions  
1 kW  
TVSP_PD_EN  
Px_CC2  
Recommended  
component values  
PGND  
9-4. Basic TVSP Pin Connection  
9-2. Recommended TVSP Components  
CTVSP  
RDAMP  
CDAMP  
0.1 μF  
10 Ω  
0.47 μF  
9-3. RTVSP Configuration Settings  
(1)  
I2C Target Port  
RTVSP (kΩ)  
TVSP Index  
ADC Value  
I2C Logic (VDD  
)
Boot Mode  
Addresses (A | B)(2)  
0x22 | 0x26  
0x23 | 0x27  
0x22 | 0x26  
0x23 | 0x27  
0x23 | 0x27  
0x22 | 0x26  
0x23 | 0x27  
0x22 | 0x26  
0x22 | 0x26  
Open  
93.1  
47.5  
29.4  
20.0  
14.7  
11.0  
8.45  
6.65  
0
1
2
3
4
5
6
7
8
≤ 10 (0x0A)  
≤ 24 (0x18)  
≤ 42 (0x2A)  
≤ 63 (0x3F)  
≤ 89 (0x59)  
≤ 119 (0x77)  
≤ 156 (0x9C)  
≤ 201 (0xC9)  
≤ 255 (0xFF)  
3.3 V  
3.3 V  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
1.8 V  
1.8 V  
3.3 V  
EEPROM  
External HUB/MCU  
EEPROM  
External HUB/MCU  
EEPROM  
External HUB/MCU  
EEPROM  
External HUB/MCU  
Firmware Update  
(1) 1% resistor required.  
(2) 0x22h = 0100010; 0x26h = 0100110; 0x23h = 0100011; 0x27 = 0100111  
Device firmware can be updated using the USB Endpoint on the PA_DP and PA_DM pins. To enable firmware  
update mode, boot the device with a resistance corresponding to Index 8 between TVPS and PGND. A boot  
cycle can be performed by power cycling the device or by pulling the EN/UVLO pin momentarily below VEN(OPER)  
threshold. An example circuit to enable USB Endpoint firmware update mode is shown in 9-5  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO5V  
Px_DP  
ESD  
ESD  
BC1.2  
Func ons  
Bias  
~5.5V  
PGND  
USB Endpoint  
Firmware Update Mode  
Px_DM  
Px_CC1  
TVSP  
ESD  
ESD  
I mirror  
to ADC  
USB PD  
Func ons  
1 k  
TVSP_PD_EN  
Px_CC2  
PGND  
9-5. Example Circuit to Enable USB Endpoint Firmware Update Mode  
9.3.3 Buck-Boost Regulator  
9.3.3.1 Buck-Boost Regulator Operation  
The TPS25762-Q1 devices utilize a fixed frequency, current mode control buck-boost converter. This converter  
operates in forced continuous conduction mode (CCM) and therefore allows inductor current to flow in either  
direction at light loads. The power train consists of five N-Channel power MOSFETs. See 9-6. Transistors  
M1 and M2 are the high-side and low-side buck FETs. Transistors M3 and M4 are the high-side and low-side  
boost FETs. Transistor M5 blocks reverse conduction from OUT to SW2 during input overvoltage transients as  
explained in VIN Supply and VIN Over-Voltage Protection.  
IN: Receives power from the battery. The input bulk capacitor must be connected between IN and PGND.  
OUT: Delivers power from the switching converter. The output bulk capacitor connects between OUT to  
PGND.  
PGND: Ground return for the switching converter power train.  
AGND: Ground return for everything except the power train. The voltage feedback divider returns to AGND.  
PGND and AGND must connect together on the circuit board.  
LDO_5V: Provides gate drive for M2 and M4 and current for the bootstrap circuits feeding BOOT1 and  
BOOT2. A bypass capacitor must connect from LDO_5V to PGND. See Internal LDO Regulators for more  
information on LDO_5V.  
LDO_3V3: Analog circuitry power supply. A bypass capacitor must connect from LDO_3V3 to AGND. See  
Internal LDO Regulators for more information on LDO_3V3.  
BOOT1: Provides gate drive for M1. A bootstrap capacitor must connect from BOOT1 to SW1.  
BOOT2: Provides gate drive for M3. A bootstrap capacitor must connect from BOOT2 to SW2.  
SW1: Connects M1 and M2 to external inductor.  
SW2: Connects M3 and M4 to external inductor.  
CSP: Positive terminal of average current sense amplifier. Connects to positive terminal of output bulk  
capacitor.  
CSN/BUS: Negative terminal of average current sense amplifier. A 10-mΩ current sense resistor is externally  
connected from CSP to CSN/BUS.  
Depending upon the input voltage VIN and the output voltage VOUT, the converter can operate in one of four  
different states, each of which is described in following sections.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
M1  
M3  
M5  
IN  
OUT  
M2  
M4  
PGND  
9-6. Buck-Boost Internal Power FETs  
Buck State  
When the input voltage VIN significantly exceeds the output voltage VOUT, the converter enters the buck region of  
operation in which it performs an endless series of buck switching cycles Buck State. M3 and M5 are constantly  
on and M4 is constantly off. When the clock signals that a switching cycle has begun, the controller turns on M2  
and turns off M1. This switch configuration corresponds to the off-time interval of a traditional buck converter.  
The voltage difference VSW1 – VSW2 across the inductor equals –VOUT. The inductor current IL ramps down until  
it reaches a threshold IVALLEY set by the error amplifiers. The controller then turns off M2 and turns on M1. This  
switch configuration corresponds to the on-time interval of a traditional buck converter. The voltage difference  
VSW1 – VSW2 now equals VIN – VOUT. The inductor current now ramps up until the converter clock signals that  
the end of the switching cycle has been reached.  
The on-time ton equals the time interval during which M1 conducts. The off-time toff equals the time interval  
during which M2 conducts. Because the converter operates in FCCM, the period τ equals the sum of ton and toff.  
During the buck state, the controller regulates power flow by adjusting the buck duty cycle D, which equals the  
ratio ton/τ.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VSW1 t VSW2  
VIN t VOUT  
t
t VOUT  
IL  
IVALLEY  
t
toff  
ton  
9-7. Buck State  
Buck Transition State  
When the input voltage VIN is only slightly larger than the output voltage VOUT, the converter enters the buck  
transition region of operation in which it alternately performs buck and boost switching cycles Buck Transition.  
M5 is always on. When the clock signals that a buck switching cycle has begun, the controller turns on M2  
and M3, and it turns off M1 and M4. This switch configuration corresponds to the off-time of a traditional buck  
converter. The inductor current IL ramps down until it reaches a threshold IVALLEY set by the error amplifiers. The  
controller then turns off M2 and turns on M1. This switch configuration corresponds to the on-time of a traditional  
buck converter. The inductor current now ramps up slowly until the clock signals the end of the buck switching  
cycle. The next switching cycle is a boost switching cycle. When this cycle begins, the controller turns M3 off  
and turns M4 on. M2 remains off, and both M1 and M5 remain on. This switch configuration corresponds to  
the on-time of a traditional boost converter. The inductor current IL now ramps up rapidly until the fixed on-time  
expires. The controller then turns off M4 and turns on M3. The inductor current now ramps down until the clock  
signals the end of the boost switching cycle. The next switching cycle will be another buck cycle.  
During the buck transition state, the controller regulates power flow by adjusting the buck duty cycle. The boost  
duty cycle remains fixed. If the converter had remained in the buck state rather than move to the buck transition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
state, the buck on-time would have become so short that it would have become impossible to regulate power  
flow without pulse skipping.  
VSW1 t VSW2  
VIN  
VIN t VOUT  
t
t VOUT  
IL  
IVALLEY  
t
toff  
ton  
tB  
Buck  
Boost  
9-8. Buck Transition  
Boost Transition State  
When the input voltage VIN is only slightly smaller than the output voltage VOUT, the converter enters the boost  
transition region of operation in which it alternately performs boost and buck switching cycles Boost Transition.  
M5 is always on. When the clock signals that a boost switching cycle has begun, the controller turns on M1  
and M4, and it turns off M2 and M3. This switch configuration corresponds to the on-time of a traditional boost  
converter. The inductor current IL ramps up until it reaches a threshold IPEAK set by the error amplifiers. The  
controller then turns off M4 and turns on M3. This switch configuration corresponds to the off-time of a traditional  
boost converter. The inductor current now ramps down slowly until the clock signals the end of the boost  
switching cycle. The next switching cycle is a buck switching cycle. When this cycle begins, the controller turns  
M1 off and turns M2 on. M4 remains off, and both M3 and M5 remain on. This switch configuration corresponds  
to the off-time of a traditional buck converter. The inductor current IL now ramps down rapidly until the fixed  
off-time expires. The controller then turns off M2 and turns on M1. The inductor current now ramps up until the  
clock signals the end of the buck switching cycle. The next switching cycle will be another boost cycle.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
During the boost transition state, the controller regulates power flow by adjusting the boost duty cycle. The buck  
duty cycle remains fixed. If the converter had remained in the boost state rather than move to the boost transition  
state, the boost on-time would have become so short that it would have become impossible to regulate power  
flow without pulse skipping.  
VSW1 t VSW2  
VIN  
t
VIN t VOUT  
t VOUT  
IL  
IPEAK  
t
tE  
ton  
toff  
Boost  
Buck  
9-9. Boost Transition  
Boost State  
When the input voltage VIN is significantly less than the output voltage VOUT, the converter enters the boost  
region of operation in which it performs an endless series of boost switching cycles Boost State. M1 and M5 are  
constantly on and M2 is constantly off. When the clock signals that a switching cycle has begun, the controller  
turns on M4 and turns off M3. This switch configuration corresponds to the on-time interval of a traditional boost  
converter. The voltage difference VSW1 – VSW2 across the inductor equals VIN. The inductor current IL ramps  
up until it reaches a threshold IPEAK set by the error amplifiers. The controller then turns off M4 and turns on  
M3. This switch configuration corresponds to the off-time interval of a traditional boost converter. The voltage  
difference VSW1 – VSW2 now equals VIN – VOUT, which is negative. The inductor current now ramps down until  
the converter clock signals that the end of the switching cycle has been reached.  
The on-time ton equals the time interval during which M4 conducts. The off-time toff equals the time interval  
during which M3 conducts. Because the converter operates in FCCM, the period τ equals the sum of ton and toff.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
During the boost state, the controller regulates power flow by adjusting the boost duty cycle D, which equals the  
ratio ton/τ.  
VSW1 t VSW2  
VIN  
t
VIN t VOUT  
IL  
IPEAK  
t
ton  
toff  
9-10. Boost State  
Boundaries of the Regions of Operation  
Regions of Operation graphically depicts the four regions of operation and the boundaries between them. When  
