TPS274160BRLHR [TI]

具有可调节电流限制的 36V、160mΩ、1.35A、4 通道工业高侧开关 | RLH | 28 | -40 to 125;
TPS274160BRLHR
型号: TPS274160BRLHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 36V、160mΩ、1.35A、4 通道工业高侧开关 | RLH | 28 | -40 to 125

开关
文件: 总38页 (文件大小:1532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
TPS274160x 160mΩ 四通道智能高侧开关  
1 特性  
3 说明  
四通道 160mΩ 智能高侧开关  
宽直流工作电压范围5V 36V  
50V 绝对最大电压  
精确可调节电流限制范围250mA 4A)  
智能诊断功能  
TPS274160 器件是一款智能高侧开关通过四个集成  
160mΩ NMOS 功率 FET 和一个电荷泵来驱动栅  
极。该器件提供强大的保护和诊断功能可以驱动各种  
电感、容性和电阻性负载例如低瓦数灯泡、LED、继  
电器、电磁阀、加热器和子模块。该器件可通过并行通  
道实现灵活的多通道输出配置并采用超小型 WQFN  
封装可在空间受限的应用中使用。  
TPS274160A开漏故障输出  
TPS274160B模拟电流感应  
– 关闭状态下开路负载或对电源短路检测  
强大的保护特性  
该器件具有短路和过热保护功能可在故障期间安全地  
关闭输出。该器件还支持从外部调节电流限值。这一特  
性通过减小驱动大容性负载时的浪涌电流并尽可能降低  
过载电流可提高系统的可靠性从而消除系统欠压的  
情况。  
– 短路保护  
– 电感负载反激式钳位  
– 欠压锁定 (UVLO) 保护  
– 接地失效保护  
该器件还集成了诊断功能例如输出电流监控B 版  
和开路负载检测从而使模块更加智能并实现预测  
性维护功能。  
VS OUT 引脚提供出色 ESD 保护  
±8/±15kV IEC 61000-4-2 ESD 接触/空气放电  
采用小型 28 引脚无引线 QFN 封装  
提供功能安全  
器件信息  
封装(1)  
器件型号  
TPS274160A  
TPS274160B  
封装尺寸  
– 可帮助进行功能安全系统设计的文档  
2 应用  
WQFN (28)  
4mm x 5mm  
数字输出模块  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
独立远程 I/O  
电机驱动器  
电磁阀或阀驱动器  
5-V/24-V Field  
Power  
LDO or  
DC/DC  
3.3/5V  
Optional  
Input  
Protection  
(e-Fuse/  
RPP)  
Input  
Protection  
(e-Fuse)  
ISO  
DC/DC  
Power  
5-V/24-V  
Backplane  
Power  
V+  
TPS274160  
VIN  
Charge  
Pump  
Overcurrent Is Clamped  
at the Set Value of 1 A.  
Vds  
Clamp  
Gate  
drive  
VOUT  
MON  
VOUT  
VOUT  
VOUT  
VOUT  
1
2
A0  
A1  
Current Limit &  
Thermal  
Protection  
Enable  
and  
Fault  
De-  
Serializer  
4 EN  
3
4
4
Digital  
Isolation  
A2  
A3  
Bus  
ASIC  
MCU  
Current  
Sense/  
FAULT  
4
ST  
4
Serializer  
GND  
VIN  
VOUT  
4
A12  
TPS274160  
GND  
To Additional  
Channels  
A15  
GND  
应用示例  
驱动具有可调节电流限制的电容性负载  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSF05  
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................27  
9 Application and Implementation..................................28  
9.1 Application Information............................................. 28  
9.2 Typical Application.................................................... 29  
9.3 Capacitive Load Drive and Application Curves.........29  
10 Power Supply Recommendations..............................30  
11 Layout...........................................................................31  
11.1 Layout Guidelines................................................... 31  
11.2 Layout Examples.....................................................31  
12 Device and Documentation Support..........................32  
12.1 接收文档更新通知................................................... 32  
12.2 支持资源..................................................................32  
12.3 Trademarks.............................................................32  
12.4 静电放电警告.......................................................... 32  
12.5 术语表..................................................................... 32  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................6  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................6  
7.6 Switching Characteristics ...........................................8  
7.7 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................15  
Information.................................................................... 32  
4 Revision History  
Changes from Revision * (May 2020) to Revision A (November 2020)  
Page  
更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
将数据表状态从“预告信息”更改为“量产数据”.............................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
5 Device Comparison Table  
PART NO.  
TPS274160A  
TPS274160B  
FAULT REPORTING MODE  
Open-drain digital output  
Current-sense analog output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
3
4
5
6
7
22  
21  
20  
OUT2  
NC  
1
2
3
4
5
6
7
22  
21  
20  
OUT2  
NC  
EN3  
EN4  
ST1  
EN3  
EN4  
SEH  
SEL  
FAULT  
CS  
VS  
VS  
VS  
VS  
PowerPadTM  
PowerPadTM  
ST2  
19  
18  
19  
18  
ST3  
ST4  
VS  
VS  
VS  
VS  
17  
16  
15  
17  
16  
15  
CL  
CL  
NC  
NC  
OUT3  
OUT3  
8
8
NC  
NC  
NC No internal connection  
NC No internal connection  
6-1. RLH Package 28-Pin WQFN With Exposed  
6-2. RLH Package 28-Pin WQFN With Exposed  
Thermal Pad TPS274160A Top View  
Thermal Pad TPS274160B Top View  
6-1. Pin Functions  
PIN  
TPS274160  
I/O  
DESCRIPTION  
NAME  
Version A  
Version B  
Adjustable current limit. Connect to device GND if external current limit is not  
used.  
CL  
7
7
O
CS  
6
O
I
Current-sense output.  
DIAG_EN  
11  
11  
Enable-disable pin for diagnostics; internal pulldown.  
Global fault report with open-drain structure, ORed logic for quad-channel fault  
conditions.  
FAULT  
5
O
GND  
EN1  
EN2  
EN3  
EN4  
NC  
9,26  
9, 26  
Ground pin.  
27  
27  
I
I
I
I
Input control for channel 1 activation; internal pulldown.  
Input control for channel 2 activation; internal pulldown.  
Input control for channel 3 activation; internal pulldown.  
Input control for channel 4 activation; internal pulldown.  
No internal connection.  
28  
28  
1
1
2
2
8, 21, 16  
8, 21, 16  
O
O
O
O
I
ST1  
3
4
5
6
Open-drain diagnostic status output for channel 1.  
Open-drain diagnostic status output for channel 2.  
Open-drain diagnostic status output for channel 3.  
Open-drain diagnostic status output for channel 4.  
CS channel-selection high bit; internal pulldown.  
CS channel-selection low bit; internal pulldown.  
Thermal shutdown behavior control, latch off or auto-retry; internal pulldown.  
Output of the channel 1 high side-switch, connect to the load.  
Output of the channel 2 high side-switch, connect to the load.  
ST2  
ST3  
ST4  
SEH  
SEL  
THER  
OUT1  
OUT2  
3
4
I
10  
10  
I
24, 25  
22, 23  
24, 25  
22, 23  
O
O
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
NAME  
6-1. Pin Functions (continued)  
PIN  
TPS274160  
I/O  
DESCRIPTION  
Version A  
14, 15  
Version B  
14, 15  
OUT3  
OUT4  
VS  
O
O
I
Output of the channel 3 high side-switch, connect to the load.  
12, 13  
12, 13  
Output of the channel 4 high side-switch, connect to the load.  
Power supply.  
17, 18, 19, 20 17, 18, 19, 20  
Thermal  
pad  
Connect to device GND or leave floating  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
MIN  
MAX  
UNIT  
Input Voltage on Supply pin  
50  
V
(3)  
Reverse polarity voltage (4)  
V
mA  
V
36  
100  
0.3  
10  
0.3  
30  
2.7  
Current on GND pin  
t < 2 minutes  
250  
7
Voltage on ENx, DIAG_EN, SEL, SEH, and THER pins  
Current on ENx, DIAG_EN, SEL, SEH, and THER pins  
Voltage on STx or FAULT pins  
Current on STx or FAULT pins  
Voltage on CS pin  
mA  
V
7
10  
7
mA  
V
Current on CS pin  
30  
7
mA  
V
Voltage on CL pin  
0.3  
Current on CL pin  
6
mA  
°C  
°C  
Operating junction temperature  
Storage temperature, Tstg  
150  
150  
40  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to GND.  
(3) Maximum voltage including long transients < 400 ms.  
(4) Reverse polarity condition:time t < 180s, reverse current < IR(2), ENx = 0 V, GND pin 1-kΩ resistor in parallel with diode.  
7.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic  
discharge  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
All pins except VS and  
VOUTx  
V(ESD1)  
V(ESD2)  
V(ESD3)  
V(ESD4)  
±2000  
V
Electrostatic  
discharge  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
VS and VOUTx with respect  
to GND  
±5000  
±750  
V
V
Electrostatic  
discharge  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
All pins  
Electrostatic  
discharge  
Contact/Air discharge, per IEC 61000-4-2 (3)  
VS, OUTx  
VS, OUTx  
±8/±15  
±1000  
kV  
V
Surge protection with 42 , per IEC 61000-4-5;  
1.2/50 μs (3)  
V(surge) Transient surge  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) Tested with the application circuit and supply voltage of 24 V DC and always ON, EN Inputs High Output High (ON)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS274160  
 
