TPS25961DRVR [TI]

具有过压、过流和短路保护功能的 2.7V 至 19V、100mΩ 电子保险丝 | DRV | 6 | -40 to 125;
TPS25961DRVR
型号: TPS25961DRVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有过压、过流和短路保护功能的 2.7V 至 19V、100mΩ 电子保险丝 | DRV | 6 | -40 to 125

电子
文件: 总35页 (文件大小:4339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25961  
ZHCSQ76 DECEMBER 2022  
TPS25961 具有可调节电流限值和短路保护功能2.7V 19V106mΩ 电子保  
险丝  
1 特性  
3 说明  
• 宽输入电压范围2.7V 19V  
TPS25961 电子保险丝集成式 FET 热插拔器件是  
采用小型封装且高度集成的电路保护和电源管理解决方  
案。此类器件只需很少的外部元件即可提供多种保护模  
能够非常有效地抵御过载、短路、电压浪涌和过多  
浪涌电流。输出电流限制级别可通过单个外部电阻设  
定。浪涌电流在内部使用输出转换率控制进行管理。为  
了保护输入过压情况该器件提供了一个选项可以在  
外部设置用户定义的过压截止阈值或使用固定内部阈  
值。  
– 绝对最大值21V  
• 低导通电阻Ron = 106mΩ典型值)  
• 具有可调节欠压锁(UVLO) 功能的高电平有效使  
能输入  
• 快速过压保护钳位响应时间1.3µs典型值)  
– 固定内部阈值5.98 V典型值)  
– 可使用外部电阻分压器调节阈值  
• 过流保护:  
这些器件的额定工作结温范围40°C +125°C。  
– 可调节电流限制阈值0.1A 2A  
– 电流限制准确度:  
器件信息  
器件型号(1)  
封装尺寸标称值)  
• 整个电流范围内±20%典型值)  
1.45A 电流限值下±18%最大值),TA =  
25°C  
封装  
TPS25961DRV  
SON (6)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 短路保护响应时间5μs典型值)  
• 输出压摆率控(dVdt)5.17 V/ms典型值)  
• 提供过热保(OTP)  
• 故障后自动重试  
• 低静态电流130μA典型值)  
UL2367 认证正在申请中)  
IEC 62368 CB 认证正在申请中)  
• 小尺寸2mm × 2mm SON 封装  
2 应用  
• 适配器输入保护  
能量计  
智能扬声器  
无线耳塞充电器  
机顶盒  
IP 网络摄像头  
Power  
Supply  
TPS25961  
IN  
OUT  
R1  
R2  
EN/UVLO  
CIN  
COUT  
ROUT  
OVLO  
ILIM  
GND  
R3  
RLIM  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGT8  
 
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 典型应用....................................................................20  
8.3 Application Example................................................. 23  
8.4 Power Supply Recommendations.............................25  
8.5 Layout....................................................................... 27  
9 Device and Documentation Support............................29  
9.1 Documentation Support............................................ 29  
9.2 接收文档更新通知..................................................... 29  
9.3 支持资源....................................................................29  
9.4 商标...........................................................................29  
9.5 Electrostatic Discharge Caution................................29  
9.6 术语表....................................................................... 29  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................7  
6.7 Switching Characteristics............................................7  
6.8 典型特性......................................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
OUT  
GND  
EN/UVLO  
GND  
OVLO  
ILIM  
Thermal  
Pad  
5-1. DRV Package, 6-Pin SON (Top View)  
5-1. Pin Functions  
PIN  
I/O  
Power  
DESCRIPTION  
NAME  
NO.  
OUT  
1
Power output.  
An external resistor divider from supply rail can be used to adjust the overvoltage lockout  
OVLO  
2
Analog Input threshold. Connect to GND directly to use internal fixed overvoltage lockout threshold. Do  
not leave floating.  
Analog  
Output  
An external resistor from this pin to GND sets the output current limit threshold. Leave it  
open to set the current limit threshold to minimum value.  
ILIM  
3
4
5
6
GND  
EN/UVLO  
IN  
Ground  
Analog Input  
Power  
Connect to system electrical ground.  
Active High Enable for the device. A resistor divider from supply rail can be used to adjust  
the undervoltage lockout threshold. Do not leave floating.  
Power input.  
Thermal/  
Ground  
The exposed pad is used primarily for heat dissipation and must be connected to GND plane  
on the PCB.  
GND  
PAD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
Parameter  
Pin  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
21  
UNIT  
VIN  
IN  
V
Maximum input voltage range, 40TJ 125℃  
Maximum output voltage range, 40TJ 125℃  
Maximum EN/UVLO pin voltage range  
Maximum OVLO pin voltage range  
Maximum ILIM pin voltage range  
Maximum continuous switch current  
Junction temperature  
VOUT  
VEN/UVLO  
VOV  
OUT  
VIN + 0.3  
20  
EN/UVLO  
OVLO  
V
V
6.5  
VILIM  
IMAX  
TJ  
ILIM  
Internally limited  
Internally limited  
Internally limited  
V
IN to OUT  
A
°C  
°C  
°C  
TLEAD  
Tstg  
Maximum lead temperature  
300  
150  
Storage temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Parameter  
Pin  
MIN  
MAX  
19  
UNIT  
V
VIN  
Input voltage range  
IN  
2.7  
VOUT  
VEN/UVLO  
VOV  
Output voltage range  
OUT  
VIN  
5(1)  
1.5  
V
EN/UVLO pin voltage range  
OVLO pin voltage range  
ILIM pin resistance to GND  
EN/UVLO  
OVLO  
V
0.5  
25  
V
RILIM  
IMAX  
TJ  
ILIM  
kΩ  
A
IN to OUT  
2
Continuous switch current, TJ 125℃  
Junction temperature  
125  
°C  
40  
(1) For supply voltages below 5V, it is okay to pull up the EN pin to IN directly. For supply voltages greater than 5V , it is recommended  
to use a resistor divider with minimum pull-up resistor value of 350 k.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25961  
 