VBUS > kVIN, the converter remains in the boost region of operation. The value k is 1.2. When VIN < VBUS < kVIN,  
the converter enters the boost transition region of operation. When VIN/k < VBUS < VIN, the converter enters the  
buck transition region of operation. When VBUS < VIN/k, the converter enters the buck region of operation. The  
converter will cease operating if VIN exceeds the OVP threshold, which lies between 18 and 20 V. Similarly, the  
converter will also cease operating if VIN drops below either the internal UVLO threshold, which lies between  
5 and 5.5 V, or the user programmed EN/UVLO threshold (see VIN UVLO and ENABLE/UVLO, whichever is  
greater).  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VBUS=kVIN  
VIN=VBUS  
VBUS  
21V  
Boost  
VIN=kVBUS  
Buck  
VIN  
UVLO  
OVP  
9-11. Regions of Operation  
9.3.3.2 Switching Frequency, Frequency Dither, Phase-Shift and Synchronization  
The PWM oscillator frequency (fsw) is programmed by firmware using the application configuration GUI. The  
switching converter is intended for operation below the AM radio band (520 kHz - 1730 kHz). Three nominal fsw  
settings below are available: 300 kHz, 400 kHz and 450 kHz.  
Frequency dithering can be enabled by firmware via the application GUI. When enabled, the nominal oscillator  
frequency is dithered by ±FSSS (approximately ±10%) using triangular waveform modulation (see Dithering using  
triangular waveform modulation). The dither period τM is the reciprocal of the dither modulation frequency  
FSSS_MOD. Two firmware selectable dither modulation frequencies FSSS_M are available: 10 and 25 kHz.  
Dithering spreads the spectral peaks generated by switching, thereby reducing the peak harmonic levels and  
easing EMI filter design.  
f
1.1fs  
fs  
0.9fs  
t
tM  
9-12. Dithering Using Triangular Waveform Modulation  
Multiple converters can be synchronized using the SYNC pin. This pin can be firmware-configured as either an  
output SYNC(o) or an input SYNC(i).  
SYNC(o): The switching clock is placed on the SYNC(o) pin. This waveform will have a duty cycle of  
approximately 50%. If frequency dithering is configured by firmware, this signal will also exhibit dithering.  
Four phase settings are available by firmware configuration to shift the SYNC(o) output relative to the internal  
switching clock by 0°, 90°, 120°, or 180°. SYNC(o) is used to slave other DC/DC converter clocks to the  
switching converter clock inside the TPS25762-Q1. When two dc/dc converters operate out of phase, peak  
input current from the battery is reduced and total input bulk capacitance requirements decrease.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Internal PWM  
Clock  
Falling SWx edge triggers on rising edge of  
internal PWM clock  
Internal SWx  
node(s)  
period  
~50%  
duty  
SYNC(o)  
0º phase shift  
90º  
SYNC(o)  
90º phase shift  
120º  
SYNC(o)  
120º phase shift  
180º  
SYNC(o)  
180º phase shift  
9-13. SYNC(o) Phase Shift  
SYNC(o)  
Other DC/DC  
Converter  
TPS257xx-Q1  
9-14. Using SYNC(o) to slave DC/DC Converter  
SYNC(i): The internal clock is synchronized to the pulse train on the SYNC(i) pin. This feature is used  
to slave the TPS25762-Q1 to an external clock. The period of this clock must meet synchronization  
requirements in SYNC(i) frequency ranges or the TPS25762-Q1 will instead use its internal switching clock.  
If an external clock deviates outside of the acceptable frequency range and then returns to within the  
acceptable frequency range, the TPS25762-Q1 will resume operation from the external clock after counting 8  
consecutive clocks meeting the criteria of 9-4. When SYNC(i) is configured, frequency dithering is disabled  
when operating from the internal clock following a failure of the external clock.  
9-4. SYNC(i) Frequency Ranges  
fSW Firmware Setting  
Allowed SYNC(i) Frequency Range  
MIN  
MAX  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9-4. SYNC(i) Frequency Ranges (continued)  
fSW Firmware Setting  
300 kHz  
Allowed SYNC(i) Frequency Range  
250 kHz  
334 kHz  
376 kHz  
353 kHz  
470 kHz  
530 kHz  
400 kHz  
450 kHz  
9.3.3.3 VIN Supply and VIN Over-Voltage Protection  
VIN Supply  
The voltage VIN at the input supply pin IN, measured with respect to AGND, must meet the following  
requirements:  
Overvoltage: The voltage VIN must never exceed an absolute maximum of 40 V, and should not exceed 36  
V under anticipated operating conditions. Automotive applications will typically require an external transient  
suppressor to meet this requirement.  
Load dump: When the converter is running and VIN exceeds 18 V, the positive slew rate dVIN/dt must not  
exceed 200 V/ms.  
Double battery: When the converter is not running, the positive slew rate dVIN/dt must not exceed 10 V/µs.  
The input EMI filter can help mitigate input voltage slew rates.  
Reverse battery: The voltage VIN must never go below –0.3 V. Automotive applications will typically require  
external reverse voltage blocking circuitry.  
The buck-boost switching converter is capable of delivering its full rated output power of 65 W over an input  
supply range 6.8 V < VIN < 18 V . The input voltage can dip down to the UVLO threshold providing that the  
output power level is appropriately derated.  
VIN Overvoltage Protection Circuitry  
The TPS25762-Q1 contains circuitry that protects the power train against load dump and double battery  
conditions. When VIN exceeds about 19 V, a comparator determines that an input overvoltage condition has  
occurred. This comparator sends a signal that shuts the switching converter down. Transistors M1, M2, and M3  
in Buck-Boost Internal Power FETs are turned off, and transistor M4 is turned on. However, current is still flowing  
through the inductor. Two cases may exist: the current may flow forward (from SW1 to SW2) or in reverse (from  
SW2 to SW1). Reverse current flow will forward-bias the body diode of M1. The voltage across the inductor  
will then equal the sum of the forward voltage of this diode plus the input voltage, which is sufficient to cause  
the inductor voltage to rapidly ramp down to zero. Forward current flow will forward-bias the body diode of M2.  
After the inductor current is released, a small linear regulator biases SW1 to about 15 V. When the overvoltage  
condition is removed, the switching regulator may resume operation.  
9.3.3.4 Feedback Paths and Error Amplifiers  
The TPS25762-Q1 includes not only a programmable voltage feedback path, but also a programmable average  
current feedback path that can be used to limit the average current provided by the switching converter to the  
USB cable. The voltage feedback path also includes provision for cable droop compensation. 9-15 shows a  
simplified block diagram of the relevant portions of the integrated circuit.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
CSN/BUS  
RF1  
A1  
A2  
CSP  
CSN/BUS  
Avg  
RF2  
Current  
Ampli er  
Voltage EA  
A3  
I1  
I1  
Vcomp  
1V  
MAX  
I2  
A4  
8
icode  
vcode  
IDAC  
RC1  
CC1  
Current EA  
CC2  
12  
VDAC  
RF3  
9-15. Simplified block diagram of feedback paths and error amplifiers.  
9.3.3.5 Transconductors and Compensation  
The TPS25762-Q1 is internally compensated. The overall slope compensation and loop compensation is  
internally fixed based on inductor and capacitance values shown in 10-1.  
9.3.3.6 Output Voltage DAC, Soft-Start and Cable Droop Compensation  
The buck-boost output voltage is regulated at the CSN/VBUS pin. A 12-bit digital-to-analog converter, VDAC,  
provides ±20-mV step voltage adjustments of VCSP/BUS as commanded by device firmware.  
After a successful cable detect event, firmware sets the VDAC to output 5 V as measured on the VCSN/BUS  
output. An internal clock steps up the VDAC codes from an initial 0 V to final 5-V setting producing a monotonic  
ramp of VCSN/BUS to 5 V at tSS  
.
In some applications, the USB-PD controller may be located 1 m, or more, from the USB receptacle. When  
configured and enabled by firmware, cable droop compensation will increase the VCSP/BUS linearly with  
increasing load current independent of the VDAC setting. Four selectable VOUT_CDC ranges are available. 500  
mV is the maximum supported cable droop voltage and it is disabled by default during USB-PD PPS contracts.  
9.3.3.7 VBUS Overvoltage Protection  
A fixed threshold overvoltage comparator monitors the CSN/BUS pin for overvoltage conditions. When the  
VCSN/BUS_OVP_R threshold is exceeded, output OV protection circuitry turns off the internal MOSFETs. Switching  
resumes when VCSN/BUS decreases below VCSN/BUS_OVP_F  
.
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
+
CSN/BUS  
Buck-Boost  
State Machine  
VCSN/BUS_OVP  
M0  
ADC  
9-16. VBUS OVP and UVP  
9.3.3.8 VBUS Undervoltage Protection  
PA_VBUS undervoltage conditions are monitored by the internal ADC. In accordance with USB Power Delivery  
specifications, the TPS25762-Q1 firmware configures the threshold based on USB PD contract with the attached  
sink device.  
9.3.3.9 Current Sense Resistor (RSNS) and Current Limit Operation  
The CSP and CSN/BUS pins are the positive and negative inputs to the average current sense amplifier (CSA).  
The TPS25762-Q1 devices sense port A load current across sense resistor, RSNS, located between the CSP and  
CSN/BUS pins. A 10-mΩ, 1%, power resistor provides a 0 - 50-mV sense voltage over the range 0 ≤ IOUT ≤ 5 A.  
A seven bit digital-to-analog converter, IDAC, provides ±50-mA step current limit adjustments and is  
automatically programmed by device firmware.  
9.3.3.10 Buck-Boost Peak Current Limits  
The buck and boost peak current limits are adjustable by firmware using the application configuration GUI. Refer  
to the BUCK-BOOST PEAK CURRENT LIMITS in 7.6 of the Electrical Characteristics tables for selectable  
values.  
In most applications it is desirable to limit input current to the automotive USB module to protect module  
components, connectors and wiring from over-current conditions. The worst case input current condition occurs  
when VIN is minimum and VCSN/BUS is maximum (21 V) while supplying maximum 3.25 A output current. When  
VIN < VBUS, the internal DC/DC converter is operating in boost mode. Refer to the 10-6 tables in the Inductor  
Currents section to estimate the peak current versus recommended inductor value for the application.  
The buck peak current limit setting selection should be just lower than the boost peak current limit. Set as close  
to the boost peak current limit as selections allow to prevent the possibility of limit cycling between the two peak  
current limits under extreme transients. IPEAK(BUCK) IPEAK(BOOST)  
.
When selecting an inductor, it is important select one with an appropriate saturation current rating, IL(SAT). The  
inductor IL(SAT) rating should larger than the maximum (MAX) IPEAK(BOOST) limit from the Electrical Characteristics  
tables to avoid excessive current flow in the TPS25762-Q1 or the inductor.  
9.3.4 USB-PD Physical Layer  