 
 
 
 
 
 
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VVS  
Continuous DC Supply operating voltage (1)  
Voltage on ENx, DIAG EN, SEL, SEH, and THER pins  
Voltage on ST and FAULT pins  
5
0
36  
5
V
0
5
V
Inom  
TA  
Nominal DC load current per channel (all channels on)  
Operating ambient temperature range  
0
1.35  
125  
A
°C  
40  
(1) Transients up to the absolute maximum is allowed  
7.4 Thermal Information  
TPS274160  
RLH(QFN)  
28 PINS  
31.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.3  
9.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJT  
9.6  
ψJB  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
(5 V Vs 36 V; 40°C TJ 125°C, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
3.5  
3
TYP MAX UNIT  
VVS(uvr)  
VVS(uvf)  
Undervoltage turnon  
Undervoltage shutdown  
VS voltage rising,VVS > VVS(uvr), device turns on.  
VS voltage falling, VVS < VVS(uvf) device shuts off.  
3.7  
3.2  
4
V
V
3.4  
Undervoltage shutdown,  
hysteresis  
VVS(uv,hys)  
Iqd  
0.5  
V
Device quiescent current,  
diagnostics enabled  
VVS < 30 V, ENx = 5 V, DIAG_EN = H/L, Ioutx = 0 A,  
current limit = 2 A, all channels on  
6.2  
1.4  
5
mA  
VVS < 30 V, ENx = DIAG_EN = OUTx = THER = 0 V,  
TJ = 25°C  
Ioff  
Standby current  
µA  
VVS < 30 V, ENx = DIAG_EN = OUTx = THER = 0 V,  
TJ = 125°C  
Standby current with diagnostic  
enabled  
VVS < 30 V, ENx = 0 V, DIAG_EN = 5 V, VVS VOUTx  
Vol(off), not in open-load mode  
>
Ioff(diag)  
toff(deg)  
5
mA  
ms  
EN from high to low, if elapsed time > toff(deg), the  
device enters into standby mode.  
Standby mode deglitch time(1)  
10  
12.5  
160  
15  
VVS < 30 V, ENx = DIAG_EN = OUTx = 0, TJ = 25°C  
0.5  
8
µA  
µA  
Iout(leak)  
Output leakage current in off-state  
VVS < 30 V, ENx = DIAG_EN = OUTx = 0, TJ < 125°C  
V
VS 5V, TJ = 25°C  
VS 5 V, TJ = 125°C  
rDS(on)  
On-state resistance  
mΩ  
260  
6
V
Percentage Difference in On-state  
resistance between channels  
%
A
ΔrDS(on)  
V
VS 5V, TJ = 25°C  
(1)  
(rDS(on)CHx - rDS(on)CHy  
)
Icl(int)  
Internal current limit  
Internal current limit value, CL pin connected to GND  
8
14  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
(5 V Vs 36 V; 40°C TJ 125°C, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Internal current limit value under thermal shutdown  
6.5  
A
Current limit during thermal  
shutdown  
External current limit value under thermal shutdown.  
The percentage of the external current limit setting  
value  
Icl(TSD)  
70%  
Source-to-drain body diode  
voltage  
Vds(clamp )  
VF  
50  
70  
V
V
A
0.3  
0.7  
2.5  
0.9  
Drainsource diode voltage  
EN = 0, Iout = 0.15 A.  
Continuous reverse current from t < 60 s, VVS = 24 V, ENx = 0 V, TJ = 25°C, single  
source to drain  
IR(1)  
channel reversed current to supply  
t < 60 s, VVS = 24 V, ENx = 0 V, GND pin 1-kΩ resistor  
in parallel with diode. TJ = 25°C. Reverse-current  
condition, All channels reversed  
Continuous reverse current from  
source to drain  
IR(2)  
2.0  
A
VIH  
Logic high-level voltage  
Logic low-level voltage  
Logic-pin pulldown resistor  
2
V
V
VIL  
0.8  
R(logic,pd)  
DIAG_EN VVS = VDIAG_EN=5V  
200  
100  
275  
175  
350  
kΩ  
ENx, SEL, SEH, THER pins, VVS = VENx  
VSEL=VSEH=VTHER=5V  
=
R(logic,pd)  
Ignd(loss)  
Vol(off)  
Logic-pin pulldown resistor  
250  
20  
kΩ  
µA  
V
Output leakage current under  
GND loss condition  
VVS = 24 V  
ENx = 0 V, when VVS VOUTx> Vol(off), duration longer  
than tol(off), then open load is detected, off state  
Open load detection threshold  
1.6  
2.6  
800  
100  
Open-load detection threshold  
deglitch time  
ENx =0V, when VVS VOUTx> Vol(off) , duration longer  
than tol(off), then open load is detected, off state  
tol(off)  
300  
560  
µs  
ENx = 0 V, DIAG_EN= 5 V, VVS VOUTx = 24 V, TJ =  
125°C, open load  
Iol(off)  
Off-state output sink current  
Status low-output voltage  
µA  
VOL(STx)  
ISTx = 2 mA, version A only  
IFAULT = 2 mA, version B only  
0.2  
0.2  
V
V
VOL(FAULT) Fault low-output voltage  
Deglitch time when current limit  
occurs(1)  
ENx = DIAG_EN = 5 V, the deglitch time from current  
limit toggling to FAULT, STx, CS report.  
tcl(deg)  
80  
180  
µs  
°C  
°C  
TSD  
Thermal shutdown threshold  
160  
175  
155  
Thermal shutdown status reset  
threshold  
TSD(rst)  
Thermal swing shutdown  
threshold  
Tsw  
60  
10  
°C  
°C  
Hysteresis for resetting the  
thermal shutdown or thermal  
swing  
Thys  
KCS  
KCL  
Current sense ratio (Ver. B only)  
Current limit ratio  
300  
2500  
Current limit internal threshold  
voltage(1) (2)  
VCL(th  
)
0.8  
V
Current sense accuracy, (ICS  
×
×
×
×
dKCS / KCS  
dKCS / KCS  
dKCS / KCS  
dKCS / KCS  
-50  
-10  
-5  
50  
10  
5
%
%
%
%
VVS = 24 V, Ioutx 5 mA (Version B)  
VVS = 24 V, Ioutx 25 mA (Version B)  
VVS = 24 V, Ioutx 50 mA (Version B)  
VVS = 24 V, Ioutx 100 mA (Version B)  
K
CS IOUT) /IOUT × 100  
Current sense accuracy, (ICS  
CS IOUT) /IOUT × 100  
Current sense accuracy, (ICS  
CS IOUT) /IOUT × 100  
Current sense accuracy, (ICS  
CS IOUT) /IOUT × 100  
K
K
-3  
3
K
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
(5 V Vs 36 V; 40°C TJ 125°C, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Current sense accuracy, (ICS  
×
dKCS / KCS  
dKCL / KCL  
-2  
2
%
%
VVS = 24 V, Ioutx 0.5 A (Version B)  
K
CS IOUT) /IOUT × 100  
External current limit accuracy,  
( IOUT ICL × KCL ) × 100 / ICL VVS = 24 V, Ilimit 0.25 A  
× KCL  
-20  
-15  
20  
External current limit accuracy,  
( IOUT ICL × KCL ) × 100 / ICL VVS = 24 V, 2 A Ilimit 7 A  
× KCL  
dKCL / KCL  
15  
4
%
V
0
0
V
VS 6.5 V  
Current-sense voltage linear  
range(1)  
VCS(lin)  
Vs –  
2.5  
5 V VVS < 6.5 V  
0
0
2.2  
2.2  
6.5  
V
VS 6.5 V, Vcs,lin 4 V  
5 V VVS < 6.5 V, Vcs,lin VVS 2.5 V  
VS 7 V, fault mode  
IOUTx(lin)  
Output-current linear range(1)  
A
V
4.5  
V
Min(Vs  
- 2,  
VCS(H)  
Current sense pin output voltage  
6.5  
V
5 V VVS < 7 V, fault mode  
4.5)  
Current-sense pin output current  
available in fault mode  
ICS(H)  
Vcs = 4.5 V, VVS > 7 V  
15  
mA  
µA  
Current-sense leakage current in  
disabled mode  
ICS(leak)  
DIAG_EN = 0 V, TJ =125ºC  
0.5  
(1) Value specified by design, not subject to production test.  
(2) Vcl,th tolerance is included in the dKCL / KCL tolerance.  
7.6 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Vs = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A, IN rising  
edge to 10% of Voutx  
td,on  
Turnon delay time  
Turnoff delay time  
Channel turnon time  
Channel Turnoff time  
Turnon slew rate  
20  
50  
50  
90  
90  
µs  
µs  
Vs = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A, IN falling  
edge to 90% of Voutx  
td,off  
20  
90  
VS = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A 50% of  
EN to 90% of VOUT  
td,rise  
120  
120  
0.3  
0.3  
150  
150  
0.55  
0.55  
µs  
VS = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A 50% of  
EN to 10% of VOUT  
td,fall  
90  
µs  
Vs = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A, Voutx  
from 10% to 90%  
dV/dton  
dV/dtoff  
0.1  
0.1  
V/µs  
V/µs  
Vs = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A, Voutx  
from 90% to 10%  
Turnoff slew rate  
Vs = 24 V, Iload= 0.5A. td, rise is the IN rising edge  
to Vout = 90%.  
td,match  
50  
µs  
t
d,rise td,fall  
50  
td, fall is the IN falling edge to Vout = 10%.  
CS settling time from DIAG_EN  
disabled  
Vs = 24 V, ENx = 5 V, Ioutx = 0.5 A. current limit =  
2 A. DIAG_EN falling edge to 10% of Vcs.  
tcs,off1  
tcs,on1  
tcs,off2  
tcs,on2  
20  
20  
µs  
µs  
µs  
µs  
CS settling time from DIAG_EN  
enabled  
Vs = 24 V, ENx = 5 V, Ioutx = 0.5 A. current limit is  
2A. DIAG_EN rising edge to 90% of Vcs.  
Vs = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A. current  
limit = 2 A. EN falling edge to 10% of Vcs  
CS settling time from IN falling edge  
CS settling time from IN rising edge  
100  
150  
Vs = 24 V, DIAG_EN = 5 V, Ioutx = 0.5 A. current  
limit = 2 A. EN rising edge to 90% of Vcs  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
50 µs  
DIAG_EN = 5 V, current sense output delay when  
multi-sense pins SEL and SEH transition from  
channel to channel  
Multi-sense transition delay from  
channel to channel  