 
 
 
 
 
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
TPS25961  
DRV (SON)  
6 PINS  
74.1  
THERMAL METRIC (1) (2)  
UNIT  
RθJA  
RθJCtop  
RθJCbot  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
80.4  
16.8  
39.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.9  
38.8  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Based on simulations conducted with the device mounted on a custom 4-layer PCB (2s2p)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25961  
 
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
(Test conditions unless otherwise noted) 40°C TJ 125°C, VIN = 12 V, OUT = Open, VEN/UVLO = 2 V, VOVLO = 1 V, ILIM  
= Open. All voltages referenced to GND.  
Test  
Parameter  
Description  
MIN  
TYP  
MAX  
UNITS  
INPUT SUPPLY (IN)  
IQ(ON)  
IQ(OFF)  
ISD  
IN supply quiescent current  
130  
144  
0.6  
165  
230  
1.5  
µA  
µA  
µA  
V
IN supply OFF state current (VSD(F) < VEN < VUVLO(F)  
)
IN supply shutdown current (VEN < VSD(F)  
)
VUVP(R)  
VUVP(F)  
IN supply UVP rising threshold  
2.46  
2.31  
2.54  
2.42  
2.61  
2.54  
IN supply UVP falling threshold  
V
VIN fixed overvoltage rising threshold, OVLO = GND, TJ =  
25℃  
VOVP(R)  
VOVPHys  
5.55  
85  
5.98  
111  
6.5  
V
VIN fixed overvoltage hysteresis, OVLO = GND  
135  
mV  
OVERCURRENT PROTECTION (OUT)  
Overcurrent threshold, ILIM = Open, TJ = 25℃  
0.116  
0.212  
0.516  
0.856  
1.45  
A
A
A
A
A
A
A
Overcurrent threshold, RILIM = 250 k, TJ = 25℃  
Overcurrent threshold, RILIM = 100 k, TJ = 25℃  
Overcurrent threshold, RILIM = 62.5 k, TJ = 25℃  
Overcurrent threshold, RILIM = 34.48 k, TJ = 25℃  
Overcurrent threshold, RILIM = 25 k, TJ = 25℃  
Fast-trip threshold  
ILIM  
1.189  
1.711  
2.36  
ISC  
ON RESISTANCE (IN - OUT)  
2.7 VIN < 4.5 V, IOUT = 1 A, RILIM = 34.48 kΩ  
8.25  
132  
106  
243  
195  
455  
367  
833  
702  
240  
177  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
4.5 VIN 19 V, IOUT = 1 A, RILIM = 34.48 kΩ  
2.7 VIN < 4.5 V, IOUT = 0.1 A, RILIM = 100 k, TJ = 25℃  
4.5 VIN 19 V, IOUT = 0.1 A, RILIM = 100 k, TJ = 25℃  
2.7 VIN < 4.5 V, IOUT = 0.1 A, RILIM = 250 k, TJ = 25℃  
4.5 VIN 19 V, IOUT = 0.1 A, RILIM = 250 k, TJ = 25℃  
2.7 VIN < 4.5 V, IOUT = 0.05 A, ILIM = Open, TJ = 25℃  
4.5 VIN 19 V, IOUT = 0.05 A, ILIM = Open, TJ = 25℃  
RON  
ENABLE/UNDERVOLTAGE LOCKOUT (EN/UVLO)  
VUVLO(R)  
VUVLO(F)  
VSD(F)  
EN/UVLO rising threshold  
1.2  
1.1  
1.24  
1.27  
1.16  
V
V
EN/UVLO falling threshold  
1.132  
EN/UVLO falling threshold for lowest shutdown current  
EN/UVLO pin leakage current  
0.6  
V
IENLKG  
-0.1  
0.1  
µA  
OVERVOLTAGE LOCKOUT (OVLO)  
VOVLO(R)  
VOVLO(F)  
IOVLKG  
OVLO rising threshold  
OVLO falling threshold  
OVLO pin leakage current  
1.2  
1.1  
1.24  
1.13  
1.27  
1.161  
0.1  
V
V
-0.1  
µA  
OVERTEMPERATURE PROTECTION (OTP)  
TSD  
170  
30  
°C  
°C  
Thermal Shutdown rising threshold, TJ↑  
Thermal Shutdown hysteresis, TJ↓  
TSDHYS  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
µs  
tOVLO  
tLIM  
Overvoltage lock-out response time  
1.3  
30  
5
VOVLO > VOV(R) to VOUT  
Current limit response time  
IOUT > 1.5 × ILIM to IOUT within 5% of ILIM  
IOUT > ISC to output current cut off  
Device enabled and TJ < TSD TSDHYS  
µs  
tSC  
Short-circuit response time  
µs  
tTSD,RST  
Thermal Shutdown auto-retry Interval  
110  
ms  
6.7 Switching Characteristics  
