TPS2849PWPR [TI]

SYNCHRONOUS BUCK MOSFET DRIVERS WITH DRIVE REGULATOR; 同步降压MOSFET驱动器与驱动器稳压器
TPS2849PWPR
型号: TPS2849PWPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SYNCHRONOUS BUCK MOSFET DRIVERS WITH DRIVE REGULATOR
同步降压MOSFET驱动器与驱动器稳压器

驱动器 MOSFET驱动器 稳压器 驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A – MARCH 2001 – REVISED JUNE 2001  
D
Inverting and Noninverting Options  
FEATURES  
D
TSSOP PowerPad Package for Excellent  
Thermal Performance  
D
D
D
D
D
D
D
Integrated Drive Regulator (4 V to 14 V)  
Adjustable/Adaptive Dead-Time Control  
4-A Peak current at VDRV of 14 V  
10-V to 15-V Supply Voltage Range  
TTL-Compatible Inputs  
APPLICATIONS  
D
D
Single or Multiphase Synchronous-Buck  
Power Supplies  
High-Current DC/DC Power Modules  
Internal Schottky Diode Reduces Part Count  
Synchronous or Nonsynchronous Operation  
The devices feature VDRV to PGND shoot-  
through protection with adaptive/adjustable  
deadtime control. The deadtime, for turning on the  
high-side FET from LOWDR transitioning low, is  
adjustable with an external capacitor on the  
DELAY pin. This allows compensation for the  
effect the gate resistor has on the synchronous  
FET turn off. The adaptive deadtime prevents the  
turning on of the low-side FET until the voltage on  
the BOOTLO pin falls below a threshold after the  
high-side FET stops conducting. The high-side  
drive can be configured as a ground referenced  
driver or a floating bootstrap driver. The internal  
Schottky diode minimizes the size and number of  
external components needed for the bootstrap  
driver circuit. Only one external ceramic capacitor  
is required to configure the bootstrap driver.  
DESCRIPTION  
The TPS2838/39/48/49 devices are MOSFET  
drivers designed for high-performance  
synchronous power supplies. The drivers can  
source and sink up to 4-A peak current at a 14-V  
drive voltage. These are ideal devices to use with  
power supply controllers that do not have on-chip  
drivers. The low-side driver is capable of driving  
loads of 3.3 nF in 10-ns rise/fall times and has  
40-ns propagation delays at room temperature.  
The MOSFET drivers have an integrated 150-mA  
regulator, so the gate drive voltage can be  
optimized for specific MOSFETs. The TPS2848  
and TPS2849 have a fixed 8-V drive regulator,  
while the TPS2838/39 allow the drive regulator to  
be adjusted from 4 V to 14 V by selection of two  
external resistors.  
TPS2838, TPS2839  
PWP PACKAGE  
(TOP VIEW)  
TPS2848, TPS2849  
PWP PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
ENABLE  
ENABLE  
IN  
PWRRDY  
DELAY  
NC  
BOOT  
HIGHDR  
BOOTLO  
BOOT  
HIGHDR  
BOOTLO  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ACTUAL SIZE  
(5,1 mm x 6,6 mm)  
IN  
PWRRDY  
DELAY  
SYNC  
ADJ  
Thermal  
Pad  
V
V
Thermal  
Pad  
CC  
CC  
VDRV  
LOWDR  
NC  
VDRV  
LOWDR  
PGND  
DT  
AGND  
ACTUAL SIZE  
(5,1 mm x 6,6 mm)  
DT  
AGND  
8
PGND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
ꢀꢩ  
Copyright 2001, Texas Instruments Incorporated  
ꢥ ꢩ ꢦ ꢥꢞ ꢟꢳ ꢡꢠ ꢤ ꢬꢬ ꢪꢤ ꢢ ꢤ ꢣ ꢩ ꢥ ꢩ ꢢ ꢦ ꢮ  
1
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
description (continued)  
The SYNC pin can be used regardless of load to disable the synchronous FET driver and operate the power  
supply nonsynchronously.  
A power ready/undervoltage lockout function outputs the status of the V -pin voltage and driver regulator  
CC  
output on the open-drain PWRRDY pin. This feature can be used to enable a controllers output once the V  