tSEx  
td,rise  
td,fall  
V_ENx  
90%  
90%  
V_OUTx  
10%  
10%  
td,on  
td,on dV/dton  
dV/dtoff  
7-1. Output Delay Characteristics  
V_ENx  
Iout  
V_DIAG_EN  
V_CS  
tcs,off2  
tcs,off1  
tcs,on1  
tcs,on2  
7-2. CS Delay Characteristics  
Open Load  
V_ENx  
Vcs,H  
V_CS  
V_STx, V_FLT  
tol,off  
7-3. Open-Load Blanking-Time Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
SEH  
SEL  
VCS  
tSEx  
VCS(CH2)  
VCS(CH1)  
7-4. Multi-Sense Transition Delay  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics  
1.6  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
DIAG_EN High  
DIAG_EN Low  
1.5  
1.4  
1.3  
1.2  
1.1  
1
EN1 High  
EN1 Low  
EN2 High  
EN2 Low  
EN3 High  
EN3 Low  
EN4 High  
EN4 Low  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D002  
D001  
7-6. DIAG_EN Voltage Threshold  
7-5. ENx Voltage Threshold  
1.5  
0.8  
OUT`1  
OUT2  
OUT3  
OUT4  
0.75  
0.7  
1.4  
1.3  
1.2  
1.1  
1
0.65  
0.6  
SEx High  
SEx Low  
0.55  
0.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D004  
D003  
7-8. Body-Diode Forward Voltage  
7-7. SEx Voltage Threshold  
64  
0.3  
0.25  
0.2  
63.5  
63  
62.5  
62  
61.5  
61  
0.15  
0.1  
60.5  
60  
59.5  
59  
Ch 1  
Ch 2  
Ch 3  
Ch 4  
5 V  
13 V  
24 V  
0.05  
58.5  
58  
0
57.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D006  
D005  
7-10. Channel-1 FET On-Resistance  
7-9. Drain-to-Source Clamp Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
0.3  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0.15  
0.1  
5 V  
13 V  
24 V  
5 V  
13 V  
24 V  
0.05  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D0076  
D0068  
7-11. Channel-2 FET On-Resistance  
7-12. Channel-3 FET On-Resistanc  
0.3  
18  
16  
14  
12  
10  
8
Ch 1  
Ch 2  
Ch 3  
Ch 4  
0.25  
0.2  
0.15  
0.1  
6
4
5 V  
13 V  
24 V  
0.05  
2
0
-40  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
Ambient Temperature (ºC)  
80  
100 120 140  
Ambient Temperature (èC)  
D0096  
D010  
7-13. Channel-4 FET On-Resistanc  
7-14. Current-Sense Ratio at 5 mA  
2.5  
2.25  
2
1
0.8  
0.6  
0.4  
0.2  
0
Ch 1  
Ch 2  
Ch 3  
Ch 4  
Ch 1  
Ch 2  
Ch 3  
Ch 4  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
-0.2  
-0.4  
-0.6  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D011  
D012  
7-15. Current-Sense Ratio at 25 mA  
7-16. Current-Sense Ratio at 50 mA  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
1
1
0.5  
0
Ch 1  
Ch 2  
Ch 3  
Ch 1  
0.8  
Ch 2  
Ch 3  
Ch 4  
0.6  
Ch 4  
0.4  
0.2  
0
-0.5  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1.5  
-2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D013  
D014  
7-17. Current-Sense Ratio at 100 mA  
7-18. Current-Sense Ratio at 500 mA  
1.5  
Ch 1  
Ch 2  
Ch 3  
Ch 4  
0.5  
1
0
-0.5  
-1  
-1.5  
-2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
D015  
7-19. Current-Sense Ratio at 1 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS274160 device is a quad-channel smart high-side switch, with an internal charge pump and NMOS  
power FETs. The TPS274160 device integrates fault diagnostics and a high-accuracy current-sense feature that  
enable intelligent control of the load. The adjustable current-limit function greatly improves the reliability of whole  
system. There are two versions of the device. The TPA274160A contains open drain digital output for diagnostic  
reporting. The TPS274160B device implements a high accuracy current sense analog output.  
TPS274160A device implements the digital fault report with an open-drain structure. When a fault occurs, the  
device pulls STx down to GND. A 3.3- or 5-V external pullup is required to match the microcontroller supply  
level. The digital status of each channel can report individually, or globally by connecting the STx pins together.  
The TPS274160B device integrates a high-accuracy current sense circuit that enables precise load current  
sensing without the need for on-board calibration. The integrated current mirror (selectable one-channel at a  
time) can source a fraction (1 / K(CS) ) of the load current. The mirrored current flows into the CS-pin resistor to  
become a voltage signal. K(CS) is a near-constant value across temperature and supply voltage. A wide linear  
region from 0 V to 4 V allows a better real-time load-current monitoring. The CS pin can also report a fault with  
pullup voltage of VCS(H)  
.
The external high-accuracy current limit allows setting the current-limit value by applications. When overcurrent  
occurs, the device improves system reliability by clamping the inrush current effectively. The device can also  
save system cost by reducing the size of PCB traces and connectors, and the capacity of the preceding power  
stage. Besides, the device also implements an internal current limit with a fixed value.  
The TPS274160 device integrates active clamp between the drain and the source of the FETs. This clamp  
ensures that the device is protected during switch off cycle of inductive loads like relays, solenoids and valves.  
During the inductive load turn-off, the energy of the power supply and the load are dissipated on the high-side  
switch. The device also optimizes the switching-off slew rate when the clamp is active, which helps the system  
design by keeping the effects of transient power dissipation and EMI to a minimum.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2 Functional Block Diagram  
VS  
Internal LDO  
Internal Reference  
Auxiliary Charge Pump  
Temperature Sensor  
Output  
Clamp  
Gate Driver  
and  
Charge Pump  
ENx  
OUT1  
OUT2  
Protection  
and  
Diagnostics  
Oscillator  
THER  
CS  
OUT3  
OUT4  
Current-Sense  
Mux  
Current Sense  
SEH  
SEL  
ESD  
Protection  
Current Limit  
CL  
FAULT  
Current Limit  
Reference  
2
DIAG_EN  
GND  
Diagnosis  
STx  
Temperature  
Sensor  
4
OTP  
8.3 Feature Description  
8.3.1 Pin Current and Voltage Conventions  
Note that throughout the data sheet, the current directions on the respective pins are as shown by the arrows in  
8-1. All voltages are measured relative to the ground plane.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS274160  
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
Ivs  
VS  
Vvs  
IENx  
VENx  
ENx  
VSTx  
VFAULT  
,
ISTx  
IFAULT  
,
STX,  
FAULT  
IDIAG_EN  
VDIAG_EN  
IOUTx  
DIAG_EN  
CL  
VOUTx  
OUTx  
ICL  
VCL  
ICS  
VCS  
CS  
ITHER  
VTHER  
THER  
ISEx  
VSEx  
SEx  
GND  
IGND  
VGND  
Ground Plane  
8-1. Voltage and Current Conventions  
8.3.2 Accurate Current Sense  
High-accuracy current sense is implemented in the TPS274160B device. This feature enables continuous  
current monitoring and accurate load diagnostic without extensive calibration.  
The integrated current mirror sources 1 / K(CS) of the load current, and the mirrored current flows into the  
external current sense resistor to become a voltage signal. The current mirror is shared by the four channels.  
K(CS) is the ratio of the output current and the sense current. It is a constant value across the temperature and  
supply voltage. Each device is calibrated accurately during production, so post-calibration is not required. See 图  
8-2 for more details.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
VSUP  
VS  
IOUT/K(CS)  
IOUT  
VCS(H)  
FAULT  
4x  
OUTx  
CS  
R(CS)  
8-2. Current-Sense Block Diagram  
When a fault occurs, the CS pin also works as a fault report with a pullup voltage, VCS(H). See 8-3 for more  
details.  
VCS  
VCS(H)  
VCS(lin)  
Fault Report  
Current Monitor  
IOUTx  
Normal Operating  
On-State: Current Limit, Thermal Fault  
Off-State: Open Load or Short to Battery  
or Reverse Polarity  
8-3. Current-Sense Output-Voltage Curve  
Use 方程式 1 to calculate R(CS)  
.
V
CS ´ K(CS)  
VCS  
ICS  
R(CS)  
=
=
IOUTx  
(1)  
Take the following points into consideration when calculating R(CS)  
.
Ensure VCS is within the current-sense linear region (VCS, IOUTx(lin)) across the full range of the load current.  
Check R(CS) with 方程式 2.  
VCS(lin)  
VCS  
ICS  
R(CS)  
=
£
ICS  
(2)  
In fault mode, ensure ICS is within the source capacity of the CS pin (ICS(H)). Check R(CS) with 方程式 3.  
VCS(H,min)  
VCS  
ICS  
R(CS)  
=
³
ICS(H,min)  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS274160  
 