The output rising slew rate is internally controlled and constant across the entire operating voltage range to ensure the turn  
on timing is not affected by the load conditions. The rising slew rate can be adjusted by adding capacitance from the dVdt pin  
to ground. As CdVdt is increased it will slow the rising slew rate (SR). See Slew Rate and Inrush Current Control (dVdt)  
section for more details. The Turn-Off Delay and Fall Time, however, are dependent on the RC time constant of the load  
capacitance (COUT) and Load Resistance (RL). The Switching Characteristics are only valid for the power-up  
sequence where the supply is available in steady state condition and the load voltage is completely discharged before the  
device is enabled. Typical values are taken at TJ = 25°C unless specifically noted otherwise. RL = 100 , COUT = 1 µF.  
PARAMETER  
VIN  
Typ  
UNITS  
3.3 V  
12 V  
18 V  
3.3 V  
12 V  
18 V  
3.3 V  
12 V  
18 V  
3.3 V  
12 V  
18 V  
3.3 V  
12 V  
18 V  
4.43  
5.17  
5.19  
2.14  
2.37  
2.50  
0.58  
1.83  
2.67  
2.71  
4.2  
SRON  
tD,ON  
tR  
Output rising slew rate  
V/ms  
Turn on delay  
Rise time  
ms  
ms  
ms  
µs  
tON  
Turn on time  
Turn off delay  
5.17  
15.00  
14.22  
12.44  
tD,OFF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25961  
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.8 典型特性  
COUT = 22μFROUT = 6ΩIN 热插拔12V  
VIN = 12VCOUT = 22μFEN 引脚0V 升压1.5V  
6-1. 输入热插拔响应  
6-2. 通过使能引脚上电  
COUT = 22μFEN 引脚保持高电平VIN 上升12V  
6-3. 通过输入电源上电  
OVLO 阈值使用VIN GND 的电阻梯设置16VCOUT  
470μFROUT = 12ΩVIN 10V 增加17V  
=
6-4. 过压锁定响- 可调节阈值  
OVLO 引脚短接GNDCOUT = 470μFROUT = 3.3ΩVIN  
2.7V 增加7.5V  
VIN = 12VRILIM = 25kΩ负载电流逐渐上升2.5A 以上  
6-6. 电流限制后跟热关断  
6-5. 过压锁定响- 内部固定阈值  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.8 典型特(continued)  
VIN = 12VCOUT = 6400μFROUT = 开路RILIM = 开路,  
EN 引脚从低电平切换至高电平  
VIN = 12VCOUT = 2200μFROUT = 开路RILIM = 25kΩ,  
EN 引脚从低电平切换至高电平  
6-7. 使用低电流限制设置为大电容器充电  
6-8. 使用高电流限制设置为大电容器充- 断续模式  
VIN = 12VRILM = 25kΩOUT 引脚短接GND  
6-9. 导通时输出短路  
VIN = 12VRILM = 25kΩOUT 引脚短接GND  
6-10. 导通时短路放大图)  
190  
VIN (V)  
180  
2.7  
12  
19  
170  
160  
150  
140  
130  
120  
110  
100  
90  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
EN/UVLO 引脚电> VUVLO(R)  
6-12. 稳态静态电流与温度间的关系  
VIN = 12VRILM = 25kΩEN 引脚从低电平切换到高电平,  
OUT 引脚短接GND  
6-11. 上电至短路  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.8 典型特(continued)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
VIN (V)  
2.7  
12  
19  
VIN (V)  
2.7  
12  
19  
-0.1  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
EN/UVLO 引脚电< VSD(F)  
VSD(F) < EN/UVLO 引脚电< VUVLO(F)  
6-14. 关断状态电流与温度间的关系  
6-13. 关断电流与温度间的关系  
2.58  
2.56  
2.54  
2.52  
2.5  
1.26  
1.24  
1.22  
1.2  
Rising  
Falling  
Rising  
Falling  
2.48  
2.46  
2.44  
2.42  
2.4  
1.18  
1.16  
1.14  
1.12  
2.38  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
6-15. IN 电源欠压阈值与温度间的关系  
6-16. FET /关控制EN/UVLO 引脚阈值与温度间的关系  
0.96  
0.94  
0.92  
0.9  
1.26  
Rising  
Falling  
1.24  
1.22  
1.2  
Rising  
Falling  
0.88  
0.86  
0.84  
0.82  
0.8  
1.18  
1.16  
1.14  
1.12  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
6-17. 最低关断电流EN/UVLO 引脚阈值与温度间的关系  
6-18. OVLO 引脚阈值与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.8 典型特(continued)  
6.02  
6
2.5  
2.25  
2
Rising  
Falling  
5.98  
5.96  
5.94  
5.92  
5.9  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
5.88  
5.86  
5.84  
5.82  
0
50000  
100000  
150000  
200000  
250000  