9-17 shows the USB PD physical layer block surrounded by a simplified version of the analog plug and  
orientation detection block. This block applies to Port A.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO_3V3  
IRp  
RSNK  
Px_CC1  
Px_CC2  
Digital  
Core  
USB-PD PHY  
(Rx/Tx)  
LDO_3V3  
IRp  
RSNK  
9-17. USB-PD Physical Layer and Simplified Plug and Orientation Detection Circuitry  
USB-PD messages are transmitted in a USB Type-C system using a BMC (Biphase Mark Coding) signaling. The  
BMC signal is output on the same pin (Px_CC1 or Px_CC2) that is DC biased due to the Rp (or Rd) cable attach  
mechanism discussed in the USB-PD BMC Transmitter section.  
9.3.4.1 USB-PD Encoding and Signaling  
9-18 illustrates the high-level block diagram of the baseband USB-PD transmitter. 9-19 illustrates the  
high-level block diagram of the baseband USB-PD receiver.  
4b5b  
Encoder  
BMC  
Encoder  
Data  
to PD_TX  
CRC  
9-18. USB-PD Baseband Transmitter Block Diagram  
Data  
BMC  
Decoder  
SOP  
Detect  
4b5b  
Decoder  
from PD_RX  
CRC  
9-19. USB-PD Baseband Receiver Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9.3.4.2 USB-PD Bi-Phase Marked Coding  
The USB-PD physical layer implemented in the TPS25762-Q1 is compliant to the USB-PD Specifications. The  
encoding scheme used for the baseband PD signal is a version of Manchester coding called Biphase Mark  
Coding (BMC). In this code, there is a transition at the start of every bit time and there is a second transition in  
the middle of the bit cell when a 1 is transmitted. This coding scheme is nearly DC balanced with limited disparity  
(limited to 1/2 bit over an arbitrary packet, so a very low DC level). 9-20 illustrates Biphase Mark Coding.  
0
1
0
1
0
1
0
1
0
0
0
1
1
0
0
0
1
1
Data in  
BMC  
9-20. Biphase Mark Coding Example  
The USB PD baseband signal is driven onto the Px_CC1 or Px_CC2 pin with a tri-state driver. The tri-state driver  
controls slew rate to limit coupling to D+/D– and to other signal lines in the Type-C fully featured cables. When  
sending the USB-PD preamble, the transmitter starts by transmitting a low level. The receiver at the other end  
tolerates the loss of the first edge. The transmitter terminates the final bit by an edge to ensure the receiver  
clocks the final bit of EOP.  
9.3.4.3 USB-PD Transmit (TX) and Receive (Rx) Masks  
The USB-PD driver meets the defined USB-PD BMC TX masks. Since a BMC coded “1” contains a signal edge  
at the beginning and middle of the UI, and the BMC coded “0” contains only an edge at the beginning, the  
masks are different for each. The USB-PD receiver meets the defined USB-PD BMC Rx masks. The boundaries  
of the Rx outer mask are specified to accommodate a change in signal amplitude due to the ground offset  
through the cable. The Rx masks are therefore larger than the boundaries of the TX outer mask. Similarly, the  
boundaries of the Rx inner mask are smaller than the boundaries of the TX inner mask. Triangular time masks  
are superimposed on the TX outer masks and defined at the signal transitions to require a minimum edge rate  
that has minimal impact on adjacent higher speed lanes. The TX inner mask enforces the maximum limits on the  
rise and fall times. Refer to the USB-PD Specifications for more details.  
9.3.4.4 USB-PD BMC Transmitter  
The TPS25762-Q1 transmits and receives USB-PD data over one of the Px_CCy pins for a given CC pin pair  
(one pair per USB Type-C port). The Px_CCy pins are also used to determine the cable orientation (see the  
Cable Plug and Orientation Detection section) and maintain cable/device attach detection. Thus, a DC bias  
exists on the Px_CCy pins. The transmitter driver overdrives the Px_CCy DC bias while transmitting, but returns  
to a Hi-Z state allowing the DC voltage to return to the Px_CCy pin when not transmitting. While either Px_CC1  
or Px_CC2 may be used for transmitting and receiving, during a given connection only the one that mates with  
the CC pin of the plug is used; so there is no dynamic switching between Px_CC1 and Px_CC2. 9-21 shows  
the USB-PD BMC TX and RX driver block diagram.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO_3V3  
Level Shifter  
PD_TX  
Driver  
Px_CC1  
Px_CC2  
+
Level Shifter  
PD_RX  
œ
Digitally  
Adjustable  
VREF (VRXHI, VRXLO  
)
USB-PD Modem  
9-21. USB-PD BMC TX/Rx Block Diagram  
9-22 shows the transmission of the BMC data on top of the DC bias. Note, The DC bias can be anywhere  
between the minimum threshold for detecting a UFP attach and the maximum threshold for detecting a Sink  
attach to a Source. This means that the DC bias can be above or below the VOH of the transmitter driver.  
VOH  
DC Bias  
DC Bias  
VOL  
VOH  
DC Bias  
DC Bias  
VOL  
9-22. TX Driver Transmission with DC Bias  
The transmitter drives a digital signal onto the Px_CCy lines. The signal peak, VTXHI, is set to meet the TX  
masks defined in the USB-PD Specifications. Note that the TX mask is measured at the far-end of the cable.  
When driving the line, the transmitter driver has an output impedance of ZDRIVER. ZDRIVER is determined by the  
driver resistance and the shunt capacitance of the source and is frequency dependent. ZDRIVER impacts the  
noise ingression in the cable.  
RDRIVER  
ZDRIVER  
Driver  
CDRIVER  
9-23. ZDRIVER Circuit  
9.3.4.5 USB-PD BMC Receiver  
The receiver block of the TPS25762-Q1 receives a signal that falls within the allowed Rx masks defined in the  
USB PD specification. The receive thresholds and hysteresis come from this mask.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9-24 shows an example of a multi-drop USB-PD connection (only the CC wire). This connection has the  
typical Sink (device) to Source (host) connection, but also includes cable USB-PD Tx/Rx blocks. Only one  
system can be transmitting at a time. All other systems are Hi-Z (ZBMCRX). The USB-PD Specification also  
specifies the capacitance that can exist on the wire as well as a typical DC bias setting circuit for attach  
detection.  
Source  
System  
Sink  
System  
Pullup for  
Attach  
Detection  
Connector  
Connector  
Cable  
CC wire  
Tx  
Tx  
CRECEIVER  
CRECEIVER  
Rx  
Rx  
CCablePlug_CC  
CCablePlug_CC  
RD for  
Attach  
Detection  
Rx  
Rx  
Tx  
Tx  
SOP‘ PD  
communication only  
(eMarker #1)  
SOP‘‘ PD  
communication only  
(eMarker #2)  
9-24. Example USB-PD Multi-Drop Configuration  
9.3.4.6 Squelch Receiver  
The TPS25762-Q1 has a squelch receiver to monitor for the bus idle condition as defined by the USB PD  
specification. The squelch receiver output reflects the state of the CC pin regardless of the source of the  
transmission.  
9.3.5 VCONN  
Internal VCONN sourcing power paths are firmware configurable. Using only the internal LDO_5V supply, PortA  
is able to draw 20 mA continuously. If an external 5-V regulator is connected to the LDO_5V pin and the  
application GUI settings are enabled, PortA is able to draw 200 mA continuously. When disabled, blocking FETs  
in the PortA VCONN paths protect the LDO_5V rail from high-voltage and reverse current.  
When VCONN power is enabled and provided, the internal VCONN power switches have a current limit of  
ILIMVC. If the VCONN load current exceeds ILIMVC, the current clamping circuit activates within tiOS_PP_CABLE and  
the switch behaves as a constant current source. Reverse current blocking is disabled when current is flowing to  
Px_CC1 or Px_CC2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Px_CC1 Gate Control  
TSD_Px_VCONN  
Fast current limit, ILIMVC  
LDO_5V  
Px_CC1  
Px_CC2 Gate Control  
Temp  
Sensor  
Px_CC2  
9-25. VCONN Power Switches  
When operating in current limit, the VCONN FET temperature rises. Local temperature sensors disable the  
Px_VCONN path in current limit when Tsensor > TSD_Px_VCONN within tPP_CABLE_off. The application firmware  
enters USB Type-C Error Recovery on the affected port.  
LDO_5V must remain above its under voltage lock out threshold (VLDO_5V(UVLO_F)) for Px_VCONN operation. If  
the VLDO_5V(UVLO_F) threshold is reached, Px_VCONN paths are automatically disabled within tPP_CABLE_off  
.
9.3.6 Cable Plug and Orientation Detection  
9-26 shows the plug and orientation detection block at each Px_CCy pin (PA_CC1, PA_CC2, PB_CC1,  
PB_CC2). Each CC pin has identical detection circuitry.  
When the port is operating as a Type-C source, the VREFx nodes are multiplexed to the VSRC thresholds  
corresponding to the advertised Type-C source capability current, IRp_  
.
When the port is operating as a Type-C sink, the VREFx nodes are multiplexed to the VSNK thresholds  
corresponding to sink detection.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO_5V  
LDO_3V3  
IRpSTD  
IRpSTD_5  
IRp1.5  
IRp3.0  
IRp1.5  
VREF1  
VREF2  
VREF3  
Px_CCy  
RSNK  
9-26. Plug and Orientation Detection Block  
9.3.6.1 Configured as a Source  
When either of the PA or PB ports is configured as a Source, the device detects when a cable or a Sink is  
attached using the Px_CC1 and Px_CC2 pins. When in a disconnected state, the device monitors the voltages  
on these pins to determine what, if anything, is connected. See USB Type-C Specification for more information.  
9-5 shows the Cable Detect States for a Source.  
9-5. Cable Detect States for a Source  
Px_CC1 Px_CC2  
CONNECTION STATE  
Open Nothing attached  
Open Sink attached  
RESULTING ACTION  
Continue monitoring both Px_CCy pins for attach. Power is not applied to Px_VBUS  
or VCONN.  
Open  
Rd  
Monitor Px_CC1 for detach. Power is applied to Px_VBUS but not to VCONN  
(Px_CC2).  
Monitor Px_CC2 for detach. Power is applied to Px_VBUS but not to VCONN  
(Px_CC1).  
Open  
Ra  
Rd  
Open  
Ra  
Sink attached  
Powered Cable-No UFP  
attached  
Monitor Px_CC2 for a Sink attach and Px_CC1 for cable detach. Power is not  
applied to Px_VBUS or VCONN (Px_CC1).  
Powered Cable-No UFP  
attached  
Monitor Px_CC1 for a Sink attach and Px_CC2 for cable detach. Power is not  
applied to Px_VBUS or VCONN (Px_CC2).  
Open  
Ra  
Provide power on Px_VBUS and VCONN (Px_CC1) then monitor Px_CC2 for a Sink  
detach. Px_CC1 is not monitored for a detach.  
Rd  
Powered Cable-UFP Attached  
Powered Cable-UFP attached  
Provide power on Px_VBUS and VCONN (Px_CC2) then monitor Px_CC1 for a Sink  
detach. Px_CC2 is not monitored for a detach.  
Rd  
Ra  
When a port is configured as a Source, a current IRp1.5A, is driven out of each Px_CCy pin and each pin is  
monitored for different states. When a Sink is attached to the pin a pull-down resistance of Rd to GND exists.  
The current IRp1.5A is then forced across the resistance Rd generating a voltage at the Px_CCy pin. The device  
applies the configured IRp1.5A until the buck-boost regulator is enabled and operating at 5 V, at which time  
application firmware may remain at IRp1.5A or change to IRp3.0A  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
When the Px_CCy pin is connected to an electronically marked cable VCONN input, the pull-down resistance is  