 
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.3.3 Adjustable Current Limit  
A high-accuracy current limit allows high reliability of the design. It protects the load and the power supply from  
overstressing during short-circuit-to-GND or power-up conditions. The current limit can also save system cost by  
reducing the size of PCB traces and connectors, and the capacity of the preceding power stage.  
When a current-limit threshold is hit, a closed loop activates immediately. The output current is clamped at the  
set value, and a fault is reported out. The device heats up due to the high power dissipation on the power FET. If  
thermal shutdown occurs, the current limit is set to ICL(TSD) to reduce the power dissipation on the power FET.  
See 8-4 for more details.  
The device has two current-limit thresholds.  
Internal current limit The internal current limit is fixed at ICL(int). Tie the CL pin directly to the device GND  
for large-transient-current applications.  
External adjustable current limit An external resistor is used to set the current-limit threshold. Use the 方程  
4 to calculate the R(CL). VCL(th) is the internal band-gap voltage. K(CL) is the ratio of the output current and  
the current-limit set value. It is constant across the temperature and supply voltage. The external adjustable  
current limit allows the flexibility to set the current limit value by applications.  
VCL(th)  
IOUT  
ICL  
=
=
R(CL)  
K(CL)  
V
CL(th) ´ K(CL)  
R(CL)  
=
IOUT  
(4)  
VSUP  
VS  
IOUT/K(CL)  
+
+
Internal Current Limit  
IOUT  
+
VCL(th)  
4x  
OUT  
External Current Limit  
+
VCL(th)  
CL  
8-4. Current-Limit Block Diargam  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
Note that if using a GND network which causes a level shift between the device GND and board GND, the CL  
pin must be connected with device GND.  
For better protection from a hard short-to-GND condition (when the ENx pins are enabled, a short to GND occurs  
suddenly), the device implements a fast-trip protection to turn off the related channel before the current-limit  
closed loop is set up. The fast-trip response time is less than 1 μs, typically. With this fast response, the device  
can achieve better inrush current-suppression performance.  
8.3.4 Inductive-Load Turn-Off Clamp  
When switching an inductive load off, the inductive reactance tends to pull the output voltage negative.  
Excessive negative voltage could cause the power FET to break down. To protect the power FET, an internal  
clamp between drain and source is implemented, namely VDS(clamp)  
.
VDS(clamp) = VVS - VOUT  
(5)  
During the period of demagnetization (tdecay), the power FET is turned on for inductance-energy dissipation. The  
inductive load energy is dissipated in the high-side switch. Total energy includes the energy of the power supply  
(E(VS)) and the energy of the load (E(load)). If resistance is in series with inductance, some of the load energy is  
dissipated on the resistance.  
E
(HSS) = E(VS) + E(load) = E(VS) + E(L) - E(R)  
(6)  
When an inductive load switches off, E(HSS) causes a high thermal stress on the device.. The upper limit of the  
power dissipation depends on the device intrinsic capacity, ambient temperature, and board dissipation  
condition.  
VSUP  
VDS(clamp)  
EN  
L
OUT  
R
GND  
+
8-5. Drain-to-Source Clamping Structure  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
IN  
VVS  
VOUT  
VDS(clamp)  
E(HSS)  
IOUT  
t(decay)  
8-6. Inductive Load Switching-Off Diagram, note EN pin waveform referred to as IN  
From the perspective of the high-side switch, E(HSS) equals the integration value during the demagnetization  
period.  
t(decay)  
E(HSS)  
=
VDS(clamp) ´IOUT (t)dt  
ò
0
æ
ö
÷
÷
ø
R´IOUT(max) + VOUT  
L
t(decay)  
=
´lnç  
ç
è
R
VOUT  
é
ù
ú
æ
ö
÷
÷
ø
R´IOUT(max) + VOUT  
VVS + VOUT  
ê
E(HSS) = L ´  
´ R´IOUT(max) - VOUT lnç  
R2  
ç
VOUT  
ê
ú
è
ë
û
(7)  
(8)  
When R approximately equals 0, E(HSD) can be given simply as:  
VVS + VOUT  
1
2
E(HSS)  
=
´L ´IO2 UT(max  
)
VOUT  
8-7 is a waveform of the device driving an inductive load. Channel 1 is the EN signal (blue), channel 2 is the  
supply voltage VVS (cyan), channel 3 is the output voltage VOUT (magenta), channel 4 is the output current  
IOUT(green), and channel M is the measured power dissipation E(HSS)  
.
On the waveform, the duration of VOUT from VVS to (VVS VDS(clamp)) is around 120 µs. The device optimizes  
the switch-off slew rate when the clamp is active. As shown in 8-7, the controlled slew rate is around 0.5 V/µs.  
The 8-8 plots the maximum inductive energy (EAS) that can be discharged safely by the device a function of  
the inductor load current in a single pulse in a single channel at one time. If the stored energy in the inductor at  
the particular load current is higher, then an external clamp will be required.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
500  
400  
300  
200  
100  
0
0
1
2
3
4
Load Current (A)  
5
6
7
D020  
8-8. Maximum Energy Dissipation (EAS) Allowed  
8-7. Inductive Load Switching-Off Waveform  
TJ_start = 125°C - Single Pulse, One Channel  
Note that for PWM-controlled inductive loads, it is recommended to add the external freewheeling circuitry  
shown in 8-9 to protect the device from repetitive power stressing. The TVS clamp is used to achieve the fast  
decay. See 8-9 for more details.  
VS  
Output  
Clamp  
OUTx  
GND  
D
L
TVS  
8-9. Protection With External Circuitry  
8.3.5 Fault Detection and Reporting  
8.3.5.1 Diagnostic Enable Function  
The DIAG_EN pin enables or disables the diagnostic functions. If multiple devices are used, but the ADC  
resource is limited in the microcontroller, the MCU can use GPIOs to set DIAG_EN high to enable the  
diagnostics of one device while disabling the diagnostics of the other devices by setting DIAG_EN low. In  
addition, the device can keep the power consumption to a minimum by setting DIAG_EN and ENx low.  
8.3.5.2 Multiplexing of Current Sense  
For version B, SEL and SEH are two pins to multiplex the shared current-sense function among the four  
channels. See 8-1 for more details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS274160  
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
8-1. Diagnosis Configuration Table  
CS ACTIVATED  
CHANNEL  
DIAG_EN  
ENx  
SEH  
SEL  
CS, FAULT, STx  
PROTECTIONS AND DIAGNOSTICS  
H
L
Diagnostics disabled, full protection  
Diagnostics disabled, no protection  
L
High impedance  
0
0
1
1
0
1
0
1
Channel 1  
Channel 2  
Channel 3  
Channel 4  
H
See Table 8-2  
See 8-2  
8.3.5.3 Fault Table  
8-2 applies when the DIAG_EN pin is enabled.  
8-2. Fault Table  
STx  
CS  
FAULT  
CONDITIONS  
ENx OUTx THER CRITERION  
FAULT RECOVERY  
(VER. A) (VER. B) (VER. B)  
L
L
H
H
0
H
H
Normal  
In linear  
region  
H
H
Current limit  
triggered  
Overlaod, short to ground  
H
L
L
L
L
VCS(H)  
VCS(H)  
L
L
Auto  
Auto  
Open load(1), short to supply,  
reverse polarity  
V
VS VOUTx <  
H
V(ol,off)  