-40  
-20  
0
20  
40  
TA (C)  
60  
80  
100 120 140  
RILIM ()  
适用ILIM > 0.2A请参阅此部分了解更多注意事项。  
6-20. 电流限制阈值ILIM 电阻器间的关系  
6-19. 内部固定过压阈值与温度间的关系  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
219  
218  
217  
216  
215  
214  
213  
212  
211  
210  
209  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
ILIM 引脚开路  
6-21. 电流限制阈值与温度间的关系  
RILIM = 250kΩ  
6-22. 电流限制阈值与温度间的关系  
545  
540  
535  
530  
525  
520  
515  
510  
505  
910  
900  
890  
880  
870  
860  
850  
840  
830  
820  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
RILIM = 100kΩ  
6-23. 电流限制阈值与温度间的关系  
RILIM = 62.5kΩ  
6-24. 电流限制阈值与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.8 典型特(continued)  
1580  
1560  
1540  
1520  
1500  
1480  
1460  
1440  
1420  
1400  
1380  
2370  
2340  
2310  
2280  
2250  
2220  
2190  
2160  
2130  
2100  
2070  
2040  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
RILIM = 34.48kΩ  
6-25. 电流限制阈值与温度间的关系  
RILIM = 25kΩ  
6-26. 电流限制阈值与温度间的关系  
220  
200  
180  
160  
140  
120  
100  
80  
0.4  
0.375  
0.35  
VIN (V)  
VIN (V)  
2.7  
12  
19  
19  
12  
4.5  
3.3  
2.7  
0.325  
0.3  
0.275  
0.25  
0.225  
0.2  
0.175  
0.15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
66.7kΩ< RILIM < 111kΩ  
6-28. 导通电阻与温度间的关系  
RILIM < 58.8kΩ  
6-27. 导通电阻与温度间的关系  
0.75  
0.7  
1300  
1250 VIN (V)  
1200  
1150  
1100  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
VIN (V)  
2.7  
19  
12  
4.5  
3.3  
12  
19  
0.65  
0.6  
2.7  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.25  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TA (C)  
TA (C)  
RILIM > 500kΩ  
6-30. 导通电阻与温度间的关系  
142kΩ< RILIM < 250kΩ  
6-29. 导通电阻与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
6.8 典型特(continued)  
200  
100  
50  
TA (C)  
-40  
25  
125  
30  
20  
10  
5
3
2
1
0.5  
0.3  
0.2  
0
5
10  
15  
20  
25  
30  
35  
40  
PD (W)  
6-31. 热关断时间与功率耗散间的关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS25961 is an integrated eFuse device that is used to manage load voltage and load current. The device  
provides various factory programmed settings and user manageable settings, which allow device configuration  
for handling different transient and steady state supply and load fault conditions, thereby protecting the input  
supply and the downstream circuits connected to the device. The device also uses an in-built thermal shutdown  
mechanism to protect itself during these fault events.  
7.2 Functional Block Diagram  
TPS25961  
FET Temperature Sense &  
TSD  
Overtemperature Protection  
OUT  
IN  
6
1
UVPb  
2.54 V  
2.42 V  
Charge  
Pump  
Soft start  
5.98 V  
5.87 V  
SWEN  
Gate control  
SCP  
VINT  
0.1 V  
Current Limit Amplifier  
GHI  
OVLO  
2
5
ILIM  
3
1.24 V  
1.13 V  
OVPb  
EN/UVLO  
UVLOb  
1.24 V  
1.13 V  
Retry Timer  
& Counter  
RETRY  
UVPb  
R
S
Q
FLT  
0.6 V  
SD  
GND  
4
/Q  
TSD  
FLTb  
7.3 Feature Description  
7.3.1 欠压保(UVP) 和欠压锁(UVLO)  
TPS25961 持续监控输入电源以确保仅当电压处于足够的水平时才为负载加电。在启动条件期间器件会等待  
输入电源上升到高于内部固定阈值 VUVP(R)然后再继续开启 FET。同样在导通条件下如果输入电源低于  
UVP 阈值 VUVP(F)FET 将关闭。UVP 上升和下降阈值略有不同从而提供一些迟滞并确保在阈值电压附近稳定  
运行。  
TPS25961 还提供用户可调节的 UVLO 机制以确保仅当电压达到特定系统要求的足够水平时才为负载上电。这  
可以通过对输入电源进行分频并将其馈送到 EN/UVLO 引脚来实现。每当 EN/UVLO 引脚上的电压降至阈值  
V
UVLO(F) 以下时器件都会关断 FET。当电压上升到阈VUVLO(R) 以上时FET 再次导通。该引脚上的上升和下  
降阈值略有不同从而提供一些迟滞并确保在阈值电压附近稳定运行。  
用户必须适当地选择电阻分压器值以将所需的输入欠压电平映射到器件UVLO 阈值。  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
 