different (Ra). In this case the voltage on the Px_CCy pin will pull below VRDstd and the system recognizes the  
electronically marked cable.  
The VDstd1.5 or VD3.0 threshold is monitored to detect a disconnection depending upon which Rp current source  
is active. When a connection has been recognized and the voltage on Px_CCy subsequently rises above the  
disconnect threshold for tCC, the system registers a disconnection.  
Source monitors for  
connection  
Sink monitors for  
orientation  
USB Type-C Cable  
CC  
+
IRp  
Rd  
Rd  
IRp  
Ra  
Ra  
GND  
GND  
GND  
TPS257xx-Q1  
(Type-C source)  
Type-C Sink  
9-27. Type-C Cable  
9.3.6.2 Configured as a Sink  
When the TPS25762-Q1 port is configured as a Sink, such as in Firmware Update Mode with TVSP Index 8,  
the device presents a pull-down resistance RSNK on each PA_CCy pin and waits for a Source to attach and  
pull-up the voltage on the pin. The Source pulls-up the PA_CCy pin by applying either a resistance or a current.  
The Sink detects an attachment by the presence of VBUS. The Sink determines the advertised current from the  
Source by the pull-up applied to the PA_CCy pin.  
9.3.6.3 Overvoltage Protection (Px_CC1, Px_CC2)  
Comparators on the Px_CCy pins detect when the voltage on CC1 or CC2 is too high, or there is reverse current  
into the LDO_5V output. During an overvoltage event, VCONN is disabled within tPP_CABLE_FSD and the  
associated USB PD transmitter is disabled.  
max(VCC1, VCC2) œ VLDO_5V  
VVC_RCP  
LDO_5V  
Control Logic  
Disable PP_CABLE  
And  
VVC_OVP  
Px_CC1  
Px_CC2  
USB PD PHY  
VPHY_OVP  
VPHY_OVP  
9-28. Over-voltage and Reverse Current Protection  
9.3.7 ADC  
The ADC is shown in 9-29. The ADC is an 8-bit successive approximation ADC. The input to the ADC is an  
analog input mux that supports multiple inputs from various voltages and currents in the device. The output from  
the ADC is available to be read and used by application firmware.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
Voltage  
Divider 4  
IN  
Voltage  
Divider 2  
PA_VBUS  
PB_VBUS | GPIO4  
LDO_5V  
Voltage  
Divider 2  
Voltage  
Divider 3  
8 bits  
Voltage  
Divider 1  
LDO_3V3  
Input  
Mux  
ADC  
PA_DM | GPIO7  
PA_DP | GPIO8  
PB_DP | GPIO2  
PB_DM | GPIO3  
NTC | GPIO5  
Buffers &  
Voltage  
Divider 1  
I_PA_VBUS  
I_TVSP  
I-to-V  
I-to-V  
9-29. SAR ADC  
ADC  
output  
8h  
7h  
6h  
5h  
4h  
3h  
2h  
1h  
0h  
LSB  
VIN  
9-30. ADC Conversion  
9.3.7.1 ADC Divider Ratios  
The ADC voltage inputs are each divided down to the full-scale input of 1.2 V. The ADC current sensing  
elements are not divided.  
9-6 shows the divider ratios for each ADC input. The application firmware may select any group of channels  
to be auto-sequenced in the round robin automatic readout mode.  
9-6. ADC Inputs  
CHANNEL  
SIGNAL  
I_TVSP  
IN  
TYPE  
Current  
Voltage  
Voltage  
Voltage  
DIVIDER RATIO  
BUFFERED  
0
1
2
3
n/a  
17  
3
No  
No  
No  
No  
LDO_3V3  
PA_VBUS  
21  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9-6. ADC Inputs (continued)  
CHANNEL  
SIGNAL  
TYPE  
DIVIDER RATIO  
BUFFERED  
4
5
GPIO4 | PB_VBUS  
IPA_VBUS  
Voltage  
Current  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
21  
n/a  
3
No  
No  
6
GPIO2 | PB_DP  
GPIO3 | PB_DM  
GPIO5 | NTC  
GPIO7 | PA_DM  
GPIO8 | PA_DP  
LDO_5V  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
7
3
8
3
9
3
10  
11  
3
5
9.3.8 BC 1.2, Legacy and Fast Charging Modes (Px_DP, Px_DM)  
BC 1.2 downstream port charger emulation is application GUI configurable. The following charging modes can  
be enabled or disabled:  
DCP (Dedicated Charging Port) Shorted Mode  
Divider-3 Mode  
1.2-V Mode  
HVDCP (High Voltage Dedicated Charging Port) Mode  
The following table shows voltage sources, resistors and comparator hardware used in each mode. Symbol "X"  
represents that the corresponding module is implemented.  
RDM_DWN  
(20 kΩ)  
Application  
2.7-V SRC 1.2-V SRC  
RDCP_DAT  
VDAT_REF  
VSEL_REF  
DCP  
X
Divider-3  
1.2 V  
X
X
X
HVDCP  
X
X
X
BC1P2 DCP &  
Legacy Charging  
HVDCP  
OVP COMPARATORS  
VDAT_REF  
+
VSEL_REF  
dp_ovp  
+
+
RDCP_DAT  
dm_ovp  
SW  
Px_DP  
MUX  
Digital Core  
dm_ovp  
SW  
Px_DM  
R_2.7V  
R_2.7V  
R_1.2V  
+
+
dm_ovp  
VSEL_REF  
RDM_DWN  
(20k)  
+
VDAT_REF  
V_2.7V  
V_1.2V  
9-31. BC1P2 Functional Diagram  
9.3.9 USB2.0 Low-Speed Endpoint  
The USB low-speed Endpoint is a USB 2.0 low-speed (1.5 Mbps) interface used to support HID class based  
accesses. The TPS25762-Q1 supports control of endpoint EP0. This endpoint enumerates to a USB 2.0 host  
during firmware update mode. Firmware update mode is entered with when the device is powered on with an  
RTVSP corresponding to TVSP Index 8.  
9-32 shows the USB Endpoint physical layer. The physical layer consists of the analog transceiver, the Serial  
Interface Engine, and the Endpoint FIFOs and supports low-speed USB operation.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO_3V3  
RPU_EP  
EP_TX_DP  
EP_TX_DM  
RS_EP  
RS_EP  
32  
EP0  
TX/RX  
FIFO  
+
-
To Digital  
Core  
PA_DP  
PA_DM  
Serial  
Interface  
Engine  
+
-
EP_RX_RCV  
RX/TX  
Status  
Control  
Digital Core  
Interrupts  
and Control  
EP_RX_DP  
EP_RX_DM  
Transceiver  
9-32. USB Endpoint PHY  
The transceiver is made up of a fully differential output driver, a differential to single-ended receive buffer and  
two single-ended receive buffers on the D+/D– independently. The output driver drives the D+/D– through a  
source resistance RS_EP. RPU_EP is disconnected during transmit mode of the transceiver.  
When the endpoint is in receive mode, the resistance RPU_EP is connected to the PA_DM pin. The RPU_EP  
resistance advertises low speed mode only.  
9.3.10 Digital Interfaces  
The TPS25762-Q1 contains one I2C controller which used for communicating with I2C target devices. Depending  
upon application GUI firmware configuration, an I2C target and GPIOs may be available.  
9.3.10.1 General GPIO  
An application configuration GUI manages the multi-function pins which contain General Purpose Input/Output  
functionality. Each buffer is configurable to be a push-pull output or open drain output. When configured as an  
input, the signal can be a de-glitched digital input or an analog input to the ADC (only designated pins). The  
push-pull output is a simple CMOS totem-pole structure. Independent pull-up and pull-down enables can be  
configured using the application GUI. When interfacing with non 3.3-V I/O devices the output buffer should be  
configured as an open drain output and an external pull-up resistor attached to the GPIO pin.  
9.3.10.2 I2C Buffer  
The TPS25762-Q1 features two I2C interfaces that each use an I2C I/O driver like the one shown in 9-33. This  
I/O consists of an open-drain output and an input comparator with de-glitching.  
deglitch  
SCL/SDA  
Digital  
Core  
GND  
9-33. I2C Driver  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9.3.11 I2C Interface  
The TPS25762-Q1 has two I2C ports. I2C1 is a controller interface. I2C2 is a target interface.  
I2C1 is used to read from or write to external target devices. During boot I2C1 is configured to read firmware  
patch and application configuration data from an external EEPROM with target address 0x50.  
Depending upon application configuration, the TPS25762-Q1 may expose target port, I2C2, using multi-function  
pins: GPIO2 (I2C_SCL2), GPIO3 (I2C_SDA2). When the TPS257xx-Q1 is used in systems with a HUB or MCU,  
the I2C2 port can provide connection status and telemetry information as well as transfer firmware updates from  
the HUB or MCU to an EEPROM connected on I2C1.  
IRQ functionality depends upon firmware application configuration. IRQ is not always available on both I2C1 and  
I2C2 simultaneously. the IRQ is available as follows:  
Multi-function pin GPIO9: IRQ1(i), IRQ1(o), IRQ2(o)  
Multi-function pin GPIO1: IRQ2(o)  
Where (i) = operates as an input, and (o) = operates as output.  
In HUB applications where I2C control is not used, GPIO9 can be configured as a simple FAULT pin reporting  
port over-current conditions as required by the USB 2.0 specifications.  
9-7. I2C Summary  
I2C Bus  
I2C1c  
Type  
Typical Usage  
Max Bus Frequency  
Connect to I2C EEPROM, USB Type-C mux, I2C temperature sensor, I2C  
Controller GPIO expander, or other I2C target. Use LDO_5V or LDO_3V3 pin as the 1 MHz (Fast Mode Plus)  
pull-up voltage. Multi-controller configuration is not supported.  
I2C2t  
Target  
Connect to I2C capable USB HUB, MCU or automotive processor.  
1 MHz (Fast Mode Plus)  
9.3.11.1 I2C Interface Description  
The I2C1 and I2C2 ports support Standard, Fast Mode, and Fast Mode Plus I2C interfaces. The bidirectional I2C  
bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply  
through a pull-up resistor. Data transfer may be initiated only when the bus is not busy.  
A controller sending a Start condition, a high-to-low transition on the SDA input/output, while the SCL input is  
high initiates I2C communication. After the Start condition, the device address byte is sent, most significant bit  
(MSB) first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA  
input/output during the high of the ACK-related clock pulse. On the I2C bus, only one data bit is transferred  
during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period  
as changes in the data line at this time are interpreted as control commands (Start or Stop). The controller sends  
a Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high.  
Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a  
target receiver is addressed, it must generate an ACK after each byte is received. Similarly, the controller must  
generate an ACK after each byte that it receives from the target transmitter. Setup and hold times must be met to  
ensure proper operation.  
A controller receiver signals an end of data to the target transmitter by not generating an acknowledge (NACK)  
after the last byte has been clocked out of the target. The controller receiver holding the SDA line high does  
this. In this event, the target transmitter must release the data line to enable the controller to generate a Stop  
condition.  
9-34 shows the start and stop conditions of the transfer. 9-35 shows the SDA and SCL signals for  
transferring a bit. 9-36 shows a data transfer sequence with the ACK or NACK at the last clock pulse.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
9-34. I2C Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Change  
9-35. I2C Bit Transfer  
Data Output  
by Transmitter  
Nack  
Data Output  
by Receiver  
SCL From  
Master  
Ack  
1
2
8
9
S
Clock Pulse for  
Acknowledgement  
Start  
Condition  
9-36. I2C Acknowledgment  
9.3.11.2 I2C Clock Stretching  
Clock stretching for I2C2. The target I2C port may hold the clock line (SCL) low after receiving (or sending) a  
byte, indicating that it is not yet ready to process more data. The controller communicating with the target must  
not finish the transmission of the current bit and must wait until the clock line actually goes high. When the target  