Output auto-retry. Fault  
recovers when TJ < T(SD,rst) or  
when ENx toggles.  
L
Thermal shutdown  
Thermal swing  
H
H
TSD triggered  
L
L
VCS(H)  
L
L
Output latch off. Fault recovers  
when ENx toggles.  
H
TSW triggered  
VCS(H)  
Auto  
(1) An external pullup is required for open-load detection.  
8.3.5.4 STx and FAULT Reporting  
For version A, four individual STx pins report the fault conditions, each pin for its respective channel. When a  
fault condition occurs, it pulls STx down to GND. A 3.3- or 5-V external pullup is required to match the supply  
level of the microcontroller. The digital status of each channel can be reported individually, or globally by  
connecting all the STx pins together.  
For version B, a global FAULT pin is used to monitor the global fault condition among all the channels. When a  
fault condition occurs on any channel, the FAULT pin is pulled down to GND. A 3.3-V or 5-V external pullup is  
required to match the supply level of the microcontroller.  
After the FAULT report, the microcontroller can check and identify the channel in fault status by multiplexed  
current sensing. The CS pin also works as a fault report with an internal pullup voltage, VCS(H)  
.
8.3.6 Full Diagnostics  
8.3.6.1 Short-to-GND and Overload Detection  
When a channel is on, a short to GND or overload condition causes overcurrent. If the overcurrent triggers either  
the internal or external current-limit threshold, the fault condition is reported out. The microcontroller can handle  
the overcurrent by turning off the switch. The device heats up if no actions are taken. If a thermal shutdown  
occurs, the current limit is ICL(TSD) to keep the power stressing on the power FET to a minimum. The device  
automatically recovers when the fault condition is removed.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.3.6.2 Open-Load Detection  
8.3.6.2.1 Channel On  
When a channel is on and an open-load event occurs, it can be detected as an ultra-low VCS voltage at the CS  
pin and handled by the micro-controller. The high-accuracy current sense in the low current range, enables the  
open-load detection at very low current thresholds. Note that the detection is not reported on the STx or FAULT  
pins. The microcontroller must proactively multiplex the SEL and SEH pins to detect the channel-on open-load  
fault.  
8.3.6.2.2 Channel Off  
When a channel is off, if a load is connected, the output is pulled down to GND. But if an open load occurs, the  
output voltage is close to the supply voltage (VVS VOUTx< V(ol,off)), and the fault is reported out.  
There is always a leakage current I(ol,off) present on the output due to internal logic control path or external  
humidity, corrosion, and so forth. Thus, TI recommends an external pullup resistor to offset the leakage current  
when an open load is detected. The recommended pullup resistance is 20 kΩ.  
VSUP  
Open-Load Detection in Off State  
V(ol,off)  
R(PU)  
VDS  
Load  
8-10. Open-Load Detection in Off-State  
8.3.6.3 Short-to-Supply Detection  
Short-to-supply has the same detection mechanism and behavior as open-load detection, in both the on-state  
and off-state. See 8-2 for more details.  
In the on-state, reverse current flows through the FET instead of the body diode, leading to less power  
dissipation. Thus, the worst case occurs in the off-state.  
If VOUTx VVS < V(F) (body diode forward voltage), no reverse current occurs.  
If VOUTx VVS > V(F), reverse current occurs. The current must be limited to less than IR(1). Setting an ENx  
pin high can minimize the power stress on its channel. Also, for external reverse protection, see Reverse-  
Current Protection for more details.  
8.3.6.4 Input Reverse Polarity Detection  
Reverse polarity detection has the same detection mechanism and behavior as open-load detection both in the  
on-state and off-state. See 8-2 for more details.  
In the on-state, the reverse current flows through the FET instead of the body diode, leading to less power  
dissipation. Thus, the worst case occurs in the off-state. The reverse current must be limited to less than IR(2)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
Set the related ENx pin high to keep the power dissipation to a minimum. For external reverse-blocking circuitry,  
see Reverse-Current Protection for more details.  
8.3.6.5 Thermal Fault Detection  
To protect the device in severe power stressing cases, the device implements two types of thermal fault  
detection, absolute temperature protection (thermal shutdown) and dynamic temperature protection (thermal  
swing). Respective temperature sensors are integrated close to each power FET, so the thermal fault is reported  
by each channel. This arrangement can help the device keep the cross-channel effect to a minimum when some  
channels are in a thermal fault condition.  
8.3.6.5.1 Thermal Shutdown  
Thermal shutdown is active when the absolute temperature TJ > T(SD). When thefrmal shutdown occurs, the  
respective output turns off. The THER pin is used to configure the behavior after the thermal shutdown occurs.  
When the THER pin is low, thermal shutdown operates in the auto-retry mode. The output automatically  
recovers when TJ < T(SD) T(hys), but the current is limited to ICL(TSD) to avoid repetitive thermal shutdown.  
The thermal shutdown fault signal is cleared when TJ < T(SD,rst) or after toggling the related ENx pin.  
When the THER pin is high, thermal shutdown operates in the latch mode. The output latches off when  
thermal shutdown occurs. When the THER pin goes from high to low, thermal shutdown changes to auto-  
retry mode. The thermal shutdown fault signal is cleared after toggling the related ENx pin.  
Thermal swing activates when the power FET temperature is increasing sharply, that is, when ΔT = T(FET)  
T(Logic) > T(sw), then the output turns off. The output automatically recovers and the fault signal clears when ΔT =  
T(FET) T(Logic) < T(sw) T(hys). Thermal swing function improves the device reliability when subjected to  
repetitive fast thermal variation. As shown in 8-11, multiple thermal swings are triggered before thermal  
shutdown occurs.  
Thermal Behavior After Short to GND  
VTHER  
VINx  
T(SD)  
T(SD,rst)  
T(hys)  
TJ  
T(hys)  
T(SW)  
ICL  
IOUTx  
ICL(TSD)  
VCS(H)  
VCS  
VFAULT  
or VST  
8-11. Thermal Behavior Diagram  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.3.7 Full Protections  
8.3.7.1 UVLO Protection  
The device monitors the supply voltage VVS, to prevent unpredicted behaviors when VVS is too low. When VVS  
falls down to VVS(uvf), the device shuts down. When VVS rises up to VVS(uvr), the device turns on.  
8.3.7.2 Loss-of-GND Protection  
When loss of GND occurs, output is shut down regardless of whether the ENx pin is high or low. The device can  
protect against two ground-loss conditions, loss of device GND and loss of module GND.  
8.3.7.3 Protection for Loss of Power Supply  
When loss of supply occurs, the output is shut down regardless of whether the ENx pin is high or low. For a  
resistive or a capacitive load, loss of supply has no risk. But for a charged inductive load, the current is driven  
from all the I/O pins to maintain the inductance current. To protect the system in this condition, TI recommends  
two types of external protections: the GND network or the external free-wheeling diode. In addition, the  
recommended components per the application diagram needs to be implemented for protection.  
VBAT  
VS  
I/Os  
MCU  
High-Side Switch  
OUT  
L
8-12. Protection for Loss of Power Supply, Method 1  
VBAT  
VS  
I/Os  
MCU  
High-Side Switch  
OUT  
L
8-13. Protection for Loss of Power Supply, Method 2  
8.3.7.4 Reverse-Current Protection  
Reverse current occurs in two conditions: short to supply and reverse polarity.  
When a short to the supply occurs, there is only reverse current through the body diode. IR(1) specifies the  
limit of the reverse current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS274160  
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
In a reverse-polarity condition, there are reverse currents through the body diode and the device GND pin.  
IR(2) specifies the limit of the reverse current.  
To protect the device, TI recommends two types of external circuitry.  
Adding a blocking diode. Both the IC and load are protected when in reverse polarity.  
VBAT  
VS  
´
OUT  
Load  
Copyright © 2016, Texas Instruments Incorporated  
8-14. Reverse-Current External Protection, Method 1  
Adding a GND network. The reverse current through the device GND is blocked. The reverse current through  
the FET is limited by the load itself. TI recommends a resistor in parallel with the diode as a GND network.  
The recommended selection are 1-kΩ resistor in parallel with an > 100-mA diode. If multiple high-side  
switches are used, the resistor and diode can be shared among devices. The reverse current protection  
diode in the GND network forward voltage should be less than 0.6 V in any circumstances. In addition a  
minimum resistance of 4.7 K is recommended on the I/O pins.  
VSUP  
VS  
OUT  
Load  
8-15. Reverse-Current External Protection, Method 2  
8.3.7.5 MCU I/O Protection  
In some severe conditions, such as the high voltage transients or the loss of supply with inductive loads, a  
negative pulse occurs on the GND pin This pulse can cause damage on the connected microcontroller. TI  
recommends serial resistors to protect the microcontroller, for example, 4.7-kΩ when using a 3.3-V  
microcontroller and 10-kΩ for a 5-V microcontroller.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS274160  
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
VSUP  
I/Os  
VS  
MCU  
High-Side Switch  
OUT  
Load  
8-16. MCU I/O External Protection  
8.4 Device Functional Modes  
8.4.1 Working Modes  
The device has three working modes, the normal mode, the standby mode, and the standby mode with  
diagnostics.  
Note that IN must be low for t > t(off,deg) to enter the standby mode, where t(off,deg) is the standby mode deglitch  
time used to avoid false triggering. 8-17 shows a working-mode diagram.  
Standby Mode  
(ENx low, DIAG low)  
DIAG_EN low and  
ENx high to low and  
t > toff,deg  
DIAG_EN  
high to low  
ENx low to high  
DIAG_EN  
low to high  
ENx high to low and  
DIAG_EN high and  
t > toff,deg  
Standby mode  
with diagnostic  
(ENx low, DIAG high)  
Normal Mode  
(ENx high)  
ENx low to high  
8-17. Working Modes  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS274160  
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分的信息不属于 TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9-1 shows the schematic of a typical application of the . It includes all standard external components. This  
section of the datasheet discusses the considerations in implementing commonly required application  
functionality.  
Supply  
Input  
CVS  
VS  
R(ser)  
Load  
OUT1  
OUT2  
EN1, 2, 3, 4  
DIAG_EN  
COUT  
R(ser)  
R(ser)  
Load  
Load  
Load  
Legend  
SEH  
SEL  
COUT  
COUT  
COUT  
R(ser)  
MCU  
Module GND  
Device GND  
OUT3  
OUT4  
5 V  
R(pu)  
R(ser)  
FAULT  
CS  
CL  
OPTIONAL for  
reverse polarity  
protection  
R(CS)  
THER  
GND  
RGND  
DGND  
R(CL)  
With the ground protection network, the device ground will be offset relative to the microcontroller ground.  
9-1. System Diagram  
9-1. Recommended External Components  
COMPONENT  
R(ser)  
TYPICAL VALUE  
PURPOSE  
Protect microcontroller and device I/O pins  
Translate the sense current into sense voltage  
Low-pass filter for the ADC input  
10 kΩ  
R(CS)  
CSNS  
RGND  
DGND  
1 kΩ  
100 pF - 10 nF  
1 kΩ  
Stabilize GND potential during turn-off of inductive load  
Protects device during reverse supply condition  
BAS21 Diode  
Set current limiting value, short to IC GND to set the current limit to the internal  
setting.  
R(CL)  
1-kΩ typical  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
9-1. Recommended External Components (continued)  
COMPONENT  
TYPICAL VALUE  
PURPOSE  
10 nF to Device GND and  
100 nF to module GND  
CVS  
Filtering of voltage transients (for example, surge)  
ZVS  
TVS to module GND  
22 nF  
Clamp voltage spikes at the input.  
COUT  
Filtering of voltage transients (for example, ESD)  
9.2 Typical Application  
The following figure shows example of a typical application based on the TPS274160B device. The loads can be  
varied and be different on each channel.  
Supply  
Input  
VS  
R(ser)  
LED Strings,  
Small Power Bulbs  
OUT1  
EN1, 2, 3, 4  
DIAG_EN  
R(ser)  
Solenoids, Valves, Relays  
R(ser)  
OUT2  
OUT3  
SEH  
SEL  
R(ser)  
MCU  
Power-Module:  
Cameras, Sensors, Displays  
5 V  
R(pu)  
General Resistive, Capacitive,  
Inductive Loads  
R(ser)  
OUT4  
FAULT  
CS  
CL  
R(CS)  
GND  
THER  
R(CL)  
9-2. Typical Application Diagram.  
9.2.1 Design Requirements  
VVS = 24-V nominal  
Load range is from 0.1 A to 1 A for each channel  
Current sense for fault monitoring  
Expected current-limit value of 2.5 A  
Automatic recovery mode when thermal shutdown occurs  
Full diagnostics with 5-V MCU  
9.2.2 Detailed Design Procedure  
To keep the 1-A nominal current in the 0 to 4-V current-sense range, calculate the R(CS) resistor using 方程式 9.  
To achieve better current-sense accuracy, a 1% tolerance or better resistor is preferred.  
V
CS´ K(CS)  
VCS  
ICS  
4´ 300  
R(CS)  
=
=
=
= 1200 W  
IOUT  
1
(9)  
To set the adjustable current limit value at 2.5-A, calculate R(CL) using 方程式 10.  
V
CL(th) ´ K(CL)  
0.8´ 2500  
R(CL)  
=
=
= 800 W  
IOUT  
2.5  
(10)  
TI recommends R(ser) = 10 kΩ for 5-V MCU, and R(pu) = 10 kΩ as the pullup resistor.  
9.3 Capacitive Load Drive and Application Curves  
In this application example we show the case of driving a large capacitive load at the input of a sensor hub  
supply node. The input capacitance is a 2.3-mF capacitor and is charged to a 12-V supply voltage . The nominal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS274160  
 