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
Power  
Supply  
IN  
R1  
EN/UVLO  
R2  
GND  
7-1. 可调节欠压锁定  
下面的公式显示了用于设置给定电压电源UVLO 设置点的电阻分压器值的计算结果。  
R1 + R2  
VIN(UV) = VUVLO(F) ×  
R2  
(1)  
7.3.2 Overvoltage Protection  
The TPS25961 implements Overvoltage Protection on VIN in case the applied voltage becomes too high for the  
system or device to properly operate. The Overvoltage Protection has a default lockout threshold of VOVP , which  
is achieved by connecting the OVLO pin to GND.  
Input Overvoltage Event  
Input Overvoltage Removed  
VOVP(R)  
VOVP(F)  
IN  
0
tOVLO  
VIN  
OUT  
0
Time  
7-2. TPS25961 Fixed Overvoltage Lockout Response  
Its possible to override the default OVLO threshold and adjust it to an user defined value as per the system  
requirements. This can be achieved by dividing the input supply and feeding it to the OVLO pin. Whenever the  
voltage at the OVLO pin rises above a threshold VOVLO(R), the device turns OFF the FET. When the voltage at  
the OVLO pin falls below the threshold VOVLO(F), the FET is turned ON again. The rising and falling thresholds on  
this pin are slightly different, thereby providing some hysteresis and ensuring stable operation around the  
threshold voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
Input Overvoltage Event  
Input Overvoltage Removed  
IN  
0
VOVLO(R)  
VOVLO(F)  
OVLO  
0
tOVLO  
VIN  
OUT  
0
Time  
7-3. TPS25961 Adjustable Overvoltage Lockout Response  
The user should choose the resistor divider values appropriately to map the desired input overvoltage level to  
the OVLO threshold of the part.  
Power  
Supply  
IN  
R1  
OVLO  
R2  
GND  
7-4. TPS25961 Adjustable Overvoltage Lockout  
The equation below shows the calculations for the resistor divider values to be used to set the OVLO set-point  
for a given voltage supply.  
R1 + R2  
R2  
VIN(OV) = VOVLO(F) ×  
(2)  
7.3.3 Inrush Current, Overcurrent and Short Circuit Protection  
The TPS25961 incorporates three levels of protection against overcurrent:  
Fixed slew rate for inrush current control (dVdt)  
Active current limiting with adjustable limit (ILIM) for overcurrent protection  
Fast short-circuit response to protect against hard short-circuits  
7.3.3.1 Slew Rate and Inrush Current Control (dVdt)  
The inrush current during turn on is directly proportional to the load capacitance and rising slew rate.  
IINRUSH = COUT × SRON  
(3)  
TPS25961 provides a controlled turn on at a fixed slew rate (SRON) which helps to minimize the inrush current.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
7.3.3.2 Active Current Limiting  
The device responds to output overcurrent conditions by actively limiting the current.  
Transient overload followed by current limit  
Overload removed Persistent overload followed by current limit  
Thermal shutdown  
Retry timer expired  
Retry timer starts  
Overload removed  
ILIM  
IOUT  
0
VIN  
OUT  
0
TSD  
TSDHYS  
TJ  
Time  
7-5. TPS25961 Overcurrent Response  
In the current limiting state, the output voltage drops resulting in increased power dissipation in the internal FET  
leading to thermal shutdown if the condition persists for an extended period of time. In this case, the device  
performs 3 auto-retry attempts to allow the system to recover and then latches-off if the fault persists. See Fault  
response section for more details on device response after a fault.  
The current limit threshold can be adjusted by pinstrapping the ILIM pin.  
Use equation below to calculate the RILIM value for overcurrent thresholds < 200 mA.  
50000  
ILIM ‐ 0.000002  
RILIM =  
(4)  
(5)  
Use equation below to calculate the RILIM value for overcurrent thresholds 200 mA.  
50000  
RILIM =  
ILIM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25961  
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
备注  
1. Leaving the ILIM pin open sets the current limit to its minimum value.  
2. The device scales the FET ON resistance in discrete steps according to the RILIM setting to  
provide optimum performance for the desired current level. At higher ILIM settings, the ON  
resistance is lower and at lower ILIM settings, the ON resistance is higher. However, for certain  
RILIM resistor values, the device may select an incorrect ON resistance scaling which is too high  
for the target load current leading to excessive voltage drop and power dissipation. To avoid this  
situation, it's recommended to avoid certain RILIM values as per 7-1.  
7-1. RILIM Values to Avoid  
ILIM Resistor Value  
Device ON Resistance  
Undefined  
Undefined  
Undefined  
250 kΩ< RILIM < 500 kΩ  
111 kΩ< RILIM < 142 kΩ  
58.8 kΩ< RILIM < 66.7 kΩ  
7.3.3.3 Short-Circuit Protection  
The current through the device increases very rapidly during an output short-circuit event. In this event, the  
device engages a fast current clamping circuit to regulate down the current faster (tSCP) as compared to the  
nominal overcurrent response time (tLIM). Instead of completely turning off the power FET, the device tries to  
actively limit the current to ensure uninterrupted power in the event of transient overcurrents or supply transients.  