is clock stretching, the clock line remains low.  
The controller must wait until it observes the clock line transitioning high plus an additional minimum time (4 μs  
for standard 100-kbps I2C) before pulling the clock low again.  
Any clock pulse may be stretched but typically it is the interval before or after the acknowledgment bit.  
9.3.11.3 I2C Address Setting  
A HUB, MCU, or automotive processor host should only use I2C_SCL2 and I2C_SDA2 for loading a firmware  
patches or general status communication. Once the boot process is complete, each I2C port is assigned a  
unique target address as determined by the TVSP pin. The target address used by each port on the I2C2s bus  
are determined from the application configuration.  
9.3.11.4 Unique Address Interface  
The Unique Address Interface allows for complex interaction between an I2C controller and a single TPS25762-  
Q1. The I2C target sub-address is used to receive or respond to Host Interface protocol commands. 9-37 and  
9-38 show the write and read protocol for the I2C target interface, and a key is included in 9-39 to explain  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
the terminology used. The key to the protocol diagrams is in the SMBus Specification and is repeated here in  
part.  
1
7
1
1
8
1
8
1
8
1
S
Unique Address  
Wr  
A
Register Number  
A
Byte Count = N  
A
Data Byte 1  
A
8
1
8
1
Data Byte 2  
A
Data Byte N  
A
P
9-37. I2C Unique Address Write Register Protocol  
1
S
7
1
1
8
1
1
7
1
1
8
1
Unique Address  
Wr  
A
Register Number  
A
Sr  
Unique Address  
Rd  
A
Byte Count = N  
A
8
1
8
1
8
1
Data Byte 1  
A
Data Byte 2  
A
Data Byte N  
A
1
P
9-38. I2C Unique Address Read Register Protocol  
1
7
1
1
A
x
8
1
A
x
1
S
Slave Address  
Wr  
Data Byte  
P
S
Start Condition  
SR  
Rd  
Wr  
x
Repeated Start Condition  
Read (bit value of 1)  
Write (bit value of 0)  
Field is required to have the value x  
Acknowledge (this bit position may be 0 for an ACK or  
1 for a NACK)  
A
P
Stop Condition  
Master-to-Slave  
Slave-to-Master  
Continuation of protocol  
9-39. I2C Read/Write Protocol Key  
9.3.11.5 I2C Pullup Resistor Calculation  
Typical value for RP, the I2C pullup resistor is given by:  
RP = tr / (0.8473 × Cb)  
Refer to 9-8 for values of tr, Cb and VOL  
.
9-8. Parametrics from I2C Specifications  
Standard Mode  
(Max)  
Fast Mode  
(Max)  
Fast Mode Plus  
(Max)  
Parameter  
SCL clock frequency  
Unit  
fSCL  
tr  
100  
1000  
400  
400  
300  
400  
1000  
120  
kHz  
ns  
Rise time of both SDA and SCL signals  
Capacitive load for each bus line  
Cb  
550  
pF  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9-8. Parametrics from I2C Specifications (continued)  
Standard Mode  
(Max)  
Fast Mode  
(Max)  
Fast Mode Plus  
Unit  
Parameter  
(Max)  
Low-level output voltage (at 3-mA current sink, VDD  
> 2 V)  
0.4  
0.4  
0.4  
V
V
VOL  
Low-level output voltage (at 2-mA current sink, VDD  
≤ 2 V)  
0.2 × VDD  
0.2 × VDD  
For additional background regarding I2C pullup resistor calculations, please refer to application report, I2C Bus  
Pullup Resistor Calculation.  
9.3.12 Digital Core  
9-40 shows a simplified block diagram of the digital core.  
Memory  
GPIO0-9  
I2C to  
HUB, MCU, or  
Automotive  
processor  
I2C_SDA2  
I2C  
Port 2  
(target)  
Processor  
I2C_SCL2  
IRQ  
MUX  
I2C_IRQx  
Digital Core  
CBL_DET  
Bias CTL  
USB PD Phy  
and USB-PD  
I2C to EEPROM,  
PB_DC/DC, USB  
redrivers  
I2C_SDA1  
I2C_SCL1  
I2C  
Port 1  
(controller)  
Buck-Boost  
Converter  
Buck-Boost  
Control  
OSC  
ADC Read  
Temp  
Sense  
Thermal  
Shutdown  
ADC  
9-40. Digital Core Simplified Block Diagram  
9.3.12.1 Device Memory  
The digital core contains a combination of ROM, SRAM, and OTP. ROM and SRAM function as the storage  
and operational space for application firmware. OTP contains boot configuration settings. There are 27 kBytes of  
SRAM, 160 kBytes of ROM, and 512 bytes of OTP.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
9.3.12.2 Core Microprocessor  
The digital core is an ARM M0+ clocked at 24MHz with zero wait states.  
9.3.13 NTC Input  
The NTC pin is used by the device firmware to monitor system temperature. Rising or falling voltages on the  
NTC pin indicate increasing or decreasing system temperatures, respectively. To achieve a positive temperature  
slope on the TPS25762-Q1 NTC pin, thermistors should be connected to LDO_3V3 as shown in 9-41.  
LDO_3V3  
LDO_3V3  
RNTC  
RBIAS  
NTC  
NTC  
ADC  
ADC  
RTMP61  
RBIAS  
(b) NTC Connection  
9-41. Thermistor Connections (a) PTC, (b) NTC  
(a) TI TMP61 Sensor  
See 9-42 and 9-43. Using the application configuration GUI, the user can configure system power policy  
management responses for up to three VNTC voltages.  
LDO_3V3  
VNTC  
RNTC  
3.3V  
RNTC  
VNTC_Ph3_R  
VNTC_Ph3_F  
VNTC_Ph2_R  
VNTC_Ph2_F  
VNTC  
VNTC_Ph1_R  
VNTC_Ph1_F  
T (°C)  
RBIAS  
0V  
25  
50  
75  
100  
T (°C)  
125  
9-42. NTC Response Curve  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
LDO_3V3  
VNTC  
3.3V  
RBIAS  
VNTC_Ph3_R  
VNTC_Ph3_F  
VNTC_Ph2_R  
VNTC_Ph2_F  
VNTC_Ph1_R  
VNTC_Ph1_F  
VNTC  
RTMP61  
RTMP61  
0V  
25  
50  
75  
100  
T (°C)  
125  
T (°C)  
9-43. TMP61 PTC Response Curve  
备注  
For optimum accuracy, use the VLDO_3V3 specifications in Electrical Characteristics tables when  
performing resistor divider calculations.  
9.3.14 Thermal Sensors and Thermal Shutdown  
There are five internal thermal sensors in the TPS25762-Q1 devices:  
TSD_BB. Two diode OR'ed thermal sensors to monitor buck-boost power FETs. Disables buck-boost regulator  
when asserted. USB-PD engine enters error recovery.  
TSD_PA_VCONN. One thermal sensor located in the PA_VCONN path. Opens PA_VCONN FET during over-  
temperature event. USB-PD engine enters error recovery.  
TSD_PA_VBUS_DISCH. One thermal sensor located in the PA_VBUS discharge path. Opens PA_VBUS discharge  
FET during over-temperature. Closes PA_VBUS discharge FET when temperature decreases below falling  
hysteresis. (TSD_HYS) if PA_VBUS is above discharge threshold set by firmware during decreasing VBUS  
transition.  
TSD_LDO5V. One thermal sensor located in the LDO_5V regulator. Operates as master thermal shutdown.  
Disables device completely during over-temperature events causing M0 to hard reset. Allows device  
operation when temperature decreases below falling hysteresis (TSD_HYS).  
9.4 Device Functional Modes  
Shutdown Mode  
The EN/UVLO pin provides electrical ON and OFF control for the TPS25762-Q1. When VEN/UVLO is below 1.15  
V (typ), the device is in shutdown mode in which the Cortex M0 is disabled and only minimal analog functions  
are operating. Refer to VIN UVLO and Enable/UVLO section for the detailed description of the EN/UVLO pin  
functionality.  
Active Mode  
The TPS25762-Q1 enters active mode when VEN/UVLO is above its rising threshold, VEN(OPER), and the supply  
voltage on the IN pin is above the VIN undervoltage lockout threshold, VIN(UVLO_R). In active mode, the internal  
analog circuits are fully operational with the M0 enabled and executing firmware from ROM.  
At the onset of active mode, firmware boot code will attempt to measure the resistance on the TVSP pin and  
decode a TVSP Index value. Upon successful configuration and firmware patch load, the device is ready to  
begin operation per configuration settings stored on the external EEPROM. If the configuration and patch data  
do not load successfully due to communications error the device will continue to operate with only Port A  
enabled with standard Type-C functionality. Index value 8 is reserved for use when updating device configuration  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
and firmware patch information through the TPS25762-Q1 GUI and Port A connection. Once device boot is  
complete, device firmware will control and manage USB connections in accordance with loaded application  
configuration settings.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
10.1 Application Information  
The TPS25762-Q1 application GUI provides default settings suitable for most applications.  
The most common implementations are dual port USB PD charger and dual port USB PD with USB  
HUB. Consult the TPS2576x, TPS2577x Configuration GUI User's Guide and application GUI for additional  
configurations.  
VBAT  
PGND  
IN  
ON  
PA_CC1  
PA_CC2  
GPIO7  
OFF  
EN  
LDO5V  
GPIO8  
CSN/BUS  
CSP  
LDO3V3  
LDO1V5  
3-21V  
OUT  
AGND  
TVSP  
3V3  
FW  
Update  
LS_GD  
NTC  
IRQ  
SCL1  
SDA1  
GPIO0  
GPIO1  
10-1. Simplified Single USB PD Charger  
VBAT  
PGND  
IN  
ON  
PA_CC1  
PA_CC2  
OFF  
EN  
DP  
FAULT  
GPIO7  
GPIO8  
CSN/BUS  
CSP  
SYNC  
5V  
DM  
LDO_5V  
BUCK  
FW  
Update  
SYNC  
3V3  
TVSP  
OUT  
3V3  
3V3  
LDO  
LSGD  
NTC  
LDO_3V3  
LDO_1V5  
TMP61  
DP  
DM  
AGND  
SCL1  
SDA1  
IRQ  
MCU/HUB  
GPIO0  
GPIO1  
SCL2  
SDA2  
10-2. Simplified Single USB PD with MCU/HUB  
Typical Application describes a detailed step-by-step design procedure for a typical charger application circuit.  
10.2 Typical Application  
10-3 Shows a typical example of a 65 W output automotive USB Type-C Power Delivery port. The device is  
internally compensated and optimized for components shown in 10-1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS25762-Q1  
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
L
CBOOT1  
CBOOT2  
CSNB  
CSNB  
PGND  
PGND  
SW1  
BOOT1  
SW2  
BOOT2  
M1  
M3  
M5  
LFILT  
RCSN  
CFILT  
RCSP  
7 ~ 18V  
FB  
CSN/BUS  
IN  
M2  
M4  
CFILT1  
CFILT2  
CFILT3  
CFILT4  
CIN_BULK  
CIN  
CIN_HF  
TVS  
FB  
CSP  
OUT  
PGND  
PGND  
PGND  
0.1 µF  
LM74700  
RSNS = 10 m  
COUT  
EN/UVLO  
PGND  
COUT_HF  
CBUS  
PGND  
Input Overvoltage Protection, Reverse Polarity Protection and EMI Filter  
PGND  
AGND  
AGND  
PGND  
5V  
LDO_5V  
330 pF  
C5V  
C5V_HF  
AGND  
AGND  
330 pF  
PA_CC1  
PA_CC2  
PA_DP  
ESD  
ESD  
PGND  
AGND  
AGND  
AGND  
TVSP  
PA_DM  
CTVPS_REG  
PA_LSGD  
CTVPS_DAMP  
ESD  
ESD  
FW  
3V3  
UPDATE  
AGND  
AGND  
3V3  
LDO_3V3  
C3V3  
C3V3_HF  
PGND  
AGND  
I2C_SCL1  
I2C_SDA1  
IRQ  
CBYP  
EEPROM  
NTC  
1V5  
LDO_1V5  
AGND  
GPIO0  
GPIO1  
C1V5  
C1V5_HF  
AGND  
I2C_SCL2  
I2C_SDA2  
AGND  
10-3. TPS25762-Q1 Application Schematic  
10-1. Recommended Inductors, Input and Output Capacitance  
fSW  
300  
400  
400  
450  
CIN + CHF  
L
MIN of COUT + CBUS  
COUT + CHF  
CBUS  
22 µF + 2 × 0.1 µF  
22 µF + 2 ×0.1 µF  
22 µF + 2 × 0.1 µF  
22 µF + 2 × 0.1 µF  
4.7 µH  
4.7 µH  
3.3 µH  
3.3 µH  
160 µF  
30 µF + 2 × 0.1 µF  
30 µF + 2 × 0.1 µF  
30 µF + 2 × 0.1 µF  
30 µF + 2 × 0.1 µF  
130 µF + 2 × 0.1 µF  
90 µF + 2 × 0.1 µF  
110 µF + 2 × 0.1 µF  
110 µF + 2 × 0.1 µF  
120 µF  
140 µF  
140 µF  
50 V rated capacitors recommended.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
HF_CAP  
HF_CAP  
1
2
3
4
5
6
7
25  
24  
23  
22  
21  
20  
19  
8
18  
HF_CAP  
HF_CAP  
Inductor  
10-4. Input and Output CHF Capacitor Placement  