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
total load current at the node is 0.4 A and the current limit is set to 1 A and chosen to be well in excess of the  
peak load current. 9-3 shows a test example of soft-start when driving the large capacitive load. 9-4 shows  
an expanded waveform of the output current.  
Overcurrent Is Clamped  
at the Set Value of 1 A.  
VS = 12 V  
Load current = 0.4  
A
Current limit = 1 A  
CH1 = ENx  
VVS = 12 V  
Load current = 0.4  
A
Current limit = 1 A  
CH1 = ENx  
ENx = ↑  
ENx = ↑  
CL = 2.3 mF  
CL = 2.3 mF  
CH2 = FAULT  
CH3 = output  
voltage  
CH4 = output  
current  
CH2 = FAULT  
CH3 = output  
voltage  
CH4 = output  
current  
9-3. Driving a Capacitive Load With Adjustable  
9-4. Driving a Capacitive Load, Expanded  
Current Limit  
Waveform  
10 Power Supply Recommendations  
The TPS274160 device is designed to operate with a 12-V or 24-V nominal DC supply input. The DC supply  
voltage range should be within the range specified in the Recommended Operating Conditions. The device is  
also designed to withstand voltage transients beyond this range at the supply input pin up to the absolute  
maximum voltage specifications.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
To prevent thermal shutdown, TJ must be less than 150°C. The WQFN package has good thermal impedance.  
However, the PCB layout is very important. Good PCB design can optimize heat transfer, which is absolutely  
essential for the long-term reliability of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat  
flow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely  
important when there are not any heat sinks attached to the PCB on the other side of the package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should either be plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
11.2 Layout Examples  
11.2.1 Without a GND Network  
Without a GND network, tie the thermal pad directly to the board GND copper for better thermal performance.  
1
2
3
4
5
6
7
22  
21  
20  
OUT2  
NC  
EN3  
EN4  
ST1  
VS  
VS  
ST2  
19  
18  
Thermal  
Pad  
ST3  
ST4  
VS  
VS  
17  
16  
15  
CL  
NC  
OUT3  
8
NC  
11-1. Layout Example Without a GND Network  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS274160  
 
 
 
TPS274160  
ZHCSLS1A MAY 2020 REVISED NOVEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS274160  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS274160ARLHR  
TPS274160BRLHR  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RLH  
RLH  
28  
28  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
274160A  
274160B  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RLH0028A  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
5.1  
4.9  
0.8  
MAX  
A
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.55±0.1  
2X 2.5  
(0.1) TYP  
9
14  
24X 0.5  
8
15  
SYMM  
29  
2X  
3.55±0.1  
3.5  
1
22  
0.30  
28X  
PIN 1 ID  
(OPTIONAL)  
0.18  
28  
23  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
0.05  
28X  
4224734/A 12/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RLH0028A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.8)  
(2.55)  
2X (2.5)  
23  
28  
28X (0.6)  
28X (0.24)  
1
22  
24X (0.5)  
4X (0.61)  
SYMM  
2X  
29  
(3.55) (4.8)  
(3.5)  
2X  
(1.525)  
8
15  
(R0.05) TYP  
9
14  
(Ø 0.2) VIA  
TYP  
4X (1.025)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
0.07 MAX  
ALL AROUND  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224734/A 12/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RLH0028A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.8)  
2X (2.5)  
6X (1.13)  
23  
28  
28X (0.6)  
28X (0.24)  
1
22  
24X (0.5)  
6X  
(1.02)  
29  
SYMM  
2X  
(4.8)  
(3.5)  
2X  
(1.22)  
8
15  
(R0.05) TYP  
METAL  
9
14  
TYP  
4X (0.665)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
76% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4224734/A 12/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS274C65

具有 SPI 接口和集成式 ADC 的 12V 至 36V 65mΩ 四通道高侧开关
TI

TPS27S100

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关
TI

TPS27S100APWPR

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | PWP | 14 | -40 to 125
TI

TPS27S100APWPT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | PWP | 14 | -40 to 125
TI

TPS27S100ARRKR

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125
TI

TPS27S100ARRKT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125
TI

TPS27S100BPWPR

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | PWP | 14 | -40 to 125
TI

TPS27S100BPWPT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | PWP | 14 | -40 to 125
TI

TPS27S100BRRKR

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125
TI

TPS27S100BRRKT

具有可调节电流限制的 40V、80mΩ、4A、单通道工业高侧开关 | RRK | 16 | -40 to 125
TI

TPS27SA08

具有电流监测功能的汽车类 36V、8mΩ 单通道智能高侧开关
TI

TPS27SA08-Q1

具有电流监测功能的汽车级 36V、8mΩ、10A 单通道智能高侧开关
TI