The device stops limiting the current once the load current falls below the programmed ILIM threshold.  
The output voltage drops in the current limiting state, resulting in increased power dissipation in the internal FET  
and might lead to thermal shutdown if the condition persists for an extended period of time. In this case, the  
device performs 3 auto-retry attempts to allow the system to recover and then latches-off if the fault persists. See  
Fault response section for more details on device response after a fault.  
Persistent short from OUT to GND  
Retry timer expired  
Device power cycled  
or reset using Enable  
Temporary short-circuit  
Fast-trip response  
Current limited restart into short  
Fast-trip response  
Thermal shutdown  
Retry timer starts  
Thermal shutdown followed by Latch-off  
due to 4 consecutive faults  
Short-circuit removed  
Device recovers to reach steady-state  
ISC  
IOUT  
ILIM  
0
VIN  
OUT  
0
tSC  
tSC  
TSD  
TSDHYS  
TJ  
Time  
7-6. TPS25961 Short Circuit Response  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
7.3.4 Overtemperature Protection (OTP)  
Thermal Shutdown occurs when the junction temperature (TJ) exceeds the thermal shutdown threshold (TSD).  
When the TPS25961 detects thermal overload, it shut downs and remains off until it has cooled down sufficiently.  
Once the TPS25961 junction has cooled down below TSD - TSDHYS, it remains off for an additional delay of  
tTSD,RST after which it automatically retries to turn on. The device performs 3 auto-retry attempts to allow the  
system to recover before it latches-off if the fault persists. See Fault response section for more details on device  
response after a fault.  
7-2. TPS25961 Thermal Shutdown  
Enter TSD  
Exit TSD  
TJ < TSD - TSDHYS and tTSD,RST timer expired  
TJ TSD  
7.3.5 Fault Response  
7-3 summarizes the protection response to various fault conditions.  
7-3. Fault Response  
Event / Fault  
Protection Response  
Fault Latched Internally  
Steady-state  
N/A  
N/A  
Overtemperature  
Undervoltage  
Overvoltage  
Overcurrent  
Shutdown  
Cut-off  
Yes  
No  
No  
No  
No  
Cut-off  
Current Limit  
Current Limit  
Short-circuit  
Once the device turns off due to a latched fault, power cycling the part or pulling the EN/UVLO pin voltage below  
VSD(F) clears the fault. Pulling the EN/UVLO just below the UVLO threshold has no impact on the device in this  
condition.  
At the end of the tTSD,RST timer after a latched fault, the device will attempt to automatically restart 3 times. If the  
fault was caused by a transient condition which goes away and the device is able to recover and reach steady  
state, it clears the fault counter.  
If the fault is persistent, the device will eventually shut down completely after 3 attempts and then remain  
latched-off till it's power cycled.  
7.4 Device Functional Modes  
The features of the device depend on the operating mode.  
7-4. Overvoltage protection modes  
OVLO pin  
OVLO threshold  
Fixed 5.98 V  
Adjustable  
< 0.1 V or connected to GND  
Resistor ladder from IN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25961  
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS25961 device is an integrated eFuse that is typically used for input hot-swap and power rail protection  
applications for systems such as energy meters, set-top boxes, building automation and adapter input protection.  
The device operates from 2.7-V to 19-V with adjustable current limit, overvoltage and undervoltage protection.  
The device aids in controlling the inrush current and provides current limiting during overload conditions.  
The design procedure explained in the subsequent sections can be used to select the supporting component  
values based on the application requirement. Additionally, a spreadsheet design tool, TPS25961 Design  
Calculator, is available in the web product folder.  
8.2 典型应用  
8.2.1 Adapter input protection for set-top boxes  
TPS25961 can be used for input power protection in set-top boxes. Operating voltage is generally around 12-V  
and can vary from 10-V to 14-V. During event like input voltage overshoot, TPS25961 overvoltage protection  
acts to cut off the path and protect downstream load from overvoltage. Also inrush current control and  
configurable current limit feature helps in preventing power supply from collapsing during events like hotplug and  
overload.  
VOUT  
VIN = 12 V  
TPS25961  
IN  
OUT  
R1  
470 k  
EN/UVLO  
OVLO  
CIN  
0.1 µF  
*
D1  
*
COUT  
1 µF  
R2  
24.9 k  
D2  
ILIM  
GND  
R3  
RLIM  
42.2 k  
23.2 k  
8-1. Typical Application Schematic  
* Optional circuit components needed for transient protection depending on input and output inductance. Please  
refer to Transient Protection section for details.  
8.2.2 Design Requirements  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage , VIN  
EXAMPLE VALUE  
12 V  
Undervoltage lockout set point, VUV  
9 V  
15.5 V  
2 A  
Overvoltage protection set point , VOV  
Current limit, ILIM  
Load capacitance, COUT  
1 µF  
Maximum ambient temperature, TA  
85°C  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
 