To ensure adequate decoupling of VIN and VOUT and robust device operation, use two 0.1 μF, CHF capacitors  
per node, placed on opposite sides of the IC package, as close to the pins as possible. Typically, the inductor is  
placed on the same PCB layer (top or bottom) as the IC package. The CHF capacitors on the inductor end of the  
IC package may be placed on the opposite side of the PCB (bottom or top) using vias to minimize trace length  
from the inductor side IN and OUT pins to the physical location of these capacitors.  
10-2. Recommended SWx Snubber and Current Sense Filter Components  
SW1 (1)  
RSNB (0.25 W)  
2.2 Ω || 2.2 Ω  
SW2 (2)  
CSP & CSN Filter (3)  
RCSN (0.1 W)  
0 Ω  
CSNB (50 V)  
RSNB (0.25 W)  
2.2 Ω || 2.2 Ω  
CSNB (50 V)  
RCSP (0.1 W)  
CFLT (50 V)  
1 nf  
3.3 nF  
10 Ω  
0.22 μF  
1. As needed for EMI mitigation - user optional. (Use of this snubber can also aid in supporting devices with  
high initial inrush load current that exceeds the power delivery specification.)  
2. Required for robust device operation.  
3. Required to meet USB-IF current regulation requirements.  
10.2.1 Design Requirements  
For this example, 10-3 are used as the target parameters.  
10-3. Design Inputs  
DESIGN PARAMETER  
Input Voltage Range  
UVLO Turn on Voltage  
USB PD Power  
EXAMPLE VALUE  
6.8 V to 18 V (transients to 36 V)  
6.5 V  
65 W  
USB PD VBUS Voltages  
Output  
5 V, 9 V, 15 V, 20 V and 3.3 to 21 V (PPS)  
3.3 - 21 V  
PDO: 5 V, 3 A; 9 V, 3 A; 15 V, 3 A, 20 V, 3.25 A  
APDO: 3.3 - 21 V, 3 A  
Load Current  
Switching Frequency  
VCONN  
400 kHz  
0.1 W  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
10-3. Design Inputs (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
Automotive Module Maximum Current  
15 A  
10.2.2 Detailed Design Procedure  
10.2.2.1 Application GUI Selections  
Use the application GUI to select the desired operating conditions. Once complete, save the settings to the  
programming PC, flash the firmware to EEPROM, and power cycle device. Once complete the TPS25762-Q1  
will be ready for operation.  
10-4. Application GUI Selections  
PARAMETER  
GUI SELECTION  
BUCK-BOOST AND USB INPUTS  
Port A VBUS Power  
65 W  
PDO: 5 V, 3 A; 9 V, 3 A; 15 V, 3 A; 20 V, 3.25 A  
APDO: 3.3 - 21 V, 3A  
Port A PDOs and APDOs  
Port A VCONN Power  
0.1 W  
400 kHz  
4.7 µH  
15 A  
fSW Switching Frequency  
L Inductor  
Automotive Module Maximum Current  
LOW BATTERY INPUTS  
Engine ON voltage  
12.5 V  
Engine OFF voltage  
11 V  
Run timer after engine off  
THERMAL MANAGEMENT INPUTS  
VNTC_PHASE1  
600 seconds  
1.65 V  
NTC_PHASE1 Power as Percentage of MAX  
VNTC_PHASE2  
50 %  
2.1 V  
NTC_PHASE2 Power as Percentage of MAX  
VNTC_PHASE3  
30 %  
2.4 V  
NTC_PHASE3 Power as Percentage of MAX  
0 % (disable PA_VBUS)  
10.2.2.2 EEPROM Selection  
An EEPROM is required to store user application configuration data as any firmware patch updates released by  
Texas Instruments during the life of the product.  
Basic requirements:  
32kB (256kb)  
7 Bit I2C address (0x50)  
Organization: 32kb x 8 (totals 256kb)  
Active firmware image is stored in one 16kb x 8 partition. The previous firmware image is retained in the other  
16kb x 8 partition for reliability.  
Page size/buffer should be 64b  
10-5. Suggested EEPROMs  
Manufacturer  
Part Number  
On Semi  
Microchip  
ST Micro  
Rohm  
CAV24C256  
24LC256  
M24256  
BRA24T512=3AM  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
10.2.2.3 EN/UVLO  
The TPS25762-Q1 has a fixed VIN(UVLO) with rising and falling thresholds between 5 and 5.5 V, refer to 7.6  
for exact values. The falling threshold, VIN(UVLO_F), disables the device when the battery voltage is too low for  
continued operation. To establish a turn on voltage higher than VIN(UVLO_R), connect a resistor divider from the IN  
supply voltage to the EN/UVLO pin. When VEN/UVLO > VEN(OPER), nominally 1.25 V, the device exits low power  
shutdown and begins to startup.  
In this example a VIN turn on voltage of approximately 6.5 V is required. Use the equations and examples below  
to determine the required resistor values.  
Choose standard value RENB = 22 kΩ.  
Calculate RENT  
V
ON  
R
=
1 × R  
ENB  
(3)  
(4)  
ENT  
ENT  
V
EN OPER  
6.5 V  
1.25 V  
R
=
1 × 22 kΩ = 92.4 kΩ  
Select a standard value of 91 kΩ.  
Using 22 kΩ and 91 kΩ. Rearranging 方程式 3 results in  
R
ENT  
V
V
=
=
+ 1 × V  
EN OPER  
(5)  
(6)  
ON  
R
ENB  
91 kΩ  
22 kΩ  
+ 1 × 1.25 V = 6.42 V  
ON  
Calculate VOFF  
V
EN HYS  
V
V
= 1 −  
= 1 −  
× V  
ON  
(7)  
(8)  
OFF  
V
EN OPER  
0.1 V  
1.25 V  
× 6.42 V = 5.91 V  
OFF  
Lastly, confirm the selected resistors do not trigger the EN/UVLO pin MAX clamp voltage. Assuming 36 V as  
a maximum VIN transient.  
V
× R  
ENB  
IN MAX  
+ R  
V
V
=
=
(9)  
EN/UVLO MAX  
EN/UVLO MAX  
R
ENT  
ENB  
36 V × 22 kΩ  
22 kΩ + 91 kΩ  
= 7 V  
(10)  
The result, 7 V, is less than the EN/UVLO pin maximum clamp voltage.  
10.2.2.4 Sense Resistor, RSNS, RCSP, RCSN and CFILT  
The TPS25762-Q1 requires a 10-mΩ resistance between the CSP and CSN/BUS pins. For accurate current limit  
regulation, ±1% precision or better is required. For a DC output current of 3.25 A, the power dissipation in the  
resistor is  
I2R, or (3.25 A)² × 0.01 Ω = 0.106 W.  
A power resistor with 0.33-W rating, ± 1% tolerance and 2010 case is chosen. Check the manufacturers power  
derating curves when selecting the component. Most derate maximum power above 70°C.  
An RC filter network is required on the CSP and CSN/BUS pins for proper USB PD PPS current limit accuracy.  
A filter network with RCSP = 10 Ω, RCSN = 0 Ω, and filter capacitor, CFILT = 0.22 μF is recommended. Suggested  
RC filter component ratings are shown in 10-2. RCSN must be zero ohm to avoid interfering with the VBUS  
discharge functionality.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
RCSN  
CFILT  
RCSP  
CSN/BUS  
CSP  
OUT  
RSNS = 10 m  
COUT  
COUT_HF  
CBUS  
To Type-C  
Connetor  
PGND  
AGND  
PGND  
AGND  
10-5. Current Sense Amplifier: RC Filter Components  
10.2.2.5 Inductor Currents  
10-1 lists recommended inductor values based on desired switching frequency, fSW. The following equations  
were used to derive the values in the Buck Calculation and Boost Calculation results tables below.  
VOUT  
DBUCK  
=
VIN(MAX) ×  
(11)  
(12)  
VIN(MIN) ×  
DBOOST = 1 -  
VOUT  
where  
VIN(MAX) = maximum input voltage  
VIN(MIN) = minimum input voltage  
VOUT = output voltage  
DBUCK = minimum duty cycle for buck mode  
DBOOST = maximum duty cycle for boost mode  
η = estimated efficiency calculated at VIN, VOUT, and IOUT  
Buck Mode  
DIL_BUCK(MAX)  
I
+
OUT  
ISW_BUCK(MAX)  
=
2
(13)  
(14)  
(VIN(MAX) - VOUT(MIN)) × DBUCK  
DIL_BUCK(MAX)  
=
fSW × L  
where  
VIN(MAX) = maximum input voltage  
VOUT(MIN) = minimum output voltage  
IOUT = maximum DC output current  
ΔIL-BUCK(MAX) = maximum ripple current through the inductor when in buck operation  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
ISW_BUCK(MAX) = maximum switch current when in buck operation  
DBUCK = minimum duty cycle for buck operation  
fSW = switching frequency of the converter  
L = selected inductor value  
DIL_BUCK(MAX)  
IMAXOUT(BUCK) = IPEAK(BUCK)  
œ
2
(15)  
where  
IMAXOUT(BUCK) = maximum deliverable current through inductor by the converter  
IPEAK(BUCK) = buck switch peak current limit from Electrical Characteristics table  
ΔIL_BUCK(MAX) = Ripple current through the inductor calculated in 方程式 14.  
Boost Mode  
DIL_BOOST(MAX)  
IOUT  
ISW_BOOST(MAX)  
=
+
2
1 œ DBOOST  
(16)  
(17)  
VIN(MIN) × DBOOST  
fSW × L  
DIL_BOOST(MAX)  
=
where  
VIN(MIN) = minimum input voltage  
VOUT(MAX) = desired output voltage  
IOUT = desired output current  
ΔIL_BOOST(MAX) = maximum ripple current through the inductor in boost operation  
ISW_BOOST(MAX) = maximum switch current in boost operation  
DBOOST = maximum duty cycle for boost operation  
fSW= switching frequency of the converter  
L = selected inductor value  
DIL_BOOST(MAX)  
IMAXOUT(BOOST) = IPEAK(BOOST)  
(
œ
× (1 œ DBOOST)  
)
2
(18)  
where  
IMAXOUT(BOOST) = maximum deliverable current through inductor by the converter  
DBOOST = maximum duty cycle for boost mode  
IPEAK(BOOST) = boost switch peak current limit from from Electrical Characteristics table  
ΔIL_MAX(BOOST) = Ripple current through the inductor calculated in 方程式 17.  
Buck Operation  
10-6 provides the tabulated ΔIL_BUCK(MAX) and ISW_BUCK(MAX) for the conditions below.  
η = 0.95  
VIN(MAX) = 18 V  
VOUT(MIN) = 3.3 V  
DBUCK(MIN) = 0.193  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
10-6. Buck Calculation Results (L = 4.7 µH), IBUS = 3 A  
fSW  
(kHz)  
IOUT  
(A)  
ΔIL_BUCK(MAX)  
(A)  
ISW_BUCK(MAX)  
(A)  
300  
400  
450  
300  
400  
450  
3.00  
3.00  
3.00  
3.00  
3.00  
3.00  
2.87  
2.15  
1.91  
2.01  
1.51  
1.34  
4.44  
4.08  
3.96  
4.01  
3.76  
3.67  
Boost Operation  
10-7 provides the tabulated ΔIL_BOOST(MAX), ISW_BOOST(MAX), suggested GUI IPEAK(BOOST) (MIN) settings for  
the maximum output power conditions shown below.  
If ISW_BOOST(MAX) > IPEAK(BOOST) (MIN) → VBUS dropout likely.  
If ISW_BOOST(MAX) < IPEAK(BOOST) (MIN) → VBUS regulates normally.  
η = 0.95  
VIN(MIN) = 5.5 V to 9 V  
VOUT(MAX) = 21 V  
IOUT = 3 A  
To be noted, the calculation here uses 21V 3 A instead of 20 V 3.25A because 21 V 3A has bigger inductor peak  
current.  
10-7. Boost Calculation Results (L = 4.7 µH), IBUS = 3 A  
GUI (1)  
IPEAK(BOOST)  
(A)  
fSW  
(kHz)  
VIN(MIN)  
(V)  
ΔIL_BOOST(MAX)  
(A)  
ISW_BOOST(MAX)  
(A)  
DBOOST(MAX)  
5.5  
6
0.751  
0.729  
0.706  
0.683  
0.661  
0.638  
0.615  
0.593  
0.751  
0.729  
0.706  
0.683  
0.661  
0.638  
0.615  
0.593  
2.93  
3.10  
3.25  
3.39  
3.52  
3.62  
3.71  
3.79  
2.20  
2.33  
2.44  
2.54  
2.64  
2.71  
2.78  
2.84  
13.51  
12.62  
11.83  
11.16  
10.61  
10.10  
9.65  
12.3  
12.3  
12.3  
12.3  
10.8  
10.8  
10.8  
9.3  
6.5  
7
300  
7.5  
8
8.5  
9
9.27  
5.5  
6
13.15  
12.24  
11.42  
10.73  
10.17  
9.64  
12.3  
12.3  
12.3  
10.8  
10.8  
10.8  
9.3  
6.5  
7
400  
7.5  
8
8.5  
9
9.18  
8.79  
9.3  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
10-7. Boost Calculation Results (L = 4.7 µH), IBUS = 3 A (continued)  
GUI (1)  
IPEAK(BOOST)  
(A)  
fSW  
(kHz)  
VIN(MIN)  
(V)  
ΔIL_BOOST(MAX)  
(A)  
ISW_BOOST(MAX)  
(A)  
DBOOST(MAX)  
5.5  
6
0.751  
0.729  
0.706  
0.683  
0.661  
0.638  
0.615  
0.593  
1.95  
2.07  
2.17  
2.26  
2.34  
2.41  
2.47  
2.51  
13.02  
12.11  
11.29  
10.59  
10.02  
9.49  
12.3  
12.3  
12.3  
10.8  
10.8  
9.3  
6.5  
7
450  
7.5  
8
8.5  
9
9.03  
9.3  
8.63  
9.3  
(1) MIN value of boost peak ILIM shown. See electrical characteristics table for MIN, TYP, MAX values.  
10.2.2.6 Output Capacitor  
In the boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is  
given by 方程式 19 where the minimum VIN corresponds to the maximum capacitor current.  
VOUT  
ICOUT(RMS) = IOUT  
ì
-1  
V
IN  
(19)  
In this example the maximum output ripple RMS current is ICOUT(RMS) = 3.18 A. A 5-mΩ output capacitor ESR  