CC  
voltage reaches the threshold and the regulator output is stable. This function ensures both FET drivers are off  
when the V voltage is below the voltage threshold.  
CC  
The TPS2838/39/48/49 devices are offered in the thermally enhanced 14-pin and 16-pin PowerPAD TSSOP  
package. The PowerPAD package features an exposed leadframe on the bottom that can be soldered to the  
printed-circuit board to improve thermal efficiency. The TPS2838/48 are noninverting control logic while the  
TPS2839/49 drivers are inverting control logic.  
2
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
functional block diagram (TPS2838, TPS2839)  
V
CC  
ADJ  
VDRV  
Vr1  
V
CC  
0.9 × Vref  
REFERENCES  
POR  
SYS_UVLO  
Vref  
0.9 × Vref  
SHUTDOWN  
Vr1  
PWRRDY  
AGND  
THERMAL  
SHUTDOWN  
DRIVE  
REGULATOR  
BOOT  
SHUTDOWN  
HIGHDR  
BOOTLO  
IN  
INVERTING OPTION  
TPS2839 ONLY  
VDRV  
LOWDR  
SYNC  
DT  
SYS_UVLO  
DEADTIME  
PGND  
ENABLE  
CONTROL  
DELAY  
functional block diagram (TPS2848, TPS2849)  
V
CC  
VDRV  
Vr1  
V
CC  
0.9 × Vref  
REFERENCES  
POR  
SYS_UVLO  
Vref  
0.9 × Vref  
SHUTDOWN  
Vr1  
PWRRDY  
AGND  
THERMAL  
SHUTDOWN  
DRIVE  
REGULATOR  
BOOT  
SHUTDOWN  
HIGHDR  
BOOTLO  
IN  
INVERTING OPTION  
TPS2849 ONLY  
VDRV  
LOWDR  
SYS_UVLO  
DEADTIME  
CONTROL  
DT  
PGND  
ENABLE  
DELAY  
3
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
Terminal Functions  
TERMINAL  
NO.  
NAME  
DESCRIPTION  
TPS283x TPS284x  
ADJ  
6
8
7
Adjust. The adjust pin is the feedback pin for the drive regulator (TPS283X only)  
Analog ground  
AGND  
BOOT  
16  
14  
Bootstrap. A capacitor is connected between the BOOT and BOOTLO pins to develop the floating  
bootstrap voltage for the high-side MOSFET. The capacitor value is typically between 0.1 µF and 1 µF.  
BOOTLO  
DELAY  
DT  
14  
4
12  
4
Boot low. This pin connects to the junction of the high-side and low-side MOSFETs.  
Delay. Connecting a capacitor between this pin and ground adjusts the deadtime for high-side driver  
Deadtime control. Connect DT to the junction of the high-side and low-side MOSFETs  
Enable. If ENABLE is low, both drivers are off.  
7
6
ENABLE  
HIGHDR  
IN  
1
1
15  
2
13  
2
High drive. This pin is the output drive for the high-side power MOSFET.  
Input. This pin is the input signal to the MOSFET drivers.  
LOWDR  
NC  
11  
10  
9
9
Low drive. This pin is the output drive for the low-side power MOSFET.  
No internal connection  
5
PGND  
PWRRDY  
SYNC  
8
Power ground. This pin is connected to the FET power ground.  
3
3
Power ready. This open-drain pin indicates a power good for VDRV and V .  
CC  
5
Synchronous rectifier enable. If SYNC is low, the low-side driver is always off; if SYNC is high, the  
low-side driver provides gate drive to the low-side MOSFET.  
V
13  
12  
11  
10  
Input power supply. It is recommended that a capacitor (minimum 1 µF) be connected from V to  
CC  
CC  
PGND. Note that V  
must be 2 V higher than VDRV.  
CC  
VDRV  
Drive regulator output voltage. It is recommended that a capacitor (minimum 1 µF) be connected from  
VDRV to PGND. Note that V must be 2 V higher than VDRV.  
CC  
detailed description  
low-side driver  
The low-side driver is designed to drive low r  
source and sink.  
N-channel MOSFETs. The current rating of the driver is 4 A,  
N-channel MOSFETs. The current rating of the driver is 4 A  
DS(on)  
high-side driver  
The high-side driver is designed to drive low r  
DS(on)  
minimum, source and sink. The high-side driver can be configured as a GND-reference driver or as a  
floating-bootstrap driver. The internal bootstrap diode is a Schottky, for improved drive efficiency. The maximum  
voltage that can be applied from BOOT to ground is 30 V.  
dead-time (DT) control  
Dead-time control prevents shoot-through current from flowing through the main power FETs during switching  
transitions by controlling the turnon times of the MOSFET drivers. The high-side driver is not allowed to turn  
on until the gate drive voltage to the low-side FET is low, and the low-side driver is not allowed to turn on until  
the voltage at the junction of the power FETs (BOOTLO) is low. The TTL-compatible DT terminal connects to  
the junction of the power FETs.  
ENABLE  
The ENABLE terminal enables the drivers. When enable is low, the output drivers are low. ENABLE is a  
TTL-compatible digital terminal.  
4
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
detailed description (continued)  
IN  
The IN terminal is a TTL-compatible digital terminal that is the input control signal for the drivers. The  
TPS2838/48 have noninverting inputs; the TPS2839/49 have inverting inputs. On the TPS2838 and TPS2848,  
a high on IN results in a high on HIGHDR. On the TPS2839 and TPS2849, a high on IN results in a low on  
HIGHDR.  
SYNC (TPS283x only)  
The SYNC terminal controls whether the drivers operate in synchronous or nonsynchronous mode. In  
synchronous mode, the low-side FET is operated as a synchronous rectifier. In nonsynchronous mode, the  
low-side FET is always off. SYNC is a TTL-compatible digital terminal.  
PWRRDY  
Depicts the status of the V  
pin voltage and the driver regulator output on the open-drain PWRRDY pin.  
CC  
DELAY  
Adjustable high-side turnon delay from from when the low-side FET is turned off.  
ADJ (TPS283x only)  
Input for adjusting the driver regulator output. See the application information section for the adjustment formula.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
CC  
Input voltage range:ADJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
BOOT to PGND (high-side driver ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 30 V  
BOOTLO to PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
BOOT to BOOTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
ENABLE, IN, and SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
VDRV, PWRRDY, and DELAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
J
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: Unless otherwise specified, all voltages are with respect to PGND.  
5
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
DISSIPATION RATING TABLE  
PACKAGE  
T
A
25°C  
DERATING FACTOR  
26.68 mW/°C  
T
A
= 70°C  
T = 85°C  
A
14-pin PWP with solder  
14-pin PWP without solder  
2668  
1467  
563  
1067  
409  
1024  
2739  
1108  
10.24 mW/°C  
16-pin PWP with solder  
27.39 mW/°C  
1506  
609  
1095  
443  
16-pin PWP without solder  
11.08 mW/°C  
JUNCTION-CASE THERMAL RESISTANCE TABLE  
14-pin PWP  
16-pin PWP  
Junction-case thermal resistance  
Junction-case thermal resistance  
2.07 °C/W  
2.07 °C/W  
Test Board Conditions:  
1. Thickness: 0.062I  
2. 3I × 3I (for packages < 27 mm long)  
3. 4I × 4I (for packages > 27 mm long)  
4. 2-oz copper traces located on the top of the board (0,071 mm thick)  
5. Copper areas located on the top and bottom of the PCB for soldering  
6. Power and ground planes, 1-oz copper (0,036 mm thick)  