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
8.2.3 Detailed Design Procedure  
8.2.3.1 Programming the Current-Limit Threshold: RILM Selection  
The RILM resistor at the ILM pin sets the over load current limit. Since required current limit of 2 A is greater than  
200 mA, below 方程6 for current limit can be used for calculating RILIM  
.
50000  
RILIM =  
ILIM  
(6)  
Closest standard value resistor is 25.5 kΩ with 1% tolerance. It is recommended that final RILM selected does  
not lie in the ranges mentioned in 7-1. Final value of 25.5 kΩdoes not lie in those non-recommended ranges  
and is fine to use in design.  
8.2.3.2 欠压和过压锁定设定点  
电源欠压和过压阈值通过电阻R1R2 R3 进行设置这些电阻器的值可通过公10 和公11 进行计算:  
VUVLO(R) x (R1 + R2 + R3)  
VIN(UV) =  
VIN(OV) =  
(7)  
(8)  
R2 + R3  
VOVLO(R) x (R1 + R2 + R3)  
R3  
VUVLO(R) EN/UVLO 引脚上升阈值VOVLO(R) OVLO 引脚上升阈值。由R1R2 R3 泄漏来自输入  
VIN 的电流因此必须根据来自输入电VIN 的可接受漏电流来选择这些电阻器。R1R2 R3 从电源汲  
取的电流IR123 = VIN/(R1 + R2 + R3)。但是由于连接到电阻器串的外部有源元件而产生的漏电流会增加这些  
计算的误差。因此电阻串电IR123 必须选择EN/UVLO OVLO 引脚上预期漏电流20 倍。根据器件电  
气规格EN/UVLO OVLO 漏电流均0.1μA最大值VOVLO(R) = 1.24V VUVLO(R) = 1.24V。根据设计  
要求VIN(OV) = 15.5V VIN(UV) = 9V。要求解请先选R1 = 470kΩ并使用上面的公式计R2 =  
31.5kΩ、R3 = 43.6kΩ。使用最接近的标1% 电阻器值我们得R1 = 470kΩ、R2 = 31.6kΩR3 =  
44.2kΩ。  
8.2.3.3 Output Voltage Rise Time (tR)  
For a successful design, the junction temperature of device must be kept below the absolute maximum rating  
during both dynamic (start-up) and steady-state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to to determine that power dissipation is below a  
certain limit to avoid thermal shutdown during start-up.  
Slew rate is 5 V/ms typically for TPS25961. The inrush current can be calculated as:  
IINRUSH mA = SR (V/ms) x COUT µF = 5 x 1 = 5 mA  
(9)  
The average power dissipation inside the part during inrush can be calculated as:  
IINRUSH A x VIN V  
2
0.005 x 12  
2
PDINRUSH W =  
=
= 0.03 W  
(10)  
For the given power dissipation, the thermal shutdown time of the device must be greater than the ramp-up time  
tR to avoid start-up failure. 8-2 shows the thermal shutdown limit, for 0.03 W of power, the shutdown time is  
very large as compared to tR = 2.4 ms. Therefore this application will have successful startup.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
200  
100  
50  
TA (C)  
-40  
25  
125  
30  
20  
10  
5
3
2
1
0.5  
0.3  
0.2  
0
5
10  
15  
20  
25  
30  
35  
40  
PD (W)  
8-2. Time to Thermal Shutdown vs Power Dissipation  
8.2.4 Application Curves  
8-3. Output Ramp  
8-4. Overvoltage Protection (OVLO)  
8-5. Overcurrent Protection  
8-6. Short at Output Protection  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
8-7. Wakeup in Short Protection  
8.3 Application Example  
TPS25961 can also be used as a low cost current limiter device replacing discrete PTC for memory card port  
protection in end equipments like IP camera, Laptop etc. Typical SD cards operate at 3.3-V and draw current  
less than 100 mA. TPS25961 can be configured for protection in this application without the need for many  
external components. Keeping OVLO pin grounded and ILIM pin open would set fixed overvoltage protection  
thresold of 5.98 V and current limit of 115 mA. EN pin can be tied to VIN pin through a pullup resistor. 8-9  
shows example layout for TPS25961 for above mentioned configuration, achieved on a single layer board with  
minimum components.  
VOUT  
VIN = 3.3 V  
TPS25961  
IN  
OUT  
47 kΩ  
EN/UVLO  
OVLO  
CIN  
0.1 µF  
COUT  
1 µF  
ILIM  
GND  
8-8. SD card port protection using TPS25961  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
OUT  
IN  
GND  
8-9. TPS25961 layout example for SD card port protection application  
8.3.1 Application Curves  
8-10. Output Ramp  
8-11. Overvoltage protection  
8-12. Overcurrent Protection  
8-13. Short at Output Protection  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
8-14. Wake up into Short Protection  
8.4 Power Supply Recommendations  
The TPS25961 devices are designed for a supply voltage range of 2.7-V VIN 19-V. An input ceramic  
bypass capacitor higher than 0.1 μF is recommended if the input supply is located more than a few inches from  
the device. The power supply must be rated higher than the set current limit to avoid voltage droops during  
overcurrent and short-circuit conditions.  
8.4.1 瞬态保护  
在短路和过载电流限制情况下当器件中断电流时输入电感在输入端产生正电压尖峰输出电感在输出端产生  
负电压尖峰。电压尖峰瞬变的峰值振幅取决于与器件输入或输出串联的电感值。如果未采取措施解决此问  
此类瞬变可能会超过器件的绝对最大额定值。解决瞬变的典型方法包括:  
• 更大限度减少进出器件的引线长度和电感。  
• 使用较大PCB GND 平面。  
• 在输出端使用肖特基二极管来吸收负尖峰。  
• 使用低值陶瓷电容CIN = 0.1μF 来吸收能量并抑制瞬变。输入电容的近似值可通过以下公式进行估算:  
LIN  
CIN  
V绝对= VIN +I负载 ×  
(11)  
其中  
VIN 是标称电源电压  
ILOAD 是负载电流  
LIN 等于在源中观察到的有效电感  
CIN 是输入端存在的电容  
备注  
需要通过 IEC 61000-4-4 电气快速瞬变 (EFT) 抗扰度测试的系统应使用至少 2.2μF CIN以确  
TPS25961 EFT 突发期间不会关闭。  
某些应用可能需要添加瞬态电压抑制器 (TVS)以防止瞬变超过器件的绝对最大额定值。采用可选保护元件陶  
瓷电容器、TVS 和肖特基二极管的电路实现如8-15 所示。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
VOUT  
VIN = 2.7 to 19 V  
TPS25961  
IN  
OUT  
ILIM  
R1  
R2  
EN/UVLO  
OVLO  
CIN  
0.1 µF  
*
D1  
*
COUT  
1 µF  
D2  
RLOAD  
GND  
R3  
RLIM  
8-15. 带有可选保护元件的电路实现  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
8.4.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. The following contribute to variation in  
results:  
Source bypassing  
Input leads  
Circuit layout  
Component selection  
Output shorting method  
Relative location of the short  
Instrumentation  
The actual short exhibits a certain degree of randomness because it microscopically bounces and arcs. Ensure  
that configuration and methods are used to obtain realistic results. Do not expect to see waveforms exactly like  
those in this data sheet because every setup is different.  
8.5 Layout  
8.5.1 Layout Guidelines  
For all applications, a ceramic decoupling capacitor of 0.1 μF or greater is recommended between the IN  
terminal and GND terminal. For hot-plug applications, where input power-path inductance is negligible, this  
capacitor can be eliminated or minimized.  
The optimal placement of the decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC.  
High current-carrying power-path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
The GND terminal must be tied to the PCB ground plane at the terminal of the IC. The PCB ground must be a  
copper plane or island on the board.  
Locate the following support components close to their connection pins:  
RILIM  
Resistor network for the EN/UVLO pin  
Resistor network for the OVLO pin  
Connect the other end of the component to the GND pin of the device with shortest trace length. The trace  
routing from the components to the device pins must be as short as possible to reduce parasitic effects on  
the current limit and overvoltage response. These traces must not have any coupling to switching signals on  
the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect. These protection devices must be routed with short traces to reduce  
inductance. For example, a protection Schottky diode is recommended to address negative transients due to  
switching of inductive loads, and it must be physically close to the OUT pins.  
Obtaining acceptable performance with alternate layout schemes is possible. The example shown in 8.5.2  
has been shown to produce good results and is intended as a guideline.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
8.5.2 Layout Example  
Inner GND layer  
Top Power layer  
IN  
OUT  
Bottom Power layer  
8-16. TPS25961 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS25961  
 
TPS25961  
ZHCSQ76 DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following:  
TPS25961 Design Calculator  
TPS25961EVM eFuse Evaluation Board  
Basics of eFuses  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS25961  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25961DRVR  
ACTIVE  
WSON  
DRV  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
T961  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS259620DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259620DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259621DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259621DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259630DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259630DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259631DDAR

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS259631DDAT

采用引线式封装、具有可选过压保护钳位的 2.7V 至 19V、85mΩ、0.13A 至 2A 电子保险丝 | DDA | 8 | -40 to 125
TI

TPS2597

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking
TI

TPS25970ARPW

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking
TI

TPS25970ARPWR

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking
TI

TPS25970LRPW

TPS2597xx 2.7 V–23 V, 7-A, 9.8-mΩ eFuse With Accurate Current Monitor and Transient Overcurrent Blanking
TI