causes an output ripple voltage of 34 mV as given by:  
IOUT ì VOUT  
DVRIPPLE(ESR)  
=
ìESR  
V
IN(MIN)  
(20)  
(21)  
A 140 µF output capacitor (COUT + CBUS) causes a capacitive ripple voltage of 26 mV as given by:  
V
÷
IN(MIN)  
IOUT ì 1-  
VOUT  
«
DVRIPPLE(COUT)  
=
COUT ìF  
sw  
Typically a combination of ceramic and bulk capacitors is needed to provide low ESR and high ripple current  
capacity. The complete schematic in Typical Application section provides COUT and CBUS recommendations  
suitable for most applications.  
10.2.2.7 Input Capacitor  
In the buck mode, the input capacitor supplies high ripple current. The RMS current in the input capacitor is  
given by:  
ICIN(RMS) = IOUT Dì(1-D)  
(22)  
The maximum RMS current occurs at D = 0.5, which gives ICIN(RMS) = IOUT/2 = 1.5 A. A combination of ceramic  
and bulk capacitors should be used to provide short path for high di/dt current and to reduce the output voltage  
ripple. 10-1 in the Typical Application section is a good starting point for CIN selection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
10.2.3 Application Curves  
VOUT = 5 V  
100  
80  
60  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 18 V  
40  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
IBUS (A)  
L = 4.7 μH  
L = 4.7 μH  
10-6. Efficiency vs Output Current (IOUT), VOUT  
=
10-7. Efficiency vs Output Current (IOUT), VOUT =  
5 V  
9 V  
VOUT = 15 V  
100  
80  
60  
VIN = 7 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 18 V  
40  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
IBUS (A)  
3
L = 4.7 μH  
L = 4.7 μH  
10-8. Efficiency vs Output Current (IOUT), VOUT  
=
10-9. Efficiency vs Output Current (IOUT), VOUT =  
12 V  
15 V  
IBUS = 3 A  
L = 4.7 μH  
L = 4.7 μH  
10-11. Efficiency vs Input Voltage  
10-10. Efficiency vs Output Current (IOUT), VOUT  
= 20 V  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VIN = 13.5 V  
VBUS = 0 V to 5 V  
IBUS = 0 A  
VIN = 13.5 V  
VBUS = 5 V to 0 V  
IBUS = 0 A  
10-12. Type-C Attach  
10-13. Type-C Detach  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VIN = 7 V  
VBUS = 20 V  
IBUS = 0 A  
VIN = 18 V  
VBUS = 5 V  
IBUS = 0 A  
10-14. Boost Mode: Low VIN, No Load  
10-15. Buck Mode: High VIN, No Load  
VIN = 7 V  
VBUS = 20 V  
IBUS = 3 A  
VIN = 18 V  
VBUS = 5 V  
IBUS = 3 A  
10-16. Boost Mode: Low VIN, 3 A Load  
10-17. Buck Mode: High VIN, 3 A load  
VIN = 12 V  
VBUS = 5 V  
IBUS = 0 A  
VIN = 12 V  
VBUS = 20 V  
IBUS = 0 A  
10-19. Buck Mode: Nominal VIN, No Load  
10-18. Boost Mode: Nominal VIN, No Load  
VIN = 12 V  
VBUS = 5 V  
IBUS = 3 A  
VIN = 12 V  
VBUS = 13 V  
IBUS = 0 A  
10-20. Buck Mode: nominal VIN, 3 A Load  
10-21. Buck-Boost Mode: VIN VBUS, No Load  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VIN = 12 V  
VBUS = 12 V  
IBUS = 0 A  
VIN = 12 V  
VBUS = 11 V  
IBUS = 0 A  
10-22. Buck-Boost Mode: VIN = VBUS, No Load  
10-23. Buck-Boost Mode: VIN VBUS, No Load  
VIN = 12 V  
VBUS = 12 V  
IBUS = 3 A  
VIN = 12 V  
VBUS = 15 V  
IBUS = 0 A  
10-24. Buck-Boost Mode: VIN = VBUS, 3 A Load  
10-25. Buck-Boost Mode: Nominal VIN, No Load  
VIN = 12 V  
VBUS = 15 V  
IBUS = 3 A  
VIN 12 V 20 V  
10-26. Buck-Boost Mode: Nominal VIN, 3 A Load  
10-27. VIN(OVP) Entry  
VIN 20 V 12 V  
VIN 12 V 20 V  
VBUS = 0 V  
IBUS = 0 A  
10-28. VIN(OVP) Recovery  
10-29. VIN(OVP) Showing VBUS Discharge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VIN = 13.5V  
VBUS = 9 V  
IBUS 0 A 3 A  
VIN = 13.5V  
VBUS = 5 V  
IBUS 0 A 3 A  
10-31. Load Transient (Buck): VBUS = 9 V  
10-30. Load Transient (Buck): VBUS = 5 V  
VIN  
650 mV/div  
VIN  
650 mV/div  
VBUS  
650 mV/div  
VBUS  
650 mV/div  
I_IN  
1.1 A/div  
I_IN  
1.48 A/div  
IBUS  
558 mA/div  
IBUS  
577 mA/div  
SW1  
1.77 V/div  
SW1  
650 mV/div  
SW2  
1.93 V/div  
SW2  
2.45 V/div  
VIN = 13.5V  
VBUS = 15 V  
IBUS 0 A 3 A  
VIN = 13.5V  
VBUS = 20 V  
IBUS 0 A 3 A  
10-32. Load Transient (Buck-Boost): VBUS = 15 V  
10-33. Load Transient (Boost): VBUS = 20 V  
VIN  
1.62 V/div  
VBUS  
650 mV/div  
IBUS  
98.3 mA/div  
7
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6  
SW1  
2.72 V/div  
VIN 12 V  
VBUS = 20 V  
ILIMIT = 3.1 A  
10-34. Current Limit: Stepped Resistive Load  
SW2  
3.01 V/div  
VIN 7 V 18 V  
VBUS = 20 V  
IBUS = 3 A  
10-35. Line Transient: VBUS = 20 V  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
VIN  
1.59 V/div  
VIN  
1.61 V/div  
VBUS  
317 mV/div  
VBUS  
650 mV/div  
IBUS  
79.6 mA/div  
IBUS  
86.1 mA/div  
SW1  
2.69 V/div  
SW1  
2.63 V/div  
SW2  
1.56 V/div  
SW2  
2.32 V/div  
VIN 7 V 18 V  
VBUS = 9 V  
IBUS = 3 A  
VIN 7 V 18 V  
VBUS = 15 V  
IBUS = 3 A  
10-37. Line Transient: VBUS = 9 V  
10-36. Line Transient: VBUS = 15 V  
VIN  
1.6 V/div  
VBUS  
330 mV/div  
IBUS  
99.6 mA/div  
SW1  
2.68 V/div  
SW2  
433 mV/div  
VIN 7 V 18 V  
VBUS = 5 V  
IBUS = 3 A  
10-38. Line Transient: VBUS = 5 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS25762-Q1  
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS25762-Q1 is a power management device typically operated from an automotive battery, though the  
power supply for the device can be any dc voltage source within the specified VIN input range. The supply should  
be capable of supplying sufficient current based on the maximum inductor current in boost mode operation. The  
input supply should be bypassed with bulk capacitors at the input of the application board to avoid ringing due to  
parasitic impedance of the connecting cables. A typical choice is an aluminum electrolytic capacitor of 47 to 100  
μF.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The basic PCB board layout requires separation of sensitive signal and power paths. This checklist must be  
followed to get good performance for a well designed board.  
Use a combination of bulk capacitors and smaller ceramic capacitors with low series impedance for the IN,  
OUT, and VBUS capacitors. Place the smaller capacitors closer to the IC to provide a low impedance path for  
high di/dt switching currents.  
Refer to 10-1 for suggested CIN values. Place the input bypass capacitors, CIN and CIN_HF, as close to  
the IN and PGND pins as possible to minimize the loop area for input switching current in buck operation.  
The CIN_HF capacitors should be as close as possible - see 10-4. The IN and PGND pins transverse the  
package and it is highly recommended to split CIN and CIN_HF such that capacitors can be placed on either  
side.  
Place the output filter capacitors, COUT and COUT_HF, as close to the OUT and PGND pins as possible to  
minimize the loop area for output switching current in boost operation. Refer to 10-1 for suggested COUT  
and COUT_HF values.  
Place the current sense resistor and filter components. RSNS, RCSP, RCSN, and CFLT. Place the filter capacitor  
for the current sense signal as close to the IC CSP and CSN/BUS as possible. Use Kelvin connections  
between RSNS through the CSP and CSN resistors and to the CSP and CSN/BUS pins to avoid creating  
offsets in the current sense amplifier. Avoid crossing noisy areas such as SW1 and SW2 nodes. The  
recommended values in 10-2 provide a good starting point but may require some fine adjustment to  
meet PPS current limit accuracy requirements. When deviating from recommended values, RCSP must not be  
larger than 10 ohms. RCSN must be 0 ohms. CFLT should not be larger than 0.33 μF.  
Place CBUS between the RSNS and the USB Type-C connector. See 10-1 for suggested CBUS values. .  
Place the CIN, COUT, and CBUS ground connections as close as possible to the IC with thick ground trace  
and/or planes on multiple layers.  
Minimize the SW1 and SW2 loop areas as these are high dv/dt nodes.  
Place the LDO_5V bypass capacitors, C5V and C5V_HF close to the IC pin, between the LDO_5V and PGND  
pins. A 4.7 µF and 0.1 µF ceramic capacitors are typically used. LDO_5V supplies LDO_3V3 and LDO_1V5  
as well as the low side buck and boost MOSFETs.  
Place the LDO_3V3 bypass capacitors, C3V3 and C3V3_HF close to the IC pin, between the LDO_3V3 and  
AGND pins. A 4.7 µF and 0.1 µF ceramic capacitors are typically used. LDO_3V3 supplies the analog IO  
circuits.  
Place the LDO_1V5 bypass capacitors, C1V5 and C1V5_HF close to the IC pin, between the LDO_1V5 and  
AGND pins. A 4.7 µF and 0.1 µF ceramic capacitors are typically used. LDO_3V3 supplies the Cortex M0  
and digital circuits.  
Place the BOOT1 bootstrap capacitor close to the IC and connect directly to the BOOT1 to SW1 pins. For  
EMI mittigation, a series resistor RBOOT1 may be added.  
Place the BOOT2 bootstrap capacitor close to the IC and connect directly to the BOOT2 to SW2 pins. For  
EMI mittigation, a series resistor RBOOT2 may be added.  
Bypass the TVSP pin to PGND with a low ESR ceramic capacitor, CTVSP located close to the IC. A 0.1 µF  
ceramic capacitor is typically used. RTVSP_DAMP and CTVSP_DAMP should be added in parallel close to CTVSP  
10 Ω and 0.47 μF are recommended values.  
.
Use care to separate the power and signal paths so that no power or switching current flows through the  
AGND connections which can either corrupt the USB PD modem or GPIO signals. The PGND and AGND  
traces can be connected near the AGND pin.  
USB data lines, DP and DM should be differentially routed between the IC pins and USB connector.  
Impedance control is based on the PCB stack-up. 90 Ω differential is recommended. Route the DP and  
DM USB signals using a minimum of vias and corners which will reduce signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance.  
Each via introduces discontinuities in the signal’s transmission line and increases the chance of picking up  
interference from the other layers of the board. Be careful when designing test points on twisted pair lines;  
through-hole pins are not recommended. When it becomes necessary to turn 90°, use two 45° turns or an arc  
instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS25762-Q1  
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
discontinuities. Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is  
unavoidable, then the stub should be less than 200 mm.  
CC lines should be routed with a 10-mil trace to ensure the needed current for supporting powered Type-C  
cables through VCONN. For more information on VCONN refer to the Type-C specifications. For the 330 pF  
CC capacitor GND pins use a 16-mil trace if possible.  
GPIO signals can be fanned out on the top or bottom layer using either a 8-mil or 10-mil trace.  
12.2 Layout Example  
12-1. TPS25762-Q1 Power Stage Layout  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
Please visit TI homepage for latest technical document including application notes, user guides, and reference  
designs.  
IC Package Thermal Metrics application report, Semiconductor and IC Package Thermal Metrics.  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
USB Type-C® is a registered trademark of USB Implementers Forum.  
ARM® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS25762-Q1  
 