7. Thermal vias, 0,33 mm diameter, 1,5 mm pitch  
8. Thermal isolation of power plane  
For more information, refer to TI technical brief literature number SLMA002.  
recommended operating conditions  
MIN NOM  
MAX  
15  
UNIT  
V
Supply voltage, V  
CC  
10  
10  
Input voltage, V BOOT to PGND  
29  
V
I
electrical characteristics over recommended operating virtual junction temperature range,  
= 12 V, ENABLE = High, C = 3.3 nF (unless otherwise noted)  
V
CC  
L
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
425  
1
UNIT  
µA  
V
V
= Low,  
= High,  
V
V
= 13 V  
= 13 V  
(ENABLE)  
CC  
I
Quiescent current  
CC  
mA  
(ENABLE)  
CC  
NOTE 2: Ensured by design, not production tested.  
6
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, ENABLE = High, C = 3.3 nF (unless otherwise noted) (continued)  
CC  
L
dead-time control  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
V
LOWDR high-level input voltage  
LOWDR low-level input voltage  
DT high-level input voltage  
DT low-level input voltage  
Deadtime delay  
Over full VDRV range  
Over full VDRV range  
See Note 2  
See Note 2  
50  
%VDRV  
IH(LOWDR)  
IL(LOWDR)  
IH(DT)  
1
V
V
Over full V  
range  
range  
2
CC  
CC  
Over full V  
1
1.5  
V
IL(DT)  
V
V
V
V
= 4 V to 14 V  
See Note 2  
0.5  
30  
30  
1
ns/pF  
ns  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
= 4.5 V,  
T
J
= 25°C, See Note 2  
150  
100  
Driver nonoverlap time (DT to LOWDR)  
= 14.5 V, T = 25°C, See Note 2  
ns  
J
= 4.5 V,  
= 25°C,  
C
= 50 pF  
L(Delay)  
See Note 2  
75  
58  
50  
30  
180  
125  
125  
100  
T
J
Driver nonoverlap time (LOWDR to  
HIGHDR)  
ns  
ns  
V
= 14.5 V, C  
= 50 pF  
L(Delay)  
(VDRV)  
= 25°C,  
T
J
See Note 2  
V
= 4.5 V,  
C
= 0 pF  
(VDRV)  
= 25°C,  
L(Delay)  
See Note 2  
T
J
Driver nonoverlap time (LOWDR to  
HIGHDR)  
V
= 14.5 V, C  
= 0 pF  
L(Delay)  
(VDRV)  
= 25°C,  
T
J
See Note 2  
NOTE 2: Ensured by design, not production tested.  
high-side driver  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
= 0.5 V (src)  
= 4 V (sink)  
= 0.5 V (src)  
= 8 V (sink)  
= 0.5 V (src)  
= 14 V (sink)  
= 4 V (src)  
1
2
2
2
2
2
1.3  
2.4  
2.4  
3.3  
3.9  
4.4  
V
V  
= 4 V,  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(BOOT) (BOOTLO)  
See Note 2  
V
V  
= 8 V,  
(BOOT) (BOOTLO)  
See Note 2  
Peak output current  
A
V
V  
= 14 V,  
= 4.5 V  
= 7.5 V,  
= 11.5 V,  
(BOOT) (BOOTLO)  
See Note 2  
45  
6
V
T
V  
= 25°C  
(BOOT) (BOOTLO)  
J
= 0.5 V (sink)  
= 7 V (src)  
26  
V
V  
= 25°C  
(BOOT) (BOOTLO)  
r
Output resistance  
o
T
J
= 0.5 V (sink)  
= 11 V (src)  
= 0.5 V (sink)  
5
20  
4
V
T
V  
= 25°C  
(BOOT) (BOOTLO)  
J
HIGHDRV-to-BOOTLO resistor  
250  
kΩ  
85  
70  
65  
V
V
V
V
V
V
V
V
V
= 4 V  
(BOOT)  
(BOOT)  
(BOOT)  
(BOOT)  
(BOOT)  
(BOOT)  
(BOOT)  
(BOOT)  
(BOOT)  
C
T
= 3.3 nF,  
= 125°C  
V
= GND,  
= GND,  
L
J
(BOOTLO)  
= 8 V  
= 14 V  
= 4 V  
Rise and fall time  
(see Notes 2 and 3)  
t /t  
r f  
ns  
170  
C
= 10 nF, V  
(BOOTLO)  
= 125°C  
L
J
= 8 V  
140  
100  
120  
T
= 14 V  
= 4 V  
Propagation delay time,  
HIGHDR going low  
(excluding deadtime)  
V
= GND,  
T
J
= 125°C,  
(BOOTLO)  
= 8 V  
100  
ns  
t
PHL  
See Notes 2 and 3  
= 14 V  
80  
NOTES: 2: Ensured by design, not production tested.  
3. The pullup/pulldown circuits of the drivers are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors. The output resistance is the r of the MOSFET transistor when  
DS(on)  
the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
7
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, ENABLE = High, C = 3.3 nF (unless otherwise noted) (continued)  
CC  
L
low-side driver  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
1.6  
2.4  
2.4  
3.3  
3.9  
4.4  
MAX  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
= 0.5 V (src)  
= 4 V (sink)  
= 0.5 V (src)  
= 8 V (sink)  
= 0.5 V (src)  
= 14 V (sink)  
= 4 V (src)  
V
T
= 4 V,  
(LOWDR)  
(LOWDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(HIGHDR)  
(LOWDR)  
(LOWDR)  
(LOWDR)  
(LOWDR)  
(LOWDR)  
(LOWDR)  
(VDRV)  
= 25°C,  
See Note 2  
2
J
2
V
T
= 8 V,  
= 25°C,  
(VDRV)  
J
Peak output current  
A
See Note 2  
2
2
V
= 14 V (src),  
(VDRV)  
T
J
= 25°C,  
See Note 2  
2
30  
8
V
T
= 4.5 V,  
= 25°C  
(VDRV)  
J
= 0.5 V (sink)  
= 7 V (src)  
25  
7
V
= 7.5 V,  
= 25°C  
(VDRV)  
r
Output resistance  
o
T
J
= 0.5 V (sink)  
= 11 V (src)  
= 0.5 V (sink)  
22  
6
V
T
= 11.5 V,  
= 25°C  
(VDRV)  
J
LOWDR-to-PGND resistor  
250  
kΩ  
V
V
V
V
V
V
V
V
V
= 4 V  
60  
50  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
(VDRV)  
C
= 3.3 nF,  
T
T
= 125°C,  
= 125°C,  
L
J
= 8 V  
See Note 2  
= 14 V  
= 4 V  
40  
t /t  
r f  
Rise and fall time  
ns  
110  
100  
80  
C
= 10 nF,  
L
J
= 8 V  
See Note 2  
= 14 V  
= 4 V  
110  
90  
ns  
ns  
ns  
Propagation delay time, LOWDR  
going high (excluding deadtime)  
T = 125°C,  
J
See Notes 2 and 3  
= 8 V  
t
PLH  
= 14 V  
80  
NOTES: 2: Ensured by design, not production tested.  
3: The pullup/pulldown circuits of the drivers are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors. The output resistance is the r of the MOSFET transistor when  
DS(on)  
the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
V
undervoltage lockout  
CC  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Start threshold voltage  
Stop threshold voltage  
Hysteresis voltage  
10.3  
7.5  
1
V
V
hys  
1.5  
V
t
t
Propagation delay time  
Falling-edge delay time  
50-mV overdrive, See Note 2  
See Note 2  
300  
1000  
5
ns  
us  
pd  
2
d
NOTE 2: Ensured by design, not production tested.  
8
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, ENABLE = High, C = 3.3 nF (unless otherwise noted) (continued)  
CC  
L
digital control (IN, ENABLE, SYNC)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
UNIT  
V
IN  
Over full V  
Over full V  
Over full V  
Over full V  
range  
range  
range  
range  
CC  
CC  
CC  
CC  
V
V
High-level input voltage  
Low-level input voltage  
IH  
ENABLE, SYNC  
IN  
2.2  
V
1
1
7
V
IL  
ENABLE, SYNC  
V
ENABLE propagation delay time  
See Note 2  
2
µs  
NOTE 2: Ensured by design, not production tested.  
thermal shutdown  
PARAMETER  
TEST CONDITIONS  
MIN  
155  
10  
TYP  
MAX  
185  
20  
UNIT  
_C  
Thermal shutdown  
See Note 2  
See Note 2  
170  
t
d
Falling edge delay time  
µs  
NOTE 2: Ensured by design, not production tested.  
drive regulator  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
MAX  
14  
UNIT  
V
Recommended output voltage  
V
Output voltage  
V
V
V
= 10 V to 15 V,  
= 10 V to 15 V  
= 10 V,  
I
I
= 5 mA to 150 mA  
= 150 mA  
2  
2
%nom  
V
O
CC  
CC  
CC  
O
V
ref  
Reference voltage  
1.235  
1000  
O
Dropout voltage  
1100  
mV  
See Note 2  
Line regulation  
V
V
V
= 10 V to 15 V,  
= 10 V,  
I
I
= 5 mA  
0.2  
2
%/V  
%
CC  
CC  
CC  
O
Load regulation  
= 5 mA to 150 mA  
O
Current limit  
= 8 V  
0.5  
0.6  
0.8  
1
A
PWRRDY saturation voltage  
Leakage current  
I
O
= 5 mA  
V
I
V
= 4.5 V  
µA  
lkg  
I(PWRRDY)  
drive regulator undervoltage lockout  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Start threshold voltage  
See Note 2  
See Note 2  
See Note 2  
85 %Vref  
%Vref  
Stop threshold voltage  
80  
V
hys  
Hysteresis voltage  
2.5  
5
%Vref  
t
pd  
Propagation delay time  
Falling-edge delay time  
Power on reset time  
50-mV overdrive,  
See Note 2  
See Note 2  
300  
1000  
ns  
µs  
µs  
2
5
See Note 2  
100  
1000  
NOTE 2: Ensured by design, not production tested.  
9
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
PARAMETER MEASUREMENT INFORMATION  
Rising Edge  
Falling Edge  
50%  
V
I
50%  
50%  
50%  
(EN, SYNC, IN)  
V
I
(EN, SYNC, IN)  
t
t
off  
on  
t
t
off  
on  
V
O
50%  
50%  
V
O
(LOWDRV, HIGHDR)  
50%  
50%  
(LOWDRV, HIGHDR)  
High-Side and Low-Side Drive  
t
t
f
r
V
O
90%  
10%  
90%  
10%  
(LOWDRV, HIGHDR)  
Figure 1. Voltage Waveforms  
TYPICAL CHARACTERISTICS  
FALL TIME  
vs  
INPUT VOLTAGE (VDRV)  
RISE TIME  
vs  
INPUT VOLTAGE (VDRV)  
70  
60  
35  
30  
C
T
= 3.3 nF  
= 25°C  
L
J
C
T
= 3.3 nF  
= 25°C  
L
J
50  
40  
25  
20  
High Side  
Low Side  
High Side  
30  
20  
15  
10  
Low Side  
10  
0
5
0
4
5
6
7
8
9
10 11 12 13 14 15  
4
5
6
7
8
9
10 11 12 13 14 15  
V Input Voltage (VDRV) V  
I
V Input Voltage (VDRV) V  
I
Figure 2  
Figure 3  
10  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
TYPICAL CHARACTERISTICS  
RISE TIME  
vs  
FALL TIME  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
60  
35  
30  
VDRV = 8 V  
= 3.3 nF  
VDRV = 8 V  
C
C
= 3.3 nF  
L
L
50  
40  
High Side  
High Side  
25  
20  
30  
20  
15  
10  
Low Side  
Low Side  
10  
0
5
0
50  
25  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
50  
25  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 4  
Figure 5  
HIGH-TO-LOW PROPAGATION DELAY TIME  
LOW-TO-HIGH PROPAGATION DELAY TIME  
vs  
vs  
INPUT VOLTAGE (VDRV)  
INPUT VOLTAGE (VDRV)  
200  
180  
140  
120  
C
T
= 3.3 nF  
= 25°C  
L
J
C
T
= 3.3 nF  
= 25°C  
L
J
160  
100  
80  
140  
120  
High Side  
100  
80  
High Side  
Low Side  
60  
40  
60  
40  
Low Side  
20  
0
20  
0
4
5
6
7
8
9
10 11 12 13 14 15  
4
5
6
7
8
9
10 11 12 13 14 15  
V Input Voltage (VDRV) V  
I
V Input Voltage (VDRV) V  
I
Figure 6  
Figure 7  
11  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
TYPICAL CHARACTERISTICS  
LOW-TO-HIGH PROPAGATION DELAY TIME  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
180  
160  
80  
VDRV = 8 V  
VDRV = 8 V  
= 3.3 nF  
C
= 3.3 nF  
L
C
L
70  
60  
High Side  
140  
120  
High Side  
50  
40  
100  
80  
Low Side  
30  
20  
60  
40  
Low Side  
10  
0
20  
0
50  
25  
0
25  
50  
75  
100  
125  
50  
25  
0
25  
50  
75  
100  
125  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 8  
Figure 9  
DRIVER-OUTPUT FALL TIME  
vs  
DRIVER-OUTPUT RISE TIME  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1000  
1000  
VDRV = 8 V  
= 25°C  
VDRV = 8 V  
T = 25°C  
J
T
J
100  
10  
100  
10  
High Side  
High Side  
Low Side  
Low Side  
1
1
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
C
Load Capacitance nF  
C
Load Capacitance nF  
L
L
Figure 10  
Figure 11  
12  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
vs  
INPUT VOLTAGE (VDRV)  
INPUT VOLTAGE (VDRV)  
10  
25  
C
T
= 50 pF  
= 25°C  
C
T
= 50 pF  
= 25°C  
L
J
L
J
9
8
22.5  
20  
7
6
5
4
3
2
17.5  
15  
500 kHz  
100 kHz  
300 kHz  
200 kHz  
2 MHz  
50 kHz  
25 kHz  
12.5  
10  
7.5  
5
1 MHz  
1
0
2.5  
0
4
5
6
7
8
9
10 11 12 13 14 15  
4
5
6
7
8
9
10 11 12 13 14 15  
V Input Voltage (VDRV) V  
I
V Input Voltage (VDRV) V  
I
Figure 12  
Figure 13  
PEAK SOURCE CURRENT  
vs  
PEAK SINK CURRENT  
vs  
INPUT VOLTAGE (VDRV)  
INPUT VOLTAGE (VDRV)  
5
4.5  
4
T
J
= 25°C  
T
J
= 25°C  
4.5  
4
3.5  
3
High Side  
Low Side  
3.5  
3
2.5  
2
Low Side  
2.5  
2
High Side  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
4
5
6
7
8
9
10 11 12 13 14 15  
4
5
6
7
8
9
10 11 12 13 14 15  
V Input Voltage (VDRV) V  
I
V Input Voltage (VDRV) V  
I
Figure 14  
Figure 15  
13  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
TYPICAL CHARACTERISTICS  
BOOTSTRAP SCHOTTKY DIODE  
INPUT CURRENT  
vs  
START/STOP V  
UNDERVOLTAGE LOCKOUT  
CC  
vs  
OUTPUT VOLTAGE  
JUNCTION TEMPERATURE  
10  
1200  
1000  
800  
T
J
= 25°C  
9.8  
Start  
9.6  
9.4  
9.2  
9
600  
400  
8.8  
8.6  
Stop  
200  
0
8.4  
8.2  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
50  
25  
0
25  
50  
75  
100  
125  
T
J
Junction Temperature °C  
V
O
Output Voltage V  
Figure 16  
Figure 17  
DELAY TIME  
vs  
DELAY TIME (DEAD TIME)  
vs  
JUNCTION TEMPERATURE  
INPUT VOLTAGE (VDRV)  
200  
180  
160  
200  
180  
VDRV = 8 V  
T
J
= 25°C  
50 pF  
160  
10 pF  
20 pF  
5 pF  
10 pF  
5 pF  
20 pF  
140  
120  
140  
120  
50 pF  
100  
80  
100  
80  
60  
40  
60  
1 pF  
40  
0 pF  
0 pF  
1 pF  
20  
0
20  
0
4
5
6
7
8
9
10 11 12 13 14 15  
50  
25  
0
25  
50  
75  
100  
125  
V Input Voltage (VDRV) V  
I
T
J
Junction Temperature °C  
Figure 18  
Figure 19  
14  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
TYPICAL CHARACTERISTICS  
VDRV LOAD REGULATION  
VDRV LINE REGULATION  
8.062  
8.061  
8.115  
C
T
= 1 µF  
C
T
= 1 µF  
L(VDRV)  
L(VDRV)  
= 25°C  
= 25°C  
J
J
8.11  
8.06  
8.105  
8.059  
8.1  
8.058  
8.057  
8.095  
8.09  
8.056  
8.055  
8.085  
10  
11  
12  
13  
14  
15  
10  
10  
30  
50  
70  
90  
110 130 150  
V
CC  
Supply Voltage V  
I Input Current mA  
I
Figure 20  
Figure 21  
APPLICATION INFORMATION  
Figure 22 shows the circuit schematic of a 100-kHz synchronous-buck converter implemented with a TL5001ACD  
pulse-width-modulation (PWM) controller and a TPS2838 driver. The converter operates over an input range from  
4.5 V to 12 V and has a 3.3-V output. The circuit can supply 3-A continuous load. The converter achieves an efficiency  
of 94% for V = 5 V, I =1 A, and 93% for V = 5 V, I = 3 A.  
IN  
L
IN  
L
VDRV  
VDRV  
Voltage  
(V)  
R1  
(k)  
R2  
(k)  
R2  
R1  
30  
30  
30  
30  
30  
67  
91  
4
5
ADJ  
165  
261  
322  
8
12  
14.5  
To set the regulator voltage (TPS2838/39) use the following equation:  
R1  
R2 + ǒ   VDRVǓ* R1  
1.235  
15  
www.ti.com  
C4  
100 µF  
+
C2  
100 µF  
+
J1  
4.5 V 8 V  
1
2
VIN  
VIN  
GND  
Q1  
IRF7201  
R20  
10 kΩ  
R23  
10 kΩ  
C6  
0.22 µF  
L1  
10 µH  
R19  
10 kΩ  
Vphase  
See Note A  
U1  
TPS2838  
C3  
1 µF  
3.3 V  
J3  
L2  
10 µH  
16  
15  
14  
13  
12  
11  
10  
9
1
1
2
3
J3  
ENABLE  
BOOT  
ENABLE  
PWRRDY  
SYNC  
1
2
3
2
3
4
5
6
7
8
IN  
HIGHDR  
BOOST  
C12  
220 µF  
PWRRDY BOOTLO  
DELAY  
5 V  
R4  
+
4.7 Ω  
3.3 V LOGIC  
LOGIC GND  
ANALOG GND  
3.3 V ANALOG  
R2  
4.7 Ω  
4
5
SYNC  
ADJ  
VDRV  
LOWDR  
NC  
C13  
10 µF  
R22  
165 kΩ  
6
C8  
1000 pF  
DT  
C28  
1 µF  
AGND  
PGND  
+
C15  
10 µF  
R24  
10 Ω  
R21  
30 kΩ  
C1  
1 µF  
R18  
0 Ω  
C11  
390 pF  
C14  
0.018 µF  
R9  
2.32 kΩ  
C7  
0.1 µF  
U2  
TL5001ACD  
R1  
2
R8  
1 kΩ  
100 Ω  
V
CC  
C9  
0.018 µF  
6
R6  
3.01 kΩ  
DTC  
1
OUT  
3
COMP  
Vfb  
See Note B  
4
7
FB  
RT  
5
SCP  
f
= 400 kHz  
OSC  
GND  
R7  
1 kΩ  
+
C10  
0.1 µF  
8
C5  
R3  
13.7 kΩ  
R5  
27.4 kΩ  
1 µF  
NOTES:  
A. Node Vphase generates RFI. Make this as contained as possible.  
B. Node Vphase is very sensitive. Make this as short as possible.  
Figure 22. 3.3-V 3-A Synchronous-Buck Converter Circuit  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢇ  
ꢀ ꢁꢂꢃ ꢄ ꢈ ꢄ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢈꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
APPLICATION INFORMATION  
Great care should be taken when laying out the PC board. The power-processing section is the most critical  
and will generate large amounts of EMI if not properly configured. The junction of Q1, Q2, and L1 should be very  
tight. The connection from Q1 drain to the positive sides of C5, C10, and C11 and the connection from Q2 source  
to the negative sides of C5, C10, and C11 should be as short as possible. The negative terminals of C7 and  
C12 should also be connected to Q2 source.  
Next, the traces from the MOSFET driver to the power switches should be considered. The BOOTLO signal from  
the junction of Q1 and Q2 carries the large gate drive current pulses and should be as heavy as the gate drive  
traces. The bypass capacitor (C14) should be tied directly across V  
and PGND.  
CC  
The next most sensitive node is the FB node on the controller (terminal 4 on the TL5001A). This node is very  
sensitive to noise pickup and should be isolated from the high-current power stage and be as short as possible.  
The ground around the controller and low-level circuitry should be tied to the power ground as the output. If these  
three areas are properly laid out, the rest of the circuit should not have other EMI problems and the power supply  
will be relatively free of noise.  
17  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂ ꢃ ꢄꢈ ꢄ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢈ ꢇ  
SLVS367A MARCH 2001 REVISED JUNE 2001  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
20-PIN SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°ā8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/E 03/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically  
and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
18  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
TPS2838PWP  
TPS2838PWPR  
TPS2839PWP  
TPS2839PWPR  
TPS2848PWP  
TPS2848PWPR  
TPS2849PWP  
TPS2849PWPR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTSSOP  
PWP  
16  
16  
16  
16  
14  
14  
14  
14  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TPS2849PWPRG4

4.4A HALF BRDG BASED MOSFET DRIVER, PDSO14, 5.10 X 6.60 MM, GREEN, PLASTIC, HTSSOP-14
TI

TPS2901

SIMPLE -48-V HOT SWAP CONTROLLER
TI

TPS2H000-Q1

具有可调节电流限制的 40V、1Ω、2 通道汽车类智能高侧开关
TI

TPS2H000AQPWPRQ1

具有可调节电流限制的 40V、1Ω、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS2H000BQPWPRQ1

具有可调节电流限制的 40V、1Ω、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS2H160-Q1

具有可调节电流限制的 40V、160mΩ、2 通道汽车类智能高侧开关
TI

TPS2H160AQPWPRQ1

具有可调节电流限制的 40V、160mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS2H160BQPWPRQ1

具有可调节电流限制的 40V、160mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS2HB16-Q1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关
TI

TPS2HB16AQPWPRQ1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS2HB16BQPWPRQ1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI

TPS2HB16FQPWPRQ1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125
TI