 
 
 
 
 
 
TPS25762-Q1  
ZHCSP88 – DECEMBER 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPS25762-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25762CQRQLRQ1  
ACTIVE  
VQFN-HR  
RQL  
29  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
TPS25762  
C
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RQL 29  
5 x 6, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
VERY THIN QUAD FLATPACK-HotRod  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225475/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
RQL0029A  
PLASTIC QUAD FLATPACK-NO LEAD  
A
6.1  
5.9  
B
0.100  
MIN  
PIN 1 INDEX AREA  
5.1  
4.9  
(0.13)  
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
5
30X 0.5  
PKG  
1.75  
1.55  
12X  
(0.2)  
4X (0.375) TYP  
4X (0.625) TYP  
17  
9
8
18  
(0.16)  
0.3  
33X  
0.2  
3.5 PKG  
0.1  
C A B  
0.05  
C
0.975  
0.775  
4X  
C0.15  
25  
1
29  
26  
0.6  
4X  
0.725  
0.525  
4X  
0.4  
0.65  
4X  
0.45  
4225332/A 10/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RQL0029A  
12X (1.85)  
4X (0.825)  
PKG  
4X (1.075)  
29  
26  
1
25  
4.7  
PKG  
4.65  
4.325  
18  
8
9
17  
4X (0.7)  
(R0.05) TYP  
30X (0.5)  
33X (0.25)  
4X (0.75)  
4.55  
5.575  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
0.05 MAX  
ALL AROUND  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225332/A 10/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RQL0029A  
24X (0.825)  
4X (0.825)  
PKG  
20X (1.2)  
4X (1.075)  
29  
26  
1
25  
2X  
(1.4)  
2X  
(0.7)  
4.7  
PKG  
4.65  
4.325  
METAL TYP  
18  
8
9
17  
4X (0.7)  
(R0.05) TYP  
30X (0.5)  
60X (0.25)  
4X (0.75)  
3.525  
5.575  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 2-7 & 19-24: 89%  
PADS 11-15: 88%  
SCALE: 15X  
4225332/A 10/2019  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25762CQRQLRQ1

具有集成降压/升压稳压器的汽车类 USB Type-C® PD 控制器 | RQL | 29 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25764-Q1

TPS25772-Q1 Automotive Dual USB Type-C Power Delivery Controller with Buck-Boost Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25766-Q1

TPS25772-Q1 Automotive Dual USB Type-C Power Delivery Controller with Buck-Boost Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25772-Q1

TPS25772-Q1 Automotive Dual USB Type-C Power Delivery Controller with Buck-Boost Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25772CQRQLRQ1

具有降压/升压稳压器和智能电源管理功能的汽车类双端口 USB Type-C® PD 控制器 | RQL | 29 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25772QWRQLRQ1

TPS25772-Q1 Automotive Dual USB Type-C Power Delivery Controller with Buck-Boost Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25810

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25810-Q1

具有负载检测功能的汽车类 USB Type-C™(版本 1.2)DFP 控制器和电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25810A-Q1

汽车类 USB Type-C™ DFP 控制器和电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25810ATWRVCRQ1

汽车类 USB Type-C™ DFP 控制器和电源开关 | RVC | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25810RVCR

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关 | RVC | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25810RVCT

具有 VCONN 的 USB Type-C™ 电源控制器和 3A 电源开关 | RVC | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI